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Abstract

A somewhere statistically binding (SSB) hash, introduced by Hubáček and Wichs (ITCS ’15), can be
used to hash a long string x to a short digest y = Hhk(x) using a public hashing-key hk. Furthermore,
there is a way to set up the hash key hk to make it statistically binding on some arbitrary hidden position
i, meaning that: (1) the digest y completely determines the i’th bit (or symbol) of x so that all pre-
images of y have the same value in the i’th position, (2) it is computationally infeasible to distinguish the
position i on which hk is statistically binding from any other position i′. Lastly, the hash should have a
local opening property analogous to Merkle-Tree hashing, meaning that given x and y = Hhk(x) it should
be possible to create a short proof π that certifies the value of the i’th bit (or symbol) of x without
having to provide the entire input x. A similar primitive called a positional accumulator, introduced by
Koppula, Lewko and Waters (STOC ’15) further supports dynamic updates of the hashed value. These
tools, which are interesting in their own right, also serve as one of the main technical components in
several recent works building advanced applications from indistinguishability obfuscation (iO).

The prior constructions of SSB hashing and positional accumulators required fully homomorphic
encryption (FHE) and iO respectively. In this work, we give new constructions of these tools based
on well studied number-theoretic assumptions such as DDH, Phi-Hiding and DCR, as well as a general
construction from lossy/injective functions.

1 Introduction

SSB Hashing. A somewhere statistically binding (SSB) hash, introduced by Hubáček and Wichs [HW15],
can be used to create a short digest y = Hhk(x) of some long input x = (x[0], . . . , x[L − 1]) ∈ ΣL, where Σ
is some alphabet. The hashing key hk← Gen(i) can be chosen by providing a special “binding index” i and
this ensures that the hash y = Hhk(x) is statistically binding for the i’th symbol, meaning that it completely
determines the value x[i]. In other words, even though y has many preimages x′ such that Hhk(x

′) = y,
all of these preimages agree in the i’th symbol x′[i] = x[i]. The index i on which the hash is statistically
binding should remain computationally hidden given the hashing key hk. This is formalized analogously
to semantic security so that for any indices i, i′ the hashing keys hk ← Gen(i) and hk′ ← Gen(i′) should
be computationally indistinguishable. Moreover, we will be interested in SSB hash functions with a “local
opening” property that allows us to prove that j’th symbol of x takes on some particular value x[j] = u by
providing a short opening π. This is analogous to Merkle-Tree hashing, where it is possible to open the j’th
symbol of x by providing a proof π that consists of the hash values associated with all the sibling nodes along
the path from the root of the tree to the j’th leaf. In the case of SSB hashing, when j = i is the “binding
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index”, there should (statistically) exist only one possible value that we can open x[j] to by providing a
corresponding proof.

Positional Accumulators. A related primitive called a positional accumulator, was introduced at the
same time as SSB hashing by Koppula, Lewko and Waters [KLW15]. Roughly speaking, it includes the
functionality of SSB hashing along with the ability to perform “local updates” where one can very efficiently
update the hash y = Hhk(x) if a particular position x[j] is updated. Again, this is analogous to Merkle-Tree
hashing, where it is possible to update the j’th symbol of x by only updating the hash values along the path
from the root of the tree to the j’th leaf.1

Applications of SSB Hashing and Positional Accumulators. The above tools, which are interesting
in their own right, turn out to be extremely useful in several applications when combines with indistinguisha-
bility obfuscation (iO) [BGI+12, GGH+13]. An iO scheme can be used to obfuscate a program (given by a
circuit) so that the obfuscations of any two functionally equivalent programs are indistinguishable. Although
this notion of obfuscation might a-priori seem too week to be useful, recent work has shown it to be surpris-
ingly powerful (see e.g., [SW14]). Very recently, several results showed how to use iO in conjunction with SSB
hashing and positional accumulators to achieve various advanced applications. The work of [HW15] uses SSB
hashing and iO to construct the first general Multi-Party Computation (MPC) protocols in the semi-honest
model where the communication complexity essentially matches that of the best insecure protocol for the
same task. The work of [KLW15] uses positional accumulators and iO to construct succinct garbling for
Turing Machines, and recent work extends this approach to RAM programs [CH15, CCC+15]. Lastly, the
work of [Zha14] uses SSB hashing and iO to construct the first adaptively secure broadcast encryption with
short system parameters.

Example: the power of iO + SSB. To see the usefulness of combining iO and SSB hashing (or positional
accumulators), let’s take a simple illustrative example, adapted from [HW15].2 Imagine that Alice has a
(small) secret circuit C, and both Alice and Bob know a public value x ∈ ΣL. Alice wishes to communicate
the values {C(x[i])}i∈[L] to Bob while hiding some information about C. In particular, Bob shouldn’t learn
whether Alice has the circuit C or some other C ′ that satisfies C(x[i]) = C ′(x[i]) for each i ∈ [L]. Note that C
and C ′ may not be functionally equivalent and they only agree on the inputs {x[i]}i∈[L] but might disagree on
other inputs. A naive secure solution would be for Alice to simply send the outputs {C(x[i])}i∈[L] to Bob, but
this incurs communication proportional to L. An insecure but communication-efficient solution would be for
Alice to just send the small circuit C to Bob. Can we get a secure solution with comparable communication
independent of L? Simply sending an obfuscated copy of C is not sufficient since the circuits C,C ′ are
not functionally equivalent and therefore their obfuscations might be easily distinguishable. However it is
possible to achieve this with iO and SSB hashing. Alice can send an obfuscation of a circuit that has the
hash y = Hhk(x) hard-coded and takes as input a tuple (j, u, π): it checks that j ∈ [L] and that π is a
valid opening to x[j] = u and if so outputs C(u). Bob can evaluate this circuit on the values {x[j]}j∈[L] by
providing the appropriate openings. It is possible to show that the above hides whether Alice started with
C or C ′. The proof proceeds in a sequence of L hybrids where in the i’th hybrid we obfuscate a circuit Ci
that runs C ′ instead of C when j ≤ i and otherwise runs C. To go from hybrid i to i + 1 we first switch
the SSB hash key hk to be binding in position i + 1 and then we can switch from obfuscating Ci to Ci+1

by arguing that these are functionally equivalent; they only differ in the code they execute for inputs of the
form (j = i + 1, u, π) where π is a valid proof but in this case, by the statistical binding property, the only

1The formal definitions of SSB hashing and positional accumulators as given in [HW15, KLW15] are technically incomparable.
On a high level, the latter notion requires additional functionality in the form of updates but only insists on a weaker notion of
security which essentially corresponds to “target collision resistance” where the target hash value is computed honestly. In this
work, we construct schemes that achieve the best of both worlds, having the additional functionality and the stronger security.

2The contents of this paragraph and the notion of iO are not essential to understand the results of the paper, but we provide
it to give some intuition for how SSB hashing and positional accumulators are used in conjunction with iO in prior works to
get the various applications described above.
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possible value u for which a valid proof π exists is the unique value u = x[j] for which both circuits produce
the same output C(x[j]) = C ′(x[j]).

Prior Constructions of SSB and Positional Accumulators. The work of [HW15] constructed a SSB
hash by relying on fully homomorphic encryption (FHE). Roughly speaking the construction combines FHE
with Merkle Hash Trees. To hash some value x = (x[0], . . . , x[L− 1]) the construction creates a full binary
tree of height logL (for simplicity, assume L is a power of 2) and deterministically associates a ciphertext with
each node of the tree. The L leaf nodes will be associated with some deterministically created encryptions of
the values x[0], . . . , x[L− 1], say by using all 0s for the random coins of the encryption procedure. The hash
key hk consists of an encryption of a path from the root of the tree to the i’th leaf where i is the binding index;
concretely it contains logL FHE ciphertexts (ct1, . . . , ctlogL) which encrypt bits β1, . . . , βlogL corresponding
to the binary representation of the binding index i so that βi = 0 denotes “left” and βi = 1 denotes “right”.
The ciphertext associated with each non-leaf node are computed homomorphically to ensure that the value
x[i] is contained in each ciphertext along the path from the root to the i’th leaf. Concretely, the ciphertext
associated with some node at level j is is determined by a homomorphic computation which takes the two
child ciphertexts c0 (left) and c1 (right) encrypting some values m0,m1 and the ciphertext cti contained in
hk which encrypts βi and homomorphically produces a ciphertext encrypting mβi

. (For technical reasons,
the actual construction is a bit more complicated and needs to use a different FHE key at each level of the
tree – see [HW15] for full details.) This ensures that the binding index i is hidden by the semantic security
of FHE and the statistically binding property follows by the correctness of FHE.

The work of [KLW15] constructs positional accumulators by also relying on a variant of Merkle Trees.
However, instead of FHE, it relies on standard public-key encryption and iO. (It is relatively easy to see that
the scheme of [HW15] would also yield an alternate construction of a positional accumulator).

1.1 Our Results

In this work we give new constructions of SSB hashing and positional accumulators from a wide variety of
well studied number theoretic assumptions such as DDH, DCR (decisional composite residuocity), φ-hiding,
LWE and others.

Two-to-One SSB. We first abstract out the common Merkle-tree style approach that is common to both
SSB hashes and positional accumulators, and identify a basic underlying primitive that we call a two-to-one
SSB hash, which can be used to instantiate this approach. Intuitively a two-to-one SSB hash takes as input
x = (x[0], x[1]) ∈ Σ2 consisting of just two alphabet symbols and outputs a value y = Hhk(x) which is not
much larger than than a single alphabet symbol. The key hk can be set up to be statistically binding on
either position 0 or 1.

Instantiations of Two-to-One SSB. We show how to instantiate a two-to-one SSB hash from the DDH
assumption and the decisional composite residuocity (DCR) assumption. More generally, we show how to
instantiate a (slight variant of) two-to-one SSB hash from any lossy/injective function. This is a family of
functions fpk(x) where the public key pk can be picked in one of two indistinguishable modes: in injective
mode, the function fpk(x) is an injective function and in lossy mode fpk(x) it is a many-to-one function.
To construct a two-to-one SSB hash from injective/lossy function we pick two public keys hk = (pk0, pk1)
and define Hhk(x[0], x[1]) = h(fpk0(x[0]), fpk1(x[1])) where h is a universal hash function. To make the hk
binding on index 0 we choose pk0 to be injective and pk1 to be lossy and to make is binding on index 1 we
do the reverse. With appropriate parameters, we can ensure that the statistically binding property holds
with overwhelming probability over the choice of h.

From Two-to-One SSB to Full SSB and Positional Accumulators. We can instantiate a (full) SSB
hash with arbitrary input size ΣL by combining two-to-one SSB hashes in a Merkle Tree, with a different
key at each level. To make the full SSB binding at some location i, we choose the hash keys at each level
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to be binding on either the left or right child in such a way that they are binding along the path from the
root of the tree to the leaf at position i. This allows us to “locally open” the j’th position of the input in
the usual way, by giving the hash values of all the siblings along the path from the root to the j’th leaf. If
j = i is the binding index, then there is a unique value x[j] = u for which there is a valid opening. To get
positional accumulators, we use the fact that we can also locally update the hashed value by modifying one
location x[j] and only updating the hashes along the path from the root to the j’th leaf.

A Flatter Approach. We also explore a different approach for achieving SSB hashing from the φ-hiding
assumption, which does not go through a Merkle-Tree type construction. Roughly our approach uses a
construction is structurally similar to standard constructions RSA accumulators [BdM93]. However, we
construct a modus N to be such that for some given prime exponent e we have that e divides φ(N). This
means that if y ∈ ZN is not an e-th residue mod N , then there exists no value π ∈ ZN where πe = y. This
will lead to our statistical binding property as we will leverage this fact to make the value e related to an
index we wish to be binding on. Index hiding will follow from the φ-hiding assumption.

2 Preliminaries

SSB Hash (with Local Opening). Our definition follows that of [HW15], but whereas that work only
defined SSB hash which included the local opening requirement by default, it will be convenient for us to
also separately define a weaker variant which does not require the local opening property.

Definition 2.1 (SSB Hash). A somewhere statistically binding (SSB) hash consists of PPT algorithms
H = (Gen, H) and a polynomial `(·, ·) denoting the output length.

• hk← Gen(1λ, 1s, L, i): Takes as input a security parameter λ a block-length s an input-length L ≤ 2λ

and an index i ∈ {0, . . . , L − 1} (in binary) and outputs a public hashing key hk. We let Σ = {0, 1}s
denote the block alphabet. The output size is ` = `(λ, s) and is independent of the input-length L.

• Hhk : ΣL → {0, 1}`: A deterministic poly-time algorithm that takes as input x = (x[0], . . . , x[L− 1]) ∈
ΣL and outputs Hhk(x) ∈ {0, 1}`.

We require the following properties:

Index Hiding: We consider the following game between an attacker A and a challenger:

• The attacker A(1λ) chooses parameters 1s, L and two indices i0, i1 ∈ {0, . . . , L− 1}.
• The challenger chooses a bit b← {0, 1} and sets hk← Gen(1λ, 1s, L, ib).

• The attacker A gets hk and outputs a bit b′.

We require that for any PPT attacker A we have |Pr[b = b′]− 1
2 | ≤ negl(λ) in the above game.

Somewhere Statistically Binding: We say that hk is statistically binding for an index i ∈ [L] if there do
not exist any values x, x′ ∈ ΣL with x[i] 6= x′[i] such that Hhk(x) = Hhk(x

′). We require that for any
parameters s, L and any integer i ∈ {0, . . . , L− 1} we have:

Pr[hk is statistically binding for index i : hk← Gen(1λ, 1s, L, i)] ≥ 1− negl(λ).

We say that the hash is perfectly binding if the above probability is 1.

Definition 2.2 (SSB Hash with Local Opening). An SSB Hash with local opening H = (Gen, H,Open,Verify)
consists of an SSB hash (Gen, H) with output size `(·, ·) along with two additional algorithms Open,Verify
and an opening size p(·, ·). The additional algorithms have the following syntax:

• π ← Open(hk, x, j): Given the hash key hk, x ∈ ΣL and an index j ∈ {0, . . . , L−1}, creates an opening
π ∈ {0, 1}p. The opening size p = p(λ, s) is a polynomial which is independent of the input-length L.
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• Verify(hk, y, j, u, π): Given a hash key hk a hash output y ∈ {0, 1}`, an integer index j ∈ {0, . . . , L−1},
a value u ∈ Σ and an opening π ∈ {0, 1}p, outputs a decision ∈ {accept, reject}. This is intended to
verify that a pre-image x of y = Hhk(x) has x[j] = u.

We require the following two additional properties.

Correctness of Opening: For any parameters s, L and any indices
i, j ∈ {0, . . . , L−1}, any hk← Gen(1λ, 1s, L, i), x ∈ ΣL, π ← Open(hk, x, j): we have Verify(hk, Hhk(x), j, x[j], π) =
accept.

Somewhere Statistically Binding w.r.t. Opening: 3 We say that hk is statistically binding w.r.t open-
ing (abbreviated SBO) for an index i if there do not exist any values y, u 6= u′, π, π′ s.t.

Verify(hk, y, i, u, π) = Verify(hk, y, i, u′, π′) = accept.

We require that for any parameters s, L and any index i ∈ {0, . . . , L− 1}

Pr[hk is SBO for index i : hk← Gen(1λ, 1s, L, i)] ≥ 1− negl(λ).

We say that the hash is perfectly binding w.r.t. opening if the above probability is 1.

Fixed-Parameter Variants. The above definitions allow for a flexible input-length L and block-length s
specified by the user as inputs to the Gen algorithm. This will be the default throughout the paper, but we
also consider variants of the above definition with a fixed-input-length L and/or fixed-block-length s where
these values cannot be specified by the user as inputs to the Gen algorithm but are instead set to some fixed
value (a constant or polynomial in the security parameter λ) determined by the scheme. In the case of a
fixed-input-length variant, the definitions are non-trivial if the output-length ` and opening-size p satisfy
`, p < L · s.

Discussion. There are several constructions of SSB hash that do not provide local opening. For example,
any PIR scheme can be used to realize an SSB hash without local opening. The hash key hk consists of a PIR
query for index i and the hash Hhk(x) simply computes the PIR response using database x. Unfortunately,
we do not know how to generically add a local opening capability to such SSB hash constructions.

3 Two-to-One SSB Hash

As our main building block, we rely on a notion of a “two-to-one SSB hash”. Informally, this is a fixed-
input-length and flexible-block-size SSB hash (we do not require local opening) that maps two input blocks
(L = 2) to an output which is roughly the size of one block (up to some small multiplicative and additive
factors).

Definition 3.1 (Two-to-One SSB Hash). A two-to-one SSB hash is an SSB hash with a fixed input-length
L = 2 and flexible block-length s. The output-length is `(λ, s) = s · (1 + 1/Ω(λ)) + poly(λ).

We give three constructions of a Two-to-One SSB Hash systems. Our first construction is built from
the DDH-hard groups with compact representation. This construction achieves perfect binding. Our next
construction is built from the DCR assumption. Lastly, we generalize our approach by showing a (variant of)
Two-to-One SSB hashing that can work from any lossy function. We note that lossy functions can be built
from a variety of number theoretic primitives including DDH (without compact representation), Learning
with Errors, and the φ-hiding assumption.

3Note that the “somewhere stat. binding w.r.t. opening” property implies the basic “somewhere stat. binding” property of
SSB hash.
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Remark: Impossibility without Overhead. We note that the need for some “slack” is inherent in
the above definition and we cannot get a two-to-one SSB hash where the output is exactly `(λ, s) = s
matching the size of one of the inputs. This is because in that case, if we choose hk ← Gen(1λ, 1s, i = 0)
then for each x0 ∈ {0, 1}s there is a unique choice of y ∈ {0, 1}s such that Hhk(x0, x1) = y no matter what
x1 is. In other words, the function Hhk(x0, x1) does not depend on the argument x1. Symmetrically, if
hk← Gen(1λ, 1s, i = 1) then the function Hhk(x0, x1) does not depend on the argument x0. These two cases
are easy to distinguish.

3.1 Two-to-One SSB Hash from DDH

3.1.1 DDH Hard Groups and Representation Overhead

Let G be a PPT group generator algorithm that takes as input the security parameter 1λ and outputs a pair
G, p where G is a group description of prime order p for p ∈ Θ(2λ).

Assumption 1 (decision Diffie-Hellman Assumption). Let (G, p)← G(1λ) and b← {0, 1}. Choose a random
generator g ∈ G and random x, y ∈ Zp Let T ← G if b = 0, else T ← gxy. The advantage of algorithm A in
solving the decision Diffie-Hellman problem is defined as

AdvA =

∣∣∣∣Pr[b← A(G, p, g, gx, gy, T )]− 1

2

∣∣∣∣ .
We say that the Decision-Diffie Hallman assumption holds if for all PPT A, AdvA is negligible in λ.

Representation overhead of group elements In this work we will be concerned with how efficiently
(prime order) group elements are represented. We are interested in the difference between the number of
bits to represent a group element and blg(p)c. In our definition we consider the bit representation of a group
to be intrinsic to a particular group description.

Definition 3.2 (Representational Overhead). Consider a family of prime order groups output from some
group generation algorithm G(1λ) that outputs a group of prime order p for 2λ < p < 2λ+1. Notice that for
a generator g in such a group that gi 6= gj for i, j ∈ [0, 2λ] and i 6= j. (I.e. no “wraparound” happens.)

We define the representational overhead δ(λ) to be the function which expresses maximum difference
between the number of bits used to represent a group element of G and λ, where G, p← G(1λ).

For this work we are interested in families of groups who representational overhead δ(λ) is some constant
c. Examples of these include groups generated from strong primes and certain elliptic curve groups.

3.1.2 Construction of Two-to-One SSB

We now describe our Two-To-One SSB Hash. We will use a group generation algorithm G that has constant
representational overhead c as defined in Definition 3.2. Consider a matrix M over Zp and group generator
g of order p we will use the notation gM as short hand for giving out g raised to each element of M.

The construction sets up a hash function key hk for a function that takes two s bit inputs xA and xB .
If the index bit β = 0 it will be statistically binding on xA; otherwise it is statistically binding on xB . At a
high level the construction setup is intuitively similar to the Lossy trapdoor function algorithms of Peikert
and Waters [PW08] where the setup creates two functions — one injective and the other lossy and assigns
whether the lossy function corresponds to the A or B input according to the index bit β.

There are two important differences from the basic PW construction. First the PW construction en-
crypted the input bit by bit. This low rate of encoding was needed in order to recover the input from a
trapdoor in [PW08], but a trapdoor is not required for our hash function. Here we cram in as many bits into
a group element as possible. This is necessary to satisfy the SSB output size properties. We note [BHK11]
pack bits in a similar manner. The second property we have is that the randomness used to generate both
the injective and lossy function is correlated such that we can intuitively combine the outputs of each into
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one output where the output length is both small and maintains the committing property of the injective
function. We note that our description describes the procedures directly and the connection to injective and
lossy functions is given for intuition, but not made formal.

GenTwo−to−One(1λ, 1s, β ∈ {0, 1})
The generation algorithm first sets t = max(λ, b

√
s · cc). (The variable t will be the number of bit each group

element can uniquely represent.) It then calls G(1t) → (G, p) with 2t < p < 2t+1 and chooses a random
generator g ∈ G.

Next, it lets d = d st e. It then chooses random w1, . . . , wd ∈ Zp, two random column vectors a =

(a1, . . . , ad) ∈ Zdp and b = (b1, . . . , bd) ∈ Zdp. We let Ã be the d× d matrix over Zp where the (i, j)-th entry

is ai ·wj and B̃ be the d×d matrix over Zp where the (i, j)-th entry is bi ·wj . Finally, let A be Ã+(1−β) · I
and B be B̃ + β · I where I is the identity matrix. (I.e. we add in the identity matrix to Ã to get the A
matrix if the selection bit β = 0; otherwise, if β = 1 add in the identity matrix to B̃ to get B.)

The hash key is hk = (ga, gb, gA, gB).

Hhk : {0, 1}s × {0, 1}s → Gd+1

The hash function algorithm takes in two inputs xA ∈ {0, 1}s and xB ∈ {0, 1}s. We can view the bitstrings
xA and xB each as consisting of d blocks each of t bits (except the last block which may be less). The
function first parses these each as row vectors xA = (xA,1, . . . , xA,d) and xB = (xB,1, . . . , xB,d). These have
the property that for j ∈ [d] we have xA,j is an integer < 2t ≤ p representing the j − th block of bits as an
integer.

Next, it computes
V = gxAa+xBb, Y = gxAA+xBB.

We observe that V is one group element in G and Y is a vector of d group elements. Thus the output size
of the hash is (d+ 1) · (t+ c) bits.

3.1.3 Analysis

We now analyze the size overhead, index hiding and binding properties of the hash function.

Overhead The output of the hash function is d + 1 group elements each of which takes t + c bits to
represent for a total output size of (d + 1)(t + c) bits. In the case where b

√
s · cc ≥ λ, we can plug in our

parameter choices for t, d and see that the outputsize `(λ, s) = s+O(
√
s), thus matching the requirements

of Definition 3.1. In the case where b
√
s · cc < λ we have that `(λ, s) = s + O(λ) thus also matching our

definition.

Somewhere Statistically Binding We show that the hash function above is selectively binding respective
to the bit β. We demonstrate this for the β = 0 case. The β = 1 case follows analogously.

Suppose a hash key hk were setup according to the process GenTwo−to−One as above with the input
β = 0. Now consider the evaluation Hhk(xA, xB) = (V, Y = (Y1, . . . , Yd)). We have that for all j ∈ [1, d] that
Yj/V

wj = gxA,j . Let’s verify this claim. First from the hash definition we can work out that

V = gΣi∈[d]xA,iai+xB,ibi

and
Yj = gxA,j+Σi∈[d]xA,i(aiwj)+xB,i(biwj) = gxA,jgwj(Σi∈[d]xA,iai+xB,ibi).

The claim that Yj/V
wj = gxA,j follows immediately from these equations.

Now suppose that we are given two inputs (xA, xB) and (x′A, x
′
B) such that xA 6= x′A There must

then exist some j such that xA,j 6= x′A,j . Let Hhk(xA, xB) = (V, Y = (Y1, . . . , Yd)) and Hhk(x
′
A, x

′
B) =

(V ′, Y ′ = (Y ′1 , . . . , Y
′
d)). From the above claim it follows that Yj/V

wj = gxA,j and Yj/V
wj = gx

′
A,j . Therefore

(V, Yj) 6= (V ′, Y ′j ) and the outputs of the hashes are distinct.
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Index Hiding We now prove index hiding. To do this we define Game normal to be the normal index hiding
game on the two-to-one construction and Game random to be the index hiding game, but where the matrices
Ã and B̃ are chosen randomly when constructing the hash function hk.

We first argue that if the decision Diffie-Hellman assumption holds, then the advantage of any PPT
attacker A in Game normal must be negligibly close to its advantage in Game random. To show this we apply a
particular case of the decision matrix linear assumption family introduced by Naor and Segev [NS12]. They
show (as part of a more general theorem) that if the decision Diffie-Hellman assumption holds that a PPT
attacker cannot distinguish if a 2d× (d+ 1) matrix M over Zp was sampled randomly from the set of rank
1 matrices or rank d+ 1 matrices given gM.

Suppose that the difference of advantage for some attacker in Game normal and Game random is some non-
negligible function of λ. Then we construct an algorithm B on the above decision matrix linear assumption.
B receives a challenge gM and breaks this into gMA and gMB where MA is the top half of the matrix M and

MB is the bottom half. It then takes ga from the first column of gMA and gÃ as the remaining d columns.

Similarly, B takes gb from the first column of gMB and gB̃ as the remaining d columns. It then samples a
random index β ∈ {0, 1} and continues to use these values in executing GenTwo−to−One, giving the hash key
hk to the attack algorithm.

If gM were sampled as a rank 1 matrix, then the view of the attacker is the same as executing Game normal.
Otherwise, if gM were sampled as a rank d+1 matrix the attacker’s view is statistically close to Game random

(as choosing a random rank d+ 1 matrix is statistically close to choosing a random matrix). If the attacker
A correctly guesses β′ = β, then B guesses the matrix was rank 1, else it guesses it was rank d + 1. If the
difference in advantage of A in the two games is non-neglgibile, then B has a non-negligible advantage in the
decision matrix game.

Finally, we see that in Game random any attacker’s advantage must be 0 as the distributions of the outputs
are independent of β.

3.2 Two-to-One SSB Hash from DCR

We can also construct a two-to-one hash with perfect binding from the decisional composite residuocity
(DCR) assumption. We do so by relying on the Damg̊ard-Jurik cryptosystem [DJ01] which is itself a
generalization of the Pallier cryptosystem based on the DCR assumption [Pai99]. We rely on the fact that
this cryptosystem is additively homomorphic and “length flexible”, meaning that it has a small ciphertext
expansion. When we plug this construction of a two-to-one SSB hash into our full construction of SSB
hash with local opening, we essentially get the private-information retrieval (PIR) scheme of Lipmaa [Lip05].
Note that, in general, PIR implies SSB hash but only without local opening. However, the particular PIR
construction of [Lip05] already has a tree-like structure which enables efficient local opening.

Damg̊ard-Jurik. The Damg̊ard-Jurik cryptosystem consists of algorithms (KeyGen, Enc, Dec). The key
generation (pk, sk)← KeyGen(1λ) generates a public key pk = n = pq which is a product of two primes p, q
and sk = (p, q). For any (polynomial) w the scheme can be instantiated to have plaintext space Znw and
ciphertext space Z∗nw+1 . The encryption/decryption procedures c = Encpk(m; r) and Decsk(c) satisfy perfect
correctness so that for all m ∈ Znw and all possible choices of the randomness r we have Decsk(Encpk(m; r)) =
m. Moreover the scheme is additively homomorphic, meaning that there is an operation ⊕ such that
Encpk(m; r)⊕Encpk(m

′; r′) = Encpk(m+m′; r′′) for some r′′ (the operation + is in the ring Znw). Similarly, we
can define homomorphic subtraction	. Furthermore, by performing repeated addition we can also implement
an operation ⊗ that allows for multiplication by a plaitnext element Encpk(m; r) ⊗m′ = Encpk(m ·m′; r′)
for some r′ (the operation · is in the ring Znw). The semantic security of the cryptosystem holds under the
DCR assumption.

Construction of Two-to-One SSB. We use the Damg̊ard-Jurik cryptosystem to construct an SSB hash
as follows.
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hk← Gen(1λ, 1s, β ∈ {0, 1}) Choose (pk, sk) ← KeyGen(1λ) to be a Damg̊ard-Jurik public/secret key. We
assume (without loss of generality) that the modulus n satisfies n > 2λ. Set the parameter w which
determines the plaintext space Znw and the ciphertext space Z∗nw+1 to be w = ds/ log ne so that we
can interpret {0, 1}s as a subset of Znw . Choose c← Encpk(β) and output hk = (pk, c).

Hhk(x0, x1): Parse hk = (pk, c) and interpret the values x0, x1 ∈ {0, 1}s as ring elements x0, x1 ∈ Znw .
Define the value 1ct = Encpk(1; r0) to be a fixed encryption of 1 using some fixed randomness r0 (say,
all 0s). Compute c∗ := (x1 ⊗ c)⊕ (x0 ⊗ (1ct 	 c)). By the homomorphic properties of encryption, c∗ is
an encryption of xβ .

Theorem 3.1. The above construction is a two-to-one SSB hash with perfect binding under the DCR
assumption.

Proof. The index hiding property follows directly from the semantic security of the Damg̊ard-Jurik cryp-
tosystem, which in turn follows from the DCR assumption.

The perfect binding property follows from the perfect correctness of the cryptosystem. In particular, if
hk← Gen(1λ, 1s, β) then y = Hhk(x0, x1) satisfies y = Encpk(xβ ; r) for some r which perfectly determines xβ .

Lastly, the output size of the hash function is

`(s, λ) = (w + 1)dlog ne = (ds/ log ne+ 1)dlog ne
≤ (1 + 1/ log n)s+O(log n) = (1 + 1/Ω(λ))s+ poly(λ).

3.3 SSB with Local Opening from Two-to-One SSB

We now show how to construct a SSB hash with local opening from a two-to-one SSB hash via the “Merkle
Tree” construction. Assume that H = (Gen, H) is a two-to-one SSB hash family with output length give
by `(s, λ). We use this hash function in a Merkle-Tree to construct an SSB hash with local opening H∗ =
(Gen∗, H∗,Open,Verify) as follows.

• hk ← Gen∗(1λ, 1s, L, i): Let (bq, . . . , b1) be the binary representation of i (with b1 being the least
significant bit) where q = dlogLe. For j ∈ [q] define the block-lengths s1, . . . , sq where s1 = s and
sj+1 = `(sj , λ). Choose hkj ← Gen(1λ, 1sj , bj) and output hk = (hk1, . . . , hkq).

• y = H∗hk(x): For x = (x[0], . . . , x[L − 1]) ∈ ΣL, hk = (hk1, . . . , hkq) proceed as follows. Define T to
be a complete binary tree of height q where level 0 of the tree denotes the leaves and level q denotes
the root. We will assign a label to each vertex in the tree. The L leaf vertices are assigned the labels
x[0], . . . , x[L− 1]. The rest of the labels are assigned inductively where each non-leaf vertex v at level
j of the tree with children that have labels x′0, x

′
1 gets assigned the label Hhkj (x′0, x

′
1). The output of

the hash is the label y assigned to the root of the tree.

• π = Open(hk, x, j): Compute the labeled tree T as above. Output the labels of all the sibling nodes
along the path from the root to the j’th leaf.

• Verify(hk, y, j, u, π): Recompute all of the labels of the nodes in the tree T that lie on the path from
the root to the j’th leaf by using the value u for that leaf and the values given by π as the labels of all
the sibling nodes along the path. Check that the recomputed label on the root of the tree is indeed y.

Theorem 3.2. If H is a two-to-one SSB hash then H∗ is a SSB hash with local opening.

Proof. Firstly, the index hiding property of H∗ follows directly from that of H via q hybrid arguments. In
particular, if i0 = (b0q, . . . , b

0
1) and i1 = (b1q, . . . , b

1
1) are the two indices chosen by the attacker during the

security game for index hiding, then we can prove the indistinguishability of hk0 ← Gen∗(1λ, L, s, i0) and
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hk1 ← Gen∗(1λ, L, s, i1) via q hybrid games where we switch the component keys hk = (hk1, . . . , hkq) from
being chosen as hkj ← Gen(1λ, 1s, b0j ) to hkj ← Gen(1λ, 1s, b1j ).

Secondly, to show that H∗ is somewhere statistically binding w.r.t. opening, assume that there exist some
y, u 6= u′, π, π′ s.t. Verify(hk, y, i, u, π) = Verify(hk, y, i, u′, π′) = accept. Recall that the verification procedure
assigns labels to all the nodes along the path from the root to the i’th leaf. During the two runs of the
verification procedure with the above inputs, let 0 < j ≤ q be the lowest level at which both runs assign the
same label w to the node at level j (this must exist since the root at level q is assigned the same label y in
both runs and the leafs at level 0 are assigned different values u, u′ in the two runs). Let v, v′ be the two
different labels assigned to the node at level j − 1 by the two runs. Then w = Hhkj (x) = Hhkj (x′) for some
x, x′ ∈ Σ2 such that x[bj ] = v 6= x′[bj ] = v′. This means that hkj is not statistically binding on the index bj ,
but this can only happen with negligible probability by the somewhere statistically binding property of the
2-to-1 SSB hash H. Therefore H∗ is somewhere statistically binding w.r.t. opening.

Lastly, the output length of H∗ is given by `∗(s, λ) = sq+1 where s1 = s and for each other j ∈ [q],
sj+1 = `(sj , λ). The output length of a SSB hash guarantees that `(sj , λ) = sj(1 + 1/Ω(λ)) + a(λ) where
a(·) is some fixed polynomial. This ensures that

`∗(s, λ) = s(1 + 1/Ω(λ))q + a(λ)

q−1∑
j=0

(1 + 1/Ω(λ))j = O(s) + a(λ)O(λ)

is polynomial in s, λ. We rely on the fact that q ≤ λ to argue that (1 + 1/Ω(λ))q ≤ (1 + 1/Ω(λ))λ = O(1).

4 SSB Hash from Lossy Functions

In this section we describe a simple construction of an SSB Hash with local opening, the main tool we’ll
use are lossy functions, introduced by Peikert and Waters [PW08]. They actually introduced the stronger
notion of lossy trapdoor functions, where a trapdoor allowed to invert functions with injective keys, we only
need the lossiness property, but no trapdoors.

Definition 4.1. An (m,Λ)-lossy function is given by a tuple of PPT algorithms

• For m,Λ ∈ N and mode ∈ {injective = 1, lossy = 0}, GenLF(m,Λ,mode) outputs a key hk.

• Every such key hk defines a function hk(.) : {0, 1}m → {0, 1}m′ (for some m′ ≥ m).

We have the following three properties:

injective: If hk← GenLF(m,Λ, injective), then hk(.) is injective.

lossy: If hk← GenLF(m,Λ, lossy), then hk(.)’s output domain has size ≤ 2Λ, i.e.

|{y : ∃x ∈ {0, 1}m, hk(x) = y}| ≤ 2Λ

indistinguishable: Lossy and injective keys are computationally indistinguishable. More concretely, think
of Λ as a security parameter and let m = poly(Λ), then the advantage of any PPT adversary in
distinguishing
GenLF(m,Λ, injective) from GenLF(m,Λ, lossy) is negligible in Λ.

The Construction. Our construction (Gen∗, H∗,Open,Verify) is illustrated in Figure 1, we define it for-
mally below.
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H∗hk(x)
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hk0
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x[0]‖0m−s
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s

hk1
1

x[1]‖0m−s
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Λ

s+ Λ
√

Λ

hk1
2
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1

x[2]‖0m−s
s

√

s

hk1
1

x[3]‖0m−s
s

√

Λ

s+ Λ

s+ Λ

s+ 2Λ

Figure 1: Illustration of the SSB hash from a lossy function with key hk ← Gen∗(1λ, 1s, L = 2q, i,Λ), i.e,
Hhk(x) perfectly binds x[i = 2]. For every level j ∈ {1, . . . , q} we sample a pairwise independent function
hj : {0, 1}2m′ → {0, 1}m, where m = 2(s+ qΛ) + λ for a statistical security parameter λ, and two functions

hk0
j , hk1

j : {0, 1}m → {0, 1}m′ from an (m,Λ)-lossy family of functions, one lossy and one injective (we decide
which one of the two is the injective one such that the path from the perfectly binded value – here x[2] –
to the root only contains injective functions). The injective and lossy functions are shown in green and red,
respectively. The SBB hash is now a Merkle-hash with the hash function Hj(a, b) = hj(hk0

j (a), hk1
j (b)) used

in level j. An edge label t in the figure means that there are at most 2t possible values at this point, e.g.,
there are 2s values of the form x[0]‖0m−s and the output of a lossy function like hk1

1 has at most 2Λ values.
To locally open a value, say x[2], we reveal x[2] all the siblings of the nodes on the path from x[2] to the
root, those are marked with

√
in the figure.

• hk← Gen∗(1λ, 1s, L = 2q, i,Λ): Set m = 2(s+ qΛ) + λ. For i ∈ {0, . . . , 2q − 1}, let (bq, . . . , b1) be the
binary representation of i (with b1 being the least significant bit).

For every j: Choose hk0
i ← GenLF(m,Λ, 1− bj) and hk1

i ← GenLF(m,Λ, bj). Sample a pairwise indepen-

dent hash function hj : {0, 1}2m′ → {0, 1}m and let hkj = (hk0
j , hk1

j , hj). Each hkj defines a mapping
Hj : {0, 1}2m → {0, 1}m defined as

Hj(a, b) = hj(hk0
j (a), hk1

j (b))

Output hk = (hk1, . . . , hkq).

• H∗hk(x): For x = (x[0], . . . , x[2q − 1]) ∈ {0, 1}s·2q

, hk = (hk1, . . . , hkq) proceed as follows. Define T to
be a complete binary tree of height q where level 0 of the tree denotes the leaves and level q denotes
the root. We will assign a label to each vertex in the tree. The 2q leaf vertices are assigned the labels
x[0]‖0m−s, . . . , x[2q − 1]‖0m−s (i.e., the input blocks padded to length m). The rest of the labels are
assigned inductively where each non-leaf vertex v at level j of the tree with children that have labels
x′0, x

′
1 gets assigned the label y = Hj(x

′
0, x
′
1). The output H∗hk(x) is the root of the tree.

• π = Open(hk, x, j): Compute the labeled tree T as above. Output the labels of all the sibling nodes
along the path from the root to the j’th leaf. Figure 1 the values to be opened to reveal x[2] are marked
with

√
.

• Verify(hk, y, j, u, π): Recompute all of the labels of the nodes in the tree T that lie on the path from
the root to the j’th leaf by using the value u for that leaf and the values given by π as the labels of all
the sibling nodes along the path. Check that the recomputed label on the root of the tree is indeed y.
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Theorem 4.1. The construction of a SSB Hash (with local opening) described below, which maps L = 2q

blocks of length s bits to a hash of size m = 2(s+qΛ)+λ bits where λ is a statistical security parameter and
we assume (m,Λ)-lossy functions, is secure. More concretely, the somewhere statistically binding property
holds with probability

1− q/2λ

over the choice of the hash key, and the index hiding property can be reduced to the indistinguishability
property of the lossy function losing a factor q.

Proof. The index hiding property follows immediately from the indsitinguishability of injective and lossy
modes.

To show that the hash is somewhere statistically binding, consider a key hk← Gen∗(1λ, 1s, L = 2q, i,Λ).
We must prove that with overwhelming probability no hash y ∈ {0, 1}2(s+q·Λ)+λ exists where Verify(hk, y, i, u, π) =
Verify(hk, y, i, u′, π′) = accept for some u 6= u′, that is, x[i] can be opened to u and u′.

In a nutshell, the reason why with high probability (over the choice of hk) the hash Hhk is perfectly
binding on its ith coordinate is that the value x[i] at the leaf of the tree only passes through two kinds of
functions on its way to the root: injective functions and pairwise independent hashes. Clearly, no information
can be lost when passing through an injective function. And every time the value passes through some hash
hj , the other half of the input is the output of a lossy function, and thus can take at most 2Λ possible values.
Thus even as we arrive at the root, there are only 2s+q·Λ possible values. We now set the output length
m = 2(s + q · Λ) + λ of the hj ’s so that 2m is a larger – by a factor 2λ – than the square of the possible
values. This then suffices to argue that every hj will be injective on its possible inputs (recall that there are
at most 2s+q·Λ of them) with probability ≥ 1− 2−λ.

For the formal proof it’s convenient to consider the case i = 0 (i.e., the leftmost value should be perfectly
binding). Let π = (w1, . . . , wq) and π′ = (w′1, . . . , w

′
q) be two openings for values x[0] 6= x′[0], we’ll prove

that with probability q/2λ (over the choice of hk) the verification procedure will compute different hashes
corresponding to any two such openings (i.e., for every opening (π, x[0]), there’s at most one y which makes
Verify(hk, y, i = 0, x[0], π) accept), and thus the hash is perfectly binding on index 0.

Let v0 = x[i]‖0m−s and for j = 1, . . . , q define vj = hj(hk0
j (vj−1), hk1

j (wj)), the v′j ’s are defined analo-
gously for the other opening. Note that vq is the final hash value, so we have to show that vq 6= v′q.

We will do so by induction, first, we claim that (for any hk) there are at most 2s+j·Λ possible values vj
can take. This is true for j = 0 as v0 = x[0]‖0m−s can take exactly 2s values by definition. Assume it holds
for j − 1 and let Sj−1, |Sj−1| ≤ 2s+(j−1)Λ denote the set of values vj−1 can take, then

|Sj | = |
{
hj(hk0

j (vj−1), hk1
j (z)) : vj−1 ∈ Sj−1, z ∈ {0, 1}m)

}
| (1)

≤ |{(vj−1, hk1
j (z)) : vj−1 ∈ Sj−1, z ∈ {0, 1}m))}| (2)

≤ |Sj−1| · 2Λ (3)

≤ 2s+jΛ (4)

where the first step follows by definition of the set Sj , the second step follows as applying deterministic
functions cannot increase the number of possible values, the third step follows as hk1

j (.) is lossy and thus can

take at most 2Λ possible values. The last step follows by the induction hypothesis for j − 1.
For the proof we will think of the hash key hk = (hk1, . . . , hkq), where hkj = (hk0

j , hk1
j , hj), as being lazy

sampled. Initially, we sample all the hk0
j , hk1

j keys. Let Lj ⊂ {0, 1}m denote the range of the (lossy) hk1
j (.)

functions, note that |Lj | ≤ 2Λ for all j. The hj ’s will be sampled one by one in each induction step below.
Assume so far he have sampled h1, . . . , hj−1, and so far for any openings where x[0] 6= x′[0] we had

vj 6= v′j . For j = 0 this holds as x[0] 6= x′[0] implies v0 = x[0]‖0m−s 6= x′[0]‖0m−s.
The inputs to the function hj (which is still to be sampled) are from Ij−1 = h0

j (Sj−1)× Lj−1, which (as

shown above) contains at most |Sj−1| · |Lj−1| ≤ 2s+(j−1)Λ2Λ = 2s+j·Λ elements.
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We now sample the pairwise independent hash hj , as it has range 2m the probability that any two
elements (v, l) 6= (v′, l′) ∈ Ij−1 collide4 is 2−m, taking the union bound over all pairs of elements we get

22(s+j·Λ)/2m ≤ 2−λ

Taking the union bound, we get that the probability that the induction fails for any of the q steps is q/2λ

as claimed.

5 SSB from φ-hiding

We now move on to building SSB from the φ-hiding assumption [CMS99]. This construction will be qual-
itatively different from the prior ones in that we will not employ a Merkle tree type structure for proving
and verifying opens. In contrast a hash output will consist of two elements Z∗N0

and Z∗N1
for RSA primes

N0, N1. An opening will consist of a single element of either Z∗N0
or Z∗N1

.
Our construction is structurally similar to standard constructions RSA accumulators [BdM93]. Intu-

itively, the initial hash key will consist of two RSA moduli N0, N1 as well as two group elements h0, h1 and
keys K0,K1 which hash to prime exponents. To compute the hash on input x ∈ {0, 1}L let S0 = {i : x[i] = 0}
be the set of all indices where the i-th bit is 0 and S1 = {i : x[i] = 1} be the set of indices where the i-th bit
is 1. The function computes the output

y0 = h
∏

i∈S0
FK0

(i)

0 mod N0, y1 = h
∏

i∈S1
FK1

(i)

1 mod N1.

To prove that the j-th bit was 0 the open algorithm will give the FK0
(j)-th root of y0. It computes this

by letting S0 = {i : x[i] = 0} and setting π = h
∏

i6=j∈S0
FK0

(i)

0 mod N0. A proof can be checked by simply

checking if y0
?
= πFK0

(j) mod N0. (Proving an opening of 1 follows analogously.)
The algorithms as described above very closely match a traditional RSA accumulator. The key distinction

is that we can achieve statistical binding on index j by settingN0 such thatK0(j) divides φ(N0) (and similarly
for N1). The idea is that in this setting if y0 is not an K0(j)-th residue then there will not exist a value π

such that y0
?
= πFK0

(j) mod N0. The index-hiding property will follow from the φ-hiding assumption.

5.1 RSA and φ-hiding Preliminaries

We begin by developing our notation and statement of the φ-hiding assumption both of which follow closely
to Kiltz, O’Neill, and Smith [KOS10]. We let Pk denote the set of odd primes that are less than 2k. In

addition, we let (N, p, q)
$← RSAk be the process of choosing two primes p, q uniformly from Pk and letting

N = pq. Further we let (N, p, q)
$← RSAk[p = 1 mod e] be the be the process of choosing two primes p, q

uniformly from Pk with the constraint that p = 1 mod e, then letting N = pq.
We can now state the φ-hiding assumption relative to some constant 0 < c < .5. Consider the following

distributions relative to a security parameter λ.

R = {(e,N) : e, e′
$← Pcλ; (N, p, q)

$← RSAλ[p = 1 mod e′]}

L = {(e,N) : e
$← Pcλ; (N, p, q)

$← RSAλ[p = 1 mod e]}

Cachin, Micali and Stadler [CMS99] show that the two distributions can be efficiently sampled if the
Extended Riemann Hypothesis holds. The φ-hiding assumption states that for all c ∈ (0, .5) no PPT
attacker can distinguish between the two distributions with better than negligible in λ probability.

4Note that we prove something slightly stronger than required as we only need to consider pairs where v 6= v′.
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5.2 Conforming Function

Before we give our construction we need one further abstraction. For any integer L we require the ability to
sample a keyed hash function F (K, ·) that hashes from an integer i ∈ [0, L − 1] to a random prime in Pcλ.
Furthermore, the function should have the property that it is possible to sample the key K in such a way
that for a single pair i∗ ∈ [0, L − 1] and e∗ ∈ Pcλ F (K, i∗) = e∗. Moreover such programming should be
undetectable if e∗ is chosen at random from Pcλ.

We give the definitions of such a function system here and show how to construct one in Appendix A. A
conforming function system is parameterized by a constant c ∈ (0, .5) and has three algorithms.

Sample-Normal(1λ, L)→ K
Takes in a security parameter λ and a length L (in binary) and outputs a function key K.

Sample-Program(1λ, L, i∗, e∗)→ K
Takes in a security parameter λ and a length L (in binary) as well as a program index i∗ ∈ [0, L − 1] and
e∗ ∈ Pcλ. It outputs a function key K.

FK : i→ Pcλ
If Sample-Normal(1λ, L)→ K, then FK takes in an index i ∈ [0, L− 1] and outputs a prime from Pcλ.

5.2.1 Properties

Such a system will have four properties:

Efficiency The programs Sample-Normal and Sample-Program run in time polynomial in λ and L.
Let Sample-Normal(1λ, L)→ K, then FK runs in time polynomial in λ and lg(L).

Programming at i∗ For some λ, L, i∗, e∗ let Sample-Program(1λ, L, i∗, e∗) → K. Then FK(i∗) = e∗

with all but negligible probability in λ.

Non colliding at i∗ For some λ, L, i∗, e∗ let Sample-Program(1λ, L, i∗, e∗) → K. Then for any i 6= i∗

the probability that FK(i∗) = FK(i) is negligible in λ.

Indistinguishability of Setup For any L, i∗ consider the following two distributions:

RL,i∗ = {K : e∗
$← Pcλ;Sample-Normal(1λ, L)→ K}

LL,i∗ = {K : e∗
$← Pcλ;Sample-Program(1λ, L, i∗, e∗)→ K}

The indistinguishability of setup property states that all PPT adversaries have a most a negligible
advantage in distinguishing between the two distributions for all L, i∗.

5.3 Our φ-hiding SSB construction

We now present our φ-hiding based SSB construction. Our construction is for an alphabet of a single bit,
thus s is implicitly 1 and omitted from our notation. In addition, the construction is parameterized relative
to some constant c ∈ (0, .5).

Gen(1λ, L, i∗)

The generation algorithm first samples two random primes e0, e1
$← Pcλ. Next, it sets up two conforming

functions as Sample-Program (1λ, L, i∗, e0) → K0 and Sample-Program (1λ, L, i∗, e1) → K1. Then

it samples (N0, p0, q0)
$← RSAk[p0 = 1 mod e0] and (N1, p1, q1)

$← RSAk[p1 = 1 mod e1]. Finally, it
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chooses h0 ∈ Z∗N0
randomly with the constraint that h

(p0−1)/e0
0 6= 1 mod p0 and h1 ∈ Z∗N1

randomly with

the constraint that h
(p1−1)/e1
1 6= 1 mod p1.

It outputs the hash key as hk = {L, (N0, N1), (K0,K1), (h0, h1)}.

Hhk : {0, 1}L → Z∗N0
,Z∗N1

:

On input x ∈ {0, 1}L let S0 = {i : x[i] = 0} be the set of all indices where the i-th bit is 0 and S1 = {i :
x[i] = 1} be the set of indices where the i-th bit is 1. The function computes

y0 = h
∏

i∈S0
FK0

(i)

0 mod N0, y1 = h
∏

i∈S1
FK1

(i)

1 mod N1.

The hash output is y = (y0, y1).
We note that the computation in practice will be done by iteratively with repeated exponentiation as

opposed to computing the large integer
∏
i∈S0

FK0(i) up front.

Open(hk, x, j):
If xj = 0 it first lets S0 = {i : x[i] = 0}. Then it computes

π = h
∏

i6=j∈S0
FK0

(i)

0 mod N0.

Otherwise, if xj = 1 it first lets S1 = {i : x[i] = 1}. Then it computes

π = h
∏

i6=j∈S1
FK1

(i)

1 mod N1.

Verify(hk, y = (y0, y1), j, b ∈ {0, 1}, π):

The verify algorithm checks

yb
?
= πFKb

(j) mod Nb.

5.3.1 Properties

We now show that the above construction meets the required properties for SSB with local opening. One
minor difference from the original definition is that we weaken the statistically binding requirement. Previ-
ously, we wanted the binding property to hold for any hash digest y, even one which does not correspond to
a correctly generated hash output. In the version we achieve here, we require that y = Hhk(x) for some x.
We define the property formally below.

Weak Somewhere Statistically Binding w.r.t. Opening: We say that hk is weak statistically binding
w.r.t opening (abbreviates wSBO) for an index i if there do not exist any values x ∈ ΣL, u′ 6= x[i], π′

s.t. Verify(hk, Hhk(x), i, u′, π) = accept. We require that for any parameters s, L and any index i ∈
{0, . . . , L− 1}

Pr[hk is wSBO for index i : hk← Gen(1λ, 1s, L, i)] ≥ 1− negl(λ).

We say that the hash is perfectly binding w.r.t. opening if the above probability is 1.

Correctness of Opening Consider any hk generated from the setup algorithm and let π be the output

from a call to Open(hk, x, j) for some x, j where that x[j] = b ∈ {0, 1}. Then yb = h

∏
i∈Sb

FKb
(i)

b mod Nb

and π = h

∏
i 6=j∈Sb

FKb
(i)

b mod Nb. It follows that πFKb
(j) = yb mod Nb.
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Weak Somewhere Statistically Binding with Respect to Opening Suppose that Gen(1λ, L, i∗) →
hk. We argue that with all but negligible probability for all inputs x ∈ {0, 1}L that the function is statistically
binding with respect to opening.

Consider a particular input x where x[i∗] = 1− b and Hhk(x) = y = (y0, y1). We want to show that there
does not exist a value π such that Verify(hk, y = (y0, y1), i∗, b ∈ {0, 1}, π) = 1. Let eb ∈ Pcλ be the prime
value chosen at hash function setup. By the setup process we have that eb|pb − 1 and that of eb = FKb

(i∗).
The latter follows from the Programming at i∗ property of the conforming hash function. Therefore we have
that (πeb)(pb−1)/eb = 1 mod p1 (i.e. πeb is an eb-th residue mod pb).

Recall that yb = h

∏
i∈Sb

FKb
(i)

b mod Nb. Let α =
∏
i∈Sb

FKb
(i). By the non-colliding property of F

coupled with the fact that x[i∗] 6= b and thus i∗ /∈ Sb with all but negligible probability for all i ∈ Sb we have
that FKb

(i) is a prime 6= eb. Therefore α is relatively prime to eb. Since hb was chosen to not be a eb-th
residue mod pb and α is relatively prime to eb it follows that yb = hαb is also not an eb-th residue mod pb.
However, since πeb is an eb-th residue mod pb, it cannot be equal to yb and the verification test will fail.

Index Hiding We sketch a simple proof of index hiding via a sequence of games. We begin by defining
the sequence.

• Game 0: The Index Hiding game on our construction.

• Game 1: Same as Game 0 except that an additional prime e′0
$← Pcλ is sampled and (N0, p0, q0)

$←
RSAλ[p = 1 mod e′0]. Note that we still sample (1λ, L, ib, e0)→ K0 where w.h.p e0 6= e′0.

• Game 2: Same as Game 1 except that an additional prime e′1
$← Pcλ is sampled and (N1, p1, q1)

$←
RSAλ[p = 1 mod e′1]. Note that we still sample (1λ, L, ib, e1)→ K1 where w.h.p e1 6= e′1.

• Game 3 Same as Game 2 except that K0 is sampled as Sample-Normal(1λ, L)→ K0.

• Game 4 Same as Game 3 except that K1 is sampled as Sample-Normal(1λ, L)→ K1.

It follows directly from the φ-hiding assumption that no PPT attacker can distinguish between Game 1

and Game 1 and that no attacker can distinguish between Game 1 and Game 2. At this point the primes e0

and e1 are used only in the programming of the hash function and are not reflected in the choice of the RSA
moduli. For this reason we can now use the Indistinguishability of Setup property of the conforming has to
show that no PPT attack can distinguish between Game 2 and Game 3 and Game 3 and Game 4. Finally, we
observe that the index ib is not used at Game 4 and thus the bit b is hidden from the attacker’s view.

6 Positional Accumulators

In Appendix B, we also discuss how to extend some the above results to positional accumulators. In
particular, we show how to construct positional accumulators from a (perfectly binding) two-to-one SSB
hash. The construction can also be naturally extended to one based on lossy functions.
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A Constructing a Conforming Function

We now give our construction of a conforming hash function per the definition given in Section 5.2.
Recall, our goal is to construct a keyed hash function F (K, ·) that hashes from an integer i ∈ [0, L − 1]

to a prime in Pcλ. Furthermore, the function should have the property that it is possible to sample the key
K in such a way that for a single pair i∗ ∈ [0, L − 1] and e∗ ∈ Pcλ we have F (K, i∗) = e∗. (The constant
c ∈ (0, .5) is considered a parameter of the system.) Moreover, such programming should be undetectable if
e∗ is sampled at random from Pcλ.

Our construction below is a simple implementation of this abstraction and all properties are statistically
guaranteed (i.e. we do not require any computational assumptions).

Sample-Normal(1λ, L)→ K
We first let B = 2bcλc and let T = λ2. The algorithm chooses random w1, . . . , wT ∈ [0, B − 1]. The key K
is set as K = (λ,w1, . . . , wT ).

Sample-Program(1λ, L, i∗, e∗)→ K :
We first let B = 2bcλc and let T = λ2. Initialize a bit (local to this computation) programmed to be 0.
Then proceed in the following manner:

For j = 1 to T if programmed
?
= 1 choose vj randomly in [0, B − 1] and set wj = vj − i∗ mod B. This

corresponds to the case where the value e∗ was “already programmed”. Else, if programmed
?
= 0, it first

chooses vj randomly in [0, B − 1]. If vj is not prime it simply sets wj = vj − i∗ mod B. Otherwise, it sets
wj = e∗ − i∗ mod B and flips the bit programmed to 1 so that e∗ will not be programmed in again.

The key K is output as K = (λ,w1, . . . , wT ).

FK : i→ Pcλ
The function proceeds as follows. Starting at j = 1 to T the function tests if wj + i is a prime (i.e. is in
Pcλ). If so it outputs wj + i and halts. Otherwise, it increments j and tests again. If j goes past T and no
primes have been found, the algorithm outputs a default prime 3 ∈ Pcλ. 5

A.0.2 Properties

We now confirm that our function meets all the required properties.

Efficiency The programs Sample-Normal chooses T random values where T is polynomial in λ and
Sample-Program also chooses T random values as well as performing up to T primality tests. The
keysizes of both are T integers in [0, B]. Thus the running times and keysizes are polynomial in λ and
lg(L).

Programming at i∗ Consider a call to Sample-Program(1λ, L, i∗, e∗) → K. The function FK(i∗) will
resolve to the smallest j such that wj + i∗ is a prime (if any of these are a prime). By the design
of Sample-Program this will be e∗ since it puts in wj = e∗ − i∗ mod B the first time a prime is
sampled. In constructing the function if all vj sampled were composite then FK(i∗) 6= e∗, however,
this will only occur with negligible probability since the probability of choosing T random integers in
2bcλc and none of them being prime is negligible.

Non colliding at i∗ For some λ, L, i∗, e∗ let Sample-Program(1λ, L, i∗, e∗) → K. Let’s assume that
FK(i∗) = e∗. We first observe that the chances that there exist any pairs (i0, j0) 6= (i1, j1) such that
wj0 + i0 = wj1 + i1 is negligible. We consider the probability of this happening on an arbitrary pair
and them apply the union bound.

5Note there is nothing special about choosing 3. Any default prime would suffice.
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Consider a pair (i0, j0) 6= (i1, j1) If j0 = j1 this cannot happen since the two terms differ by i1 − i0.
Otherwise, we notice that the probability of a particular pair colliding is at most 1/B (which is
negligible) since vj0 and vj1 are chosen independently at random. Since there are at most a polynomial(
T ·L

2

)
such pairs the chances that any collide is negligible.

It follows that the chances of FK(i∗) = FK(i) for i = i∗ is negligible since the above condition would
be necessary for this to occur.

Indistinguishability of Setup For any L, i∗ consider the following two distributions:

RL,i∗ = {K : e∗
$← Pcλ;Sample-Normal(1λ, L)→ K}

LL,i∗ = {K : e∗
$← Pcλ;Sample-Program(1λ, L, i∗, e∗)→ K}

We argue that these two distributions are identical for all L, i∗. We show this by also considering an
intermediate distribution IL,i∗ . This distribution is generated by randomly sampling vj in [0, B − 1]
and setting wj = vj − i∗ mod B. This distribution is clearly equivalent to the Sample-Normal
distribution as for all j selecting wj randomly and selecting vj randomly and setting wj = vj − i∗
mod B both result in wj being chosen uniformly at random.

We now argue that this intermediate distribution is equivalent to the LL,i∗ distribution which is
equivalent to calling Sample-Program with sampling e∗ randomly from Pcλ. We will step through
an execution of Sample-Program and argue that at each step j from j = 1, . . . , T vj is chosen
randomly from [0, B − 1] independently of all other vj′ for j′ < j.

Consider an execution starting with j = 1 and programmed = 0 and for our exposition let’s consider

that e∗ ∈ Pcλ has not been sampled yet. While programmed
?
= 0 the algorithm samples vj is sampled

at random. If vj is composite it is kept and put in the key, otherwise if it is prime in Pcλ, vj is replaced
with e∗ as another randomly sampled prime. Thus, for any composite value x the probability that
wj + i∗ = x is 1/B and for any prime value x the probability that wj + i∗ = x is also 1/B. The
reason is that replacing any sampled prime with a different randomly sampled prime does not change
the distribution.

After programmed is set to 1 all further vj values are chosen uniformly at random.

Remark A.1. We note that the Indistinguishability of Setup property holds perfectly while the programma-
bility property holds statistically. One way to flip this is to always program vT = e∗ at the end if if e∗ has
not been programmed in already.

B Positional Accumulators

We provide the definition of positional accumulators which is taken from [KLW15].
Intuitively, a positional accumulator will be a cryptographic data structure that maintains two values:

a storage value and an accumulator value. The storage value will be allowed to grow comparatively large,
while the accumulator value will be constrained to be short. Messages can be written to various positions
in the the underlying storage, and new accumulated values can be computed as a stream, knowing only the
previous accumulator value and the newly written message and its position in the data structure. Since
the accumulator values are small, one cannot hope to recover everything written in the storage from the
accumulator value alone. However, we define “helper” algorithms that essentially allow a party who is
maintaining the full storage to help a more restricted party who is only maintaining the accumulator values
recover the data currently written at an arbitrary location. The helper is not necessarily trusted, so the
party maintaining the accumulator values performs a verification procedure in order to be convinced that
they are indeed reading the correct messages.

In a positional accumulator as defined in [KLW15] the memory will be perfectly binding in one position.
The actual definition in [KLW15] gives this property in a somewhat weak sense the accumulator is only
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required to be binding at index∗ in the case where the accumulator value is computed by inserting a partic-
ular set of messages at a particular set of indices (m1, index1), . . . , (mk, indexk), index∗). This sequence of
messages is given as input to the setup algorithms. The rationale of [KLW15] for this weaker definition of
binding is that it possibly opens the door for constructions that would not meet stronger definitions where
the sequence of insertion was not given to the setup algorithm. A drawback of the weaker definition is that
it is notationally somewhat more complicated.

As it turns out, our construction given in Appendix meets a stronger definition of security so the setup
algorithms ignore the insertion pattern given and focus only on the index needing for binding.

A positional accumulator for message space Mλ consists of the following algorithms.

Setup-Acc(1λ, T )→ PP, w0, store0 The setup algorithm takes as input a security parameter λ in unary and
an integer T in binary representing the maximum number of values that can stored. It outputs public
parameters PP, an initial accumulator value w0, and an initial storage value store0.

Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗)→ PP, w0, store0 The setup enforce
read algorithm takes as input a security parameter λ in unary, an integer T in binary representing the
maximum number of values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T − 1, and an additional index∗ also between 0 and T − 1. It outputs public
parameters PP, an initial accumulator value w0, and an initial storage value store0.

Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk))→ PP, w0, store0 The setup enforce write
algorithm takes as input a security parameter λ in unary, an integer T in binary representing the
maximum number of values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T − 1. It outputs public parameters PP, an initial accumulator value w0, and
an initial storage value store0.

Prep-Read(PP, storein, index)→ m,π The prep-read algorithm takes as input the public parameters PP,
a storage value storein, and an index between 0 and T − 1. It outputs a symbol m (that can be ⊥)
and a value π.

Prep-Write(PP, storein, index)→ aux The prep-write algorithm takes as input the public parameters PP,
a storage value storein, and an index between 0 and T − 1. It outputs an auxiliary value aux.

Verify-Read(PP, win,mread, index, π)→ {True, False} The verify-read algorithm takes as input the public
parameters PP, an accumulator value win, a symbol, mread, an index between 0 and T −1, and a value
π. It outputs True or False.

Write-Store(PP, storein, index,m)→ storeout The write-store algorithm takes in the public parameters,
a storage value storein, an index between 0 and T − 1, and a symbol m. It outputs a storage value
storeout.

Update(PP, win,mwrite, index, aux)→ wout or Reject The update algorithm takes in the public parame-
ters PP, an accumulator value win, a symbol mwrite, and index between 0 and T − 1, and an auxiliary
value aux. It outputs an accumulator value wout or Reject.

In general we will think of the Setup-Acc algorithm as being randomized and the other algorithms as
being deterministic. However, one could consider non-deterministic variants.

Correctness We consider any sequence (m1, index1), . . . , (mk, indexk) of symbols m1, . . . ,mk and in-
dices index1, . . . , indexk each between 0 and T − 1. We fix any PP, w0, store0 ← Setup-Acc(1λ, T ).
For j from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj).
We similarly define auxj and wj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj :=
Update(PP, wj−1,mj , indexj , auxj). Note that the algorithms other than Setup-Acc are deterministic, so
these definitions fix precise values, not random values (conditioned on the fixed starting values PP, w0, store0).

We require the following correctness properties:
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1. For every index between 0 and T − 1, Prep-Read(PP, storek, index) returns mi, π, where i is the
largest value in [k] such that indexi = index. If no such value exists, then mi = ⊥.

2. For any index, let (m,π)← Prep-Read(PP, storek, index). Then
Verify-Read(PP, wk,m, index, π) = True.

Remarks on Efficiency In our construction, all algorithms will run in time polynomial in their input
sizes. More precisely, Setup-Acc will be polynomial in λ and log(T ). Also, accumulator and π values should
have size polynomial in λ and log(T ), so Verify-Read and Update will also run in time polynomial in λ and
log(T ). Storage values will have size polynomial in the number of values stored so far. Write-Store, Prep-Read,
and Prep-Write will run in time polynomial in λ and log(T ).

Security Let Acc = (Setup-Acc, Setup-Acc-Enforce-Read, Setup-Acc-Enforce-Write, Prep-Read, Prep-Write,
Verify-Read, Write-Store, Update) be a positional accumulator for symbol set M. We require Acc to satisfy
the following notions of security.

Definition B.1 (Indistinguishability of Read Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of read setup if any PPT adversary A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A)
is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

noitemsep Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.

noiitemsep A sends k messages m1, . . . ,mk ∈M and k indices index1, . . . ,
indexAk ∈ {0, . . . , T − 1} to the challenger.

noiiitemsep The challenger chooses a bit b. If b = 0, the challenger outputs (PP, w0, store0)← Setup-Acc(1λ, T ).
Else, it outputs (PP, w0, store0)← Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk)).

noivtemsep A sends a bit b′.

A wins the security game if b = b′.

Definition B.2 (Indistinguishability of Write Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of write setup if any PPT adversaryA’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A)
is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

noitemsep Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.

noiitemsep A sends k messages m1, . . . ,mk ∈M and k indices index1, . . . , indexk ∈ {0, . . . , T − 1} to the
challenger.

noiiitemsep The challenger chooses a bit b. If b = 0, the challenger outputs (PP, w0, store0)← Setup-Acc(1λ, T ).
Else, it outputs (PP, w0, store0)← Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)).

noivtemsep A sends a bit b′.

A wins the security game if b = b′.

Definition B.3 (Read Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1} and any index∗ ∈ {0, . . . , T − 1}.

Let (PP, w0, st0)← Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗). For j from 1
to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly define
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auxj and wj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj := Update(PP, wj−1,mj , indexj , auxj).
Acc is said to be read enforcing if Verify-Read(PP, wk,m, index

∗, π) = True, then either index∗ /∈ {index1, . . . , indexk}
and m = ⊥, or m = mi for the largest i ∈ [k] such that indexi = index∗. Note that this is an information-
theoretic property: we are requiring that for all other symbols m, values of π that would cause Verify-Read
to output True at index∗ do no exist.

Definition B.4 (Write Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1}. Let
(PP, w0, st0)← Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)). For j from 1 to k, we define
storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly define auxj and wj
iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj := Update(PP, wj−1,mj , indexj , auxj).
Acc is said to be write enforcing if Update(PP, wk−1,mk, indexk, aux) = wout 6= Reject, for any aux, then
wout = wk. Note that this is an information-theoretic property: we are requiring that an aux value producing
an accumulated value other than wk or Reject deos not exist.

B.1 Constructing Positional Accumulators

We now show how to construct positional accumulators from a (perfectly binding) two-to-one SSB hash. The
construction can also be naturally extended to one based on lossy functions.6 Intuitively, the construction
is similar to that of SSB hashing from two-to-one SSB and follows the Merkle tree approach. The public
parameters PP will be like the hashing key hk of the SSB hash and the accumulator value w will be the
output of a SSB hash. The store component consists of all the labels in the tree. This allows us to update
the output of the SSB hash (the label associated with the root of the tree) after modifying a single data
position by updating the labels on the path from the root to that position. One other difference is that
now the tree has T leaves where T is exponential, but only a small polynomial number of them contain any
actual data (and the rest are empty). To handle this, we prune out empty subtrees; any node in the tree
that does not have any data in the subtree under it gets assigned a special label ⊥.

Construction. Assume that H = (Gen, H) is a two-to-one SSB hash family with output length give by
`(s, λ). We construct a positional accumulator scheme as follows.

Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗)→ PP, w0, store0. Let (bq, . . . , b1) be
the binary representation of index∗ (with b1 being the least significant bit) where q = dlog T e. For
j ∈ [q] define the block-lengths s1, . . . , sq+1 where s1 = s + 1 and sj+1 = `(sj , λ) + 1. Choose
hkj ← Gen(1λ, 1sj , bj) and output hk = (hk1, . . . , hkq).

Define store0 to be an complete binary tree of height q (where level 0 of the tree denotes the leaves
and level q denotes the root) where each node in the tree at level j is associated with some label
lbl ∈ {0, 1}sj+1 . At each level j, we denote the special value lbl = 0sj+1 by ⊥. Although the tree has
2q nodes, which may be exponential, there will only be a polynomial number of nodes whose label is
not ⊥ and therefore, by only storing these nodes, we get a polynomial sized representation of store0.

We define w0 to be the label associated with the root of the tree and set it to initially be ⊥ to indicate
that the memory store starts out empty.

We note that the values (m1, index1), . . . , (mk, indexk) are not used by our setup algorithm since our
setup algorithm is able to provide a stronger property than required of being binding on index∗ no
matter what sequence of messages are inserted into the memory.

Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)). Run
Setup-Acc-Enforce-Read(1λ, T, 0) with k = 0 and index∗ = indexk. Again, we note that the values
(m1, index1), . . . , (mk, indexk) are not used by our setup algorithm for the same reason as above.

6We note that the security definition of positional accumulators given in [KLW15] requires the enforcing algorithms to be
perfectly binding, however, we could also consider a statistically binding variant which would be sufficient for the applications
of [KLW15]. The lossy construction would be sufficient for this.
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Setup-Acc(1λ, T ). Run Setup-Acc-Enforce-Read(1λ, T, 0) with k = 0 and index∗ = 0.

Prep-Read(PP, storein, index)→ m,π. Parse storein as a representation of a binary tree of height q as
described above. Let m be the label of the leaf at position index (possibly ⊥). Let π be the labels
associates with all the sibling nodes along the path from the root to the leaf at position index (some
of these might be ⊥). Output m,π.

Prep-Write(PP, storein, index)→ aux. Compute
aux = (m,π)← Prep-Read(PP, storein, index).

Verify-Read(PP, win,mread, index, π)→ {True, False}. Given PP,mread, index, π it is possible to recom-
pute the label associated with the root of the tree as described below, by computing all the labels along
the path from the root to the leaf in position index. Then Check that this label matches win and if
so output True else False.

We inductively define the labels at levels j = 1, 2, . . . , q of the tree as follows: for any node at level
j whose left/right children are labeled with lbll, lblr respectively, where at least one of lblr, lbll is not
⊥, we define the label of that node as 1||Hhkj (lbll, lblr) (and all other nodes are implicitly labeled with
⊥). For level 0, the label at the index-th leaf is ⊥ if mread = ⊥ and it is 1||mread otherwise.

The computation is first performed using mread and the given sibling values in π. If the computation
matches win output True; otherwise, outputs False.

Write-Store(PP, storein, index,m)→ storeout. Set the label of the leaf in position index to m. Update
the labels of all the nodes along the path from the root to the leaf in position index (previously some
of these may have been ⊥) inductively for levels j = 1, 2, . . . , q: for any node at level j whose left/right
children are labeled with lbll, lblr define the label of that node as 1||Hhkj (lbll, lblr).

Update(PP, win,mwrite, index, aux)→ wout or Reject. Parse aux = (m,π) and run Verify-Read(PP, win,m, index, π).
If the output if False then Reject and stop. Note that here m is the “old” (possibly ⊥) value at index
that is to be overwritten by mwrite.

Next, emulate the execution of Write-Store(PP, storein, index,mwrite) by using the labels contained
in π instead of the data contained in storein. Output the updated label wout associated with the root
of the tree.

B.2 Security Analysis

Theorem B.1. Assuming H is a perfectly binding two-to-one SSB hash, the above construction gives a
positional accumulator.

Proof. We sketch the proof by checking that it meets all of the security properties required from Appendix B.
The proof follows in spirit very closely to that given for SSB security in Theorem 3.2.

We first see that the properties of Indistinguishability of Read Setup () and indistinguishability of Write
Setup hold. The only difference in the output between Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗)→
PP, w0, store0 and Setup-Acc(1λ, T ) is that the Setup-Acc-Enforce-Read algorithm generates hkj ← Gen(1λ, 1sj , bj)
where (bq, . . . , b1) be the binary representation of index∗. Whereas the Setup-Acc does the same thing except
setting (bq, . . . , b1) = 0q. An identical hybrid argument to that given in Theorem 3.2 shows that these two
distributions are computationally indistinguishable if the two-to-one index hiding property holds.

We next argue that our construction satisfies read enforcing according to Definition . First let

(PP, w0, st0)← Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗).

For j from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj).
We similarly define auxj and wj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj :=
Update(PP, wj−1,mj , indexj , auxj). If index∗ /∈ {index1, . . . , indexk} then let m = ⊥; otherwise let
m = mi for the largest i ∈ [k] such that indexi = index∗.
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Now suppose that Verify-Read(PP, wk,m
′, index∗, π) = True for some m′ 6= m. Then in the hash tree

computation of Verify-Read there must be a smallest j such that in the verify computation Hhkj (lbll, lblr)
was equal to the stored value along the path in storek, but the child label along the path to index∗ was
different. (Otherwise, if there was not such a value the root computations would be different and thing would
not verify.) However, this violates the (perfect) binding property of the 2-to-1 hash so it cannot happen.

Finally, we show that the write enforcing property of Definition B.4 the Setup-Acc-Enforce-Write holds.
Consider the security game where we let (PP, w0, st0)← Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)).
For j from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj).
We similarly define auxj and wj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj :=
Update(PP, wj−1,mj , indexj , auxj).

Now consider a call to Update(PP, wk−1,mk, indexk, aux) = wout 6= Reject where aux = (m,π). In the
first step the Update algorithm recomputes the hash values and checks it against wk−1. All of these values
computed along the path index must match those in storek−1 or else the algorithm will reject. Otherwise,
if the values did not match it would violate the binding properties of the two-to-one scheme. If the values it
computes do match those in storek−1, then wout = wk since the algorithm Update’s next step is defined to
do the same computation as Write-Store.
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