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Abstract. Fault injection attacks are a real-world threat to cryptosys-
tems, in particular asymmetric cryptography. In this paper, we focus on
countermeasures which guarantee the integrity of the computation re-
sult, hence covering most existing and future faults attacks. Namely, we
study the modular extension protection scheme in previously existing and
newly contributed variants of the countermeasure on elliptic curve scalar
multiplication (ECSM) algorithms. We find that an existing countermea-
sure is incorrect and we propose new “test-free” variant of the modular
extension scheme that fixes it. We then formally prove the correctness
and security of modular extension: specifically, the fault non-detection
probability is inversely proportional to the security parameter. Finally,
we implement an ECSM protected with test-free modular extension on an
ARM Cortex-M4 microcontroller. A systematic fault injection campaign
for several values of the security parameter confirms our theoretical pre-
diction about the security of the obtained implementation, and provides
figures for practical performance.
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1 Introduction

Properly used cryptography is a key building block for secure information ex-
change. Thus, implementation-level hacks must be considered seriously in addi-
tion to the threat of cyber-attacks. In particular, fault injection attacks target
physical implementations of secured devices in order to induce exploitable errors.

Formal methods. In cryptology, formal methods aim at providing a mathemat-
ical / mechanical proof of security, which helps in building trust into proved
cryptosystems. However, their use is still limited in the field of fault injection
and side channel attacks as formal methods rely on models, and implementations
are difficult to model properly.

Asymmetric cryptography. Asymmetric cryptography addresses different needs
such as key exchange and digital signature. RSA, Diffie-Hellman, and ElGamal
have been used for decades, and elliptic curve cryptography (ECC) algorithms



such as ECDSA [21] are more and more deployed. ECC pairing-based cryptogra-
phy has recently been accelerated in practice and is thus becoming practical [35].
For example, the construction of “pairing-friendly” elliptic curves is an active
subject [19]. Homomorphic encryption schemes are getting more practical and
are progressively considered viable solutions for some real-world applications re-
quiring strong privacy. All these algorithms use large numbers and take place
in mathematical structures such as finite rings and fields. This property enables
the use of formal methods but also facilitates attacks.

Fault Attacks. As put forward in the reference book on fault analysis in cryp-
tography [24, Chp. 9], there are three main categories of fault attacks.
1) Safe-error attacks consist in testing whether an intermediate variable is dum-
my (usually introduced against simple power analysis [28]) or not, by faulting it
and looking whether there is an effect on the final result.
2) Cryptosystem parameter alterations with the goal of weakening the algorithm
in order to facilitate key extraction. For example in ECC, invalid-curve fault
attacks consist in moving the computation to a weaker curve, enabling the at-
tacker to use cryptanalysis attacks exploiting the faulty outputs.
3) Finally, the most serious attacks belong to the differential fault analysis (DFA)
category. Often the attack path consists in comparing correct and faulted out-
puts, like in the well-known BellCoRe attack on CRT-RSA (RSA speeded up
using the Chinese Remainder Theorem), or the sign-change fault attack on ECC.

The BellCoRe attack [9] on CRT-RSA introduced the concept of fault injec-
tion attacks. It is very powerful: faulting the computation even in a very random
way yields almost certainly an exploitable result allowing to recover the secret
primes of the RSA modulus N = pq. This attack is recalled in Sec. A for the
sake of completeness.

The sign-change attack [8] on ECC consists in changing the sign of an inter-
mediate elliptic curve point in the midst of an elliptic curve scalar multiplica-
tion (ECSM). The resulting faulted point is still on the curve so the fault is not
detected by traditional point validation countermeasures. Such a fault can be
achieved by for instance changing the sign in the double operation of the ECSM
algorithm (line 3 of Alg. 1). If the fault injection occurs during the last iteration

of the loop, then the final result Q̂ = [−2
∑n−1

i=1 ki2
i−1]P + k0P = −Q + 2k0P ,

i.e., either Q̂ = −Q or Q̂ = −Q+2P depending on k0, which reveals the value of
k0 to the attacker. This process can be iterated to find the other bits of the key,
and optimizations exist that trade-off between the number of necessary faulted
results and the required exhaustive search.

Both RSA and ECC algorithms continue to be the target of many new fault
injection attacks: see [3,29,5,6,15] just for some 2014 papers. Besides, this topic
is emerging and other new fault attacks will appear sooner or later. Hence, the
need for efficient and practical generic countermeasures against fault attacks is
obvious. David Wagner from UC Berkeley concurs in [41]: “It is a fascinating
research problem to establish a principled foundation for security against fault
attacks and to find schemes that can be proven secure within that framework.”
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Input : P ∈ E, k =
∑n−1

i=0 ki2
i (n is the scalar size in bits, where ki ∈ {0, 1})

Output : [k]P

1 Q← O
2 for i← n− 1 down to 0 do
3 Q← 2Q . ECDBL

4 if ki = 1 then Q← Q + P . ECADD

5 return Q

Algorithm 1: Double-and-add left-to-right scalar multiplication on elliptic

curve E.

Countermeasures. Verifications compatible with mathematical structures can be
applied either at computational or at algorithmic level.

Algorithmic protections have been proposed by Giraud [18] (and many oth-
ers [10,30,26]) for CRT-RSA, which naturally transpose to ECC, as shown in [25].
These protections are implementation specific (e.g., depend on the chosen expo-
nentiation algorithm) and are thus difficult to automate, requiring specialized
engineering skills.
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Fig. 1: Sketch of the principle of
modular extension.

Computational protections have been
pioneered by Shamir in [37] using modular
extension, initially to protect CRT-RSA.
The idea is to carry out the same compu-
tation in two different algebraic structures
allowing to check the computation before
disclosing its result. For example protect-
ing a computation in Fp consists in carry-
ing out the same computation in Zpr and
Fr (Zpr is the direct product of Fp and Fr), where r is a small number (r � p);
the computation in Zpr must match that of Fr when reduced modulo r, if not an
error is returned, otherwise the result in Zpr is reduced modulo p and returned.
The principle of modular extension is sketched in Fig. 1. This method operates
at low level (integer arithmetic), thereby enabling countermeasures (and opti-
mizations) to be added on top of it. They are thus easily maintained, which
explains why this method is quite popular. Indeed, there is a wealth of variants
for CRT-RSA stemming from this idea [1,40,23,7,11,13], as well as a few proofs-
of-concept transposing it to ECC [8,2,22]. Despite the nonexistence of literature,
the same idea could apply to post-quantum code-based cryptography, pairing,
and homomorphic computation for instance. Therefore, our paper focuses on
computational countermeasures.

On the one hand, the variety of CRT-RSA countermeasures shows that fault
attacks are a threat that is taken seriously by both the academic and the in-
dustrial communities. On the other hand, it bears witness to the artisanal way
these countermeasures were put together. Indeed, the absence of formal secu-
rity claims and of proofs added to the necessity of writing implementations by
hand results in many weaknesses in existing countermeasures and thus in many
attempts to create better ones.
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Contributions. We study the modular extension protection scheme in exist-
ing countermeasures on elliptic curve scalar multiplication (ECSM) algorithms,
namely BOS [8] and BV [2].

We show that BOS is incorrect (Sec. 3.1), i.e., that in some specific cases
that we strictly characterize, it does not return the expected result (even in the
absence of fault injections), which may induce a security issue. The flaw in BOS
is reminiscent to that provoked artificially by means of injecting points with low
order neighbours and bitflip faults in [16].

We show that BV is correct (Sec. 3.2), but that it is weaker and more vul-
nerable to fault injections, i.e., that in some specific cases that we strictly char-
acterize, faults are not detected. As it happens, these specific cases are exactly
the same as the ones where BOS returns an incorrect result.

We introduce the notion of test-free algorithms (Sec. 4) as a solution to BOS
incorrectness, and then use it to propose a test-free variant of BOS (TF-BOS).
We prove that TF-BOS is correct.

We then formally study the security of the test-free variant of modular ex-
tension (Sec. 5) and show that the fault non-detection probability is inversely
proportional to the security parameter.

Finally, we implement TF-BOS on an ARM Cortex-M4 microcontroller and
perform a systematic fault injection campaign for several values of the secu-
rity parameter (Sec. 6), which confirms the security of the countermeasure, and
provides figures for its practical performance.

2 ECSM on the Projective Plane

Definition 1 (Elliptic curve over a finite field). An elliptic curve is a plane
curve over a finite field Fp, which is denoted E(Fp) (or simply E when the
base field is implicit). It is composed of a specified point, called “point at in-
finity” and denoted by O, and of the points (x, y) satisfying an equation of the
form y2 = x3 + ax+ b (known as Weierstrass equation), where the discriminant
∆ = −16(4a3 + 27b2) is nonzero. Alongside with elliptic curve group operations,
this set of points form an additive group, where O is the identity element.

The points of the curve can be represented in a coordinate system over Fp, the
most natural representation being affine. However, in such system, operations
on the curves are complicated due to divisions. Thus, we focus on a kind of
representation known as projective1, where a third coordinate Z is added, so
as to avoid divisions. The equation of the curve thus becomes: Y 2Z = X3 +
aXZ2 + bZ3, where X = xZ and Y = yZ. By convention, O is represented by
(X : Y : 0) in the projective plane. Remark that the Z coordinate is redundant:
we can get rid of it by a so-called projective-to-affine transformation, which maps
(X : Y : Z) to (x = X/Z, y = Y/Z).

1 Other projective coordinate systems exist, such as that of Jacobi, but for the sake
of simplicity and without loss of generality, we focus on the projective system.
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Definition 2 (Curve order). The order #E of an elliptic curve E is the
number of points on the curve.

Definition 3 (Point order). The order ord(P ) of a point P on a elliptic curve
E is the smallest non-null integer k such that [k]P = O. The maximum value of
ord(P ) is #E.

Definition 4 (Generator). Let P ∈ E. The point P is called a generator of
E if E = {[k]P, 0 ≤ k < #E}, or equivalently if ord(P ) = #E.

Remark 1. The coordinates (X : Y : Z) normally belong to a finite field Fp, but
for the purpose of the modular extension countermeasure, we extend the notion
of elliptic curve to rings (such as Zpr). For this reason we use the metavariable
n (and Zn) in some algorithms to represent an integer rather than p or r (and
Fp or Fr) which we use to represent prime numbers.

Computer algebra tools (e.g., MAGMA or SAGE) refuse to handle elliptic
curves on Fn when n is composite. However, in projective coordinates, com-
putations do not involve divisions, hence ECSM can be computed. Projective
versions of point doubling, point addition, and scalar multiplication are detailed
in Sec. B.1.

3 State-of-the-Art on ECSM Protection Against Fault
Attacks with Modular Extension

Definition 5 (Correct algorithm). An algorithm is said correct if it returns
the right result when no faults have been injected.

3.1 BOS

In [8], Blömer, Otto, and Seifert propose a countermeasure based on the modular
extension idea of Shamir for CRT-RSA [37]. It is presented in Alg. 2.

Input : P ∈ E(Fp), k ∈ {1, . . . , ord(P )− 1}
Output : Q = [k]P ∈ E(Fp)

1 Choose a small prime r, a curve E(Fr), and a point Pr on that curve.
2 Determine the combined curve E(Zpr) and point Ppr using the CRT.2

3 (Xpr : Ypr : Zpr) = ECSM(Ppr, k, pr)
4 (Xr : Yr : Zr) = ECSM(Pr, k, r)

5 if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr) then
6 return (Xpr mod p : Ypr mod p : Zpr mod p)
7 else
8 return error

Algorithm 2: ECSM protected with BOS countermeasure BOS(P, k, p).

2 See Sec. D.1.
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An issue with BOS, which is not visible here as we purposedly presented
a division-free version of the ECSM algorithm, is that their paper does not
address the problem of divisions in Zpr. We will show that it is actually possible
to circumvent this problem if necessary in Sec. 5.1. However, there is also a
correction and security issue with BOS.

Proposition 1. BOS is incorrect.

Proof. There are tests in the ECDBL (Alg. 6) and ECADD (Alg. 7) algorithms
called from the ECSM algorithm (Alg. 8). The latter is called twice by BOS:
once to compute the ECSM on the combined curve (line 3 of Alg. 2), and once
to compute the ECSM on the small curve (line 4 of Alg. 2). The conditions of
the tests in ECDBL and ECADD depend on the inputs (point and scalar) of
the ECSM, and thus are not satisfied at the same time in the small and in the
combined computations. Indeed, the order of the point Pr on the small curve
is much smaller than k, so the small computation may come across O and may
satisfy some of the tests, while this is not going to happen on the combined
curve even if taken modulo r it should. As a result, the operations carried out
in E(Zpr) are not the same as in E(Fr), thus the comparison on line 5 of Alg. 2
may fail. In such cases, BOS will return error while the result in E(Fp) is actually
good. ut

This behavior can be a serious security issue as it reveals information about
the inputs. We will see in Sec. 4 that the leaked information can be very precise
about the scalar. A numerical example where BOS outputs an incorrect result
is given in Sec. D.2.

In 2010 Joye patented [22] essentially the same countermeasure except it uses
Fr2 and Zpr2 instead of Fr and Zpr, which does not address the raised issues.

3.2 BV

In [2], Baek and Vasyltsov propose a countermeasure based on modular extension
and point verification. The problem of divisions is explicitly evaded by carrying
out computations in Jacobian coordinates. For the sake of simplicity, we use the
BV protection scheme with projective coordinates. It is presented in Alg. 3.

The particularity of BV is that instead of computing a sibling ECSM on a
smaller curve E(Fr) to compare with its redundant counterpart over E(Zpr), it
only checks whether the point obtained by reducing the result E(Zpr) modulo r
is on the E(Fr) curve (i.e., if it satisfies the curve equations modulo r).

Proposition 2. BV is correct.

Proof. The incorrectness of BOS comes from the fact that the small computa-
tions hits O and triggers some of the tests in ECDBL and ECADD, while in the
combined computation the conditions of the tests are not satisfied even if the
same thing happens modulo r.

3 See Sec. D.3 which details the curve and Jacobian equation originally used by BV.
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Input : P ∈ E(Fp), k ∈ {1, . . . , ord(P )− 1}
Output : Q = [k]P ∈ E(Fp)

1 Choose a small random integer r.
2 Compute the combined curve E′(Zpr).3

3 (Xpr : Ypr : Zpr) = ECSM(P, k, pr)

4 if Y 2
prZpr = X3

pr + aXprZ
2
pr + bZ3

pr mod r then
5 return (Xpr mod p : Ypr mod p : Zpr mod p)
6 else
7 return error

Algorithm 3: ECSM protected with BV countermeasure BV(P, k, p).

Instead of the broken comparison, BV verifies that the point is on the curve
modulo r. In the problematic case when the point modulo r is O, we have
that Zpr ≡ 0 mod r, so the equation on line 4 of Alg. 3 is violated only if
Xpr 6≡ 0 mod r. We will see in the proof of Prop. 3 in the next section that this
is never the case. ut

Note that the correctness of BV comes with a drawback: indeed, faults may
go undetected if they happen before O is reached in the computation modulo
r as the intermediate point quickly tends to (0 : 0 : 0) and stay there until the
end. This claim will be underpinned in the next section.

3.3 Conclusion

We can now compare BOS and BV.
– BOS is incorrect and because of that may leak information on its inputs,

even in the absence of fault attacks. Besides, BOS also has a problem with
divisions in the Zpr ring;

– BV is correct, however it employs a point verification technique that is of
course specific to elliptic curve computations and is thus less generic (in the
sense that the countermeasure is not trivially portable to any other modular
computation).
An obvious question is now: is it possible to get the best of both worlds, i.e.,

a generic countermeasure that relies on the classical modular extension scheme
(Fig. 1), and is correct? The answer is yes, as we will see in the next section
which introduces “test-free algorithms” to fix BOS correctness issue.

4 Test-Free Algorithms

The correctness issue of BOS comes from the fact that the conditions of the tests
in the ECDBL (Alg. 6) and ECADD (Alg. 7) algorithms are not satisfied at the
same time in the small and the combined computations. Because of that, these
computations do not perform the same sequence of operations, invalidating the
modular extension invariant.
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4.1 Test-Free ECSM

A simple fix is getting rid of the conditional tests. This simplification engenders
partial domain correctness as exposed in [16]. We detail the test-free variants of
Alg. 6, 7, and 8 in Alg. 9, 10, and 11, which can be found in Sec. B.2. Actually,
“test-free” refers to the absence of point comparison (line 1 of Alg. 6, and lines 1,
2, 3, and 4 of Alg. 7). The test depending on the key value (i.e., at line 4 of
Alg. 11) is still present as it will always be satisfied at the same time in both
computations (in Zpr and Fr), since the same key is used.

The ECSM [k]P has no tests which condition is satisfied if k is a TF-good
scalar (see Prop. 3 for a rigorous proof).

Definition 6 (TF-good scalar). Let P ∈ E(Zn). Let k > 0. The scalar k is
said to be TF-good with regard to P and E(Zn) if and only if:
1. ord(P ) 6 | bk/2ic, for dlog2 ke − 1 ≥ i ≥ 1, and for i = 0 when k0 = 1,
2. ord(P ) 6 | bk/2ic − 1, for dlog2 ke − 1 ≥ i ≥ 0 when ki = 1,
3. ord(P ) 6 | bk/2ic − 2, for dlog2 ke − 1 ≥ i ≥ 0 when ki = 1.

Remark that a scalar k such that 0 < k < ord(P ) is always TF-good.
This definition of TF-good scalar is relative to the left-to-right ECSM algo-

rithm, but our results are portable to the other variants as well. Interestingly, the
same definition would apply to the left-to-right add-always ECSM algorithm [12,
§3.1]. However, the definition would differ for other variants; for instance, the
case of the right-to-left ECSM algorithm is detailed in Sec. C.2, and generally
more ECSM algorithms are treated in Sec. C.

The relevance of TF-good concept is given in Prop. 3.

Proposition 3 (Partial domain correctness of TF-ECSM (Alg. 11 at
page 28)). Let P = (XP : YP : ZP ) ∈ E(Zn), and k > 0. We have:
1. if k is TF-good with regard to P and E(Zn) then TF-ECSM(P, k, n) =

ECSM(P, k, n);
2. Otherwise, TF-ECSM(P, k, n) is O, specifically: it has the form (0 : Y : 0),

where Y = 0 except if k0 = 1 and ord(P ) | k.

Proof. We start with the first point. We want to prove that when k is TF-
good, then the test-free versions of the algorithms return the same results as the
original version. We will prove this by showing that it is equivalent to say “k is
TF-good” and “during the execution none of the conditions of the tests in the
original algorithms are satisfied”, and thus the tests can be removed safely.

The only conditional test in ECDBL (line 1 of Alg. 6) checks whether the
point [bk/2i+1c]P given as argument is O. This condition will never be met when
k is TF-good by point 1 of Def. 6.

The same reasoning applies to the first conditional test in ECADD (line 1
of Alg. 7), but with point 2 of Def. 6. Indeed, the value of Q in the ECADD is
[2bk/2i+1c]P = [bk/2ic − 1]P because ki = 1.

The second conditional test in ECADD (line 2 of Alg. 7) checks whether the
point given as argument to ECSM is O, in which case ord(P ) = 1, and all three
conditions in Def. 6 are violated.

8



The third conditional test in ECADD (line 3 of Alg. 7) checks if Q = −P ,
that is if P +Q = O. Let us suppose that is the case. It would mean that after
the ECADD (if this test was removed), we would be in the situation where the
point given as argument to ECDBL is O, which we already have shown to be
impossible by point 1 of Def. 6.

The fourth and last conditional test in ECADD (line 4 of Alg. 7) checks if
Q = P , that is if P − Q = O. Let us suppose that is the case. Before entering
ECADD, we know that ki = 1 and that Q = [bk/2ic−1]P . Now, since P−Q = O
it means that ord(P ) | bk/2ic − 2, which contradicts point 3 of Def. 6.

This proves point 1. Let’s now prove point 2 by studying what happens when
the condition of one of the removed tests would be satisfied.

We call “step u” the ECSM loop iteration where i = u. We note Qu = (Xu :
Yu : Zu) the value of the intermediate point Q at the end of step u, the final
result being (X0 : Y0 : Z0).

We assume that condition 1 in Def. 6 is violated. If it is only violated for
i = 0 and k0 = 1, then [k]P = O. In this case, the last operation is ECADD
on [k − 1]P = −P and P . So, as can be seen in Alg. 7, B = 0, hence the result
takes the form (0 : Y0 : 0).

If the condition 1 in Def. 6 is violated for i > 0, then [bk/2ic]P = O. If this
value has been obtained by an ECDBL, Zi = 0 =⇒ Xi = 0 (refer to Alg. 6).
If this value has been obtained by an ECADD, then according to the previous
argument (B = 0 in Alg. 7), we also have Zi = Xi = 0. Now, as i > 0, the
computation continues with at least one ECDBL, which results in (0 : 0 : 0).
Hence, all forecoming computations result in (0 : 0 : 0).

Let us now assume that the condition 2 in Def. 6 is violated. If it is violated
for i = 0, then k−1 is even, and in the last ECDBL, we have Z = 0 =⇒ X = 0.
In the last ECADD, we have B = C = 0, hence the result is (0 : 0 : 0). The
same reasoning can be done for i > 0.

Finally, let us assume that the condition 3 in Def. 6 is violated. For i = 0,
this means that ord(P ) | k− 2 when k0 = 1, hence [k− 1]P = P . So, at the last
ECDBL, we have A = B = 0 =⇒ C = 0, and the result is equal to (0 : 0 : 0).
The same holds for i > 1, since (0 : 0 : 0) is a fixed point.

Therefore, each time k is not TF-good, the result is (0 : Y0 : 0), where Y0 is
null, except if k is even and is equal to ord(P ). ut

4.2 Simplifying BV

When computing [k]P on the curve E(Fp), the scalar k is usually chosen such
that 0 < k < ord(P ). Consequently, according to Def. 6, k is always TF-good
with regard to P . Thus, by Prop. 3 we can use the test-free variants of the
doubling and addition algorithms for BV without loss of generality. We can now
give a rigorous proof of the correctness of BV (Prop. 2).

Proof. When k is TF-good with regard to P mod r on E′(Zpr) mod r, we know
that BV gives the correct output.
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When k is TF-bad4 with regard to P mod r on E′(Zpr) mod r, we know from
Prop. 3 that the result is of the form (0 : Y : 0), which satisfies line 4 of Alg. 3.

When k = ord(P ) and k0 = 0, k is TF-good but one may wonder what
happens since the result is O. In this case, reusing the notation from Prop. 3, we
have Z0 = 0, i.e., 8Z3

1Y
3
1 = 0. We know that Z1 6= 0 because Q1 is not O, which

means that Y1 = 0, which implies that X0 = 0, and thus that the equation on
line 4 of Alg. 3 is satisfied as expected. ut

The test-free variant of the ECSM algorithm thus allows for a correct simpli-
fication of BV5, but more interestingly, it allows to fix the correctness problem
of BOS.

4.3 Fixing BOS

We now propose to fix BOS countermeasure by using the test-free variant of the
elliptic curve algorithms. We call this new countermeasure TF-BOS.

Input : P ∈ E(Fp), k ∈ {1, . . . , ord(P )− 1}
Output : Q = [k]P ∈ E(Fp)

1 Choose a small prime r, a curve E(Fr), and a point Pr on that curve.
2 Determine the combined curve E(Zpr) and point Ppr using the CRT.

3 (Xpr : Ypr : Zpr) = TF-ECSM(P, k, pr)
4 (Xr : Yr : Zr) = TF-ECSM(Pr, k, r)

5 if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr) then
6 return (Xpr mod p : Ypr mod p : Zpr mod p)
7 else
8 return error

Algorithm 4: TF-ECSM with modular extension protection TF-BOS(P, k, p).

Proposition 4. TF-BOS is correct.

Proof. Whether k is TF-bad or not, the result in E(Zpr) reduced modulo r and
the result in E(Fr) will always match during the computation, and in particular
when it ends. Thus, the modular extension invariant verification done on line 5
of Alg. 4 will always be satisfied in the absence of faults. ut

Intuitively, what Prop. 4 says is that TF-BOS is the correct way to implement
modular extension in general. However, the correctness of TF-BOS comes with
the same drawback as BV’s correctness: it reduces the fault detection probability,
albeit in a quantifiable and negligible manner in practice.

We remark the interesting duality between BOS and TF-BOS: in the same
cases where BOS is incorrect, TF-BOS is blind to fault injections. Indeed, when

4 We say that a scalar is TF-bad if it is not TF-good.
5 Recall that a test, e.g. P = Q (where P and Q are in projective representation),

requires four products, since P = Q is equivalent to (ZP = ZQ = 0) ∨ ((XPZQ =
XQZP ) ∧ (YPZQ = YQZP )), which has a non-negligible cost.
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TF-BOS is used with a TF-bad scalar, the computation in E(Zpr) taken modulo
r will, at some iteration of the ECSM, be equal to O. Now, as shown in the
proof of the second point of Prop. 3, once a point is equal to O it remains so,
and worse, its coordinates become (0 : 0 : 0) with a single additional iteration
(owing to the fact that tests, especially tests of equality to O, are absent in
the test-free version of the ECSM). Now, if any coordinate is faulted to nonzero
value, the other coordinates might stay at zero, which contaminates the result to
(0 : 0 : 0) again after one TF-ECADD or TF-ECDBL. A quantitative analysis of
impact of faults under TF-bad scalar is given in Sec. 6.3, in particular in Prop. 7.

Proposition 5 (Probability of TF-bad scalars). The probability of a scalar

k to be TF-bad with respect to a point P ∈ E(Fr) is O
(

1
ord(P )

)
.

Proof. Let n = dlog2 ke the size of k and m = dlog2 ord(P )e the size of ord(P ).
Using the same notation as in Def. 6, for all i < m all of the three conditions

defining TF-good scalars are met. For each i ≥ m, there are (2i+1 − 2i) = 2i

numbers of size i bits, out of which a fraction of approximately 2i

ord(P ) violates

one of the TF-good conditions (say the 1st condition).
For k to be TF-bad it suffices that it exists an i for which one of the TF-good

conditions is violated, so the probability of k being TF-bad is:

PTF-badP
(k) ≈ 1−

 ∏
m≤i≤n

1−
2i

ord(P )

2i

 = 1−
(

1− 1

ord(P )

)n−m

= O

(
1

ord(P )

)
.

ut

In the context of the modular extension countermeasure against fault injec-
tion attacks (recall Fig. 1), TF-bad scalars are more likely to occur in the small
field Fr than in the large field Fp or the large ring Zpr. Indeed, an elliptic curve
over Fr has about r points, with r � p, but the scalar k has about size p. Indeed,
for instance in ECDH and ECDSA, k is chosen uniformly in {1, . . . , ord(P )−1},
where ord(P ) ≈ p. We have this lemma:

Lemma 1. Let E(Fp) an elliptic curve over Fp given by equation y2 = x3+ax+b
mod p (recall Def. 1), and P = (xP , yP ) a point on this curve. Then the set
E(Fr) of pairs (xr, yr) ∈ Fr satisfying y2r = x3r + arxr + br mod r, with ar = a
mod r and br = (y2P − x3P − axP ) mod r. is an elliptic curve over Fr, and
Pr = (P mod r) = (xP mod r, yP mod r) belongs to it.

Proof. Clearly, by Def. 1, E(Fr) is an elliptic curve (provided the discriminant
−16(4a3r + 27b2r) is nonzero). Besides, as P ∈ E(Fp), there exists an integer λ
such that y2P = x3P +axP + b+λp. Therefore, modulo r, we have (yP mod r)2 =
(xP mod r)3 + (a mod r)(xP mod r) + (b + λp mod r), hence Pr = (xP mod
r, yP mod r) ∈ E(Fr), if br = b+ λp mod r = (y2P − x3P − axP ) mod r. ut
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We compute some examples based on curve P-192 based on Fp (p being a
192 bit prime), which will be our running example in Sec. 6. The parameters of
this curve are recalled in Sec. 6.1. We assume k is on 192 bits, and we choose
small prime numbers r � p as in Sec. 6.2. Using Lem. 1 we derive a curve over
Fr and a point from P-192. We then compute, thanks to Prop. 5, the probability
of a scalar k to be TF-bad. Results obtained from SAGE are given in Tab. 1.

Table 1: Illustration of Prop. 5 for some small r values.

r ord(Pr) PTF-badPr
(k)

251 267 5.0 · 10−1

1021 509 3.0 · 10−1

2039 2105 8.2 · 10−2

4093 4041 4.4 · 10−2

65521 65531 2.7 · 10−3

4294967291 2147439270 7.5 · 10−8

18446744073709551557 18446744077549890349 6.9 · 10−18

It can be seen in Tab. 1 that for r = 1021 and r = 4294967291, the order
of Pr is not maximal. Actually, for those two curves, Pr is not a generator of
E(Fr), and its order is half the number of points of the curve.

This justifies the recommendation made in BOS [8, Sec. 4] to build E(Fr) as
a curve with large order and Pr as a generator (see Appendix D.1).

4.4 Using Edwards Curves

Edwards curves [14] have been studied in the context of cryptography by Bern-
stein and Lange [4]. On Edwards curves, the addition law is complete: addition
formulas work for all pairs of input points. In particular, there is no troublesome
point at infinity. Therefore, there is no such ECADD and ECDBL for Edwards
curves, but one test-free formula for addition (the input points being equal or
not). This formula is given in [4, Sec. 4, page 9] for projective coordinates. There-
fore, we underline that Edwards curves are especially well suited for the modulus
extension countermeasure, since any avatar (such as BOS or BV) is correct and
there is no possibility of TF-bad scalars.

4.5 Conclusion

All the algorithms proposed in this section are correct and offer the same security
level. In particular, we note that when k is TF-good with regard to the small
computation, all three countermeasures are correct and secure6. Moreover, it
follows trivially from Def. 6 that it is possible to statically determine if a given
scalar is TF-bad with regard to a point and its curve. In addition, it is important

6 In the sense that the fault detection probability is maximal for the modular extension
method.

12



to note that in practice with r ≈ 232, the problems with TF-bad scalars become
anecdotal (see Prop. 5).

Edwards curves are definitely a nice option to implement fault detection
using modular extension, since all scalars are TF-good (there is no tests in
Edwards curves). However, as real-world industrial applications are still based on
Weierstrass curves, we continue the paper by taking them as examples. Hence,
in the sequel, we assume curves have TF-bad scalars.

5 Formal Security Study of Modular Extension

5.1 Inversions in Direct Products

We will start by addressing the issue of divisions in Zpr. It is actually possible
to circumvent this problem in the modular extension setting. Indeed, divisions
can be optimized, as expressed in the following proposition.

Proposition 6 (Divisions optimization). To get the inverse of z in Fp while
computing in Zpr, one has:
– z = 0 mod r =⇒ (zp−2 mod pr) ≡ z−1 mod p,
– otherwise (z−1 mod pr) ≡ z−1 mod p.

Proof. If z = 0 mod r, then z is not invertible in Zpr. However, zp−2 exists in
Zpr, and (zp−2 mod pr) mod p = zp−2 mod p = z−1 mod p. Notice that, as p is
statically known, a precomputed efficient addition chain can be used.

Otherwise, when z 6= 0 mod r, we have in Zpr that z−1 = zϕ(pr)−1 =
zpr−p−r mod pr. Now, (z−1 mod pr) mod p = z−1 mod p if and only if: ϕ(p)
divides (pr − p − r) − (−1). But (pr − p − r) − (−1) = (p − 1)(r − 1), which is
indeed a multiple of ϕ(p) = p− 1. ut

Sec. E discusses the complexity of inversions as in Prop. 6. An upper-bound
for the expected overhead is (10× (1− 1

r ) + 384× 1
r )/10 ≈ 1 + 10−8 when r is a

32 bit number, which is negligible in practice.

5.2 Security Analysis

Definition 7 (Fault model). We consider an attacker who can fault data by
randomizing or zeroing any intermediate variable, and fault code by skipping any
number of consecutive instructions.

Definition 8 (Attack order). We call order of the attack the number of faults
(in the sense of Def. 7) injected during the target execution.

In the rest of this section, we focus mainly on the resistance to first-order
attacks on data. Indeed, Rauzy and Guilley have shown in [36] that 1. it is
possible to adapt the modular extension protection scheme to resist attack of
order D for any D by chaining D repetitions of the final check in a way that
forces each repetition of the modular extension invariant verification to be faulted
independently, and 2. faults on the code can be formally captured (simulated)
by faults on intermediate variables.

13



Definition 9 (Secure algorithm). An algorithm is said secure if it is correct
as per Def. 5 and if it either returns the right result or an error constant when
faults have been injected, with an overwhelming probability.

Theorem 1 (Security of the test-free modular extension scheme). Test-
free algorithms protected using the modular extension technique, such as TF-
BOS, are secure as per Def. 9. In particular, the probability of non-detection is
inversely proportional to the security parameter r.

Proof. Faulted results are polynomials of faults. The result of an asymmetric
cryptography computation can be written as a function of a subset of the inter-
mediate variables, plus some inputs if the intermediate variables do not suffice
to finish the computation. We are interested in the expression of the result as
a function of the intermediate variables which are the target of a transient or
permanent fault injection. We give the formal name x̂ to any faulted variable
x. For convenience, we denote them by x̂i, 1 ≤ i ≤ n, where n ≥ 1 is the the
number of injected faults. The result consists in additions, subtractions, and
multiplications of those formal variables (and inputs). Such expression is a mul-
tivariate polynomial. If the inputs are fixed, then the polynomial has only n
formal variables. We call it P (x̂1, . . . , x̂n). For now, let us assume that n = 1,
i.e., that we face a single fault. Then P is a monovariate polynomial. Its degree
d is the multiplicative depth of x̂1 in the result.

A fault is not detected if and only if P (x̂1) = P (x1) mod r, whereas P (x̂1) 6=
P (x1) mod p. Notice that the latter condition is superfluous insofar since if it
is negated then the effect of the fault does not alter the result in Fp.

Non-detection probability is inversely proportional to r. As the faulted variable
x̂1 can take any value in Zpr, the non-detection probability Pn.d. is given by:

Pn.d. =
1

pr − 1
·

∑
x̂1∈Zpr\{x1}

δP (x̂1) = P (x1) mod r

=
1

pr − 1
·
(
− 1 + p

r−1∑
x̂1=0

δP (x̂1) = P (x1) mod r

)
. (1)

Here, δcondition is equal to 1 (resp. 0) if the condition is true (resp. false).
Let x̂1 ∈ Zr, if P (x̂1) = P (x1) mod r, then x̂1 is a root of the polynomial

∆P (x̂1) = P (x̂1)−P (x1) in Zr. We denote by #roots(∆P ) the number of roots of
∆P over Zr. Thus (1) computes (p×#roots(∆P )−1)/(pr−1) ≈ #roots(∆P )/r.

Study of the proportionality constant. A priori, bounds on this value are broad
since #roots(∆P ) can be as high as the degree d of ∆P in Zr, i.e., min(d, r−1).
However, in practice, ∆P looks like a random polynomial over the finite field
Zr, for several reasons:
– inputs are random numbers in most cryptographic algorithms, such as prob-

abilistic signature schemes,
– the coefficients of ∆P in Zr are randomized due to the reduction modulo r.
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In such case, the number of roots is very small, despite the possibility of d being
large. See for instance [32] for a proof that the number of roots tends to 1 as
r →∞. Interestingly, random polynomials are still friable (i.e., they are clearly
not irreducible) in average, but most factors of degree greater than one happen
not to have roots in Zr. Thus, we have Pn.d. & 1

r , meaning that Pn.d. ≥ 1
r but is

close to 1
r . A more detailed study of the theoretical upper bound on the number

of roots is available in Sec. F.

The same law applies to multiple faults. In the case of multiple faults (n > 1),
then the probability of non-detection generalizes to:

Pn.d. = 1
(pr−1)n ·

∑
x̂1,...,x̂n∈Zpr\{x1}×...×Zpr\{xn}

δP (x̂1,...,x̂n)=P (x1,...,xn) mod r

= 1
(pr−1)n ·

∑
x̂2,...,x̂n∈

∏n
i=2 Zpr\{xi}

 ∑
x̂1∈Zpr\{x1}

δP (x̂1,...,x̂n)=P (x1,...,xn) mod r


= 1

(pr−1)n ·
∑

x̂2,...,x̂n∈
∏n

i=2 Zpr\{xi}

[p×#roots(∆P )− 1]

= 1
(pr−1)n · (pr − 1)n−1 [p×#roots(∆P )− 1]

=
p×#roots(∆P )− 1

pr − 1
.

Therefore, the probability not to detect a fault when n > 1 is identical to that
for n = 1. Thus, we also have Pn.d. ≈ 1

r in the case of multiple faults of the
intermediate variables7. ut

Examples can be found in Sec. G that illustrate the security property: in-
deed, Pn.d. is inversely proportional to r, with a proportionality constant which
depends on the specific algorithm. The purpose of Sec. 6 is to show that the
product Pn.d. × r is constant in practice. Moreover, we explicit this constant for
ECSM computations.

5.3 Modular Extension the Right Way

Here we recap how to correctly implement the modular extension countermeasure
in order to achieve maximum security.

Vocabulary. We call nominal computation the original unprotected computation
over Fp. We call small computation the computation performed over a smaller
field Fr. We call combined computation the same computation lifted into the
direct product Zpr of Fp and Fr.

7 Note that this study does not take correlated faults into account.
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Test-free algorithms. Protecting a computation using a modular extension based
countermeasure means that this computation will be run twice for comparison;
and thus the operation performed in the combined and in the small computation
must be the equivalent. When there are tests depending on the data in Fp in the
nominal computation, the conditions of these tests may not be satisfied at the
same time in the small and in the combined computations, which would make
the modular extension invariant check fail while no faults have been injected (as
we have seen in BOS countermeasure for example). This problem can be cir-
cumvented by using a test-free version of the computation. Of course this may
cause the test-free computation to only be correct for a part of the domain of the
nominal computation. Hopefully, the part of the domain for which the computa-
tion becomes incorrect can be statically determined and is negligible in practice
for ECSM (and does not exists for CRT-RSA which nominal computation is
naturally test-free, idem for ECC on Edwards curves).

Conditions on the security parameter. The size r of the mathematical structure
underlying the small computation is the security parameter of a modular ex-
tension countermeasure. Several conditions have to be met to obtain maximum
security and the best performance:
– r must be co-prime with p, but as p is a larger prime this should never be a

problem;
– r must be prime itself, in order to avoid the maximum possible division

problems in the combined computation (performance), and for Fr to be a
field, thus maximizing the chances of ord(P ) to be big enough in E(Fr)
(security);

– r should be large enough for the non-detection probability to be sufficiently
low, but at the same time should remain small enough to keep the overhead of
the countermeasure reasonable (we have seen that for CRT-RSA and ECSM,
a value of r on 32 bits is a good option);

– r may be static, but as pointed out in [2], it helps against against side-channel
analyses if it is randomly selected at runtime;

– r should not be public information contrary to what is said in [8], as it
would give an attacker the opportunity to forge input values which breaks
the countermeasure (e.g., a point P such that ord(P mod r) is very low in
the case of ECSM, or a message which is a multiple of r in CRT-RSA);
These recommendations can be understood as “choose r so that P mod r is of

maximal order on E(Fr)”, which similar to what is suggested in the original BOS
paper [8] (see also the same comment made after the presentation of Tab. 1).

6 Practical Case Study with TF-BOS

In order to practically validate our theoretical results, we have implemented TF-
BOS (Alg. 4) on an ARM Cortex-M4 microcontroller (specifically an STM32).
For the sake of simplicity, we decided to use E(Zpr) mod r as E(Fr) and P mod r
as Pr. Hence, the security results may be slightly negatively impacted.
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6.1 Setup

The code is written in C and uses the GMP library8. We used the P-192 elliptic
curve from NIST [39, D.1.2.1]. This curve is the less secure amongst that pro-
posed by NIST, but is chosen because our ARM chip is rather low-end and we
nonetheless need a reasonable speed. Besides, we opted for a curve standardized
by NIST because they are still widely used in the industry. Parameter values are
listed below:

Field characteristic p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff

Curve equation a = 0xfffffffffffffffffffffffffffffffefffffffffffffffc

coefficients b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

Point coordinates
xP = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012

yP = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811

Point order ord(P ) = 0xffffffffffffffffffffffff99def836146bc9b1b4d22831

Fig. 2 shows an architectural overview of the electromagnetic fault injec-
tion (EMFI) analysis platform we used for our experiments. EMFI has recently
emerged as an efficient non-invasive fault attack, which is able to perturb a circuit
through its package. The platform includes a signal generator able to generate
pulses of 1.5 ns width amplified by a broadband class A amplifier (400 MHz,
300 Watt max), and an electromagnetic (EM) probe. An oscilloscope and a data
timing generator are also present, so that we can precisely (with 1 ps precision)
control the delay before the injection. All experiments have been performed at
a settled spatial location of the EM probe relative to the ARM microcontroller:
a fixed position and a fixed angular orientation. A boundary-scan (also known
as JTAG) probe has been used to dump internal registers and memory contents
after injection (for attack analysis purpose only).

Fig. 2: EMFI platform.

We manually explored the effect of different width and power of the EM pulse,
and chose values which maximize the faulting success rate. Then, we manually
tuned the delay before the injection happens in order to maximize the probability
of obtaining an exploitable fault for each value of r.

8 We used the mini-gmp implementation for easy portability onto the ARM microcon-
troller.
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6.2 Method

In order to assess our theoretical results, we performed multiple attack cam-
paigns with different values for r. The practical results allowed us to verify our
theoretical predictions, i.e., that the probability of non-detection Pn.d. is inversely
proportional to r (see Sec. 5.2). At the same time we were able to measure the
cost of the countermeasure and confirm that the size of r is a security parameter
that trades off speed for security.
– The value r = 1 basically means that there is no countermeasure, since

Fr = F1 = {0}. It helps verify that the platform is indeed injecting faults
effectively, i.e., that most of the fault injection attempts are successful.

– The small values of r (on 8 to 16 bits) aim at verifying that the probability
of detection / non-detection follow our theoretical prediction.

– The values of r on 32 and 64 bits represent realistic values for an operational
protection.

Each value of r is chosen to be the largest prime number of its size. That is, if
n is the size of r in bits, then r is the largest prime number such that r < 2n.

6.3 Security Results

Tab. 2 shows the security assessment of the TF-BOS countermeasure. For each
value of r (lines of the table) we ran and injected random faults in approximately9

1000 ECSM [k]P using a random 192-bit k. In total, the execution of the tests
we present took approximately 6 hours of computation. The results of our attack
campaign are depicted in the last four columns.
– Correct results for which there is no error detection are simply fault injections

without effect (true negatives).
– Correct results for which an error is detected are false positives, and should

be minimized. Those false positive alarms are annoyances, as they warn
despite no secret is at risk security-wise.

– The incorrect results for which an error is detected (true positives) should
appear with probability O(1− 1

r ).
– The incorrect results for which there is no error detection are false negatives,

and should really be minimized: otherwise, the countermeasure is bypassed
without notice and sensitive information may leak.
Once renormalized to remove the true negatives, the last column of Tab. 2

(false negatives) represents the non-detection probability Pn.d.. The relationship
between r and Pn.d. is plotted in Fig. 3. The experimental results are the dots
with error bars (representing plus/minus one sigma), and match the theoretical
curve in blue color. The asymptotical equivalent, namely r 7→ 96/r, is superim-
posed in red color, and is a valid approximation for r & 2000, which is reasonable
since practical values of r are ≈ 232.

Proposition 7 (Pn.d. proportionality factor for TF-BOS). In the case of
TF-BOS on curve P-192, the proportionality constant is ≈ 96.

9 A bit less in practice: a few attempts were lost due to communication errors between
our computer and the JTAG probe’s gdb-server.
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Table 2: TF-BOS security assessment results.

r value
r size Positives (%) Negatives (%)

(bit) true false true false

1 1 0.00 0.00 2.74 97.3
251 8 63.7 0.00 2.56 33.8
1021 10 89.1 0.00 2.96 7.95
2039 11 98.8 0.00 0.00 1.18
4093 12 97.6 0.00 1.91 0.48
65521 16 97.8 0.00 2.21 0.00

4294967291 32 97.2 0.00 2.81 0.00
18446744073709551557 64 99.8 0.00 0.21 0.00

Fig. 3: Relationship between Pn.d. and r.
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Lemma 2. During TF-ECSM (Alg. 11), if the coordinates of the intermediate
point becomes multiples of r, they stay so until the end.

Proof. By Prop. 3, we know that when a coordinate becomes 0 it stays so until
the end, for instance when k is TF-bad with regard to Pr on the small curve. In
the combined computation on the curve E(Zpr), this translates to coordinates
being null modulo r when k is TF-bad with regard to P on the small curve
E(Fr). ut

Proof. Using Lem. 2, we can now prove Prop. 7.
The first thing to note is that despite the fact that we are checking the

validity of three coordinates modulo r, the Pn.d. is not O( 1
r3 ). That is because

the three coordinates are extremely interdependent, fault-wise (as Lem. 2 shows,
for instance): if one coordinate is faulted, then it is very likely that all coordinates
are faulted. Actually it should be sufficient to perform the modular extension
invariant check only on one of the coordinates, but we chose to still check all of
them as it is virtually cost-free.

If a fault occurs before step i where k satisfies one of the TF-bad conditions,
then the fault is not detected. Indeed in these cases, both the result of the ECSM
on E(Zpr) modulo r and the result on E(Fr) are equal to (0 : 0 : 0).

This happens with probability 1
2 (1 − (1 − 1

ord(P ) )
192−dlog2 ord(P )e), i.e., the

probability of having a TF-bad scalar (see Prop. 5), with the 1
2 factor to accounts

for the faulting to happen before step i, where it is likely to be absorbed by a
subsequent product with a multiple of r.

If we approximate the order of the point P on the E(Fr) curve by r, we have
1
2 (1 − (1 − 1

r )192−dlog2 re) = (192−dlog2 re)/2
r + O( 1

r ). In practice, we can safely
remove the “−dlog2 re” part as log2 r will be of negligible value, especially once

divided by 2. Thus we have Pn.d. ≈ 192/2
r . ut

As Tab. 2 and Fig. 3 show, practical values of r are sufficiently large for the
latter equality to be true, and thus for the security to be highly efficient.

6.4 Performance Results

The table presented in Tab. 3 shows the cost of the modular extension coun-
termeasure in terms of speed10. For each value of r (lines of the table) we list
the execution time of the ECSM computation over Zpr, of the one over Fr, of
the test (comprising the extraction modulo r from the result of the computation
over Zpr and its comparison with the result of the computation over Fr), and
eventually the overhead of the countermeasure.

In the unprotected implementation, the ECSM computation over Fp took
683 ms (which naturally corresponds to the 683 ms over Zpr when r = 1 as
shown in Tab. 3, except that there is no need for the 24 ms needed by the com-
putation over Fr which is mathematically trivial, but not optimized by gcc).

10 Note that we compiled the code with gcc -O0 option.
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Table 3: TF-BOS performance results.

r value
r size time (ms)

overhead
(bit) Zpr Fr test

1 1 683 24 �1 ×1.04
251 8 883 91 �1 ×1.43
1021 10 899 100 �1 ×1.46
2039 11 902 197 �1 ×1.61
4093 12 903 197 �1 ×1.61
65521 16 883 189 �1 ×1.56

4294967291 32 832 172 �1 ×1.47
18446744073709551557 64 996 246 �1 ×1.82

We can see that when r is on 32 bits, the alignment with int makes mini-gmp

faster, resulting in the protected algorithm running for 1004 ms, incurring a fac-
tor of only about ×1.47 in the run time compared to the unprotected algorithm.
This is a particularly good performance result. Indeed, in the context of digital
signature, for instance ECDSA [21], an alternative to the verification by modu-
lar extension is the mere verification of the signature. However, the verification
in ECDSA incurs an overhead of about ×4.5 (measured with openssl speed

ecdsa for P-192), indeed, in ECDSA, the signature verification is much more
complex than the signature generation. Moreover, the curve P-192 that we use
is among the smallest standardized curves, and the performance factor is di-
rectly tied to the increase in the size of the ring in which the computations are

performed: when Fp grows, the countermeasure gets cheaper as log2(pr)
log2(p)

will be

smaller.

7 Conclusion and Perspectives

In this paper, we have studied how to efficiently protect elliptic curve scalar
multiplications (ECSM), against fault injection attacks. We have focused on
countermeasures which guarantee the integrity of the computation result, hence
covering most existing and future faults attacks.

Specifically, we have reviewed the state of the art of the modular extension
protection scheme in existing countermeasures for ECSM algorithms, namely
BOS [8] and BV [2]. We have shown that BOS is incorrect, while BV is correct
but weaker against fault injection attacks.

We have introduced the notion of test-free algorithms as a simplification
of BV and as a solution to fix the incorrectness of BOS. We call TF-BOS our
contributed variant of the BOS modular extension based countermeasures. While
TF-BOS fixes the correctness issue of BOS, it also inherits from one of the
weakness of BV. We then proposed a characterization of the scalar argument
of the ECSM with regard to the elliptic curve point argument as TF-good/TF-
bad. Interestingly, it is in the same condition (when the scalar is TF-bad) that
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BOS returns an incorrect result and that BV and TF-BOS cannot detect fault
injections.

We have formally studied the security of our proposed TF-BOS countermea-
sure, and proven that the fault non-detection probability is inversely proportional
to the security parameter.

Finally, we implemented TF-BOS on an ARM Cortex-M4 microcontroller
and performed a systematic fault injection campaign for several values of the
security parameter, which confirmed the security of the countermeasure, and
provided figures for its practical performance.

To our best knowledge, this is the first ECSM implementation to be provably
protected against fault injection attacks. We used it to show that the cost of the
TF-BOS countermeasure is extremely reasonable: with a 32-bit value for the
security parameter, the code is less than 1.5 times slower. Our fault
injection campaign revealed that it is also very efficient: using the same 32-bit
security parameter, 100% of the fault injections were detected.

A notable conclusion of our study is that with regard to protection against
fault injection attacks, Edwards curve are the best choice for ECC, as the com-
pleteness of their addition formula avoids the existence of TF-bad scalars.

Our main perspective is that the test-free variant of the modular extension
protection scheme is generic (e.g., it corresponds to all CRT-RSA countermea-
sures based on Shamir’s idea). A natural extension would be its application to
pairing. In this case, some computations must be carried out in field extensions,
typically with embedding degree m = 12.

Finally, the security parameter r can be chosen randomly at execution time.
As already pointed out in [2], this can make a natural protection against side-
channel analyses. The formalization of this nice side-effect of the modular ex-
tension protection scheme would be welcomed.
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A Unprotected CRT-RSA and the BellCoRe Attack

The BellCoRe attack [9] on CRT-RSA (RSA optimized using the Chinese Re-
mainder Theorem) introduced the concept of fault injection attacks. It is very
powerful: faulting the computation even in a very random way yields almost
certainly an exploitable result allowing to recover the secret primes of the RSA
modulus N = pq. Indeed, in the CRT-RSA algorithm, which is described in
Alg. 5, most of the time is spent in the exponentiation algorithm. If the interme-
diate variable Sp (resp. Sq) is returned faulted as Ŝp (resp. Ŝq), then the attacker

gets an erroneous signature Ŝ, and is able to recover q (resp. p) as gcd(N,S− Ŝ).
For any integer x, gcd(N, x) can only be either 1, p, q, or N . In Alg. 5, if Sp is

faulted (i.e., replaced by Ŝp 6= Sp), then S− Ŝ = q · ((iq · (Sp−Sq) mod p)− (iq ·
(Ŝp−Sq) mod p)), and thus gcd(N,S− Ŝ) = q. If Sq is faulted (i.e., replaced by

Ŝq 6= Sq), then S− Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq) ≡ 0 mod p because

(q mod p) · iq ≡ 1 mod p, and thus S − Ŝ is a multiple of p. Additionally, the

difference (S − Ŝ) is not a multiple of q. So, gcd(N,S − Ŝ) = p.

Input : Message M , key (p, q, dp, dq, iq)
Output : Signature Md mod N

1 Sp = Mdp mod p . Intermediate signature in Zp

2 Sq = Mdq mod q . Intermediate signature in Zq

3 S = CRT(Sp, Sq) . Recombination in ZN

4 return S

Algorithm 5: Unprotected CRT-RSA.

Since then, other attacks on CRT-RSA have been found, including as recently
as last year, when Barthe et al. [3] exposed two new families of fault injections
on CRT-RSA: “almost full” linear combinations of p and q, and “almost full”
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affine transforms of p or q. Both target intermediate variables of the Mont-
gomery multiplication algorithm (namely Coarsely Integrated Operand Scan-
ning, or CIOS [27,33]) used to implement the exponentiations of the CRT-RSA
computation, and both leads to attacks based on the Lenstra-Lenstra-Lovász
(LLL) lattice basis reduction algorithm [31].

B Algorithms

B.1 Regular ECSM

The operations on an elliptic curve are point doubling, point addition, and scalar
multiplication which can be built on top of the two first operations. A left-to-
right ECSM is already sketched in Alg. 1. But for our analysis, we need to detail
exactly how it works internally. This is done in Alg. 6, 7, and 8.

Input : Q = (X1 : Y1 : Z1) ∈ E(Zn)
Output : (X : Y : Z) = 2Q ∈ E(Zn)

1 if Q is O then return Q

2 A = 3(X2
1 + 2aZ1(X1 + Z1))

3 X = 2Y1Z1(A2 − 8X1Z1Y
2
1 )

4 Y = A(12X1Z1Y
2
1 −A2)− 8Z2

1Y
4
1

5 Z = 8Z3
1Y

3
1

6 return (X : Y : Z)

Algorithm 6: Elliptic curve doubling ECDBL(Q,n).

Input : Q = (X1 : Y1 : Z1), P = (X2 : Y2 : Z2) ∈ E(Zn)
Output : (X : Y : Z) = Q + P ∈ E(Zn)

1 if Q is O then return P
2 if P is O then return Q
3 if Q = −P then return O
4 if Q = P then return ECDBL(Q,n) . See Alg. 6

5 A = Y2Z1 − Y1Z2

6 B = X2Z1 −X1Z2

7 C = Z1Z2A
2 − (X1Z2 + X2Z1)B2

8 X = BC
9 Y = A(X1Z2B

2 − C)− Y1Z2B
3

10 Z = Z1Z2B
3

11 return (X : Y : Z)

Algorithm 7: Elliptic curve addition ECADD(Q,P, n).

B.2 Test-Free ECSM

In this section we present the same algorithms, in their test-free variants. Actu-
ally, “test-free” refers to the absence of point comparison (line 1 of Alg. 6, and
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Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q = O
2 for i = dlog2 ke − 1, . . . , 0 do
3 Q = ECDBL(Q,n) . See Alg. 6. Precondition: Q = [bk/2i+1c]P
4 if ki then Q = ECADD(Q,P, n) . See Alg. 7. Precondition: Q = [2bk/2i+1c]P

5 return Q

Algorithm 8: Elliptic curve scalar multiplication with left-to-right algorithm

ECSML2R(P, k, n).

lines 1, 2, 3, and 4 of Alg. 7). The test depending on the key value (i.e., at line 4
of Alg. 11) is still present as it will always be satisfied at the same time in both
computations.

Input : Q = (X1 : Y1 : Z1) ∈ Z3
n

Output : (X : Y : Z) ∈ Z3
n

1 A = 3(X2
1 + 2aZ1(X1 + Z1))

2 X = 2Y1Z1(A2 − 8X1Z1Y
2
1 )

3 Y = A(12X1Z1Y
2
1 −A2)− 8Z2

1Y
4
1

4 Z = 8Z3
1Y

3
1

5 return (X : Y : Z)

Algorithm 9: Test-free elliptic curve doubling TF-ECDBL(Q,n).

Input : Q = (X1 : Y1 : Z1), P = (X2 : Y2 : Z2) ∈ Z3
n

Output : (X : Y : Z) ∈ Z3
n

1 A = Y2Z1 − Y1Z2

2 B = X2Z1 −X1Z2

3 C = Z1Z2A
2 − (X1Z2 + X2Z1)B2

4 X = BC
5 Y = A(X1Z2B

2 − C)− Y1Z2B
3

6 Z = Z1Z2B
3

7 return (X : Y : Z)

Algorithm 10: Test-free elliptic curve addition TF-ECADD(Q,P, n).
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Input : P ∈ E(Zn), k > 0
Output : Q = (X : Y : Z) ∈ Z3

n

1 Q = O
2 for i = dlog2 ke − 1, . . . , 0 do
3 Q = TF-ECDBL(Q,n)
4 if ki then Q = TF-ECADD(Q,P, n)

5 return Q

Algorithm 11: Test-free elliptic curve scalar multiplication with left-to-right

algorithm TF-ECSML2R(P, k, n).

C TF-Good Scalars for different ECSM Algorithms

We detail in this section the conditions for a scalar to be TF-good for unregular
ECSMs, namely L2R & L2R add-always in Sec. C.1, R2L & R2L add-always
in Sec. C.2, a sliding window “Non-Adjacent Form” in Sec. C.3, and a regular
ECSM, namely the Montgomery ladder in Sec. C.4.

C.1 L2R and L2R add-always [12, §3.1]

The L2R algorithm has already been given in Alg. 8. The conditions for the
scalar k to be TF-good are listed in Definition 6.

The L2R add-always is a more costly variant, protected against simple power
attacks. It is given in Alg. 12.

Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q0 = O
2 Q1 = P . Dummy variable, which can be initialized to whatever value

3 for i = dlog2 ke − 1, . . . , 0 do
4 Q0 = ECDBL(Q0, n) . See Alg. 6

5 Q1−ki = ECADD(Q1−ki , P, n) . See Alg. 7

6 return Q0

Algorithm 12: Elliptic curve scalar multiplication with left-to-right add-always

algorithm ECSML2R-AA(P, k, n).

It can be seen in Alg. 12 that the point Q1 is dummy, hence does not impact
the computation, even if conditional branches are not taken. Hence a TF-good
scalar with respect to left-to-right add-always and left-to-right share the same
conditions.

C.2 R2L and R2L add-always

The R2L ECSM algorithm is described in Alg. 13.
We have the following pre-conditions:

– Q0 = [k mod 2i]P : at line 4 of Alg. 13.
– Q1 = [2i]P : at line 5 of Alg. 13.
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Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q0 = O
2 Q1 = P
3 for i = 0, . . . , dlog2 ke − 1 do
4 if ki then Q0 = ECADD(Q0, Q1, n) . See Alg. 7

5 Q1 = ECDBL(Q1, n) . See Alg. 6

6 return Q0

Algorithm 13: Elliptic curve scalar multiplication with right-to-left algorithm

ECSMR2L(P, k, n).

A scalar k is said TF-good using the right-to-left (R2L) ECSM algorithm if
tests in ECADD and ECDBL are not taken.

Regarding ECDBL, this means that input Q1 is not O at each iteration i.
Hence, for all 0 ≤ i < dlog2 ke, ord(P ) 6 | 2i.

Regarding ECADD, this means that at every iteration i such that ki = 1:

1. Input Q0 satisfies Q0 is not O, thus ord(P ) 6 | k mod 2i.
2. Input Q1 satisfies Q0 is not O, which is already covered by the condition:
∀0 ≤ i < dlog2 ke, ord(P ) 6 | 2i.

3. Inputs Q0 and Q1 satisfy Q0 +Q1 is not O, that is:

ord(P ) 6 | (2i + (k mod 2i)

⇐⇒ ord(P ) 6 | (k mod 2i+1) (recall that by hypothesis, ki = 1)

4. Inputs Q0 and Q1 satisfy Q0−Q1 is not O, i.e., ord(P ) 6 | (2i− (k mod 2i).

Thus, a point P is TF-good if all four conditions are satisfied, for all 0 ≤ i <
dlog2 ke:

1. ord(P ) 6 | 2i,
2. ord(P ) 6 | (k mod 2i) if ki = 1,
3. ord(P ) 6 | (k mod 2i+1) if ki = 1,
4. ord(P ) 6 | 2i − (k mod 2i) if ki = 1.

The right-to-left add-always ECSM is similar to Alg. 13, except that a dummy
point is added to balance the branch depending on ki bits. Thus, the notion of
TF-good point for R2L and R2L-add-always is the same.

C.3 Left-to-Right sliding window NAF scalar multiplication

A non-adjacent form (NAF) of a positive integer k is an expression k =
∑l−1

i=0 ki2
i

where ki ∈ {−1, 0, 1}, kl−1 6= 0, and no two consecutive digits ki are nonzero.
The length of the NAF is l.

Theorem 2 ([20, Theorem 3.29]). Let k be a positive integer.

– k has a unique NAF denoted NAF(k) or (kl−1, . . . , k0)NAF.
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– NAF(k) has the fewest nonzero digits of any signed digit representation of
k.

– l is at most one more than the length of the binary representation of k.
– The average density of nonzero digits among all NAFs of length n is approx-

imatively 1/3.

We recall the L2R sliding window NAF scalar multiplication in Alg. C.4.

Input : P ∈ E(Zn), w ≥ 2, k = (kl−1, . . . , k0)NAF

Output : Q = [k]P ∈ E(Zn)

1 m← 2(2w − (−1)w)/3− 1
2 P ′ ← ECDBL(P, n) . See Alg. 6

3 for i = 3 to m by 2 do
4 Pi ← ECADD(Pi−1, P

′) . See Alg. 7

5 Q← P
6 i← l − 2
7 while i ≥ 0 do
8 if ki = 0 then
9 Q = ECDBL(Q,n) . See Alg. 6

10 i← i− 1

11 else
12 s← max(i− w + 1, 0)
13 while ks = 0 do
14 s← s + 1
15 u← (ki, . . . , ks)NAF

16 for j = 1 to i− s + 1 do
17 Q← ECDBL(Q,n) . See Alg. 6

18 if u > 0 then
19 Q← ECADD(Q,Pu, n) . See Alg. 7

20 if u < 0 then
21 Q← ECADD(Q,−P−u, n) . See Alg. 7

22 i← s− 1

23 return Q

Algorithm 14: Elliptic curve scalar multiplication with left-to-right sliding

window NAF algorithm ECSML2R wNAF(P, k, n).

It is hard to provide a closed form expression to decide whether a scalar k
is good or bad with respect to the multiplication of a point P by k with ECSM
algorithm L2R wNAF. However, such test can be implemented as an algorithm
(see Alg. 15).

The idea behind Alg. 15 is to test the conditions for the test-free version of
ECADD and ECDBL to work.

In Alg. 14, the code between lines 1 and 4 precomputes [i]P for i = 3, 5, . . . ,m.
It can easily be checked that the conditions are enumerated as follows:

– At line 2, ord(P ) 6= 1;
– At line 4, P ′ is not O, [i− 4]P, [i− 2]P, [i]P is not O (for i = 3, 5, . . . ,m).

This is clearly equivalent to have the test implemented at line 4 of Alg. 15.
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Input : P ∈ E(Zn), w ≥ 2, k = (kl−1, . . . , k0)NAF

Output : True if k is TF-good, or False otherwise

1 m← 2(2w − (−1)w)/3− 1
2 P ′ ← ECDBL(P, n) . See Alg. 6

3 for i = 3 to m by 2 do
4 if ord(P ) | i then return False

5 Q← P
6 i← l − 2
7 while i ≥ 0 do
8 if ki = 0 then
9 if ord(P ) | (kl−1, . . . , ki+1)NAF then return False

10 i← i− 1

11 else
12 s← max(i− w + 1, 0)
13 while ks = 0 do
14 s← s + 1
15 for j = 0 to i− s + 1 do
16 if ord(P ) | 2j(kl−1, . . . , ki+1)NAF then return False
17 if ord(P ) | (kl−1, . . . , ki+1,±ki, . . . ,±ks)NAF then return False
18 i← s− 1

19 return True

Algorithm 15: Test whether a scalar k is TF-good or TF-bad with respect

to the ECSM of a point P using the left-to-right sliding window NAF algorithm

ECSML2R wNAF.
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Then, at line 9 of Alg. 14, the ECDBL calls no test provided the point
Q = [(kl−1, . . . , ki+1)NAF]P to be doubled is not O. This is reflected at line 9 of
Alg. 15.

The ECDBL at line 17 has a test similar to that at line 9. The presence
of test can be tested by the check at line 16 of Alg. 15. In this test, the no-
tation 2j(kl−1, . . . , ki+1)NAF is short for (kl−1, . . . , ki+1, 0, . . . , 0︸ ︷︷ ︸

j zeros

)NAF. Actually,

the index j goes up to i − s + 1, because this last test is required by the next
instructions.

Between lines 18 and 21 of Alg. 14, one ECADD is computed. Notice that
it is either an addition or a subtraction. But the tests are the same in Q ± Pu,
namely Q,±Pu, Q± Pu, Q∓ Pu is O. One needs to check that:

– Pu is not O, which has already been done at line 4 of Alg. 15.

– Q is not O, which is the test for j = i− s+ 1 at line 16 of Alg. 15.

– As already mentioned, checking an addition or a subtraction imply the same
tests, which can be summarized as: ord(P ) | 2i−s+1(kl−1, . . . , ki+1)NAF +
±(ki, . . . , ks)NAF, as is tested at line 17 of Alg. 15.

C.4 Montgomery Powering Ladder

The Montgomery powering ladder is a regular ECSM, described in Alg. 16.

Input : P ∈ E(Zn), k > 0
Output : Q = [k]P ∈ E(Zn)

1 Q0 = O
2 Q1 = P
3 for i = dlog2 ke − 1, . . . , 0 do
4 Q1−ki = ECADD(Q0, Q1, n) . See Alg. 7

5 Qki = ECDBL(Qki , n) . See Alg. 6

6 return Q0

Algorithm 16: Elliptic curve scalar multiplication with Montgomery powering

ladder algorithm ECSMMont(P, k, n).

We have the following pre-conditions:

– Q0 = [bk/2i+1c]P and Q1 = [bk/2i+1c+ 1]P : at line 4 of Alg. 16.

– Qki
= [bk/2i+1c+ ki]P : at line 5 of Alg. 16.

A scalar k is said TF-good using the Montgomery powering ladder algorithm
if tests in ECADD and ECDBL are not taken.

Regarding ECADD, this means that at every iteration i such that dlog2 ke >
i ≥ 0:

1. Input Q0 satisfies Q0 is not O, thus ord(P ) 6 | bk/2i+1c.
2. Input Q1 satisfies Q1 is not O, thus ord(P ) 6 | bk/2i+1c+ 1.
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3. Inputs Q0 and Q1 satisfy Q0 6= −Q1, i.e., Q0 +Q1 = [2bk/2i+1c+ 1]P is not
O, thus ord(P ) 6 | 2bk/2i+1c+ 1. But,

2bk/2i+1c+ 1 =

{
bk/2ic+ 1 if ki = 0,

bk/2ic if ki = 1,

hence this condition is already covered by the first two ones.

4. Inputs Q0 and Q1 satisfy Q0 6= Q1. In Montgomery powering ladder, Q1 −
Q0 = P at every iteration i, thus we must have P 6= O, i.e., ord(P ) 6= 1,
which is also already covered by the two first conditions.

Regarding ECDBL, this means that input Qki
is not O at each iteration i.

This is equivalent to ord(P ) 6 | bk/2i+1c + ki, which is also already covered by
the two first conditions of ECADD.

So, to summarize, a scalar is TF-good when used in conjunction with a
Montgomery powering ladder if, for all i such that dlog2 ke > i ≥ 0:

1. ord(P ) 6 | bk/2i+1c, and

2. ord(P ) 6 | bk/2i+1c+ 1.

D Details on the Existing Countermeasures

D.1 BOS Combined Curve and Point

Here we detail the computation behind line 2 of Alg. 2. For the combined curve
E(Zpr) (we denote An and Bn the equation parameters of the curve on Zn):

– Apr = CRT(Ap, Ar),
– Bpr = CRT(Bp, Br).

For the point Ppr:

– Xpr = CRT(Xp, Xr),
– Ypr = CRT(Yp, Yr),
– Zpr = CRT(Zp, Zr).

Here, CRT(Ua, Ub) denotes the CRT recombination in Zab of Ua ∈ Fa and Ub ∈
Fb.

It is possible to avoid these computations by choosing Ur = Up mod r in
order to have Upr = Up for all the variables listed above. However, it will be
less secure than choosing security-optimized Ur values. Indeed, recall comments
made about Tab. 1.

D.2 BOS Numerical Example of Incorrect Result

Here we give a toy example for which BOS returns an incorrect result. We chose
an unrealistic, very small r as it allows to verify the computations quickly.
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The nominal elliptic curve E(Fp) (P-192) has the following parameters:

p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff,

A = p− 3,

B = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1,

xP = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012,

yP = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811.

The small curve E(Fr):

r = 0x7,

Ar = 0x4,

Br = 0x1,

xPr = 0x6,

yPr = 0x4.

The combined curve E(Zpr) obtained as explained in Sec. D.1:

pr = 0x6fffffffffffffffffffffffffffffff8fffffffffffffff9,

Apr = 0x6fffffffffffffffffffffffffffffff8fffffffffffffff6,

Bpr = 0x264210519e59c80e70fa7e9ab72243047feb8deecc146b9af,

xPpr
= 0x3188da80eb03090f67cbf20eb43a187fdf4ff0afd82ff100f,

yPpr
= 0x307192b95ffc8da78631011ed6b24cdd273f977a11e79480e.

Given these parameters, Alg. 2 is correct for all k such that 0 < k ≤ 8.
Actually, Pr = (xPr

: yPr
: 1) is a point of order 8 on E(Fr), hence [8]Pr = O.

However, the results start to be incorrect when k > 8. For example:
– [9]P on E(Fp) is equal to

(0x818a4d308b1cabb74e9e8f2ba8d27c9e1d9d375ab980388f,

0x1d1aa5e208d87cd7c292f7cbb457cdf30ea542176c8e739),

and no conditional tests are satisfied during the computation.
– Q = [9]Pr on E(Fr) is equal to (0x6, 0x4), and one conditional test is satis-

fied, namely Q is O (line 1 of Alg. 6).
– [9]Ppr on E(Zpr) is equal to

(0x3818a4d308b1cabb74e9e8f2ba8d27c9b1d9d375ab980388c,

0x401d1aa5e208d87cd7c292f7cbb457cdb30ea542176c8e735),

which matches [9]P on E(Fp) modulo p, but is equal to (0x0, 0x0) 6= (0x6, 0x4)
modulo r.

As a result, error will be returned while no error nor fault attacks actually oc-
curred.
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D.3 BV Combined Curve and Point

Here we detail the computation behind line 2 of Alg. 3.
In their paper [2], Baek and Vasyltsov use the following curve equation (in

Jacobian projective coordinate) for the curve E(Fp): Y 2Z = X3+AXZ4+BZ6.
To obtain the combined curve E′(Zpr), a value B′ is computed first: B′ = y2 +
py−x3−ax mod pr, where (x : y : 1) are the Jacobian projective coordinates of
P . Then, the equation of the curve E′(Zpr) is: Y 2Z+pY Z3 = X3+AXZ4+B′Z6.

Notice that the check at line 4 of Alg. 3 is based on this Jacobian projective
coordinate equation11, only taken modulo r.

The same point P is used.

E Complexity of Modular Inverse in Direct Product

The modular inverse of a number can be efficiently obtained thanks to an ex-
tended Euclid algorithm [34, Algorithm 2.107 at §2.4, p. 67]. The complexity of
this algorithm is quadratic in the size in bits of the modulo (i.e., it is O(log2(p))
when the ring is Zp), like the modular multiplication (see [34, Table 2.8 in
Chap. 2, page 84]). However, in practice, for moduli of cryptographic size (i.e.,
192 ≤ log2(p) ≤ 521 for ECC, see [38]) the duration of a division lasts from 4 to
10 times the duration of a multiplication12.

Prop. 6 shows that divisions can also be implemented efficiently in Zpr, pro-
vided the division exists. If not, an exponentiation z 7→ zp−2 is necessary. As-
suming that the binary representation of p consists of as many ones as zeros
and that the exponentiation is done with a double-and-add algorithm, the cost
of z 7→ zp−2 is about 3

2blog2 pc, that is 288 multiplications when p is a 192-bit
prime number.

However, multiples of r occur only with probability 1
r in computations. Thus,

an upper-bound for the expected overhead is (10×(1− 1
r )+384× 1

r )/10 ≈ 1+10−8

when r is a 32 bit number, which is negligible in practice.

F Theoretical Upper-Bound for #roots

It is interesting to study the theoretical upper bound on the number of roots in
practical cases. Leont’ev proved in [32] that if P is a random polynomial in Fp

then #roots(P ) ∼ Poisson(λ = 1), i.e., P(#roots(P ) = k) = 1
ek! . In the case of

∆P mod r, we know that there is always at least one root, when x̂1 = x1, so
we can rewrite ∆P (x̂1) = P (x̂1)− P (x1) = R(x̂1) · a(x̂1 − x1), where a is some
constant, and R is indeed a random polynomial of degree r − 2, owing to the
modular reduction of ∆P by r. So we know that #roots(∆P ) = 1 + #roots(R),

11 In the original paper [2], there is a typo in Alg. 2 and the equation reads Y 2+pY Z3 =
X3 + AXZ4 + B′Z6, missing a Z.

12 As benchmarked by OpenSSL version 1.0.1f BN mod mul and BN mod inverse func-
tions.
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hence P(#roots(∆P ) = k) = P(#roots(R) = k − 1), which is 0 if k = 0 and
1

e(k−1)! otherwise. We want the maximum value of k which has a “plausible”

probability, let us say that is 2−p, e.g., 2−256. Since the values of a Poisson
distribution of parameter λ = 1 are decreasing, we are looking for k such that:
P(#roots(R) = k − 1) = 1

e(k−1)! ≤ 2−256. This would suggest that k & 58.

This result means that Pn.d. is predicted to be at most 57
r , with r being

at least a 32-bit number, i.e., that Pn.d. is at maximum ≈ 2−26, and that this
worst-case scenario has a probability of ≈ 2−256 of happening, in theory.

Remark 2. Note that we do not take into account the probability of TF-bad k.
However, the probability of k being TF-bad can be bounded with respect to a
point P ∈ E(Fr), as explained in Prop. 5 (Sec. 5.2).
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Fig. 4: #roots probability for ECSM [k]G.

Fig. 4 shows typical number of roots (obtained with SAGE) for practical
cases in ECC, and compare them to the theoretical predictions. In this figure,
we chose values of k of the form 2j−1, which maximize the number of operations,
and thus the size and degree of the resulting ∆P polynomials. For each value of
k, we expressed the polynomial ∆P corresponding to the ECSM [k]G, and did
so for a thousand random G. We then plotted for i = 0 to 8 the number of [k]G
for which #roots(∆P ) = i+1 divided by 1000, that is the estimated probability

P̂(#roots(∆P ) = i+ 1). Let us denote by Z the Boolean random variable which
is equal to one if ∆P has a (i+ 1) roots, and zero otherwise. Our estimation of

P̂(#roots(∆P ) = i + 1) is thus the expectation of 1
1000

∑1000
j=1 Zj . This random

variable follows a binomial distribution, of mean p = P(#roots(∆P ) = i + 1)
and variance p(1 − p)/1000. The later values are used for the error bars ([p −√
p(1− p)/1000, p+

√
p(1− p)/1000]).

The two graphs in Fig. 4 correspond to two corner-cases:
1. k = 3 = (11)2: the number of roots is small because the polynomial degree

is small (it is 13). (recall that #roots(P ) cannot exceed the degree of P ).
2. k = 15 = (1111)2: the number of roots is also small, but this times because

the result of Leont’ev applies. Indeed, the degree is 7213, thus the polynomial
is much more random-looking.
Actually, it is computationally hard to count the roots of polynomials of de-

gree greater than 7213. But it can be checked that the degree of the polynomials
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Fig. 5: Degree of the polynomial ∆P against the value of k (in log-log scale).

is growing exponentially with k. This is represented in Fig. 5, where we see that
the degree is about equal to k3.25 (of course, when k has a large Hamming weight,
as in (11 . . . 1)2, the degree is larger than when k is hollow, as in (10 . . . 0)2). In
particular, the polynomial ∆P reaches degree 232 (resp. 264) when k has about
10 (resp. 18) bits. Thus, modulo r (recall Eqn. (1)), the polynomial ∆P has max-
imal degree as long as the fault is injected before the last 10 (resp. 18) elliptic
curve operations when r fits on 32 bits (resp. 64 bits).

G Examples of Pn.d.

Example 1 (Pn.d. for CRT-RSA). From Thm. 1’s proof, we can derive that for
proven CRT-RSA countermeasures such as [1,40,36], we have Pn.d. = 1

r .
Indeed, in CRT-RSA, the computation mainly consists of two exponentiations.
In an exponentiation, ∆P takes on the form m̂k ·md−k−md = (m̂k−mk) ·md−k.
Assuming the message m 6= 0, we have #roots(∆P ) = 1 (that is m̂ = m mod r),
hence a non-detection probability of 1

r (in the case RSA is computed with CRT).
Otherwise, after the Garner recombination [17] ∆P is of the form mdq + q · (iq ·
(mdp−km̂k−mdq ) mod p)−mdq +q ·(iq ·(mdp−mdq ) mod p) = q ·(iq ·(mdp−km̂k−
mdp)), if the fault is on the p part; ormdq−km̂k+q·(iq ·(mdp−mdq−km̂k) mod p)−
mdq +q ·(iq ·(mdp−mdq ) mod p) = (mdq−km̂k−mdq )+q ·(iq ·(mdq−km̂k−mdq )),
if it is on the q part.
We conclude that #roots(∆P ) is still 1 in both cases and thus that Pn.d. = 1

r .

It can be noticed that this result had been used in most previous articles
dealing with fault protection on CRT-RSA without being formally proved. So,
we now formally confirm those results were indeed correct.

Example 2 (Fault non-detection probability greater than 1
r ). Let us assume the

computation P (a, b, c) = (a + b) · (b + c). If a single fault strikes b, then the

polynomial ∆P is equal to P (a, b̂, c) − P (a, b, c) mod r. Its degree is equal to
2, and has 2 distinct roots provided b 6= −(a + c)/2 mod r, or 1 double root
otherwise. Thus, in the general case where the nominal inputs satisfy b 6= −(a+
c)/2 mod r (which occurs also with probability 1

r ), the non-detection probability

is 2
r . Namely, the 2p−1 values of b̂ ∈ Zpr causing an undetected fault are b+kr,

with k ∈ {1, . . . , p− 1}, and −(a+ c)/2 + lr, with l ∈ {0, . . . , p− 1}.
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