
Gambling, Computational Information and Encryption Security

Mohammad Hajiabadi ∗ Bruce M. Kapron∗

September 7, 2015

Abstract

We revisit the question, originally posed by Yao (1982), of whether encryption security may
be characterized using computational information. Yao provided an affirmative answer, using a
compression-based notion of computational information to give a characterization equivalent to
the standard computational notion of semantic security. We give two other equivalent charac-
terizations. The first uses a computational formulation of Kelly’s (1957) model for “gambling
with inside information”, leading to an encryption notion which is similar to Yao’s but where
encrypted data is used by an adversary to place bets maximizing the rate of growth of total
wealth over a sequence of independent, identically distributed events. The difficulty of this
gambling task is closely related to Vadhan and Zheng’s (2011) notion of KL-hardness, which
in certain cases is equivalent to a conditional form of the pseudoentropy introduced by Has-
tad et. al. (1999). Using techniques introduced to prove this equivalence, we are also able to
give a characterization of encryption security in terms of conditional pseudoentropy. Finally,
we reconsider the gambling model with respect to “risk-neutral” adversaries in an attempt to
understand whether assumptions about the rationality of adversaries may impact the level of
security achieved by an encryption scheme.

1 Introduction

The first rigorous characterization of encryption security was given by Shannon in [21], using a
formulation based on probability and information theory. The space of plaintexts is equipped
with a probability distribution, which along with a distribution on keys induces a distribution on
ciphertexts. An encryption scheme is said to be secure if the mutual information between plaintexts
and ciphertexts is zero, capturing the intuition that ciphertexts should not “leak information”
about plaintexts. A fundamental aspect of Shannon’s approach is that it does not account for the
computational difficulty of extracting information, impacting its practical significance. We note that
this critique is not merely based on hindsight. The drawbacks of a purely information-theoretic
approach were noted, by Turing, as early as 1950: “In many types of investigation, e..g., in the
theory of information, it is a useful assumption that ‘computation costs nothing’. It is important
however not to let this assumption become a belief. In particular when one is considering brains
and computers the assumption, and the theories based on it, are not applicable” [23]. Despite
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Turing’s warning, and the obvious practical drawbacks of Shannon’s approach, it took more than
thirty years before a rigorous definition of encryption security which accounts for computation was
given by Goldwasser and Micali in [10], which proposes as a definition of security that “whatever
is efficiently computable about the cleartext given the ciphertext, is also efficiently computable
without the ciphertext.” This notion, dubbed semantic security, may be viewed as a computational
version of Shannon’s definition, at least in an intuitive sense where computational information is
identified with “whatever is efficiently computable about the plaintext”. However, the information-
theoretic approach uses a specific entropy-based notion of mutual information, and it is natural to
ask whether one could formulate a notion of encryption security by first formulating a computational
version of mutual information. In fact, such a question was posed, and answered by Yao [26, 27],
who gave definitions of computational entropy and computational mutual information, based on
the relationship between entropy and compressibility, and used this to characterize encryption
security. In particular, an encryption scheme is secure if no efficient compression scheme in which
the decoding function has access to an encryption of the corresponding message can achieve an
expected length more than negligibly better than the optimal that can be achieved by any efficient
scheme without such access. Yao [27] and Micali, Rackoff and Sloan [18] show that this notion is
equivalent to semantic security.

This paper presents a new approach to characterizing encryption security via computational
information. Rather than relying on the machinery of data compression, our approach uses a
characterization of mutual information given by Kelly in [14], which considers the optimal rate of
return for a gambler who has noisy inside information on the outcome of an event. When we take
the very natural steps of replacing “noisy” with “encrypted” and considering a computationally
bounded gambler, we are led immediately to a definition of encryption security which we dub
gambling security. We then show (Theorem 4.9)

An encryption scheme is semantically secure iff it is gambling secure

While Yao’s characterization of encryption security using computational information is not
widely used, his introduction of a notion of computational entropy based on compression is one
foundation of computational information theory. Another important contribution in this direction
was made by H̊astad et. al. in [12], which introduces the notion of pseudoentropy. Unfortunately,
the relationship between various forms of computational entropy is not well understood. In some
cases (e.g. with respect to conditional distributions), Yao’s entropy and HILL entropy are not
equivalent [13].1 We may wonder what this means in the setting of encryption security. Do these
different notions of computational information lead to different forms of encryption security? We
show that this is not the case (Theorem 5.7)

An encryption scheme is semantically secure iff access to the ciphertext does not reduce the
pseudoentropy of the plaintext.

The gambling framework allows us to consider gamblers with different utilities. We also consider
security against gamblers who are trying to maximize a one-shot payout. Perhaps not surprisingly,
in this setting we obtain a much tighter equivalence with semantic security. But this does raise
an interesting question. Namely, what can we say about the relationship between security and
assumptions about an adversary’s rationality?

1The cited result considers versions based on min-entropy rather than Shannon entropy.
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1.1 Related Work

As noted above, in [26], Yao introduced a notion of effective conditional entropy and effective mutual
information. Among other applications, he used these notions to define computational security for
encryption. Subsequently, in [27] and [18], it was shown that this definition of coincide with those
(semantic security and message indistinguishability) introduced by Goldwasser and Micali [10]. An
alternate approach to computational entropy is introduced in [12], but the notion introduced there
is not directly applied to defining encryption security. The question of how these two notions of
computational entropy are related was first considered in [1], but with respect to min-entropy,
rather than Shannon entropy. A new notion related to HILL entropy, dubbed metric entropy, is
also introduced here. A series of subsequent works, including [25, 13, 19, 22, 15] further explore
the relationship between these notions of computational entropy. There are separations between
these notions with respect to certain properties. For example, Krenn et al. [15, 16] show that,
under some computational assumptions, a special case of the chain rule (which holds for, e.g.,
computational Yao and computational unpredictability entropy) fails with respect to HILL entropy.
While there are numerous applications of these notions in cryptography (see, e.g., [20] for a survey)
it does not seem that the relationship between computational entropy and encryption security has
been considered other than in the initial works cited above. Finally, we note that our work may
be viewed as complementary to recent work by Bellare et. al. [2], which considers a version of
message indistinguishability and its relationship with entropy-based definitions of security in the
information-theoretic setting. Dodis ([6], Lemma 2) states upper and lower bounds on mutual-
information-based security in terms of message indistinguishability which are implicit in [2]. Our
Lemmas 4.7 and 4.8 may be viewed as computational versions of Dodis’ bounds.

2 Preliminaries

We assume standard facts and definitions about discrete probability spaces, but we will begin by
clarifying our notational conventions and use of terminology. A probability distribution on a finite
set X is specified by a probability mass function X : X → [0, 1] which satisfies

∑
x∈X X(x) = 1.

We will abuse terminology and use the term random variable as a synonym for distribution, so
that for a distribution with mass function X we have Pr[X = x] = X(x). In general, we follow the
convention of [9] regarding random variables, i.e., multiple occurrences of a variable in a probability
expression denote multiple occurrences of a single sampled value. If X is distributed jointly with
Y , we write X|Y to denote the corresponding conditional distribution, and X,Y to denote the joint
distribution. We write log and ln, respectively, for logarithm base 2 and base e.

Definition 2.1. Suppose that X and Y are jointly distributed random variables on X and Y,
respectively. The entropy H(X) of X is defined by

H(X) = −
∑
x

Pr[X = x] log Pr[X = x].

The conditional entropy H(X|Y ) of X given Y is defined by

H(X|Y ) = −
∑
y,x

Pr[Y = y ∧X = x] log Pr[X = x|Y = y]
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The mutual information I(X;Y ) between X and Y is defined by

I(X;Y ) =
∑
y,x

Pr[Y = y ∧X = x] log
Pr[Y = y ∧X = x]

Pr[Y = y] Pr[X = x]

Note that I(X;Y ) = H(X)−H(X|Y ). For a random variable X ′, the KL divergence from X to X ′

is defined by

KL(X||X ′) =
∑
m

Pr[X = x] log
Pr[X = x]

Pr[X ′ = x]

If X ′ jointly distributed with Y ′. The conditional KL divergence from X|Y to X ′|Y ′ is defined by

KL(X|Y ||X ′|Y ′) =
∑
y,x

Pr[Y = y ∧X = x] log
Pr[X = x|Y = y]

Pr[X ′ = x|Y ′ = y]

We recall the following facts:

Proposition 2.2 (Chain rule for KL-divergence).

KL(Y,X||Y ′, X ′) = KL(Y ||Y ′) + KL(X|Y ||X ′|Y ′).

In particular KL(X|Y ||X ′|Y ) = KL(Y,X||Y,X ′).

Proposition 2.3 (Gibb’s inequality). KL(X||X ′) ≥ 0, with equality when X ′ is distributed identi-
cally to X.

3 Proportional Betting with Noisy Inside Information

We begin by recalling the model of Kelly, proposed in his seminal paper [14]. Kelly considers the
problem of maximizing the expected rate at which a gambler can accumulate wealth over repeated
independent, identically-distributed plays of a game such as a coin flip, or horse race. In this
scenario each play of the game results in an outcome from a fixed set of outcomes, according to
an a priori fixed probability distribution known to the gambler. In particular, Kelly considers
the advantage that an eavesdropping gambler who is given access to a channel providing a “noisy”
version of the outcome of each event has over an honest gambler, who may only use a priori
probabilities when placing bets. Kelly shows that the eavesdropping gambler’s optimal strategy
is proportional betting conditioned on the outcome observed on the noisy channel, and that the
advantage of the best eavesdropping gambler over the best honest gambler is equal to the mutual
information between the event and its noisy version.

Definition 3.1. Let X be a distribution over a set X of outcomes, i.e., the outcome of each play
of the game is independently determined according to X. An honest gambler is given by a betting
function b : X → [0, 1] which satisfies

∑
x∈X b(x) = 1.

The value b(x) is the fraction of total wealth that the gambler bets on outcome x. Note that we
are assuming that the gambler distributes all his wealth over the possible outcomes. The amount
paid on a given outcome is determined by an odds function o. In particular, with an odds function
o, and a betting function b, after outcome x the gambler’s new wealth is o(x)b(x) times his current

4



wealth. In this paper, we will only consider odds functions which satisfy
∑

x∈X
1

o(x) = 1, in which
case the assumption that the gambler bets all his wealth in each race is without loss of generality,
because withholding can be simulated by spreading the withheld amount across outcomes in inverse
proportion to o. While is it natural to consider more general odds functions, the analysis in this
setting is much less tractable, and moreover it is not clear how to interpret such a setting from a
security perspective.
Notation. A betting function b : X → [0, 1] may be viewed as the mass function of a distribution on
X . We will abuse notation somewhat and write b to also denote the random variable corresponding
to the distribution with this mass function and also writing b(X) for the value of b on x chosen
randomly according to X.

Kelly considers a gambler who is trying to maximize the expected rate at which his wealth
grows over a sequence of identically distributed independent random events. Asymptotically, this
is equivalent to maximizing E[log o(X)b(X)] (see [5], Theorem 6.1.1.) In this setting, for an honest
gambler we have:

Proposition 3.2. The maximum over all betting functions b of E[log o(X)b(X)] is E[log o(X)] −
H(X), and is achieved by b∗ where b∗(x) = Pr[X = x].

Note that E[log o(X)] is the theoretical maximum, achieved by a “clairvoyant” gambler who
always has all wealth placed on the winning outcome.

Proof. For any b we have

E[log o(X)b(X)] = E[log o(X)] + E[log b(X)] = E[log o(X)]−H(X)−KL(X||b)

Now recall by Proposition 2.3 that KL(X||b) ≥ 0, with equality when b = X.

An eavesdropping gambler has access to the outcome of each race before betting takes place,
but the access is noisy. This “noisy inside knowledge” is modeled by a random variable Y , jointly
distributed with X.

Definition 3.3. An eavesdropping gambler is given by a conditional betting function, where b(x|y)
is the fraction of wealth bet on outcome x when y is observed.

We will write Y, b for the joint random variable induced by the conditional betting function b
and distribution Y on observations, and b|Y for the corresponding conditional random variable.

Definition 3.4. For any honest gambler b′ the advantage over b′ of an eavesdropping gambler b is
equal to

E[log o(X)b(X|Y )]− E[log o(X)b′(X)],

The eavesdropper’s advantage is its advantage over the best honest gambler b∗.

By the preceding Proposition, an eavesdropping gambler’s advantage is equal to

E[log o(X)] + E[log b(X|Y )]− (E[log o(X)]−H(X)) = H(X) + E[log b(X|Y )]

Proposition 3.5. An eavesdropping gambler’s maximum advantage is I(X;Y ) and is achieved by
b̂ where b̂(x|y) = Pr[X = x|Y = y]
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Proof. For any eavesdropping b we have

H(X) + E[log b(X|Y )] = H(X)−H(X|Y )−KL(X|Y ||b|Y )

= I(X;Y )−KL(X|Y ||b|Y )

We now use the properties of KL-divergence to obtain the optimal strategy and value.

Relation to information-theoretic security. While Kelly did not explicitly consider an en-
crypted channel, it is clear that with this approach, we obtain an alternate characterization of
perfect secrecy. In particular suppose that Y is just E(K,X) where (E ,D) is an encryption scheme
(and K denotes a distribution over keys.) According to Shannon’s definition, this encryption scheme
has perfect secrecy exactly when I(X;Y ) = 0. In other words, any eavesdropping gambler using in-
side information encrypted by E has at best zero advantage. One advantage of this characterization
of encryption security, as opposed to Shannon’s characterization in [21] is the explicit introduction
of an adversary (i.e. the eavesdropping gambler.) By considering resource bounded adversaries, we
are led naturally to a version of Shannon security in the computational setting.

4 Computational Setting

We have seen that Kelly’s model of gambling with inside information may be used to give a charac-
terization of information-theoretic encryption security which is equivalent to Shannon’s. Our goal
now is to use Kelly’s model to give a computational defintion of encryption security by consid-
ering computationally limited gamblers. We begin by reviewing some basic definitions regarding
private-key encryption and security in the computational setting.

Definition 4.1. A private-key encryption scheme 〈E ,D〉 is a probabilistic poly-time function en-
semble 〈En,Dn〉 satisfying the following properties, for every n:

1. En : {0, 1}n × {0, 1}`(n) → {0, 1}q(n)

2. Dn : {0, 1}n × {0, 1}q(n) → {0, 1}`(n)

3. For any k ∈ {0, 1}n and m ∈ {0, 1}`(n), Dn(k, En(k,m)) = m,

where `, q are poly-bounded functions such that q(n) ≥ `(n) ≥ n. The value n is the security
parameter of the scheme.

Without loss of generality, we have dispensed with the specification of a key generation function.
We may assume that keys are just uniformly generated random strings, as such strings could indeed
be viewed as the randomness used in key generation. In what follows, we will write Un to denote the
uniform distribution over keys of length n. We will typically write Mn for an arbitrary distribution
over messages of length `(n).

In this paper, we limit our attention to single message security, that is, definitions of security in
which an attacker has only has access to a single ciphertext c drawn from En(Un,Mn). While it is
possible to adapt some of our results to more comprehensive notions of security (e.g. CPA security)
we will focus on the conceptual foundations of the notion of attacker success rather than attack
models. We will consider the possibility of more “intrinsic” notions of multiple message security
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in Section 7. We will also only consider non-uniform definitions of security. That is, efficient
adversaries will be modeled as poly-bounded families of circuits. While most of our results may be
transferred to the uniform setting we will retain a non-uniform approach for the sake of conceptual
clarity.

We now introduce a notion of encryption security using a resource-bounded formulation of
Kelly’s model. In this setting, we consider betting functions which are computed by poly-size
families of circuits (which are defined in the obvious way.)

Definition 4.2 (Gambling Security). An encryption scheme (E ,D) is gambling secure if for
every k, every distribution ensemble {Mn}, where Mn is a distribution over {0, 1}`(n), every poly-
size family of betting circuits {bn}, and all sufficiently large n

H(Mn) + E[log bn(Mn|En(Un,Mn))] ≤ 1

nk
.

Note: Our definition of gambling security measures the advantage of a computationally bounded
eavesdropping gambler versus the best honest gambler. This is without loss of generality for our
results, unless we do not admit honest gamblers whose complexity is polynomial in that of the
eavesdropping gambler.

We would like to compare gambling security to the more familiar notion of message indistin-
guishability. To do so, we first recall some definitions.

Definition 4.3. A distinguisher is a function D : {0, 1}` → {0, 1}. If X, X ′ are distributions
defined on {0, 1}`, the advantage of D in distinguishing between X and X ′, denoted AdvD(X,X ′),
is defined by

AdvD(X,X ′) = Pr[D(X) = 1]− Pr[D(X ′) = 1]

We will also consider generalized distinguishers which take values in [0, 1].2 For such a D, AdvD is
defined by

AdvD(X,X ′) = E[D(X)]− E[D(X ′)]

We say that a (generalized) distinguisher has size t if it is computed by a circuit of size t.

In the case of size-bounded generalized distinguishers, the circuit D outputs the binary repre-
sentation of a (rational) value in [0, 1]. Note that the size restriction means that the actual range of
D’s output is contained in {0}∪ [2−t, 1]. Using standard techniques, with polynomial overhead and
at most d bits of randomness, we may transform a generalized distinguisher D into a distinguisher
D′ such that E[D(X)] = E[D′(X)] = Pr[D′(X) = 1], so that AdvD′(X,X

′) = AdvD(X,X ′) for
any X and X ′. In particular, on input x, D′ flips t coins and interprets the result as a value δ in
{0}∪ [2−t, 1). If δ < D(x) then D′(x) returns 1. Otherwise it returns 0. We also recall the following

Proposition 4.4. For any distinguisher D and distributions X0, X1,

AdvD(X0, X1) ≤ ε iff Pr[D(Xz) = z] ≤ 1

2
+
ε

2

where z is selected uniformly at random from {0, 1}.
2We use the same terminology here as [24], but note that in their setting, generalized distinguishers take values

in R+.
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Definition 4.5. Let ` be a poly-bounded function. A distribution ensemble is a sequence X = {Xn}
of distributions, where Xn is a distribution on {0, 1}`(n). A poly-size family of distinguishing
circuits is a sequence {Dn} of circuits, where Dn : {0, 1}`(n) → {0, 1} has size nO(1). Distribution
ensembles {Xn} and {Yn} are computationally indistinguishable if for every k, poly-size family {Dn}
of distinguishing circuits, and sufficiently large n,

AdvDn(Xn, Yn) ≤ 1

nk

We recall the following standard definition of encryption security (equivalent to semantic security
[10]):

Definition 4.6 (Message Indistinguishability). An encryption scheme (E ,D) has indistinguish-
able messages if for any k and poly-size family of distinguishing circuits {Dn}, for all sufficiently
large n and pair of messages m0,m1 ∈ {0, 1}`(n)

AdvDn(En(Un,m1)), En(Un,m0)) ≤ 1

nk

Let 〈E ,D〉 be an encryption scheme. The equivalence of message indistinguishability and gambling
security for 〈E ,D〉 is established using the following two lemmas

Lemma 4.7. For any n, 0 < δ < 1
2 , size t distinguishing circuit D, and messages m0,m1 ∈

{0, 1}`(n), such that AdvD(En(Un,m0), En(Un,m1)) > 2δ, there is a size poly(t, log(1/δ), `(n), q(n))
betting circuit b and a distribution M on {0, 1}`(n) such that

H(M) + E[log b(M |En(Un,M))] >
2

ln 2
δ2

Proof. By assumption and Proposition 4.4, for uniformly chosen z ∈ {0, 1},

Pr[D(En(Un,mz)) = z] > 1
2 + δ

Define b with size t+ poly(log(1/δ), `(n), q(n)) as follows

b(m|c) =


0 if m /∈ {m0,m1};
1
2 + δ if m = mz and D(c) = z;
1
2 − δ otherwise.

Let M be the distribution which assigns m0 and m1 probability 1
2 and all other messages probability

0. Then H(M) = 1, while

E[log b(M |En(Un,M))] > (1
2 + δ) log(1

2 + δ) + (1
2 − δ) log(1

2 − δ)

which is just −h(1
2 + δ), where h is the binary entropy function. So it suffices to show that for

0 ≤ δ < 1
2

1− h(1
2 + δ) ≥ 2

ln 2δ
2

Using a Taylor series expansion we have

1− h(1
2 + δ) = 1−

(
1− 1

2 ln 2

∞∑
t=1

(2δ)2t

t(2t− 1)

)

=
1

2 ln 2

∞∑
t=1

(2δ)2t

t(2t− 1)
≥ 1

2 ln 2
4δ2 =

2

ln 2
δ2.
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Lemma 4.8. For any n, any δ ≥ 0, any size t betting circuit b and distribution M on {0, 1}`(n), such
that H(M) + E[log b(M |En(Un,M))] > δ, there is a size poly(t, log(1/δ), `(n), q(n)) distinguishing
circuit D and and messages m0,m1 ∈ {0, 1}`(n) such that

AdvD(En(Un,m0), En(Un,m1)) >
δ

2t

Proof. By Proposition 3.2, we have E[log b′(M)] ≤ −H(M) for any betting function b′, so that

E[log b(M |En(Un,M))]−max
b′

E[log b′(M)] > δ

In particular, define b′ by b′(m) = b(m|En(Un,m0)) for some fixed message m0 (note that b′’s
complexity is polynomial in b’s, assuming E is poly-time.) Then we have E[log b(M |En(Un,M))]−
E[log b(M |En(Un,m0))] > δ. By averaging, we conclude that that there must be some fixed m1 for
which E[log b(m1|En(Un,m1))]− E[log b(m1|En(Un,m0))] > δ. Define D′ as follows

D′(c) =

{
1
t (log b(m1, c) + t) if b(m1|c) > 0;
0 otherwise.

Then D′(c) ∈ [0, 1], and

AdvD′(En(Un,m1), En(Un,m0)) >
δ

t
.

As shown in [24] (Theorem 3.22), D′ may be approximated using a Taylor series to precision δ
2 by

a circuit D of size poly(t, log(1/δ), `(n), q(n)) such that

AdvD(En(Un,m1), En(Un,m0)) >
δ − δ/2

t
=

δ

2t

As discussed previously, we may assume that, with polynomial overhead, instead of outputting
a value p ∈ [0, 1], D outputs 1 with probability p and 0 with probability 1 − p, so that D is a
distinguisher.

Theorem 4.9. (E ,D) is gambling secure iff it has indistinguishable messages.

Proof. Supose that (E ,D) does not have indistinguishable messages. So, for some k, and poly-size
family {Dn} of distinguishing circuits, it is the case that for infinitely many n there is a pair of
messages m0,m1 ∈ {0, 1}`(n) such that

AdvDn(En(Un,m1)), En(Un,m0)) >
1

nk

Let n1, n2, . . . be the values of n for which this holds. Define the distribution ensemble {Mn}
where, for n = ni, Mn is the distribution guaranteed by Lemma 4.7, and otherwise is arbitrary, say
the uniform distribution, and let k′ = 2k + 1. Then, by Lemma 4.7, there is a poly-size family of
betting circuits {bn}, such that for infinitely many n

H(Mn) + E[log bn(Mn|En(Un,Mn))] >
1

(2 ln 2)n2k
≥ 1

nk′

So (E ,D) is not gambling secure.
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Now suppose that (E ,D) is not gambling secure. So there exists a k, a distribution ensemble
{Mn}, where Mn is a distribution over {0, 1}`(n), and a poly-size family of betting circuits {bn},
such that for infinitely many n

H(Mn) + E[log bn(Mn|En(Un,Mn))] >
1

nk
.

Suppose bn has size nj . Let k′ = k + j + 1. Then by Lemma 4.8, there is a poly-size family of
distinguishing circuits {Dn}, such that for infinitely many n there is a pair of messages m0,m1 ∈
{0, 1}`(n) such that

AdvDn(En(Un,m1)), En(Un,m0)) >
1

2nk+j
≥ 1

nk′

So, (E ,D) does not have indistinguishable messages.

5 A Characterization Based on Pseudoentropy

The notion of KL-hardness, introduced by Vadhan and Zheng in [24], characterizes the difficulty of
approximating a distribution with respect to KL-divergence. In the nonuniform setting, they show
that a conditional distribution is KL-hard if and only if it has high conditional pseudoentropy.3 KL-
hardness is closely related to gambling security: as we have already seen in the information-theoretic
setting, an eavesdropping gambler b maximizes its advantage by minimizing KL(M |C||b|C). Moving
to the computational setting, things are less straightforward. In particular, the definition of KL-
hardness given in [24] depends on the notion of a KL-predictor, which does not correspond exactly
to a betting function. A KL-predictor is obtained by normalizing a measure, which is a function
from the space of outcomes to (0,+∞). Nevertheless, the results of [24] and the preceding section
suggest that we should be able to give a characterization of encryption security based on conditional
pseudoentropy. We will do this directly, relying heavily on techniques introduced in [24]. We could
also first establish an equivalence between KL-hardness for gambling functions and KL-hardness
for normalized measures and then appeal directly to the main result of Vadhan and Zheng; this
approach is discussed in Appendix A.

Definition 5.1. Suppose X = {Xn}, Y = {Yn} are distribution ensembles. X has conditional
pseudoentropy at least k given Y, written H̃(X|Y) ≥ k, if there is a distribution ensemble {X ′n} such
that {(Yn, Xn)}) and {(Yn, X ′n)} are computationally indistinguishable and for all c and sufficiently
large n H(X ′n|Yn) ≥ k − 1

nc .

We recall that according to Shannon [21], an encryption scheme is perfectly secure if I(M ;C) =
H(M) − H(M |C) = 0. In the computational setting, it seems natural to quantify the degree of
security in terms of H(M)− H̃(M |C). Before showing that the corresponding security notion corre-
sponds to message indistinguishability, we must consider a general relationship between conditional
betting functions and distinguishers, required in the proof of Lemma 5.5 below. We will limit our
attention to betting functions which are nonzero, taking values in [2−t, 1] (any nonzero size t betting
function will take values in this range.) Any such function b determines a generalized distinguisher
Db, which we now define.

3Results are obtained in the uniform setting as well, but only for joint distributions of the form X,B over
{0, 1}n × [q], where q is poly(n).
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Definition 5.2. Suppose b is a conditional betting function taking values in [2−t, 1]. Define the
generalized distinguisher Db, taking values in [0, 1], as follows:

Db(y, x) =
1

t
(log b(x|y) + t)

Note that log b(x|y) = tDb(y, x)− t. We have the following (information theoretic) relationships
between b and Db.

Lemma 5.3. Suppose b is a conditional betting function taking values in [2−t, 1]. Then for any
distribution X on X and Y on Y,

KL((Y,X)||(Y, b)) = H(b|Y )−H(X|Y )− tAdvDb
((Y,X), (Y, b))

Proof. This is just a reformulation of [24], Lemma 3.13 in our setting.

KL((Y,X)||(Y, b))

= EY

[∑
x

X(x|Y ) log
X(x|Y )

b(x|Y )

]

= H(b|Y )−H(X|Y ) + EY

[∑
x

(X(x|Y )− b(x|Y )) log
1

b(x|y)

]

= H(b|Y )−H(X|Y ) + EY

[∑
x

(X(x|Y )− b(x|Y )(t− tDb(Y, x))

]

= H(b|Y )−H(X|Y ) + tEY

[
(1− 1)−

∑
x

Db(Y, x)(X(x|Y )− b(x|Y ))

]
= H(b|Y )−H(X|Y )− tAdvDb

((Y,X), (Y, b))

Lemma 5.4. Suppose b is a conditional betting function taking values in [2−t, 1]. Then for all
distributions X,X ′ on X and Y on Y,

AdvDb
((Y,X), (Y,X ′)) ≥ (H(X ′|Y ) + E[log b(X|Y )])/t

Proof. By Lemma 5.3 we have

H(b|Y )−H(X ′|Y )− tAdvDb
((Y,X ′), (Y, b)) = KL((Y,X ′)||(Y, b))

since KL((Y,X ′)||(Y, b)) ≥ 0, it follows that

AdvDb
((Y,X ′), (Y, b)) ≤ H(b|Y )−H(X ′|Y )

t
(†)

Applying Lemma 5.3 again, we obtain

H(b|Y )−H(X|Y )− tAdvDb
((Y,X), (Y, b)) = KL((Y,X)||(Y, b))

11



But

KL((Y,X)||(Y, b)) = I(X;Y )−H(X)− E[log b(X|Y )]

= −H(X|Y )− E[log b(X|Y )]

so that

AdvDb
((Y,X), (Y, b)) =

H(b|Y ) + E[log b(X|Y )]

t
(††)

But then

AdvDb
((Y,X), (Y,X ′)) = AdvDb

((Y,X), (Y, b))−AdvDb
((Y,X ′), (Y, b))

≥ (H(X ′|Y ) + E[log b(X|Y )])/t by (†) and (††)

Lemma 5.5. For any n, 0 ≤ δ < 1
4 , size t distinguishing circuit D, and messages m0,m1 ∈

{0, 1}`(n), such that AdvD(En(Un,m0), En(Un,m1)) > 2δ, there is a distinguishing circuit Db of size
poly(t, log(1/δ), `(n), q(n)) and distribution M on {0, 1}`(n) such that for any γ ≥ 0 and any M ′

such that H(M ′|En(Un,M)) ≥ H(M)− γ

AdvDb
((En(Un,M),M), (En(Un,M),M ′)) >

δ2

t ln 2
− γ

t

Proof. By Proposition 4.4, for uniformly chosen z ∈ {0, 1},

Pr[D(En(Un,mz)) = z] > 1
2 + δ

Let M be the distribution which assigns m0 and m1 probability 1
2 and all other messages probability

0. We now define a betting function b such that Db is a distinguisher between M and any M ′ such
that H(M ′|En(Un,M)) > H(M)− γ. For any σ > 0, we define b as follows:

b(m|c) =


σ

2`(n)−2
if m /∈ {m0,m1};

1/2 + δ if m = mz and D(c) = z;
1/2− δ − σ otherwise.

Let Db(y, x) = 1
t (log b(x|y) + t) be the associated distinguisher given in Definition 5.2. Let C

denote En(Un,M). Consider any M ′ for which H(M ′|C) ≥ H(M)− γ. By Lemma 5.4

AdvDb
((C,M), (C,M ′)) ≥ (H(M ′|C) + E[log b(M |C)])/t

≥ (H(M) + E[log b(M |C)]− γ)/t

Now H(M) = 1, while we have, assuming δ < 1
4 and σ < 2

9 ,

E[log b(M |En(Un,M))] > (1
2 + δ) log(1

2 + δ) + (1
2 − δ) log(1

2 − δ − σ)

= −h(1
2 + δ)− 1

ln 2

∑∞
j=1

2j−1δj

j(1−2γ)j−1

≥ −h(1
2 + δ)− 1

4 ln 2

∑∞
s=1 4jσj

= −h(1
2 + δ)− 4σ

(4 ln 2)(1−4σ)

≥ −h(1
2 + δ)− 2

ln 2σ

12



As demonstrated previously, 1− h(1
2 + δ) ≥ 2

ln 2δ
2, so that, setting σ = δ2/2 we have

H(M) + E[log b(M |En(Un,M))] ≥ δ2

ln 2

and
AdvDb

((En(Un,M),M), (En(Un,M),M ′)) > δ2

t ln 2 −
γ
t

Finally, we note that Db has size poly(t, log(1/δ), `(n), q(n))

Lemma 5.6. For any n, δ ≥ 0, and distribution M on {0, 1}`(n) which has the property that for
any distribution M ′ on {0, 1}`(n) with H(M ′|En(Un,M)) ≥ H(M), there is a size t distinguishing
circuit D such that

Pr[D(En(Un,M),M ′)) = 1]− Pr[D(En(Un,M),M) = 1] > δ,

there is a size t distinguisher D′ and messages m0,m1 ∈ {0, 1}`(n) such that

AdvD′(En(Un,m0), En(Un,m1)) > δ.

Proof. Take M ′ which is independent of M but identically distributed. Then

H(M ′|En(Un,M)) = H(M ′) = H(M)

and so by assumption there is a size t distinguisher D such that

Pr[D(En(Un,M),M ′)) = 1]− Pr[D(En(Un,M),M) = 1] > δ

But then there are messages m0,m1 such that

Pr[D(En(Un,m0),m1) = 1]− Pr[D(En(Un,m1),m1) = 1] > δ (†)

Defining D′(c) = D(c,m1) completes the proof. To obtain the required m0,m1, we apply an
averaging argument twice. The first application allows us to conclude that

Pr[D(En(Un,M),m1) = 1]− Pr[D(En(Un,m1),m1) = 1] > δ.

We then average again to obtain (†).

Using the preceding lemmas, we are now able to conclude

Theorem 5.7. (E ,D) has indistinguishable messages iff for any message distribution ensemble
M = {Mn}, H̃(M|C) ≥ H(M), where C = {Cn} is the distribution ensemble such that for each n,
Cn = En(Un,Mn).

Proof. Supose that (E ,D) does not have indistinguishable messages. So, for some k, and poly-size
family {Dn} of distinguishing circuits, it is the case that for infinitely many n there is a pair of
messages m0,m1 ∈ {0, 1}`(n) such that

AdvDn(En(Un,m1)), En(Un,m0)) >
1

nk

13



Let n1, n2, . . . be the values of n for which this holds. Define the distribution ensemble M = {Mn}
where, for n = ni, Mn is the distribution guaranteed by Lemma 5.5, and otherwise is the uniform
distribution, and let {D′n} be the poly-sized circuit family, where, for n = ni, D

′
n is the ciruit Db

provided by Lemma 5.5 and otherwise is some default circuit, say a circuit for the constant zero
function. Suppose Dn has size nj , and consider any distribution ensemble {M ′n} such that for all
sufficiently large n, H(M ′n|En(Un,Mn)) ≥ H(Mn)− 1

nc . Take c = 2k+ 1, and define k′ = 2k+ 1 + j.
By Lemma 5.5 it follows that, for infinitely many n,

AdvD′n((En(Un,M),M), (En(Un,M),M ′)) >
1

nk′
,

and so it follows that H̃(M|C) < H(M).
Now suppose that for some message ensemble M, H̃(M|C) < H(M). It is then the case that

for any distribution ensemble {M ′n} such that H(M ′n|En(Un,Mn)) > H(Mn), there is a family {Dn}
of distinguishing circuits and a constant k such that for infinitely many n,

Pr[Dn(En(Un,Mn),M ′n) = 1]− Pr[Dn(En(Un,M),Mn) = 1] >
1

nk
.

Then by Lemma 5.6, there is a poly-size family of distinguishing circuits {D′n}, such that for
infinitely many n there is a pair of messages m0,m1 ∈ {0, 1}`(n) such that

AdvD′n(En(Un,m1)), En(Un,m0)) >
1

nk

So, (E ,D) does not have indistinguishable messages.

6 Risk-Neutral Adversaries

We now revisit the model proposed by Kelly. Kelly’s gambler may be viewed as trying to maximize
the rate of return over repeated plays or, alternately, as just having a logarithmic utility for total
wealth. What happens if we consider gamblers with different utility functions? We will now
consider the case of linear utility. Such gamblers are typically referred to as being risk-neutral.
Clearly, in this case, if no inside information is available the optimal strategy is to bet everything
on the outcome which gives the maximum expected payout. An important difference in this setting
is that the odds now make a difference, and the advantage of an eavesdropping gambler over the
best honest gambler will be

E[o(X)b(X|Y )]−max
x∈X

(o(x) Pr[X = x])

While in a more realistic setting we would want to take the odds function into account, as a first
step we just assume constant odds, say o(x) = 1

|X | for all x. In this way we remove consideration
of odds from the gambler’s strategy, leading to the following

Definition 6.1 (Risk-Neutral Gambling Security). An encryption scheme (E ,D) is gambling
secure against risk-neutral adversaries if for every k, every distribution ensemble {Mn}, where Mn

is a distribution over {0, 1}`(n), and every poly-size family of betting circuits {bn}, for all sufficiently
large n

E[bn(Mn|En(Un,Mn))]− max
m∈{0,1}`(n)

Pr[Mn = m] ≤ 1

nk
.
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Lemma 6.2. For any n, 0 ≤ δ < 1
2 , size t distinguishing circuit D, and messages m0,m1 ∈

{0, 1}`(n), such that AdvD(En(Un,m0), En(Un,m1)) > 2δ, there is a size poly(t, log(1/δ), `(n)) bet-
ting circuit b and a distribution M on {0, 1}`(n) such that

E[log b(M |En(Un,M))]− max
m∈{0,1}`(n)

Pr[M = m] > δ

Proof. By Proposition 4.4, for uniformly chosen z ∈ {0, 1}

Pr[D(En(Un,mz)) = z] > 1
2 + δ

Define b with size t+ poly(`(n), q(n)) as follows

b(m|c) =

{
1 if m = mz and D(c) = z;
0 otherwise.

Let M be the distribution which assigns m0 and m1 probability 1
2 and all other messages probability

0. Clearly,
E[b(M |En(Un,M))] > (1

2 + δ) · 1 + (1
2 − δ) · 0 = 1

2 + δ

The result follows by observing that maxm∈{0,1}`(n) Pr[Mn = m] = 1
2 .

Lemma 6.3. For any n, any δ ≥ 0, any size t betting circuit b and distribution M on {0, 1}`(n), such
that E[b(M |En(Un,M))]−maxm∈{0,1}`(n) Pr[Mn = m] > δ, there is a size poly(t, log(1/δ), `(n), q(n))

circuit D and messages m0,m1 ∈ {0, 1}`(n) such that AdvD(En(Un,m0), En(Un,m1)) > δ.

Proof. As we have argued above, for any honest b′, E[b(Mn|En(Un,Mn))]−E[b′(Mn)] > δ. In partic-
ular, define b′ by b′(m) = b(m, En(Un,m0)) for some fixed message m0. Then E[b(Mn|En(Un,M))]−
E[b(Mn|En(Un,m0))] > δ, and so there is some m1 such that

E[b(m1|En(Un,m1))]− E[b(m1|En(Un,m0))] > δ

Define the generalized distinguisher D′ by D′(c) = b(m1|c) and use D′ to obtain a distinguisher D
for which

AdvD(En(Un,m0), En(Un,m1)) > δ

Theorem 6.4. (E ,D) is gambling secure against risk-neutral adversaries iff it has indistinguishable
messages.

We omit the proof, which is similar to that for Theorem 4.9. We also note that combining
Lemmas 4.7 and 6.3 we obtain the following

Corollary 6.5. For any n, any δ ≥ 0, any size t betting circuit b and distribution M on {0, 1}`(n),
such that E[b(M |En(Un,M))] −maxm∈{0,1}`(n) Pr[Mn = m] > δ, there is a betting circuit b′ of size

poly(t, log(1/δ), `(n), q(n)) and a distribution M on {0, 1}`(n) such that

H(M) + E[log b′(M |En(Un,M))] >
1

2 ln 2
δ2

In other words, an encryption scheme which achieves ε-gambling security also achieves
√
ε-

gambling security against risk-neutral gamblers.4

4The fact that the loss is quadratic is not surprising, as a risk-neutral gambler is optimizing the arithmetic mean
of her returns, while a Kelly-style gambler is doing the same for the geometric mean. We note that the idea of
optimizing the geometric mean of returns has a long history, dating at least to the 18th Century work of D. Bernoulli
[3].
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7 Conclusions and Future Work

We have revisited Yao’a program of characterizing encryption security via computational informa-
tion, providing two new equivalent characterizations based on different approaches to computational
entropy. In some sense this is more of a contribution to computational information theory than
to cryptography, as we have shown that, at least in the setting of encryption security, various no-
tions coincide. This of course raises the question of how these notions are related in more general
settings. We now have another notion of computational entropy, based on Kelly’s model, although
this is closely related to Vadhan and Zheng’s notion of KL-hardness, which in turn is closely re-
lated to pseudoentropy. Indeed, in a general setting, KL-hardness and pseudoentropy coincide for
nonuniform adversaries ([24], Corollary 3.10.) There are still numerous open questions regarding
the relationship Yao and HILL entropy; a broader view involving notions such as KL-hardness and
gambling entropy may be useful here.

In the information-theoretic setting, gambling and data compression are equivalent. In [5],
Section 6.5, a reduction from compression to gambling is given, using the gambling function to
construct a cumulative distribution function which is then used in an arithmetic coding scheme,
but this reduction is not efficient. We conjecture that under an appropriate complexity-theoretic
assumption, no such efficient reduction is possible.

Our results only concern single-message security. We could easily give a version of CPA security,
by considering the usual CPA-game, but replacing the challenge phase with one in which the
adversary is a gambler rather than a distinguisher. On the other hand, Kelly’s model suggests forms
of multiple-message security which are ostensibly weaker than CPA, but stronger than standard
multiple-message security. In particular, we could consider a situation in which the same key is
used to encrypt the results of multiple races in an on-line fashion, and where the gambler is able
to use information about his success in each round to place future bets. This is very similar to the
setting of on-line prediction (see, e.g. [4]). We would like to consider adversaries performing this
sort of on-line prediction task, or in the setting of on-line game playing as introduced in [7].

Our results imply that ε-gambling security implies
√
ε-gambling security against risk neutral

adversaries (or, equivalently,
√
ε-message indistinguishability.) We may ask whether there is an

inherent loss of security entailed by assuming adversaries have logarithmic utility, i.e., are there
encryption schemes which are ε-gambling secure, but not ε′-message indistinguishable for some
ε′ ≥ ε? In general, we would like to understand how assumptions about an adversary’s utility
impact security. This has the potential to contribute to a decision-theoretic approach to security
(cf. rational protocol design as presented in [8].)
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A An Alternate Proof of Lemma 5.5

Here we outline an alternate approach to proving a version of Lemma 5.5, using one of the main
results of [24].

Suppose X ,Y are finite sets. A measure is a mapping P : Y × X → (0,+∞). Associated with
P is a conditional mass function CP defined by CP (x|y) = P (y, x)/

∑
z∈X P (y, z). Suppose X,Y

respectively are distributions on X ,Y. X is (t, δ) KL-hard given Y if for any measure P computed
by a circuit of size t, KL(Y,X||Y,CP ) > δ.

Theorem A.1 ([24], Theorem 3.8(2)). Let (Y,X) be a Y × X -valued random variable, δ, ε > 0.
If X has nonuniform (t, ε) conditional pseudoentropy at least H(X|Y ) + δ given Y , then for every
σ > 0, X is (t′, δ − σ) KL-hard given Y , for t′ = min{tΩ(1)/polylog(1/σ),Ω(σ/ε)}

We now note that the betting function b defined in the proof of Lemma 5.5 is strictly positive,
so it is a measure. Moreover Cb = b. We have

H(M) + E[log b(M |En(Un,M))] ≥ δ2

ln 2

Now

H(M) + E[log b(M |En(Un,M))] =

H(M)−H(M |En(Un,M))−KL(M |En(Un,M)||b|En(Un,M)))

so that
KL(M |En(Un,M)||b|En(Un,M))) ≤ H(M)−H(M |En(Un,M))− δ2

ln 2

Applying the above-cited result, we can conclude that given En(Un,M), M does not have conditional
pseudoentropy at least H(M), as required for the “if” direction of Theorem 5.7.

By appealing to the result of [24], we have made Lemmas 5.3 and 5.4 redundant. On the other
hand, the work of Vadhan and Zheng involves considerable machinery beyond what is needed for
Lemma 5.5.
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