
Composable Security in the Tamper Proof Hardware Model
under Minimal Complexity

Carmit Hazay∗ Antigoni Polychroniadou† Muthuramakrishnan Venkitasubramaniam‡

Abstract

We put forth a new formulation of tamper-proof hardware in the Global Universal Composable
(GUC) framework introduced by Canetti et al. in TCC 2007. Almost all of the previous works rely
on the formulation by Katz in Eurocrypt 2007 and this formulation does not fully capture tokens in a
concurrent setting. We address these shortcomings by relying on the GUC framework where we make
the following contributions:

1. We construct secure Two-Party Computation (2PC) protocols for general functionalities with opti-
mal round complexity and computational assumptions using stateless tokens. More precisely, we
show how to realize arbitrary functionalities with GUC security in two rounds under the minimal
assumption of One-Way Functions (OWFs). Moreover, our construction relies on the underlying
function in a black-box way. As a corollary, we obtain feasibility of Multi-Party Computation
(MPC) with GUC-security under the minimal assumption of OWFs. As an independent contri-
bution, we identify an issue with a claim in a previous work by Goyal, Ishai, Sahai, Venkatesan
and Wadia in TCC 2010 regarding the feasibility of UC-secure computation with stateless tokens
assuming collision-resistant hash-functions (and the extension based only on one-way functions).

2. We then construct a 3-round MPC protocol to securely realize arbitrary functionalities with GUC-
security starting from any semi-honest secure MPC protocol. For this construction, we require
the so-called one-many commit-and-prove primitive introduced in the original work of Canetti,
Lindell, Ostrovsky and Sahai in STOC 2002 that is round-efficient and black-box in the underlying
commitment. Using specially designed “input-delayed” protocols we realize this primitive (with
a 3-round protocol in our framework) using stateless tokens and one-way functions (where the
underlying one-way function is used in a black-box way).

Keywords: Secure Computation, Tamper-Proof Hardware, Round Complexity, Minimal Assumptions

∗Bar-Ilan University, Israel. Email: carmit.hazay@biu.ac.il.
†Aarhus University, Denmark. Email: antigoni@cs.au.dk.
‡University of Rochester, Rochester, NY 14611, NY. Email: muthuv@cs.rochester.edu.

Contents

1 Introduction 2
1.1 Our Results . 4
1.2 Our Techniques . 5
1.3 Related Work . 7

2 Modeling Tamper-Proof Hardware in the GUC Framework 7
2.1 The Global Tamper-Proof Model . 10

3 Preliminaries 13
3.1 Pseudorandom Functions . 13
3.2 Commitment Schemes . 13
3.3 Randomness Extractors . 14
3.4 Hardcore Predicates . 15
3.5 Secret-Sharing . 15

4 Two-Round Oblivious Transfer in the Stand-Alone Model 16
4.1 Building Blocks: Commitment Schemes . 16
4.2 Our Protocol . 18

4.2.1 Relaxing to One-Way Functions . 29
4.3 Reusability of Tokens . 30

5 Two-Round Token-Based GUC Oblivious Transfer 35
5.1 Two-Round 2PC Using Stateless Tokens . 45
5.2 GUC-Secure MPC using Stateless Tokens from One-Way Functions 46
5.3 On Reusability . 46

6 Three-Round Token-Based GUC Secure Multi-Party Computation 47
6.1 One-Many Commit-and-Prove Functionality . 47

6.1.1 Realizing F1:M
CP in the FgWRAP-Hybrid . 48

6.2 Warmup: Simple MPC Protocol in the F1:M
CP -Hybrid . 52

6.3 Three-Round MPC Protocol in the FgWRAP-Hybrid . 53

7 Acknowledgements 57

A Issue with Over Extraction in Oblivious Transfer Combiners [GIS+10] 61

1

1 Introduction

Secure Multi-Party Computation (MPC) enables a set of parties to mutually run a protocol that computes
some function f on their private inputs, while preserving two important properties: privacy and correct-
ness. The former implies data confidentiality, namely, nothing leaks by the protocol execution but the
computed output, while, the later requirement implies that no corrupted party or parties can cause the out-
put to deviate from the specified function. It is by now well known how to securely compute any efficient
functionality [Yao86, GMW87, MR91, Bea91] under the stringent simulation-based definitions (following
the ideal/real paradigm). These traditional results prove security in the stand-alone model, where a single
set of parties run a single execution of the protocol. However, the security of most cryptographic proto-
cols proven in the stand-alone setting does not remain intact if many instances of the protocol are executed
concurrently [Can01, CF01, Lin03]. The strongest (but also the most realistic) setting for concurrent se-
curity, known as Universally Composable (UC) security [Can01] considers the execution of an unbounded
number of concurrent protocols in an arbitrary and adversarially controlled network environment. Unfor-
tunately, stand-alone secure protocols typically fail to remain secure in the UC setting. In fact, without
assuming some trusted help, UC-security is impossible to achieve for most tasks [CF01, CKL06, Lin03].
Consequently, UC-secure protocols have been constructed under various trusted setup assumptions in a long
series of works; see [BCNP04, CDPW07, Kat07, KLP07, CPS07, LPV09, DMRV13] for few examples.

One such setup assumption and the focus of this work is the use of tamper-proof hardware tokens.
The first work to model tokens in the UC framework was by Katz in [Kat07] who introduced the FWRAP-
functionality to capture such tokens and demonstrated feasibility of realizing general functionalities with
UC-security. Most of the previous works in the tamper proof hardware [Kat07, CGS08, LPV09, GIS+10,
DMRV13, CKS+14, DKMN15b] rely on this formulation. As we explain next, this formulation does not
provide adequate composability guarantees. We begin by mentioning that any notion of composable security
in an interactive setting should allow for multiple protocols to co-exist in the same system and interact with
each other. We revisit the following desiderata put forth by Canetti, Lin and Pass [CLP10] for any notion of
composable security:

Concurrent multi-instance security: The security properties relating to local objects (including data and
tokens) of the analyzed protocol itself should remain valid even when multiple instances of the pro-
tocol are executed concurrently and are susceptible to coordinated attacks against multiple instances.
Almost all prior works in the tamper proof model do not specifically analyze their security in a con-
current setting. In other words, they only discuss UC-security of a single instance of the protocol. In
particular, when executing protocols in the concurrent setting with tokens, an adversary could in fact
transfer a token received from one execution to another and none of the previous works that are based
on the FWRAP-functionality accommodate transfers.

Modular analysis: Security of the larger overall protocols must be deducible from the security properties
of its components. In other words, composing protocols should preserve security in a modular way.
One of the main motivations and features in the UC-framework is the ability to analyze a protocol
locally in isolation while guaranteeing global security. This does not only enable easier design but
identifies the required security properties. The current framework proposed by Katz [Kat07] does not
allow for such a mechanism.

The state-of-affairs regarding tamper-proof tokens leads us to ask the following question.

Does there exist a UC-formulation of tamper-proof hardware tokens that guarantee strong com-
posability guarantees and allows for modular design?

2

Since the work of [Kat07], the power of hardware tokens has been explored extensively in a long series of
works, especially in the context of achieving UC-security (for example, [CGS08, MS08, GIS+10, DKM11,
DMMN13, DKMN15b, CKS+14]). While the work of Katz [Kat07] assumed the stronger stateful tokens,
the work of Chandran, Goyal and Sahai [CGS08] was the first to achieve UC-security using only stateless
tokens. In this work we will focus only on the weaker stateless token model. In the tamper-proof model
with stateless tokens, as we argue below, the issue of minimal assumptions and round-complexity have been
largely unaddressed. The work of Chandran et al. [CGS08] gives an O(κ)-round protocol (where κ is
the security parameter) based on enhanced trapdoor permutations. Following that, Goyal et al. [GIS+10]
provided an (incorrect) O(1)-round construction based on Collision-Resistant Hash Functions (CRHFs).
The work of Choi et al. [CKS+14], extending the techniques of [GIS+10] and [DKM11], establishes the
same result and provide a five-round construction based on CRHFs.

All previous constructions require assumptions stronger than one-way functions (OWFs), namely ei-
ther trapdoor permutations or CRHFs. Thus as a first question, we investigate the minimal assumptions
required for token-based secure computation protocols. The works of [GIS+10] and [CKS+14] rely on
CRHFs for realizing statistically-hiding commitment schemes. Towards minimizing assumptions, both these
works, originally considered a variant of their respective protocols where they replace the construction of the
statistically-hiding commitment scheme based on CRHFs to the one based on one-way functions [HHRS15]
to obtain UC-secure protocols under minimal assumptions (See Theorem 3 in [GIS+10] and Footnote 7 in
[CKS+14]). While analyzing the proof of this variant in the work of [GIS+10], we found an issue in the
original construction based on CRHFs.1 More recently, the authors of [CKS+14] have removed this obser-
vation in their updated version of the original work (see [CKS+13]).2 Given the state of affairs, our starting
point is to address the following fundamental question regarding tokens that remains open.

Can we construct tamper-proof UC-secure protocols using stateless tokens assuming only one-
way functions?

A second important question that we address here is:

What is the round complexity of UC-secure two-party protocols using stateless tokens assuming
only one-way functions?

We remark here that relying on black-box techniques, it would be impossible to achieve non-interactive
secure computation even in the tamper proof model as any such approach would be vulnerable to a residual
function attack.3 This holds even if we allow an initial token exchange phase, where the two parties exchange
tokens (that are independent of their inputs). Hence, the best we could hope for is two rounds.

(G)UC-secure protocols in the multi-party setting. In the UC framework, it is possible to obtain UC-
secure protocols in the MPC setting by first realizing the UC-secure oblivious transfer functionality (UC OT)
in the two-party setting and then combining it with general compilation techniques (e.g., [Kil88, CLOS02,
IPS08, LPV12] to obtain UC-secure multi-party computation protocols. First, we remark that specifically in
the stateless tamper-proof tokens model, prior works fail to consider multi-versions of the OT-functionality

1In fact, we present a concrete attack that breaks the security of their construction in Appendix A. We remark that our observation
only affects one particular result in [GIS+10], namely, realizing the UC-secure oblivious transfer functionality based on CRHFs
and stateless tokens.

2In private communication, the authors of [CKS+13] explained that the variant that naively replaces the commitment with one
based on one-way functions might be vulnerable to covert attacks.

3Intuitively, this attack allows the recipient of the (only) message to repeatedly evaluate the function on different inputs for a
fixed sender’s input.

3

while allowing transferrability of tokens which is important in an MPC setting.4 As such, none of the
previous works explicitly study the round complexity of multi-party protocols in the tamper proof model
(with stateless tokens), we thus initiate this study in this work and address the following question.

Can we obtain round-optimal multi-party computation protocols with GUC-security in the tam-
per proof model?

Unidirectional token exchange. Consider the scenario where companies such as Amazon or Google wish
to provide an email spam-detection service and users of this service want to keep their emails private (so as to
not have unwanted advertisements posted based on the content of their emails). In such a scenario, it is quite
reasonable to assume that Amazon or Google have the infrastructure to create tamper-proof hardware tokens
in large scale while the clients cannot be expected to create tokens on their own. Most of the prior works
assume (require) that both parties have the capability of constructing tokens. When relying on non-black-
box techniques, the work of [CKS+14] shows how to construct UC-OT using a single stateless token and
consequently requires only one of the parties to create the token. The work of Moran and Segev in [MS08] on
the other hand shows how to construct UC-secure two-party computation via a black-box construction where
tokens are required to be passed only in one direction, however, they require the stronger model of stateful
tokens. It is desirable to obtain a black-box construction when relying on stateless tokens. Unfortunately,
the work of [CKS+14] shows that this is impossible in the fully concurrent setting. More precisely, they
show that UC-security is impossible to achieve for general functionalities via a black-box construction using
stateless tokens if only one of the parties is expected to create tokens. In this work, we therefore wish to
address the following question:

Is there a meaningful security notion that can be realized in a client-server setting relying on
black-box techniques using stateless tokens where tokens are created only by the server?

1.1 Our Results

As our first contribution, we put forth a formulation of the tamper-proof hardware as a “global” function-
ality that provides strong composability guarantees. Towards addressing the various shortcomings of the
composability guarantees of the UC-framework, Canetti et al. [CDPW07] introduced the Global Universal
Composability (GUC) framework which among other things allows to consider global setup functionalities
such as the common reference string model, and more recently the global random oracle model [CJS14]. In
this work, we put forth a new formulation of tokens in the GUC-framework that will satisfy all our desiderata
for composition. Furthermore, in our formulation, we will be able to invoke the GUC composition theorem
of [CDPW07] in a modular way. A formal description of the FgWRAP-functionality can be found in Figure 2
and more detailed discussion is presented in the next section.

In the two-party setting we resolve both the round complexity and computational complexity required
to realize GUC-secure protocols in the stronger FgWRAP-hybrid stated in the following theorem:

Theorem 1.1 (Informal) Assuming the existence of OWFs, there exists a two-round protocol that GUC re-
alizes any (well-formed) two-party functionality in the global tamper proof model assuming stateless tokens.
Moreover it only makes black-box use of the underlying OWF.

4We remark that the work of [CKS+14] considers multiple sessions of OT between a single pair of parties. However, they do
not consider multiple sessions between multiple pairs of parties which is required to realize UC-security in the multiparty setting.

4

As mentioned earlier, any (black-box) non-interactive secure computation protocol is vulnerable to a residual
function attack assuming stateless tokens. Therefore, the best round complexity we can hope for assuming
(stateless) tamper-proof tokens is two which our results shows is optimal. In concurrent work [DKMN15a],
Dottling et al. show how to obtain UC-secure two-party computation protocol relying on one-way functions
via non-black-box techniques.

In the multi-party setting, our first theorem follows as a corollary of our results from the two-party
setting.

Theorem 1.2 Assuming the existence of OWFs, there exists a O(df)-round protocol that GUC realizes any
multi-party (well formed) functionality f in the global tamper proof model assuming stateless tokens, where
df is the depth of any circuit implementing f .

Furthermore, this construction relies on the underlying one-way function in a black-box manner. Next,
we improve the round-complexity of our construction to obtain the following theorem:

Theorem 1.3 Assuming the existence of OWFs and stand-alone semi-honest MPC, there exists a three-
round protocol that GUC realizes any multi-party (well formed) functionality in the global tamper proof
model assuming stateless tokens.

We remark that our construction is black-box in the underlying one-way function but unlike our previous
theorem it relies on the code of the MPC protocol in a non-black-box way. In particular, underlying MPC
protocols typically rely on semi-honest oblivious-transfer and our construction is non-black-box in this
assumptions.

Finally, in the client-server setting, we prove the following theorem in the full version [?]:

Theorem 1.4 (Informal) Assuming the existence of one-way functions, there exists a two-round protocol
that securely realizes any two-party functionality assuming stateless tokens in a client-server setting, where
the tokens are created only by the server. We also provide an extension where we achieve UC-security
against malicious clients and sequential and parallel composition security against malicious servers.

In more detail, we provide straight-line (UC) simulation of malicious clients and standard rewinding-based
simulation against malicious servers. Our protocols guarantee security of the servers against arbitrary mali-
cious coordinating clients and protects every individual client executing sequentially or in parallel against a
corrupted server. We believe that this is a reasonable model in comparison to the Common Reference String
(CRS) model where both parties require a trusted entity to sample the CRS. Furthermore, it guarantees
meaningful concurrent security that is otherwise not achievable in the plain model in two rounds.

1.2 Our Techniques

Our starting point for our round optimal secure two-party computation is the following technique from
[GIS+10] for an extractable commitment scheme.

Roughly speaking, in order to extract the receiver’s input, the sender chooses a function F from a
pseudorandom function family that maps {0, 1}m to {0, 1}n bits where m >> n, and incorporates it into
a token that it sends to the receiver. Next, the receiver commits to its input b by first sampling a random
string u ∈ {0, 1}m and querying the PRF token on u to receive the value v. It sends as its commitment the
string comb = (Ext(u; r) ⊕ b, r, v) where Ext(·, ·) is a strong randomness extractor. Now, since the PRF
is highly compressing, it holds with high probability that conditioned on v, u has very high min-entropy
and therefore Ext(u; r)⊕ b, r statistically hides b. Furthermore, it allows for extraction as the simulator can

5

observe the queries made by the sender to the token and observe that queries that yields v to retrieve u. This
commitment scheme is based on one-way functions but is only extractable. To obtain a full-fledged UC-
commitment from an extractable commitment we can rely on standard techniques (See [PW09, HV15] for
a few examples). Instead, in order to obtain round-optimal constructions for secure two-party computation,
we extend this protocol directly to realize the UC oblivious transfer functionality. A first incorrect approach
is the following protocol. The parties exchange two sets of PRF tokens. Next, the receiver commits to its bit
comb using the approach described above, followed by the sender committing to its input (coms0 , coms1)
along with an OT token that implements the one-out-of-two string OT functionality. More specifically, it
stores two strings s0 and s1, and given a single bit b outputs sb. Specifically, the code of that token behaves
as follows:

• On input b∗, u∗, the token outputs (sb, decomsb) only if comb = (Ext(u∗; r)⊕b∗, r, v) and PRF(u∗) =
v. Otherwise, the token aborts.

The receiver then runs the token to obtain sb and verifies if decomsb correctly decommits comsb to sb. This
simple idea is vulnerable to an input-dependent abort attack, where the token aborts depending on the value
b∗. The work of [GIS+10] provides a combiner to handle this particular attack which we demonstrate is
flawed. We describe the attack in Section A. We instead will rely on a combiner from the recent work of
Ostrovsky, Richelson and Scafuro [ORS15] to obtain a two-round GUC-OT protocol.

GUC-secure multi-party computation protocols. In order to demonstrate feasibility, we simply rely on
the work of [IPS08] who show how to achieve GUC-secure MPC protocols in the OT-hybrid. By instantiat-
ing the OT with our GUC-OT protocol, we obtain MPC protocols in the tamper proof model assuming only
one-way functions. While this protocol minimizes the complexity assumptions, the round complexity would
be high. In this work, we show how to construct a 3-round MPC protocol. Our starting point is to take any
semi-honest MPC protocol in the stand-alone model and compile it into a malicious one using tokens fol-
lowing the paradigm in the original work of Canetti et al. [CLOS02] and subsequent works [Pas03, Lin03].
Roughly, the approach is to define a commit-and-prove GUC-functionalityFCP and compile the semi-honest
protocol using this functionality following a GMW-style compilation.

We will follow an analogous approach where we directly construct a full-fledgedF1:M
CP -functionality that

allows a single prover to commit to a string and then prove multiple statements on the commitment simul-
taneously to several parties. In the token model, realizing this primitive turns out to be non-trivial. This is
because we need the commitment in this protocol to be straight-line extractable and the proof to be about the
value committed. Recall that, the extractable commitment is based on a PRF token supplied by the receiver
of the commitment (and the verifier in the zero-knowledge proof). The prover cannot attest the validity of
its commitment (via an NP-statement) since it does not know the code (i.e. key) of the PRF. Therefore,
any commit and prove scheme in the token model necessarily must rely on a zero-knowledge proof that is
black-box in the underlying commitment scheme. In fact, in the seminal work of Ishai et al. [IKOS09] they
showed how to construct such protocols that have been extensively used in several works where the goal is to
obtain constructions that are black-box in the underlying primitives. Following this approach and solving its
difficulties that appear in the tamper-proof hardwire model, we can compile a T -round semi-honest secure
MPC protocol to a O(T)-round protocol. Next, to reduce the rounds of the computation we consider the
approach of Garg et al. [GGHR14] who show how to compress the round complexity of any MPC protocol
to a two-round GUC-secure MPC protocol in the CRS model using obfuscation primitives.

In more detail, in the first round of the protocol in [GGHR14], every party commits to its input along with
its randomness. The key idea is the following compiler used in the second round: it takes any (interactive)

6

underlying MPC protocol, and has each party obfuscate their “next-message” function in that protocol,
providing one obfuscation for each round. To ensure correctness, zero-knowledge proofs are used to validate
the actions of each party w.r.t the commitments made in the first step. Such a mechanism is also referred
to as a commit-and-prove strategy. This enables each party to independently evaluate the obfuscation one
by one, generating messages of the underlying MPC protocol and finally obtain the output. The observation
here is that party Pi’s next-message circuit for round j in the underlying MPC protocol depends on its
private input xi and randomness ri (which are hard-coded in the obfuscation) and on input the transcript of
the communication in the first j − 1 rounds outputs its message for the next round.

To incorporate this approach in the token model, we can simply replace the obfuscation primitives with
tokens. Next, to employ zero-knowledge proofs via a black-box construction, we require a zero-knowledge
protocol that allows commitment of a witness via tokens at the beginning of the protocol and then in a
later step prove a statement about this witness where the commitment scheme is used in a “black-box”
way. A first idea here would be to compile using the zero-knowledge protocol of [IKOS09] that facilitate
such a commit-and-prove paradigm. However, as we explain later this would cost us in round-complexity.
Instead we will rely on so-called input-delayed proofs [LS90] that have recently received much attention
[CPS+16a, CPS+16b, HV16]. In particular, we will rely on the recent work of [HV16] who shows how to
construct the so-called “input-delay” commit-and-prove protocols which allow a prover to commit a string
in an initial commit phase and then prove a statement regarding this string at a later stage where the input
statement is determined later. However, their construction only allows for proving one statement regarding
the commitment. One of our technical contributions is to extend this idea to allow multiple theorems and
further extend it so that a single prover can prove several theorems to multiple parties simultaneously. This
protocol will be 4-round and we show how to use this protocol in conjunction with the Garg et al.’s round
collapsing technique.

1.3 Related Work

In recent and independent work, using the approach of [CJS14], Nilges [Nil15, MMN16] consider a GUC-
like formulation of the tokens for the two-party setting where the parties have fixed roles. The focus in
[Nil15, MMN16] was to obtain a formulation that accommodates reusability of a single token for several
independent protocols in the UC-setting for the specific two-party case. In contrast to our work, they do not
explicitly model or discuss adversarial transferability of the tokens. In particular they do not discuss in the
multi-party case, which is the main motivation behind our work.

Another recent work by Boureanu, Ohkubo and Vaudenay [BOV15] studies the limit of composition
when relying on tokens. In this work, they prove that EUC (or GUC)-security is impossible to achieve for
most functionalities if tokens can be transferred in a restricted framework. More precisely, their impossibility
holds, if the tokens themselves do not “encode” the session identifier in any way. Our work, circumvents
this impossibility result by precisely allowing the tokens generated (by honest parties) to encode the session
identifier in which they have to be used.

2 Modeling Tamper-Proof Hardware in the GUC Framework

In this section we describe our model and give our rationale for our approach. We provide a brief discussion
on the Universal Composability (UC) framework [Can01], UC with joint state [CR03] (JUC) and General-
ized UC [CDPW07] (GUC). For more details, we refer the reader to the original works and the discussion
in [CJS14].

7

Basic UC. Introduced by Canetti in [Can01], the Universal Composability (UC) framework provides a
framework to analyse security of protocols in complex network environments in a modular way. One of
the fundamental contributions of this work was to give a definition that will allow to design protocols and
demonstrate security by “locally” analyzing a protocol but guaranteeing security in a concurrent setting
where security of the protocol needs to be intact even when it is run concurrently with many instances
of arbitrary protocols. Slightly more technically, in the UC-framework, to demonstrate that a protocol Π
securely realizes an ideal functionality F , we need to show that for any adversary A in the real world
interacting with protocol Π in the presence of arbitrary environments Z , there exists an ideal adversary S
such that for any environment Z the view of an interaction with A is indistinguishable from the view of an
interaction with the ideal functionality F and S .

Unfortunately, soon after its inception, a series of impossibility results [CF01, CKL06, Lin03] demon-
strated that most non-trivial functionalities cannot be realized in the UC-framework. Most feasibility results
in the UC-framework relied on some sort of trusted setup such as the common reference string (CRS) model
[CF01], tamper-proof model [Kat07] or relaxed security requirements such as super-polynomial simulation
[Pas03, PS04, BS05]. When modeling trusted setup such as the CRS model, an extension of the UC-
framework considers the G-hybrid model where “all” real-world parties are given access to an ideal setup
functionality G. In order for the basic composition theorem to hold in such a G-hybrid model, two restric-
tions have to be made. First, the environment Z cannot access the ideal setup functionality directly; it can
only do so indirectly via the adversary. In some sense, the setup G is treated as “local” to a protocol instance.
Second, two protocol instances of the same or different protocol cannot share “state” for the UC-composition
theorem to hold. Therefore, a setup model such as the CRS in the UC-framework necessitates that each pro-
tocol uses its own local setup. In other words, an independently sampled reference string for every protocol
instance. An alternative approach that was pursued in a later work was to realize a multi-version of a func-
tionality and proved security of the multi-version using a single setup. For example, the original feasibility
result of Canetti, Lindell, Ostrovsky and Sahai [CLOS02] realized the FMCOM-functionality which is the
multi-version of the basic commitment functionalityFCOM in the CRS model.

JUC. Towards accommodating a global setup such as the CRS for multiple protocol instances, Canetti
and Rabin [CR03] introduced the Universal Composition with Joint State (JUC) framework. Suppose we
want to analyze several instances of protocol Π with an instance G as common setup, then at the least, each
instance of the protocol must share some state information regarding G (e.g., the reference string in the CRS
model). The JUC-framework precisely accommodates such a scenario, where a new composition theorem
is proven, that allows for composition of protocols that share some state. However, the JUC-model for the
CRS setup would only allow the CRS to be accessible to a pre-determined set of protocols and in particular
still does not allow the environment to directly access the CRS.

GUC. For most feasibility results in the (plain) CRS model both in the UC and JUC framework, the sim-
ulator S in the ideal world needed the ability to “program” the CRS. In particular, it is infeasible to allow
the environment to access the setup reference string. As a consequence, we can prove security only if the
reference string is privately transmitted to the protocols that we demand security of and cannot be made
publicly accessible. The work of Canetti, Pass, Dodis and Walfish [CDPW07] introduced the Generalized
UC-framework to overcome this shortcoming in order to model the CRS as a global setup that is publicly
available. More formally, in the GUC-framework, a global setup G is accessible by any protocol running
in the system and in particular allows direct access by the environment. This, in effect, renders all previ-
ous protocols constructed in the CRS model not secure in the GUC framework as the simulator loses the

8

programmability of the CRS. In fact, it was shown in [CDPW07] that the CRS setup is insufficient to se-
curely realize the ideal commitment functionality in the GUC-framework. More generally, they show that
any setup that simply provides only “public” information is not sufficient to realize GUC-security for most
non-trivial functionalities. They further demonstrated a feasibility in the Augmented CRS model, where the
CRS contains signature keys, one for each party and a secret signing key that is not revealed to the parties,
except if it is corrupt, in which case the secret signing key for that party is revealed.

As mentioned before, the popular framework to capture the tamper-proof hardware is the one due to
[Kat07] who defined the FWRAP-functionality in the UC-framework. In general, in the token model, the
two basic advantages that the simulator has over the adversary is “observability” and “programmability”.
Observability refers to the ability of the simulator to monitor all queries made by an adversary to the token
and programmability refers to the ability to program responses to the queries in an online manner. In the
context of tokens, both these assumptions are realistic as tamper-proof tokens do provide both these abilities
in a real-world. However, when modeling tamper proof hardware tokens in the UC-setting, both these
properties can raise issues as we discuss next.

Apriori, it is not clear why one should model the tamper proof hardware as a global functionality. In
fact, the tokens are local to the parties and it makes the case for it not to be globally accessible. Let us
begin with the formulation by Katz [Kat07] who introduced the FWRAP-functionality (see Figure 1 for the
stateless variant). In the real world the creator or sender of a token specifies the code to be incorporated in
a token by sending the description of a Turing machine M to the ideal functionality. The ideal functionality
then emulates the code of M to the receiver of the token, only allowing black-box access to the input and
output tapes of M . In the case of stateful tokens, M is modeled as an interactive Turing machine while
for stateless tokens, standard Turing machines would suffice. Slightly more technically, in the UC-model,
parties are assigned unique identifiers PID and sessions are assigned identifiers sid. In the tamper proof
model, to distinguish tokens, the functionality accepts an identifier mid when a token is created. More
formally, when one party PIDi creates a token with program M with token identifier mid and sends it to
another party PIDj in session sid, then the FWRAP records the tuple (PIDi,PIDj ,mid,M). Then whenever
a party with identifier PIDj sends a query (Run, sid,PIDi,mid, x) to the FWRAP-functionality, it first checks
whether there is a tuple of the form (·,PIDj ,mid, ·) and then runs the machine M in this tuple if one exists.

Functionality FStateless
WRAP

Functionality FStateless
WRAP is parameterized by a polynomial p(·) and an implicit security parameter κ.

Create. Upon receiving (Create, sid,PIDi,PIDj ,mid,M) from S, where M is a Turing machine, do:

1. Send (Create,PIDi,PIDj ,mid) to R.

2. Store (PIDi,PIDj ,mid,M).

Execute. Upon receiving (Run, sid,PIDi,mid, x) from R, find the unique stored tuple
(PIDi,PIDj ,mid,M). If no such tuple exists, do nothing. Run M(x) for at most p(κ) steps, and let
out be the response (out = ⊥ if M does not halt in p(k) steps). Send (PIDi,PIDj ,mid, out) to R.

Figure 1: The ideal functionality for stateless tokens [Kat07].

In the UC-setting (or JUC), to achieve any composability guarantees, we need to realize the multi-use
variants of the specified functionality and then analyze the designed protocol in a concurrent man-in-the-
middle setting. In such a multi-instance setting, it is reasonable to assume that an adversary that receives a

9

token from one honest party in a left interaction can forward the token to another party in a right interaction.
Unfortunately, the FWRAP-functionality does not facilitate such a transfer.

Let us modify FWRAP to accommodate transfer of tokens by adding a special “transfer” query that
allows a token in the possession of one party to be transferred to another party. Since protocols designed in
most works do not explicitly prove security in a concurrent man-in-the-middle setting, such a modification
renders the previous protocols designed in FWRAP insecure. For instance, consider the commitment scheme
discussed in the introduction based on PRF tokens. Such a scheme would be insecure as an adversary can
simply forward the token from the receiver in a right interaction to the sender in a left interaction leading to
a malleable commitment.

In order to achieve security while allowing transferability we need to modify the tokens themselves in
such a way to be not useful in an execution different from where it is supposed to be used. If every honestly
generated token admits only queries that are prefixed with the correct session identifier then transferring
the tokens created by one honest party to another honest party will be useless as honest parties will prefix
their queries with the right session and the honestly generated tokens will fail to answer on incorrect session
prefixes. This is inspired by an idea in [CJS14], where they design GUC-secure protocols in the Global
Random Oracle model [CJS14]. As such, introducing transferrability naturally requires protocols to address
the issue of non-malleability.

While this modification allows us to model transferrability, it still requires us to analyze protocols in a
concurrent man-in-the-middle setting. In order to obtain a more modular definition, where each protocol
instance can be analyzed in isolation we need to allow the token to be transferred from the adversary to the
environment. In essence, we require the token to be somewhat “globally” accessible and this is the approach
we take.

2.1 The Global Tamper-Proof Model

A natural first approach would be to consider the same functionality in the GUC-framework and let the
environment to access the FWRAP-functionality. This is reasonable as an environment can have access to
the tokens via auxiliary parties to whom the tokens were transferred to. However, naively incorporating
this idea would deny “observability” and “programmability” to the simulator as all adversaries can simply
transfer away their tokens the moment they receive them and let other parties make queries on their behalf.
Indeed, one can show that the impossibility result of [CKS+14] extends to this formulation of the tokens
(at least if the code of the token is treated in a black-box manner).5 A second approach would be to reveal
to the simulator all queries made to the token received by the adversary even if transferred out to any party.
However, such a formulation would be vulnerable to the following transferring attack. If an adversary
received a token from one session, it can send it as its token to an honest party in another session and
now observe all queries made by the honest party to the token. Therefore such a formulation of tokens is
incorrect.

Our formulation will accommodate transferrability while still guaranteeing observability to the simu-
lator. In more detail, we will modify the definition of FWRAP so that it will reveal to the simulator all
“illegitimate” queries made to the token by any other party. This approach is analogous to the one taken by
Canetti, Jain and Scafuro [CJS14] where they model the Global Random Oracle Model and are confronted
by a similar issue; here queries made to a globally accessible random oracle via auxiliary parties by the
environment must be made available to the simulator while protecting the queries made by the honest party.

5Informally, the only advantage that remains for the simulator is to see the code of the tokens created by the adversary. This
essentially reduces to the case where tokens are sent only in one direction and is impossible due to a result of [CKS+14] when the
code is treated as a black-box.

10

In order to define “legitimate” queries we will require that all tokens created by an honest party, by default,
will accept an input of the form (sid, x) and will respond with the evaluation of the embedded program
M on input x, only if sid = sid, where sid corresponds to the session where the token is supposed to be
used, i.e. the session where the honest party created the token. Furthermore, whenever an honest party in
session sid queries a token it received on input x, it will prefix the query with the correct session identifier,
namely issue the query (sid, x). An illegitimate query is one where the sid prefix in a query differs from the
session identifier from which the party is querying from. Every illegitimate query will be recorded by our
functionality and will be disclosed to the party whose session identifier is actually sid.

More formally, the FgWRAP-functionality is parameterized by a polynomial p(·) which is the time bound
that the functionality will exercise whenever it runs any program. The functionality admits the following
queries:

Creation Query: This query allows one party S to create and send a token to another party R by sending
the query (Create, sid, S,R,mid,M) where M is the description of the machine to be embedded in
the token, mid is a unique identifier for the token and sid is the session identifier. The functionality
records (R, sid,mid,M).6

Transfer Query: We explicitly provide the ability for parties to transfer tokens to other parties that were
not created by them (eg, received from another session). Such a query will only be used by the
adversary in our protocols as honest parties will always create their own tokens. When a transfer
query of the form (transfer, sid, S,R,mid) is issued, the tuple (S, sid,mid,M) is erased and a new
tuple (R, sid,mid,M) is created where sid is the identifier of the session where it was previously
used.

Execute Query: To run a token the party needs to provide an input in a particular format. All honest
parties will provide the input as x = (sid, x′) and the functionality will run M on input x and supply
the answer. In order to achieve non-malleability, we will make sure in all our constructions that tokens
generated by honest parties will respond to a query only if it contains the correct sid.

Retrieve Query: This is the important addition to our functionality following the approach taken by [CJS14].
FgWRAP-functionality will record all illegitimate queries made to a token. Namely for a token recorded
as the tuple (R, sid,mid,M) an illegitimate query is of the form (sid, x) where sid ̸= sid and such a
query will be recorded in a set Qsid that will be made accessible to the receiving party corresponding
to sid.

A formal description of the ideal functionality FgWRAP is presented in Figure 2. We emphasize that our
formulation of the tamper-proof model will now have the following benefits:

1. It overcomes the shortcomings of the FWRAP-functionality as defined in [Kat07] and used in subse-
quent works. In particular, it allows for transferring tokens from one session to another while retaining
“observability”.

2. Our model allows for designing protocols in the UC-framework and enjoys the composition theorem
as it allows the environment to access the token either directly or via other parties.

6We remark here that the functionality does not explicitly store the PID of the creator of the token. We made this choice since
the simulator in the ideal world will create tokens for itself which will serve as a token created on behalf of an honest party.

11

3. Our model explicitly rules out “programmability” of tokens. We remark that it is (potentially) possible
to explicitly provide a mechanism for programmability in the FgWRAP-functionality. We chose to not
provide such a mechanism so as to provide stronger composability guarantees.

4. In our framework, we can analyze the security of a protocol in isolation and guarantee concurrent
multi-instance security directly using the GUC-composition theorem. Moreover, it suffices to consider
a “dummy” adversary that simply forwards the environment everything (including the token).

An immediate consequence of our formulation is that it renders prior works such as [Kat07, CGS08,
DKM11, DKMN15a] that rely on the programmability of the token insecure in our model. The works of
[GIS+10, CKS+14] on the other hand can be modified and proven secure in the FgWRAP-hybrid as they do
not require the tokens to be programmed.

Functionality FgWRAP

Parameters: Polynomial p(·).

Create. Upon receiving (Create, sid, S,R,mid,M) from S, where M is a Turing machine, do:

1. Send (Receipt, sid,S,R,mid) to R.

2. Store (R, sid,mid,M).

Execute. Upon receiving (Run, sid,mid, x) from R, find the unique stored tuple (R, sid,mid,M). If such
a tuple does not exist, do nothing. Otherwise, interpret x = (sid, x′) and run M(x) for at most p(κ)
steps, and let out be the response (out = ⊥ if M does not halt in p(k) steps). Send (sid,R,mid, out)
to R.
Handling Illegal Queries: If sid ̸= sid, then add (x′, out,mid) to the list Qsid that is initialized to
be empty.

Transfer. Upon receiving (transfer, sid,S,R,mid) from S, find the unique stored tuple (S, sid,mid,M).
If no such tuple exists, do nothing. Otherwise,

1. Send (Receipt, sid,S,R,mid) to R.

2. Store (R, sid,mid,M). Erase (S, sid,mid,M).

Retrieve Queries: Upon receiving a request (retreive, sid) from a party R, return the list Qsid of illegiti-
mate queries.

Figure 2: The global stateless token functionality.

We now provide the formal definition of UC-security in the Global Tamper-Proof model.

Definition 2.1 (GUC security in the global tamper-proof model) Let F be an ideal functionality and let
π be a multi-party protocol. Then protocol π GUC realizes F in FgWRAP-hybrid model, if for every uniform
PPT hybrid-model adversaryA, there exists a uniform PPT simulator S, such that for every non-uniform
PPT environment Z , the following two ensembles are computationally indistinguishable,{

ViewFgWRAP

π,A,Z (κ)
}
κ∈N

c
≈
{

ViewFgWRAP

F ,S,Z (κ)
}
κ∈N.

12

3 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time. We specify next the definition of computationally
indistinguishable and statistical distance.

Definition 3.1 Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ’s,∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

Definition 3.2 Let Xκ and Yκ be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

3.1 Pseudorandom Functions

Informally speaking, a pseudorandom function (PRF) is an efficiently computable function that looks like a
truly random function to any PPT observer. Namely,

Definition 3.3 (Pseudorandom function ensemble) Let F = {PRFκ}κ∈N where for every κ, PRFκ :
{0, 1}κ × {0, 1}m → {0, 1}l is an efficiently computable ensemble of keyed functions. We say that F =
{PRFκ}κ∈N is a pseudorandom function ensemble if for every PPT machine D, there exists a negligible
function negl(·) such that for all sufficiently large κ’s,

|Pr[DPRFκ(k,·)(1κ)] = 1− Pr[Dfκ(1κ) = 1]| ≤ negl(κ),

where k is picked uniformly from {0, 1}κ and fκ is chosen uniformly at random from the set of functions
mapping m-bit strings into l-bit strings. We sometimes omit κ from our notation when it is clear from the
context.

3.2 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender S, to commit itself to a value while
keeping it secret from the receiver R (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the
committing phase (this property is called binding). In this work, we consider commitment schemes that are
statistically binding, namely while the hiding property only holds against computationally bounded (non-
uniform) adversaries, the binding property is required to hold against unbounded adversaries. Formally,

13

Definition 3.4 (Commitment schemes) A PPT machine Com = ⟨S,R⟩ is said to be a non-interactive
commitment scheme if the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that the following ensembles are
computationally indistinguishable.

• {ViewR∗
Com(m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

• {ViewR∗
Com(m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where ViewR∗
Com(m, z) denotes the random variable describing the output of R∗ after receiving a

commitment to m using Com.

Statistical binding: For any (computationally unbounded) malicious sender S∗ and auxiliary input z, it
holds that the probability that there exist valid decommitments to two different values for a view v,
generated with an honest receiver while interacting with S∗(z) using Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive perfectly binding commit-
ment schemes can be constructed based on one-way permutation, whereas two-round statistically binding
commitment schemes can be constructed based on one-way functions [Nao91]. To set up some notations,
we let comm ← Com(m; rm) denote a commitment to a message m, where the sender uses uniform ran-
dom coins rm. The decommitment phase consists of the sender sending the decommitment information
decomm = (m, rm) which contains the message m together with the randomness rm. This enables the
receiver to verify whether decomm is consistent with the transcript comm. If so, it outputs m; otherwise
it outputs ⊥. For simplicity of exposition, in the sequel, we will assume that random coins are an implicit
input to the commitment functions, unless specified explicitly.

Definition 3.5 (Trapdoor commitment schemes) Let Com = (S,R) be a statistically binding commitment
scheme. We say that Com is a trapdoor commitment scheme is there exists an expected PPT oracle machine
S = (S1,S2) such that for any PPT R∗ and all m ∈ {0, 1}κ, the output (τ, w) of the following experiments
is computationally indistinguishable:

- an honest sender S interacts with R∗ to commit to m, and then opens the commitment: τ is the view of R∗

in the commit phase, and w is the message S sends in the open phase.

- the simulator S generates a simulated view τ for the commit phase, and then opens the commitment to m
in the open phase: formally (τ, state)← SR∗

1 (1κ), w ← S2(state,m).

3.3 Randomness Extractors

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]).

Definition 3.6 (Extractors) A function Ext : {0, 1}n×{0, 1}t → {0, 1}m is a (k, ε)-strong extractor if for
all pairs of random variables (X, I) such that X ∈ {0, 1}n and H∞(X|I) ≥ k it holds that

SD((Ext(X,S), S, I), (Um, S, I)) ≤ ε,

where S is uniform over {0, 1}t and Um is the uniform distribution over {0, 1}m.

14

The Leftover Hash Lemma shows how to explicitly construct an extractor from a family of pairwise
independent functionsH. The extractor uses a random hash function h← H as its seed and keeps this seed
in the output of the extractor.

Theorem 3.7 (Leftover Hash Lemma) If H = {h : {0, 1}n → {0, 1}m} is a pairwise independent family
where m = n− 2 log 1

ε , then Ext(x, h) = (h, h(x)) is a strong (n, ε)-extractor.

In this work we will consider the case where m = 1 and n ≥ 2κ+ 1 where κ is the security parameter.
This yields ε = 2−

2κ+1−1
2 = 2−κ.

3.4 Hardcore Predicates

Definition 3.8 (Hardcore predicate) Let f : {0, 1}κ → {0, 1}∗ and H : {0, 1}κ → {0, 1} be a polynomial-
time computable functions. We say H is a hardcore predicate of f , if for every PPT machine A, there exists
a negligible function negl(·) such that

Pr[x← {0, 1}κ; y = f(x) : A(1κ, y) = H(x)] ≤ 1

2
+ negl(κ).

An important theorem by Goldreich and Levin [GL89] states that if f is a one-way function over {0, 1}κ
then the one-way function f ′ over {0, 1}2κ, defined by f ′(x, r) = (f(x), r), admits the following hardcore
predicate b(x, r) = ⟨x, r⟩ = Σxiri mod 2, where xi, ri is the ith bit of x, r respectively. In the following,
we refer to this predicate as the GL bit of f . We will use the following theorem that establishes the list-
decoding property of the GL bit.

Theorem 3.9 ([GL89]) There exists a PPT oracle machine Inv that on input (κ, ε) and oracle access to
a predictor PPT B, runs in time poly(κ, 1ε), makes at most O(κ

2

ε2
) queries to B and outputs a list L with

|L| ≤ 4κ
ε2

such that if

Pr[r ← {0, 1}κ : B(r) = ⟨x, r⟩] ≥ 1

2
+

ε

2

then
Pr[L← InvB(κ, ε) : x ∈ L] ≥ 1

2
.

3.5 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of whom in a
sharing phase receive a share (or piece) of the secret. In its simplest form, the goal of secret-sharing is to
allow only subsets of players of size at least t+ 1 to reconstruct the secret. More formally a t+ 1-out-of-n
secret sharing scheme comes with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn
and a reconstruction algorithm that takes as input ((si)i∈S , S) where |S| > t and outputs either a secret s′

or ⊥. In this work, we will use the Shamir’s secret sharing scheme [Sha79] with secrets in F = GF (2κ).
We present the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial f(·) of degree t in the polynomial-field
F[x] with the condition that f(0) = s and output f(1), . . . , f(n).

15

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, compute a
polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange interpolation
where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

We will additionally rely on the following property of secret-sharing schemes. To this end, we view the
Shamir secret-sharing scheme as a linear code generated by the following n× (t+ 1) Vandermonde matrix

A =


1 12 · · · 1t

1 22 · · · 2t

...
...

...
...

1 n2 · · · nt


More formally, the shares of a secret s that are obtained via a polynomial f in the Shamir scheme, can be
obtained by computing Ac where c is the vector containing the coefficients of f . Next, we recall that for any
linear code A, there exists a parity check matrix H of dimension (n− t−1)×n which satisfies the equation
HA = 0(n−t−1)×(t+1), i.e. the all 0’s matrix. We thus define the linear operator ϕ(v) = Hv for any vector
v. Then it holds that any set of shares s is valid if and only if it satisfies the equation ϕ(s) = 0n−t−1.

The authors in [DZ13] were the first to propose an algorithm for verifying membership in (binary) codes,
i.e., verifying the product of Boolean matrices in quadratic time with exponentially small error probability,
while previous methods only achieved constant error.

4 Two-Round Oblivious Transfer in the Stand-Alone Model

4.1 Building Blocks: Commitment Schemes

Trapdoor commitment schemes. A core building block of our protocol is a trapdoor commitment scheme
TCom (cf. Definition 3.5) introduced by Pass and Wee in [PW09]. In Figure 3 we describe their 4-round
trapdoor commitment scheme that is based on one-way permutations. In particular, the protocol comprises a
4-round challenge-response protocol where the receiver commits to its challenge in the first message (using
a non-interactive perfectly binding commitment scheme). The knowledge of the receiver’s challenge enables
the simulator to cheat in the commit phase and equivocate the committed message into any bit (this notion
of “look ahead” trapdoor commitment is borrowed from the area of zero-knowledge proofs).

More specifically, the trapdoor commitment scheme TCom, described in Figure 3, proceeds as follows.
In order to commit to a bit m the sender commits to a matrix M of size 2 × 2, so that m is split into two
shares which are committed within the two rows of M . Next, the receiver sends a challenge bit e where the
sender must open the two commitments that lie in the eth column (and must correspond to the same share
of m, thus it is easy to verify correctness). Later, in the decommit phase the sender opens the values to a
row of his choice enabling the receiver to reconstruct m. Note that if the sender knows the challenge bit
in advance it can commit to two distinct bits by making sure that one of the columns has different bits. In
order to decrease the soundness error this protocol is repeated multiple times in parallel. In this paper we
implement the internal commitment of Pass and Wee using a statistical hiding commitment scheme that is
based on pseudorandom functions; see details below.

16

Non-interactive commitment schemes. Our construction further relies on a non-interactive perfectly
binding commitment scheme that is incorporated inside the sender’s token TKcom

S . Such commitments can
be build based on the existence of one-way permutations. Importantly, it is possible to relax our assumptions
to one-way functions by relying on a two-round statistically binding commitment scheme [Nao91], and al-
lowing the token TKcom

S to take an additional input that will serve as the first message of the commitment
scheme. Overall, that implies that we only need to assume one-way functions. For clarity of presentation,
we use a non-interactive commitment scheme that is based on one-way permutations; see Section 4.2.1 for
more details.

Trapdoor Commitment Scheme TCom [PW09]

The commitment scheme TCom uses a statistically binding commitment scheme Com and runs between
sender S and receiver R.

Input: S holds a message m ∈ {0, 1}.

Commit Phase:

R → S: R chooses a challenge e = e1, . . . , eκ ← {0, 1} and sends the commitment come ←
Com(e) to S.

S→ R: S proceeds as follows:

1. S chooses η1, . . . , ηκ ← {0, 1}κ.
2. For all i ∈ [κ], S commits to the following matrix: com00

ηi
com01

m⊕ηi

com10
ηi

com11
m⊕ηi

 =

 Com(ηi) Com(m⊕ ηi)

Com(ηi) Com(m⊕ ηi)


R→ S: R sends decome of the challenge e = e1, . . . , eκ ← {0, 1} to S.

S→ R: S proceeds as follows:

1. For all i ∈ [κ], S sends the decommitments of the column
(decom0ei

(ei·m)⊕ηi
, decom1ei

(ei·m)⊕ηi
).

2. For all i ∈ [κ], R checks that the decommitments are valid and that decom0ei
(ei·m)⊕ηi

=

decom1ei
(ei·m)⊕ηi

.

Decommit Phase:

1. For all i ∈ [κ], S chooses r = r1, . . . , rκ ← {0, 1} and sends the bit m and the decommit-
ments of the row (decomri0

ηi
, decomri1

ri⊕ηi
).

2. For i ∈ [κ], R checks that the decommitments are valid and that m = decomri0
ηi
⊕decomri1

ri⊕ηi
.

Figure 3: Trapdoor commitment scheme

17

4.2 Our Protocol

We are now ready to introduce our first protocol that securely computes the functionality FOT : ((s0, s1), b)
7→ (⊥, sb) in the plain model, using only two rounds and a one-way tokens transfer phase that involves
sending a set of tokens from the sender to the receiver in one direction. We begin with a protocol that
comprises of three rounds where the first round only transfers tokens from one party and then later modify it
to obtain a two-round protocol where the tokens are reusable and need to be transferred once at the beginning
of the protocol. For simplicity of exposition, in the sequel we will assume that the random coins are an
implicit input to the commitments and the extractor, unless specified explicitly. Informally, in the one-way
tokens transfer phase the sender sends two types of tokens. The PRF tokens {TKPRF,l

S }l∈[4κ2] are used by the
receiver to commit to its input b using the shares {bi}i∈[κ]. Namely, the number of tokens equals 4κ (which
denote the number of tokens per Pass-Wee commitment), times κ which is the number of the receiver’s
input shares. Whereas, the commitment token TKCom

S is used by the receiver to obtain the commitments
of the sender in order to mask the values {(si0, si1)}i∈[κ] which are later used to conceal the sender’s real
inputs to the oblivious transfer. Next, the receiver shares its bit b into b1, . . . , bκ such that b =

⊕κ
i=1 bi

and commits to these shares using the Pass-Wee trapdoor commitment scheme. Importantly, we consider a
slightly variant of the Pass-Wee commitment scheme where we combine the last two steps of the commit
phase with the decommit phase. In particular, the final verification in the commit phase is included as part of
the decommitment phase and incorporated into the sender’s tokens {TKi} that are forwarded in the second
round. The sender further sends the commitments to its inputs s0, s1 computed based on hardcore predicates
for the (s0i , s

1
i) values and a combiner specified as follows. The sender chooses z1, . . . , zκ and ∆ at random,

where
⊕κ

i=1 zi masks s0 and
⊕κ

i=1 zi ⊕ ∆ masks s1. Finally, the sender respectively commits to each zi
and zi ⊕∆ using the hardcore bits computed on the (s0i , s

1
i) values. More precisely, it sends

s′0 = w ⊕ s0 and s′1 = w ⊕∆⊕ s1

∀ i ∈ [κ] w0
i = zi ⊕ H(s0i) and w1

i = zi ⊕∆⊕ H(s1i)

where w =
⊕κ

i=1 zi. If none of the tokens abort, the receiver obtains sbii for all i ∈ [κ] and computes
sb = s′b ⊕ (wb1

1 ⊕H(sb11)) · · · ⊕ (wbκ
κ ⊕H(sbκκ)). If any of the OT tokens, i.e. TKi, aborts then the receiver

assumes a default value for sb.

Remark 4.1 In [GIS+10], it is pointed out by Goyal et al. in Footnote 12 that assuming a default value
in case the token aborts might cause an input-dependent abort. However, this problem arises only in their
protocol as a result of the faulty simulation. In particular, our protocol is not vulnerable to this since
the simulator for a corrupted sender follows the honest receiver’s strategy to extract both the inputs via
(statistical) equivocation. In contrast, the simulation in [GIS+10] runs the honest receiver’s strategy for a
randomly chosen input in a main execution to obtain the (adversarially corrupted) sender’s view and uses a
“receiver-independent” strategy to extract the sender’s inputs. For more details, see Appendix A.

Remark 4.2 In Footnote 10 of [GIS+10], Goyal et al. explain why it is necessary that the receiver run
the token implementing the one-time memory functionality (OTM) in the prescribed round. More precisely,
they provide a scenario where the receiver can violate the security of a larger protocol in the OT-hybrid
by delaying when the token implementing the OTM is executed. Crucial to this attack is the ability of
the receiver to run the OTM token on different inputs. In order to prevent such an attack, the same work
incorporates a mechanism where the receiver is forced to run the token in the prescribed round. We remark

18

here that our protocol is not vulnerable to such an attack. We ensure that there is only one input on which
the receiver can query the OTM token and this invalidates the attack presented in [GIS+10].

Next, we describe our OT protocol ΠOT in theFgWRAP-hybrid with sender S and receiver R. Let (1) Com
be a non-interactive perfectly binding commitment scheme, (2) TCom = {TCmsg1,TCmsg2,TCmsg3}
denote the three messages exchanged in the commit phase of the trapdoor commitment scheme, (3) F, F ′

be two PRF families that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ), respectively (4) H denote
a hardcore bit function and (5) Ext : {0, 1}5κ × {0, 1}d → {0, 1} denote a randomness extractor where
the source has length 5κ and the seed has length d (for simpler exposition we drop the randomness in the
description below).

Protocol 1 Protocol ΠOT - OT with stateless tokens in the plain model.

• Input: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b. The common input is sid.

• The Protocol:

S→ R: The sender creates two sets of tokens as follows and sends them to the receiver.

1. {TKPRF,l
S }l∈[4κ2]: S chooses 4κ2 random PRF keys {γl}l∈[4κ2] for family F . Let PRFγl

: {0, 1}5κ →
{0, 1}κ denote the pseudorandom function. For all l ∈ [4κ2], S creates a token TKPRF,l

S by sending
(Create, sid, S,R,midl,M1) to FgWRAP, that on input (sid, x) outputs PRFγl

(x), where M1 is the
functionality; if sid ̸= sid the token aborts.

2. TKCom
S : S chooses a random PRF′ key γ′ for family F ′. Let PRF′

γ′ : {0, 1}κ → {0, 1}p(κ) denote
the pseudorandom function. S creates token TKCom

S by sending (Create, sid, S,R,midl+1,M2) to
FgWRAP where M2 is the functionality that on input (sid, tcombi , i) proceeds as follows:

– For the case where sid ̸= sid the token aborts;
– If i = 0: compute V = PRF′

γ′(0κ), parse V as e∥r and output come ← Com(e; r).

– Otherwise: compute V = PRF′
γ′(tcombi∥i), parse V as si0∥si1∥r0∥r1, compute comsib

←
Com(sib; rb) for b = {0, 1}, and output comsi0

, comsi1
.

We remark that if V is longer than what is required in either case, we simply truncate it to the
appropriate length.

R→ S:

1. R sends (Run, sid,midl+1, (0
κ, 0)) and receives come and interprets it as TCmsg1.

2. For all i ∈ [κ] and j ∈ [4κ], R sends (Run, sid,mid1l , u
j
i) where uj

i ← {0, 1}5κ and receives
vji = TKPRF,l

S (uj
i) (where l ∈ [4κ2] is an encoding of the pair (i, j)). If the token aborts the receiver

aborts.
3. R chooses κ − 1 random bits b1, . . . , bκ−1 and sets bκ such that b =

⊕κ
i=1 bi. For all i ∈ [κ],

it commits to bi be setting tcombi = (M i
1, . . . ,M

i
κ). In particular, ∀j ∈ [κ] the receiver picks

ηi,j ← {0, 1}κ as per Figure 3 and computes:

M i
j =

 (Ext(u4j−3
i)⊕ ηi,j , v

4j−3
i) (Ext(u4j−1

i)⊕ bi ⊕ ηi,j , v
4j−1
i)

(Ext(u4j−2
i)⊕ ηi,j , v

4j−2
i) (Ext(u4j

i)⊕ bi ⊕ ηi,j , v
4j
i)

 .

4. For all i ∈ [κ], R sends tcombi .

S→ R:

1. S chooses z1, . . . , zκ,∆← {0, 1}, computes w =
⊕κ

i=1 zi and sends s′0 = w⊕s0, s′1 = w⊕∆⊕s1
and {w0

i = zi ⊕ H(s0i), w
1
i = zi ⊕ ∆ ⊕ H(s1i)}i∈[κ] where (s0i , s

1
i) are computed by running the

code of the token TKCom
S on input tcombi∥i.

19

2. S sends TCmsg3 = (e, decome).
3. For all i ∈ [κ], S creates a token TKi by sending (Create, sid, S,R,midl+1+i,M3) to FgWRAP where

M3 implements the following functionality:
On input (sid, bi,TCdecombi):

– For the case where sid ̸= sid the token aborts;
If TCdecombi is verified correctly then output (sib, decomsib

), else output (⊥,⊥)

• Output Phase:

1. For all i ∈ [κ], R sends (Run, sid,midl+1, (tcombi , i)) and receives comsi0
, comsi0

.

2. For all i ∈ [κ], R sends (Run, sid,midl+1+i, (bi,TCdecombi)) and receives (sib, decomsib
). If the decom-

mitments decomsib
and decome are valid, R computes z̃i = H(sib)⊕ wbi

i and sb =
⊕κ

i=1 z̃i ⊕ s′b. If any
of the tokens abort, the receiver sets sb = ⊥, where ⊥ is a default value.

Next, we prove the following theorem,

Theorem 4.1 Assume the existence of one-way permutations, then Protocol 1 securely realizes FOT in the
FgWRAP-hybrid.

Proof overview. On a high-level, when the sender is corrupted the simulator rewinds the adversary in order
to extract both S’s inputs to the OT. Namely, in the first execution simulator S plays the role of the honest
receiver with input 0 and learns the challenge e. It then rewinds the adversary and changes the receiver’s
commitments bi’s in a way that allows equivocating these commitments into both b = 0 and b = 1. Finally,
S queries the tokens {TKi}i∈[κ] twice by communicating with FgWRAP and decommiting into two different
sets of bit-vectors, which allows S to extract both inputs s0 and s1. The security proof follows by exploiting
the trapdoor commitment property, which allows in the simulation to open the commitments of the receiver’s
input shares {bi}i∈[κ] into two distinct bit-vectors that correspond to distinct bits. The indistinguishability
argument asserts that the simulated and real views are statistically close, due to the statistical hiding property
of the commitment scheme that we use within the Pass-Wee trapdoor commitment scheme.

On the other hand, when the receiver is corrupted the simulator extracts its input b based on the first
message and the queries to the tokens. We note that extraction must be carried out carefully, as the receiver
commits to each bit bi using κ matrices and may commit to different bits within each set of matrices (specif-
ically, there may be commitment for which the committed bit is not even well defined). Upon extracting b,
the proof continues by considering a sequence of hybrids where we replace the hardcore bits for the posi-
tions {bi⊕ 1}i∈[κ]. Specifically, these are the positions in which the receiver cannot ask for decommitments
and hence does not learn {sibi⊕1}i∈[κ]. Our proof of indistinguishability relies on the list-decoding ability
of the Goldreich-Levin hardcore predicate (cf. Theorem 3.9), that allows extraction of the input from an
adversary that can guess the hardcore predicate on the input with probability significantly better than a half.

Proof: We consider each corruption case separately. In case the adversary A issues a transfer query
(transfer, ·), S transfers the query to the FgWRAP.

Note that in this protocol there is no need to allow transfer queries to the FgWRAP functionality.

Simulating the corrupted S. Let A be a PPT adversary that corrupts S then we construct a simulator S
as follows,

1. S invokes A on its input and a random string of the appropriate length.

20

2. Adversary A communicates with functionality FgWRAP on behalf of the corrupted party by send-
ing create messages {(Create, sid, S,R,midl,M1)}l∈[4κ2] and (Create, sid, S,R,midl+1,M2). Then
FgWRAP forwards these tokens to the honest party by sending receipt messages {(Receipt, sid, S,R,
midl,M1)}l∈[4κ2] and (Receipt, sid, S,R,midl+1,M2).

3. Upon receiving acknowledgement messages {(Receipt, sid, S,R,midl, ·)}l∈[4κ2+1] that all [4κ2] + 1
tokens have been created by A, S emulates the role of the honest receiver using an input bit b = 0.
If come is decommitted correctly, S stores this value and rewinds the adversary to the first message.
Otherwise, S halts and outputs A’s view thus far, sending (⊥,⊥) to the ideal functionality.

4. S picks two random bit-vectors (b1, . . . , bκ) and (b′1, . . . , b
′
κ) such that

⊕κ
i=1 bi = 0 and

⊕κ
i=1 b

′
i = 1.

Let e = e1, . . . , eκ denote the decommitment of come obained from the previous step. Then, for all
i, j ∈ [κ], S sends matrix M j

i where the eith column is defined by(
(Ext(u4j−3

i)⊕ ηi,j , v4j−3
i)

(Ext(u4j−2
i)⊕ ηi,j , v4j−2

i)

)
whereas the (1− ei)th column is set

w.p.
1

2
to

(
(Ext(u4j−1

i)⊕ ηi,j , v4j−1
i)

(Ext(u4ji)⊕ 1⊕ ηi,j , v4ji)

)
, and

w.p.
1

2
to

(
(Ext(u4j−1

i)⊕ 1⊕ ηi,j , v4j−1
i)

(Ext(u4ji)⊕ ηi,j , v4ji)

)
.

5. Upon receiving the sender’s message the simulator checks if come is decommitted correctly. Oth-
erwise, S rewinds the adversary to before the first message was sent and returns to Step 4. In each
rewinding S uses fresh randomness to generate the receiver’s message. It repeatedly rewinds until the
malicious sender successfully decommits e. If it tries to make more than 2κ/2 attempts, it simply halts
outputting fail.

Next, to extract s0, it decommits to b1, . . . , bn (and to extract s1, it decommits to (b′1, . . . , b
′
n). Recall

that to reveal a commitment to a value bi the simulator decommits that row of the matrix that adds
up to bi. Notice that by out construction, such a row always exists and is either the first row or the
second row with the probability 1/2. We remark here that the simulator S creates the code of the
actual Turing Machine incorporated in the token as opposed to running the token itself. Furthermore,
each of the two extractions start with the Turing Machine in the same start (as opposed to running the
machine in sequence). This is because the code in the malicious token can be stateful and rewinding
it back to the start state prevents stateful behavior. More precisely, the simulator needs to proceed
exactly as the honest receiver would in either case. If for any b ∈ {0, 1} extraction fails for sb, then
following the honest receiver’s strategy the simulator sets sb to the default value ⊥.

6. Finally, S sends (s0, s1) to the trusted party that computesFOT and halts, outputting whateverA does.

We now prove that the sender’s view in both the simulated and real executions is computationally indis-
tinguishable via a sequence of hybrid executions. More formally,

Lemma 4.3 The following two ensembles are computationally indistinguishable,{
IDEALFOT,S(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,b,z∈{0,1}∗

c≈
{

REALFgWRAP

ΠOT,A(z),I(κ, (s0, s1), b)
}
κ∈N,s0,s1,b,z∈{0,1}∗

21

Proof: Roughly speaking, we prove that the joint output distribution of both the receiver and the sender is
computationally indistinguishable. Our proof follows by a sequence of hybrid executions defined below. We
denote by Hybridi

FOT,Si(z),I
(κ, (s0, s1), b) the random variable that corresponds to the simulator’s output

in hybrid execution Hi when running against party Si that plays the role of the receiver according to the
specifications in this hybrid (where S0 refers to the honest real receiver).

Hybrid H0: In the first hybrid, we consider a simulator S0 that receives the real input b of the receiver
and simply follows the protocol as the honest receiver would. Finally, it outputs the view of the
adversary and the receiver’s output as computed in the emulation. It follows from construction that
the distribution of the output of the first hybrid is identical to the real execution.

Hybrid H1: In this hybrid, the simulator S1 receives the real input of the receiver and proceeds as fol-
lows. It first interacts with the adversary with the actual receiver’s input and checks if it successfully
decommits e. If it does not, then the simulator simply outputs the view of the adversary and ⊥ as the
receiver’s output. Otherwise, it proceeds to a rewinding phase. In this phase, it repeatedly rewinds
the adversary to the first message and then samples a new first message by committing to b using
fresh randomness. Specifically, S1 invokes token TKPRF,l

S each time on new random inputs uji (for
all i ∈ [κ], j ∈ [4κ] where l encodes (i, j)), and continues rewinding A until it obtains an interaction
in which the adversary successfully decommits to e again. If the simulation makes more than 2κ/2

rewinding attempts, then it aborts.

We now argue that the view produced in this hybrid is statistically close to the view produced within
the previous hybrid. Observe that if the simulation does not cut off after 2κ/2 attempts, then the view
is identically distributed to the view in H0. Therefore to show that the views are statistically close, it
suffices to prove that the simulation aborts with negligible probability. Let p be the probability with
which the adversary decommits e correctly when the receiver honestly generates a commitment to b.
We consider two cases:

• If p > κ
2κ/2

, then the probability that the simulation takes more than 2κ/2 steps can be computed

as
(
1− κ

2κ/2

)2κ/2
= e−κ and which is negligible in κ.

• If p < κ
2κ/2

, then the probability that the simulation aborts is bounded by the probability that it
proceeds to the rewinding phase which is at most p and hence negligible in κ.

It only remains to argue that the expected running time of the simulation is polynomial. We remark
that this follows from Lemma 4.4 proven in the next hybrid by setting p0 and pb to p.

Hybrid H2: In this hybrid, the simulator S2 proceeds identically to S1 with the exception that in the first
run where the simulator looks for the decommitment of e, it follows the honest receiver’s strategy with
input 0 instead of its real input. Now, since each commitment is generated honestly, it follows from
Lemma 5.1 using an union bound that the first message generated by the receiver with input b and
input 0 are 4κ22−κ−1-close. Moreover, since the only difference in the two hybrids is within the first
message sent by the receiver in the first execution, the following distributions are statistically close.

• {Hybrid1
FOT,S1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

• {Hybrid2
FOT,S2(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

It only remains to argue that the running time of the simulation is still polynomial.

22

Lemma 4.4 The expected running time of S2 is polynomial-time and the probability that S2 aborts is
negligible.

Proof: Let p0 be the probability that adversary successfully decommits to e in the main execution
of hybrid H2 and pb be the probability that the adversary successfully decommits when the receiver’s
commitments are made to the real input b. Now, since the first message of the receiver when the
commitment is made to 0 or b is 2−O(κ)-close, we have that |p0 − pb| < 2−O(κ).

Next, we prove that the expected number of times the simulator runs the execution is

(1− p0)× 1 + p0 ×min
{
2κ/2,

1

pb

}
.

We consider two cases and argue both regarding the running time and abort probability in each case.

• p0 > 2κ2−κ/2: Since |pb − p0| < 2−O(κ), it follows that,

pb > p0 − 2−O(κ) = 2κ2−κ/2 − 2−O(κ) > κ2−κ/2 =
p0
2

Therefore, p0/pb < 2. Now, since min
{
2κ/2, 1

pb

}
= 1

pb
, the expected number of rewinding

attempts is

(1− p0) + p0 ×
1

pb
< 3

which is polynomial.
Next, we argue regarding the abort probability. Specifically, the probability that the number of
attempts exceeds 2κ/2 is given by

(1− pb)
2κ/2 <

(
1− κ

2κ/2

)2κ/2
= O(e−κ).

Therefore, the probability that the simulator aborts is negligible.

• p0 < 2κ2−κ/2: Since min
{
2κ/2, 1

pb

}
= 2κ/2, the expected number of rewinding attempts is

(1− p0) + p0 × 2κ/2 < 1 + 2κ2

which is polynomial.
The abort probability in this case is bounded by p0 which is negligible.

�

Hybrids H3,0 . . . ,H3,κ: We define a collection of hybrid executions such that for every i ∈ [κ] hybrid
H3,i is defined as follows. Assume that (b1, . . . , bκ) correspond to the bit-vector for the real input of
the receiver b. Then in H3,i, the first i commitments are computed as in the simulation (i.e. equiv-
ocated using the trapdoor e), whereas the remaining κ − i commitments are set as commitments of
bi+1, . . . , bκ as in the real execution. Note that hybrid H3,0 is identical to hybrid H2 and that the differ-
ence between every two consecutive hybrids H3,i−1 and H3,i is regarding the way the ith commitment
is computed, which is either a commitment to bi computed honestly in the former hybrid, or equivo-
cated using the trapdoor in the latter hybrid. Indistinguishability of H3,i and H3,i−1 follows similarly
to the indistinguishability argument of H1 and H2, as the only difference is in how the unopened
commitments are generated. Therefore, we have the following lemma.

23

Claim 4.5 For every i ∈ [κ],

{Hybrid1,i−1
FOT,S1,i−1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
s≈ {Hybrid1,i

FOT,S1,i(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Note that the proof regarding the expected running time of the simulator is identical to the proof of
Lemma 4.4.

IDEAL: In this hybrid, we consider the actual simulator. First, we observe that the view of the adversary
output by S3,κ in H3,κ is independent of the receiver’s real input b. This is because in H3,κ, all
commitments are computed in an equivocation mode, where the real input b of the receiver is used
only after the view of the adversary is generated. More precisely, only after S3,κ obtains a second
view on which the adversary successfully decommits to e, does it use the tokens to extract sb by
decommitting the equivocal commitments to b1, . . . , bn such that

⊕
i bi = b. In fact, since in the

rewinding phase all the commitments are equivocated, the bi’s themselves can also be sampled after
the view of the adversary is generated.

Next, we observe that the actual simulator proceeds exactly as S3,κ with the exception that it commu-
nicates with FgWRAP in order to run the tokens twice after the adversary’s view is obtained and the
rewinding phase is completed. Namely, it asks FgWRAP to run the token once with a vector of bi’s
that add up to 0 in order to obtain s0, then rewinds the tokens back to the original state and runs them
another time with a vector of b′i’s that add up to 1 in order to extract s1. (s0, s1) are then fed to the
ideal functionality. Recall that S3,κ on the other hand, runs the tokens only once for the actual re-
ceiver’s input b. Now, since the view of the adversary in H3,κ and IDEAL are identically distributed,
it follows that the value extracted for sb in H3,κ is identically distributed to sb in the ideal execution
for both b = 0 and b = 1. Therefore, we can conclude that the output of the simulator in H3,κ and the
joint output of the simulator and honest receiver the ideal execution, are identically distributed.

Claim 4.6 The following two ensembles are identical,

{Hybrid3,κ
FOT,S1,i(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

≈
{

IDEALFOT,S(z),I(κ, (s0, s1), b)
}
κ∈N,s0,s1,b,z∈{0,1}∗

Simulating the corrupted R. Let A be a PPT adversary that corrupts R then we construct a simulator S
as follows,

1. S invokes A on its input and a random string of the appropriate length.

2. S communicates withFgWRAP on behalf of the honest party by sending create messages {(Create, sid, S,R,
midl,M1)}l∈[4κ2] and (Create, sid, S,R,midl+1,M2), where the code M1 implements truly random
functions (that is, M1 is encoded with a lookup table that includes some polynomial number of queries
bounded by the running time of the adversary). ThenFgWRAP forwards these tokens by sending receipt
messages {(Receipt, sid, S,R,midl,M1)}l∈[4κ2] and (Receipt, sid, S,R,midl+1,M2) to A. For each
query u ∈ {0, 1}5κ made by A to token TKPRF,l

S , functionality FgWRAP runs M1 on that query and
returns a random v from {0, 1}κ. Similarly, M2 implements a random function that maps elements
from {0, 1}κ → {0, 1}p(κ).

24

3. Next, S retrievesA queries for session sid fromFgWRAP by sending a (retreive, sid) message receiving
the list Qsid. S splits the set of receiver’s queries (tcomb, i

∗) to the token TKCom
S (that were further

part of the adversary’s message), and adds them either to the “valid” set ICom or “invalid” set JCom.
More formally, let T = q(κ) denote the number of times the token TKCom

S is queried by R for some
polynomial q. For each query (tcomb, i

∗), we say that the query is valid if and only if there exist
values {(βt

i , u
t
i, v

t
i)}i∈[κ],t∈[4κ] such that tcombi = (M i

1, . . . ,M
i
κ), ∀i, j ∈ [κ],

M i
j =

 β4j−3
i , v4j−3

i β4j−1
i , v4j−1

i

β4j−2
i , v4j−2

i β4j
i , v4ji


and, for every i ∈ [κ], t ∈ [4κ], the query/answer pair (uti, v

t
i) has already been recorded as a query to

the corresponding PRF token. Next, for every valid query, the simulator tries to extract the committed
value. This it done by first computing

γj00 = β4j−3
i ⊕ Ext(u4j−3

i) γj01 = β4j−1
i ⊕ Ext(u4j−1

i)

γj10 = β4j−2
i ⊕ Ext(u4j−2

i) γj11 = β4j
i ⊕ Ext(u4ji).

Next it marks the indices j for which γj00 = γj10 and γj01 = γj11. Moreover, for the marked indices
it computes γj = γj00 ⊕ γj01. If there are at least more than half the indices that are marked and are
commitments to the same value, say γ then (tcomb, i

∗, γ) is added to ICom. Otherwise (tcomb, i
∗,⊥)

is added to JCom.

Next, S computes b =
⊕κ

i=1 bi and sends b to the trusted party that computes FOT. Upon receiving
sb, S picks a random sb⊕1 from the appropriate domain and completes the execution by playing the
role of the honest sender on these two inputs.

We now prove that the receiver’s view in both the simulated and real executions is computationally
indistinguishable via a sequence of hybrid executions. More formally,

Lemma 4.7 The following two ensembles are computationally indistinguishable,{
IDEALFOT,S(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,b,z∈{0,1}∗

c≈
{

REALFgWRAP

Π,A(z),I(κ, (s0, s1), b)
}
κ∈N,s0,s1,,bz∈{0,1}∗

Proof: Roughly speaking, we prove that the join output distribution of both the receiver and the sender is
computationally indistinguishable. Now, since only the receiver (which is the corrupted party) has an input,
the proof boils down to proving that the receiver’s view is indistinguishable in both executions. Our proof
follows by a sequence of hybrid executions defined below. We denote by Hybridi

FOT,Si(z),I
(κ, (s0, s1), b)

the random variable that corresponds to the adversary’s view in hybrid execution Hi when running against
party Si that plays the role of the sender according to the specifications in this hybrid (where S0 refers to the
honest real sender).

Hybrid H0: The first hybrid execution is the real execution.

HybridsH1,0 . . . ,H1,4κ2 : We define a collection of hybrid executions such that for every l ∈ [4κ2] hybrid
H1,l is defined as follows. We modify the code of token TKPRF,l

S by replacing the function PRFγl with
a truly random function fl. In particular, given a query u the token responds with a randomly chosen
κ bit string v, rather than running the original code of M1. We maintain a list of A’s queries and

25

responses so that repeated queries will be consistently answered. In addition, the code of token TKi

is modified so that it verifies the decommitment against the random functions fl as opposed to the
PRF functions previously embedded in TKPRF,l

S . It is simple to verify that the adversary’s view in
every two consecutive hybrid executions is computationally indistinguishable due to the security of
the pseudorandom function PRFγl . Moreover, since the PRF key is hidden from the receiver, it follows
from the pseudorandomness property that the views in every two consecutive hybrid executions are
computationally indistinguishable. More formally, we have the following lemma.

Claim 4.8 For every l ∈ [4κ2],

{Hybrid1,l−1
FOT,S0(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c≈ {Hybrid1,l

FOT,S1(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Hybrid H2: Similarly, we consider a hybrid execution for which the code of token TKCom
S is modified so

that it makes use of a truly random function f ′ rather than a pseudorandom function PRFγ′ . Just as in
the previous hybrid, we have the following Lemma.

Claim 4.9

{Hybrid1
FOT,S1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c≈ {Hybrid2

FOT,S2(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Hybrids H3,0 . . . ,H3,4κ2 : This sequence of hybrids executions is identical to hybrid H2 except that here
we ensure that no two queries made by A to the token TKPRF,l

S have the same response. Specifically,
in case of a collision simulator S3,l aborts.

Claim 4.10 For every l ∈ [4κ2],

{Hybrid3,l−1
FOT,S2(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
s
≈ {Hybrid3,l

FOT,S3(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Proof: As we replaced PRF functions to truly random functions, we have that the probability the
simulation aborts in H3,l is at most the probability of finding a collision for a random function. To
prove statistical indistinguishability it suffices to show that this probability is negligible. More for-
mally, if the adversary makes a total of Q queries to both tokens, then the probability that any pair of
queries yields a collision can be bounded by

(
Q
2

)
2−ℓ where ℓ is the minimum length of the outputs of

all random functions. In our case this is κ and hence the probability that the simulator aborts in every
hybrid is negligible. �

Hybrid H4: In this hybrid execution, simulator S4 plays the role of the sender as in hybrid H3 except
that it extracts the adversary’s input bit b as carried out in the simulation by S. First, we observe that
for any i ∈ [κ] and t ∈ [4κ], the probability that the receiver reveals a valid pre-image uti for vti for
which there does not exists a query/answer pair (uti, v

t
i) collected by the simulator is exponentially

26

small since we rely on truly random functions in this hybrid. Therefore, except with negligible prob-
ability, the receiver will be able to decommit only to γj00, γ

j
01, γ

j
10, γ

j
11 as extracted by the simulator.

Consequently, using the soundness of the Pass-Wee trapdoor commitment scheme, it follows that the
receiver can only decommit to bi and b as extracted by the simulator. Therefore, we can conclude that
the probability that a malicious receiver can equivocate the commitment tcombi is negligible. The
above does not make any difference to the receiver’s view which implies that,

Claim 4.11

{Hybrid3
FOT,S3(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

≈ {Hybrid4
FOT,S4(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Moreover, recall that extraction is straight-line, thus the simulator still runs in strict polynomial-time.

Hybrids H5,0, H̃5,0, . . . ,H5,κ, H̃5,κ: Let tcombi be the ith commitment sent to S in the first message.
Then H5,i proceeds identically to H̃5,i−1, whereas H̃5,i proceeds identically to H5,i, with the following
exceptions:

• If there exists a tuple (tcombi , i, γ) in ICom, then in experiment H5,i, H(siγ⊕1) is replaced by a
random bit in the second message fed to the adversary.

• If there exists a tuple (tcombi , i,⊥) in JCom, then in experiment H5,i, H(si0) is replaced by a
random bit in the second message fed to the adversary.

• If there exists a tuple (tcombi , i,⊥) in JCom, then in experiment H̃5,i, H(si1) is replaced by a
random bit in the second message fed to the adversary.

Note that hybrid H5,0 is identical to hybrid H4 and that the difference between every pair of consecu-
tive hybrids H5,i−1 and H5,i is with respect to H(sibi⊕1) in case i ∈ [|ICom|] or (H(si0),H(s

i
1)) in case

i ∈ [|JCom|], that are replaced with a random bit in H5,i. We now prove the following.

Claim 4.12 For every i ∈ [κ],

{H̃ybrid
5,i−1

FOT,S5,i−1(z),I(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c≈ {Hybrid5,i

FOT,S5,i(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

and

{Hybrid5,i
FOT,S5,i−1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c≈ {H̃ybrid

5,i

FOT,S5,i(z),I(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Proof: Intuitively, the indistinguishability of any pair of hybrids follows from the computational
hiding property of the commitment scheme Com and the binding property of tcombi . Assume for

contradiction, that there exists i ∈ [κ] for which hybrids H̃ybrid
5,i−1

and Hybrid5,i are distin-
guishable by a PPT distinguisher D with probability ε.

27

If there exists a tuple (tcombi , i, γ) ∈ ICom then define b∗ = 1⊕ γ, otherwise define b∗ = 0. Then, it
follows that the only difference between hybrids H̃5,i−1 and H5,i is that H(sib∗) is computed correctly
in H̃5,i−1 while replaced with a random bit in H5,i. Next, we show how to build an adversary ACom

that on input a commitment Com(s) identifies H(s) with probability non-negligibly better than 1
2 +

ε
2 .

Then using the Goldreich-Levin Theorem (Theorem 3.9), it follows that we can extract value sib∗ and
this violates the hiding property of the commitment scheme Com.

More formally, consider ACom that receives as input a commitment to a randomly chosen string s,
namely Com(s). ACom internally incorporates the adversary ACom and emulates the experiment H̃5,i

with the exception that in place of Com(sib∗), ACom instead feeds Com(s) and replaces H(sib∗) with a
uniformly chosen bit, say b̃. Finally, it feeds the output of the hybrid experiment conducted internally,
namely, the view of the adversary to D, and computes an output based on D’s output g as follows:

• If g = 1, then ACom outputs the value for b̃ as the prediction for H(s), and outputs 1 − b̃
otherwise.

Denote by H5,i the experiment that proceeds identically to H̃5,i with the exception that, in place of
H(sib∗) we feed 1 ⊕ H(sib∗), namely the complement of the value of the hardcore predicate. Let
Hybrid

5,i
denote the distribution of the view of the adversary in this hybrid. It now follows that

ε <
∣∣∣Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]− Pr[(v, sb)← Hybrid5,i : D(v) = 1]

∣∣∣
=
∣∣∣Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]

− 1

2

(
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1] + Pr[(v, sb)← Hybrid

5,i
: D(v) = 1]

)∣∣∣
=

1

2

∣∣∣Pr[(v, sb)← H̃ybrid
5,i

: D(v) = 1]− Pr[(v, sb)← Hybrid
5,i

: D(v) = 1]
∣∣∣.

Without loss of generality we can assume that,7

1

2

(
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]− Pr[(v, sb)← Hybrid

5,i
: D(v) = 1]

)
> ε

Therefore,

1

2

(
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]− (1− Pr[(v, sb)← Hybrid

5,i
: D(v) = 0)]

)
> ε

i.e.,
1

2
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1] +

1

2
Pr[(v, sb)← Hybrid

5,i
: D(v) = 0)] >

1

2
+ ε

i.e.,Pr[β ← {0, 1} : (v, s)← Hb : D(v) = b] >
1

2
+ ε

where H0 = Hybrid
5,i

and H1 = H̃ybrid
5,i

. We now observe that sampling from Hb where b
is uniformly chosen is equivalent to sampling from H5,i. Therefore, since ACom internally emulates
H5,i by selecting b̃ at random and the distinguisher identifies precisely if this bit b̃ came from H0 or
H1 correctly, we can conclude that b̃ is the value of the hardcore bit when it comes from H0 and the
complement of b̃ when it comes from H1. Therefore, ACom guesses H(s) correctly with probability

7Otherwise, we can replace D with another distinguisher that flips D’s output.

28

1
2+ε. Using the list-decoding algorithm of Goldreich-Leving hardcore-predicate (cf. Theorem 3.9), it
follows the such an adversary can be used to extract s thereby contradicting the computational hiding
property of the Com scheme.

We remark that proving indistinguishability of Hybrid5,i and H̃ybrid
5,i

follows analogously and
this concludes the proof of the Lemma. �

Hybrids H6: In this hybrid execution simulator S5 does not know the sender’s inputs (s0, s1), but rather
communicates with a trusted party that computes FOT. S6 behaves exactly as S5,κ except that when
extracting the bit b it sends it to the trusted party, which returns sb. Moreover, S6 uses a random
value for sb⊕1. We argue that hybrids S5,κ and S6 are identically distributed as the set {wi

b⊕1}i∈[κ] is
independent of {sibi⊕1}i∈[κ].

Claim 4.13

{Hybrid5,κ
FOT,S5,κ(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

≈ {Hybrid5
FOT,S6(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Proof: Following from the fact that H(sibi⊕1) is replaced with a random bit for all i ∈ [κ], it must
hold that the values w1⊕bi

i are random as well as these values are masked using random independent
bits instead of the set {H(sibi⊕1)}i∈[κ]. As a result, these values contribute to a random value sb⊕1.
In addition, we claim that the adversary can only learn sb where b is the bit extracted by S6. This
is because A can only invoke token TKi on the commitment combi , for which is can only open in a
single specific way. �
Finally, note that hybrid H6 is identical to the simulation described above, which concludes the proof.

4.2.1 Relaxing to One-Way Functions

In our construction we rely on one-way permutations for a non-interactive perfectly binding commitment
scheme. Recall that, the TKCom on input (·, 0) is required to output a commitment to the challenge e and
else commitments to the si0, s

i
1’s values. To relax this assumption to one-way functions, we instead need to

rely on the two-message Naor’s statistically binding commitment scheme [Nao91] where the receiver sends
the first message. Instead of communicating this message to the sender, the receiver directly feeds it to
the token as input. More precisely, let Ĉom(m; r,R) denote the honest committer’s strategy function that
responds according to Naor’s commitment with input message m and random tape r, where the receiver’s
first message is R. We make the following modification and incorporate the following functionality: On
input (tcombi , i, R0, R1) proceed as follows:

• If i = 0: compute V = PRF′γ′(0κ∥R0∥R1), parse V as e∥r and output come ← Ĉom(e; r,R0).

• Otherwise: compute V = PRF′γ′(tcombi∥i∥R0∥R1), parse V as si0∥si1∥r0∥r1, compute comsib
←

Ĉom(sib; rb, Rb) for b = {0, 1}, and output comsi0
, comsi1

.

29

Finally, along with the first message sent by the receiver to the sender, it produces R0, R1, the first messages
corresponding to the commitments made so that the sender can reconstruct the values being committed to
(using the same PRF function). We note that two issues arise when proving security using the modified
token’s functionality.

1. The first messages for the Naor commitment used when querying the token might not be the same
as the one produced in the first message by the receiver. In this case, by the pseudorandomness
property of the PRF it follows that the values for these commitments computed by the sender will
be independent of the commitments received from the token by the receiver. Hence, the statistically-
hiding property of the values used by the sender will not be violated.

2. The binding property of the commitment scheme is only statistical (as opposed to perfect). This will
affect the failure probability of the simulator when extracting the sender’s input only by a negligible
amount and can be bounded overall by incorporating a union bound argument.

4.3 Reusability of Tokens

Following the work of Choi et al. [CKS+14], we investigate the possibility of exchanging tokens just once
and (re-)using the tokens for an unbounded number of oblivious transfers. Namely, we extend our protocol
from the previous section to achieve limited concurrency, namely sequential and parallel composition. Note
that we still maintain that the tokens are created only by one party. We remark that this gets around the
barrier of [CKS+14] as we do not achieve full concurrent (i.e. UC)-security. More precisely, we show
how the same set of tokens can be used to execute an arbitrary number of oblivious transfers. Towards
achieving this, we show that it is possible to exchange all tokens at the beginning of the protocol. Analogous
to [PVW08], we consider the multi-session extension F̂OT of the OT functionality which on a high-level
enables arbitrary number of independent executions of FOT and coordinates interactions with every pair of
parties via subsessions specified by the identifier ssid of a single session with identifier sid.

Recall that the sender sends three sets of tokens: PRF and commitment tokens in the first message and
OT tokens in the second message whose codes depend on the first message of the receiver. We handle each
of these sets in a different way.

Handling the OT tokens. Recall that these tokens are generated after receiving the receiver’s message of
the protocol. Then in order to generate them independently of this message, we will rely on digital signa-
tures. A similar approach was pursued in the work of [CKS+14] where digital signatures, which require
an additional property of unique signatures, are employed. Recall that a signature scheme (Gen, Sig,Ver)
is said to be unique if for every verification key vk and every message m, there exists only one signature σ
for which Vervk(m,σ) = 1. Such signature schemes can be constructed based on specific number theoretic
assumptions [DY05]. In this paper we take a different approach and rely only on one-way functions. For
simplicity we provide a construction based on non-interactive perfectly binding commitment schemes that,
in turn, can be based on one-way permutations. By relying on techniques described in Section 4.2.1 we can
relax this assumption to one-way functions.

Our main idea is to rely on an instantiation of Lamport’s one-time signature scheme [Lam79] with a non-
interactive perfectly binding commitment scheme Com (instead of one-way functions), which additionally
has the uniqueness property as in [CKS+14]. In the following, we consider the setting where a sender S and
a receiver R engage in several oblivious transfer instantiations concurrently. We will identify every session
with the identifier ssid. On a high-level, for every OT instance identified by ssid we generate a one-time

30

signature/verification key pair by applying a PRF on τ = sid∥ssid∥combj∥j where combj is the receiver’s
jth commitment to its input’s share for that instance. Then the receiver is allowed to query the OT token TKj

only if it possesses a valid signature corresponding to its commitment combj for that instance. Now, since
the signatures are unique, the signatures themselves do not carry any additional information. To conclude,
we use the same protocol as described in the previous section with the following change:

• S provides a signature of combj for every j, under key skτ for τ = sid∥ssid∥combi∥i, along with its
second message to the receiver.

Similarly, we handle the commitments comci and tokens T̂Ki.
We further note that since the tokens are sent prior to the protocol execution, we use an additional PRF

key in order to sample the random strings x0, x1, for which the OT tokens use in order to decommit to their
shares. Specifically, the OT tokens will generate this pair of strings by applying a PRF on an input sid∥ssid.

Handling the PRF tokens. To reduce the number of PRF tokens we must ensure that the sender cannot
create stateful tokens that encode information about the PRF queries. Indeed, such as attack can be carried
out once the PRF tokens are being reused. For instance, the token can split two queries into five strings and
return them as the responses for 10 subsequent queries. Since the output of the PRF queries are relayed to
sender, the sender will be able to recover the first query and this violates the min-entropy argument required
to prove that the commitments are statistically hiding. On a high-level, we get around this by requiring
the sender send 2κ (identical) tokens that compute the same PRF functionality. Then, for each query, the
receiver picks a subset of κ tokens to be queried and verifies that it received the same outcome from any
token in that subset. In case any one of the tokens abort or the outcomes are not identical, the receiver aborts.
Security is then shown by proving that for any query u, the high min entropy of its outcome v is maintained
even conditioned on subsequent queries. Namely, we extend the proof of Lemma 5.1, and prove that with
overwhelming probability, there are sufficiently many preimages for v (namely 22κ+1) even conditioned
on all subsequent queries. Intuitively, this follows because with overwhelming probability any two token
queries are associated with two distinct tokens subsets.8 The rest of the proof against a corrupted sender
follows similarly to the proof of Theorem 4.1.

Lemma 4.14 (Lemma 5.1 restated) For any i ∈ [κ], let Db denote the distribution obtained by sampling a
random combi with bi = b. Then D0 and D1 are 2−κ+1-close.

Proof: We continue with the formal proof of the extended Lemma 5.1. Specifically, instead of having
the sender send 4κ2 tokens that independently implement the PRF, we will require the sender to send 2κ
tokens implementing the same PRF functionality for each commitment, in order to implement a simple
cut-and-choose strategy. In all, the sender sends 4κ2 × 2κ = 8κ3 tokens.

Namely, for each of the 4κ2 commitments, we modify the receiver’s algorithm as follows: let the 2κ to-
kens (allegedly) implementing a particular PRF to be used for some commitment be TK0

1,TK
1
1, . . . ,TK

0
κ,TK

1
κ.

Then the receiver picks a uniformly sampled u and proceeds as follows:

1. Pick κ random bits h1, . . . , hk.

2. For every i ∈ [κ], run TKhi
i on input u. If all tokens do not output the same value the receiver halts.

8We wish to acknowledge that our approach is inspired by the communication exchanged with the authors of the [GIS+10]
paper while communicating their fix to the issue we found in their paper.

31

3. Commit by running an extractor on u as described Protocol 2.

For a given malicious sender S∗, let there be at most T = poly(k) sequential sessions in all and let
(U1, V1), . . . , (UT , VT) be the random variables representing the (query/answer) pair for this PRF in the T
sessions, where Vi (and subsequent values) is set to ⊥ if the token aborts or all tokens do not give consistent
answers on query Ui. In Lemma 5.1, it suffices to prove that for any i, with high probability the min-entropy
of Ui conditioned on (U1, . . . , Ui−1, Ui+1, . . . , UT , V1, , VT) is at least 2κ+ 1. Since Uj for j ̸= i are each
independently sampled by the receiver, we can fix their values to arbitrary strings. Therefore, it suffices to
show that for any sequence of values u1, . . . , ui−1, ui+1, . . . , uT with high probability the min-entropy of
Ui conditioned on (V1, . . . , VT and Uj = uj for j ̸= i) is at least 2κ+ 1.

Denote by the event Good if there exist no two queries picked by the receiver for which the same values
for h1, . . . , hk in Step 1 are chosen. Using a union bound, except with probability

(
T
2

)
1
2κ , and therefore with

negligible probability, Good holds. Since Good holds except with negligible probability, it suffices to prove
our claim when Good holds. Let u∗ be such that some token in session i returns vi where the input sequence
is u1, . . . , ui−1, u

∗. Then the two sequences u1, . . . , ui−1, ui, . . . , uT and u1, . . . , ui−1, u
∗, . . . , uT will

result in the same sequence of responses (until either some token aborts or some token gives an inconsistent
answer). This is because, since Good holds, for every j > i, uj is queried on at least one token (among the
2κ tokens implementing the PRF) that was not queried in session i and therefore will behave independently
from the query made in session i. In particular this means that a consistent response for uj for any j > i
must be identical for sequences u1, . . . , ui−1, ui, . . . , uT and u1, . . . , ui−1, u

∗, . . . , uT or must result in a
premature abort in one of the sequences. It therefore suffices to show that there are sufficiently many u∗

values for which the same sequence of responses are obtained and if the receiver aborts, it aborts in the same
session for the sequences corresponding to ui and u∗.

Following Lemma 5.1 we have that except with probability 1/2κ, there is a set SVi of size at least
24κ

2
possible values for u such that on input sequence beginning with u1, . . . , ui−1, u, the token will re-

spond with Vi in session i. Let Ai, Ai+1, . . . , AT be subsets of SVi such that u ∈ Aj if on input sequence
u1, . . . , ui−1, u

∗, . . . , uT , the receiver aborts during session j. Let AT+1 ⊆ SVi be those u on which the re-
ceiver does not abort at all. Note that the Aj’s form a partition of SVi . To argue the claim, it suffices to show
that with high probability Ui belongs to Aj such that |Aj | > 22k+1. More formally, we bound the number of
“bad” u’s, namely u ∈ SVi such that u belongs to Aj and |Aj | < 22k+1. Since there are at most T + 1 sets
in all, the number of such queries is at most 22k+1× (T +1). Furthermore, one these queries will be chosen
with probability at most 22κ+1 × T/|SVj | which is at most T/2κ−1 since |SVj | > 24κ

2
. This is negligible.

Therefore, it holds that, except with negligible probability, Ui belongs to Aj such that |Aj | > 22k+1 and this
concludes the proof of the Lemma.

Handling commitment tokens. As discussed in the beginning of the section, our main idea is to rely on
an instantiation of Lamport’s one-time signature scheme [Lam79] with Com (instead of one-way functions),
which additionally has the uniqueness property as in [CKS+14]. As mentioned above, we will identify every
session by two quantifiers (sid, ssid) where sid is the sequential session identifier and ssid is the parallel
session identifier.

Following these modifications we can allow for the tokens to be created in a setup phase only once and
then used an arbitrary number of times. We exchange the following tokens in an initial setup phase. As in
the previous protocol ΠOT, we additionally rely on a non-interactive perfectly binding commitment scheme
Com and PRFs F, F ′. In more details,

32

A Signature Token TKSIG
S : S chooses a PRF key γ for a PRF family PRF′γ : {0, 1}∗ → {0, 1}κ. Let

τ = sid∥ssid∥com∥i then compute V = PRF′γ(τ) and output

vkτ =

(
Com(x01; r

0
1) · · · Com(x0κ+1; r

0
κ+1)

Com(x11, r
1
1) · · · Com(x1κ+1; , r

1
κ+1)

)
where V is parsed as (xbℓ)b∈{0,1},ℓ∈[κ+1]∥(rbℓ)b∈{0,1},ℓ∈[κ+1].

Then S creates token TKSIG
S by sending (Create, sid, ssid,R, S,mid1,M1), that on input sid∥ssid∥com∥i

outputs vk, where M1 is the above functionality.
Next, consider the following modified tokens.

1. {TK0
1j ,TK

1
1j , . . . ,TK

0
κj
,TK1

κj
}j∈[4κ2]: S chooses 8κ3 random PRF keys {γl}l∈[8κ3] for family F . Let

PRFγl : {0, 1}5κ → {0, 1}κ denote the pseudorandom function. S creates these tokens by sending
{Create, sid, ssid,R, S,midl,M2}l∈[8κ3] to R where M1 is the machine that on input (sid, ssid, x),
outputs PRFγl(sid∥ssid∥x).

2. TKCom
S : S chooses a random PRF′ key γ′ for family F ′. Let PRF′γ′ : {0, 1}κ → {0, 1}p(κ) denote

the pseudorandom function. S creates token TKCom
S by sending (Create, sid, ssid,R,S,midl+1,M3)

to FgWRAP where M2 is the machine that on input (sid, ssid, tcombi , i) does the following:

• If i = 0: Compute V = PRF′γ′(sid∥0κ). Then, parse V as e∥r and output come ← Com(e; r).

• Otherwise: Let τ = sid∥ssid∥tcombi∥i. Compute V = PRF′γ′(τ). Then output

(comsi0
, comsi1

), vkτ =

(
Com(x01; r

0
1) · · · Com(x0κ+1; r

0
κ+1)

Com(x01, r
0
1) · · · Com(x0κ+1; , r

1
κ+1)

)
where V is parsed as si0∥si1∥r0∥r1∥(xbℓ)b∈{0,1},ℓ∈[κ+1]∥(rbℓ)b∈{0,1},ℓ∈[κ+1] and comsib

← Com(sib; rb)

for b = {0, 1}.

3. TKi: For all i ∈ [κ], S creates a token TKi by sending (Create, sid, ssid,R, S,midl+1+i,M4) to
FgWRAP where M4 is defined as follows given input (σ, sid, ssid, i, bi, tcombi ,TCdecombi):

Check 1: TCdecombi is a valid decommitment of tcombi to bi.

Check 2: σ is (the unique) valid signature of tcombi corresponding to the verification key vkτ , where
vkτ is the key generated by querying TKCom

S where τ = sid∥ssid∥tcombi∥i.

If both the checks pass then output (sib, decomsib
), otherwise output (⊥,⊥).

Furthermore, we use the same protocol as described in the previous section with the following two
changes:

• R sends all the verification keys vkτ along with its first message.

• S verifies whether the verification keys correctly correspond to the commitments tcombi and then
provides a signature of tcombi for every i, under key skτ for τ = sid∥ssid∥tcombi∥i, along with its
second message to the receiver.

33

Proof Sketch: We briefly highlight the differences in the proof for the modified protocol.

Sender corruption. The simulator proceeds in stages, a stage for each sid ∈ [q2(n)]. In Stage sid, the
simulation proceeds as in the previous protocol ΠOT. Recall first that the simulation for that protocol
extracts e in a first run and then uses e to equivocate the receiver’s commitments. We will employ the
same strategy here, with the exception that the simulator extracts esid,ssid simultaneously in the first
run for every ssid ∈ [q1(n)] (namely, for all parallel sessions), as there are q1(n) parallel sessions. We
remark that in the extraction phase we rely heavily on the fact that these sessions are run in parallel.
Then in the rewound executions, the simulator equivocates the receiver’s commitments accordingly.
In addition, the simulator produces all signatures for the second message honestly. Indistinguishability
follows essentially as before. We remark that since the signatures are unique given the verification
key, the signatures do not carry any additional information beyond the message.

On a high-level, we rely on the same sequence of hybrids as in the previous protocol ΠOT, once for
each simulation stage. Below are the changes to the hybrids for each stage:

1. In Hybrid H1, the simulator proceeds exactly as S1, with the exception that it extracts all the
trapdoors esid,ssid simultaneously.

2. In Hybrid H2, the simulation proceeds as the previous hybrid with the exception that it honestly
commits to the receiver’s input as 0 in all parallel sessions in the first run.

3. Instead of the κ+1 hybrids H3,0, . . . ,H3,κ used in the previous protocol ΠOT in order to replace
the receiver’s commitments from being honestly generated to equivocal commitments using the
trapdoor, we consider q1(n)× κ hybrids for the q1(n) parallel OT sessions.

4. Finally, in Hybrid H4, the simulation proceeds analogously with the exception that it extracts
the sender’s input in all q1(n) sessions simultaneously.

Receiver corruption. The simulator proceeds in stages, a stage for each sid ∈ [q2(n)], where in each stage
the simulation proceeds similarly to the simulation of the previous protocol ΠOT. Recall first that
the simulation for ΠOT retrieves all the queries made to both the tokens. Then upon receiving the
first message, these queries are used for extracting the receiver’s input. We will employ the same
strategy here, with the exception that for every parallel session with identifier ssid ∈ [q1(n)] the
simulator extracts the receiver’s input simultaneously. As for the second message, the simulator acts
analogously to our previous simulation for each parallel session.

To argue indistinguishability, we consider a sequence of hybrids executions, once for each sequential
session analogous to the modifications for the sender corruption. First, from the unforgeability of the
one-time signature scheme we conclude that the malicious receiver cannot make bad queries to the
OT token. More formally, in Hybrid H4 corresponding to every sequential session, we argue from the
unforgeability of the signature scheme that a receiver queries the OT token on an input

(σ, sid, ssid, i, bi, tcombi ,TCdecombi)

only if it requested a query (sid, ssid, tcombi , i) to TKCom
S and sent tcombi in the ith coordinate for that

session as part of its first message to the sender. This will allow us to combine with the argument made
in Hybrid 4 of Lemma 4.7 to conclude that there is at most one value of bi for which it can make the
query (σ, sid, ssid, i, bi, tcombi ,TCdecombi) to tokens {TKij}j∈[4κ]. Next, for each parallel session,
we include hybrids between H5 and H6, one for each of the sender’s inputs in each parallel sessions
that the receiver cannot obtain and indistinguishability follows analogous to proof of Lemma 4.10.

34

5 Two-Round Token-Based GUC Oblivious Transfer

In this section we present our main protocol that implements GUC OT in two rounds. We first construct a
three-round protocol and then show in Section 5.3, similarly to Section 4.3, how to obtain a two-round pro-
tocol by exchanging tokens just once in a setup phase. Recall that the counter example to the [GIS+10]
protocol shows that directly extracting the sender’s inputs does not necessarily allow us to extract the
sender’s inputs correctly, as the tokens can behave maliciously. Inspired by the recently developed pro-
tocol from [ORS15] we consider a new approach here for which the sender’s inputs are extracted directly
by monitoring the queries it makes to the PRF tokens and using additional checks to ensure that the sender’s
inputs can be verified.

Protocol intuition. As a warmup consider the following sender’s algorithm that first chooses two random
strings x0 and x1 and computes their shares [xb] = (x1b , . . . , x

2κ
b) for b ∈ {0, 1} using the κ + 1-out-of-2κ

Shamir secret-sharing scheme. Next, for each b ∈ {0, 1}, the sender commits to [xb] by first generating
two vectors αb and βb such that αb ⊕ βb = [xb], and then committing to these vectors. Finally, the parties
engage in 2κ parallel OT executions where the sender’s input to the jth instance are the decommitments to
(α0[j], β0[j]) and (α1[j], β1[j]). The sender further sends (s0 ⊕ x0, s1 ⊕ x1). Thus, to learn sb, the receiver
needs to learn xb. For this, it enters the bit b for κ + 1 or more OT executions and then reconstructs the
shares for xb, followed by reconstructing sb using these shares. Nevertheless, this reconstruction procedure
works only if there is a mechanism that verifies whether the shares are consistent.

To resolve this issue, Ostrovsky et al. made the observation that the Shamir secret-sharing scheme has
the property for which there exists a linear function ϕ such that any vector of shares [xb] is valid if and only if
ϕ(xb) = 0. Moreover, since the function ϕ is linear, it suffices to check whether ϕ(αb)+ϕ(βb) = 0. Never-
theless, this check requires from the receiver to know the entire vectors αb and βb for its input b. This means
it would have to use b as the input to all the 2κ OT executions, which may lead to an input-dependent abort
attack. Instead, Ostrovsky et al. introduced a mechanism for checking consistency indirectly via a cut-and-
choose mechanism. More formally, the sender chooses κ pairs of vectors that add up to [xb]. It is instructive
to view them as matrices A0, B0, A1, B1 ∈ Zκ×2κ

p where for every row i ∈ [κ] and b ∈ {0, 1}, it holds that
Ab[i, ·]⊕Bb[i, ·] = [xb]. Next, the sender commits to each entry of each matrix separately and sets as input
to the jth OT the decommitment information of the entire column ((A0[·, j], B0[·, j]), (A1[·, j], B1[·, j])).
Upon receiving the information for a particular column j, the receiver checks if for all i, Ab[i, j]⊕ Bb[i, j]
agree on the same value. We refer to this as the shares consistency check.

Next, to check the validity of the shares, the sender additionally sends vectors [zb1], . . . , [z
b
κ] in the clear

along with the sender’s message where it commits to the entries of A0, A1, B0 and B1 such that [zbi] is set
to ϕ(A0[i, ·]). Depending on the challenge message, the sender decommits to A0[i, ·] and A1[i, ·] if ci = 0
and B0[i, ·] and B1[i, ·] if ci = 1. If ci = 0, then the receiver checks whether ϕ(Ab[i, ·]) = [zbi], and if
ci = 1 it checks whether ϕ(Bb[i, ·]) + zbi = 0. This check ensures that except for at most s ∈ ω(log κ) of
the rows (Ab[i, ·], Bb[i, ·]) satisfy the condition that ϕ(Ab[i, ·]) + ϕ(Bb[i, ·]) = 0 and for each such row i,
Ab[i, ·] + Bb[i, ·] represents a valid set of shares for both b = 0 and b = 1. This check is denoted by the
shares validity check. In the final protocol, the sender sets as input in the jth parallel OT, the decommitment
to the entire jth columns of A0 and B0 corresponding to the receiver’s input 0 and A1 and B1 for input 1.
Upon receiving the decommitment information on input bj , the receiver considers a column “good” only
if Abj [i, j] + Bbj [i, j] add up to the same value for every i. Using another cut-and-choose mechanism,
the receiver ensures that there are sufficiently many good columns which consequently prevents any input-
independent behavior. We refer this to the shares-validity check.

35

Our oblivious transfer protocol. We obtain a two-round oblivious transfer protocol as follows. The
receiver commits to its input bits b1, . . . , b2κ and the challenge bits for the share consistency check c1, . . . , cκ
using the PRF tokens. Then, the sender sends all the commitments a la [ORS15] and 2κ+ κ tokens, where
the first 2κ tokens provide the decommitments to the columns, and the second set of κ tokens give the
decommitments of the rows for the shares consistency check. The simulator now extracts the sender’s
inputs by retrieving its queries and we are able to show that there cannot be any input dependent behavior of
the token if it passes both the shares consistency check and the shares validity check. See Figure 4 for the
protocol overview. In Section 5.1 we discuss how to obtain a two-round two-party computation using our
OT protocol.

S(s0, s1) R(b)

PRF tokens {TKPRF,l
S }l∈[3κ] -

Select T1−b ⊂ [2κ] of size κ/2
Define Tb = [2κ]/T1−b

For every j ∈ [2κ], bj = β if j ∈ Tβ

Select c1, . . . , cκ ← {0, 1}

�

{combj}j∈[2κ], {comci}i∈[κ]

PRF tokens {TKPRF,l′

R }l′∈[8κ2]

pick x0, x1 ← Zp

(x1
b , . . . , x

2κ
b)← Share(xb)

(comA0 , comB0 , comA1 , comB1)
Z0, Z1, C0 = s0 ⊕ x0, C1 = s1 ⊕ x1

Tokens {TKj}j∈[2κ], {T̂Ki}i∈[κ] -

If checks pass extract xb, sb

Figure 4: A high-level diagram of ΠOT
GUC.

We now describe our protocol ΠGUC
OT with sender S and receiver R using the following building blocks:

let (1) Com be a non-interactive perfectly binding commitment scheme, (2) let SS = (Share,Recon) be a
(κ+ 1)-out-of-2κ Shamir secret-sharing scheme over Zp, together with a linear map ϕ : Z2κ

p → Zκ−1
p such

that ϕ(v) = 0 iff v is a valid sharing of some secret, (3) F, F ′ be two families of pseudorandom functions
that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ), respectively (4) H denote a hardcore bit function
and (5) Ext : {0, 1}5κ × {0, 1}d → {0, 1} denote a randomness extractor where the source has length 5κ
and the seed has length d. See Protocol 2 for the complete description.

Protocol 2 Protocol ΠOT
GUC - GUC OT with stateless tokens.

• Inputs: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b. The common input is sid.

• The protocol:

1. S → R: S chooses 3κ random PRF keys {γl}[l∈3κ] for family F . Let PRFγl
: {0, 1}5κ → {0, 1}κ denote

the pseudorandom function. S creates token TKPRF,l
S sending (Create, sid, S,R,midl,M1) to FgWRAP

where M1 is the functionality of the token that on input (sid, x) outputs PRFγl
(x) for all l ∈ [3κ]; For

the case where sid ̸= sid the token aborts;

36

2. R → S: R selects a random subset T1−b ⊂ [2κ] of size κ/2 and defines Tb = [2κ]/T1−b. For every
j ∈ [2κ], R sets bj = β if j ∈ Tβ . R samples uniformly at random c1, . . . , cκ ← {0, 1}. Finally, R sends

(a) ({combj}j∈[2κ], {comci}i∈[κ]) to S where

∀ j ∈ [2κ], i ∈ [κ] combj = (Ext(uj)⊕ bj , vj) and comci = (Ext(u′
i)⊕ ci, v

′
i)

uj , u
′
i ← {0, 1}5κ and vj , v

′
i are obtained by sending respectively (Run, sid,midj , uj) and (Run, sid,

mid2κ+i, u
′
i).

(b) R generates the tokens {TKPRF,l′

R }l′∈[8κ2] which are analogous to the PRF tokens {TKPRF,l
S }l∈[3κ]

by sending (Create, sid,R, S,midl′ ,M2) to FgWRAP for all l′ ∈ [8κ2].

3. S → R: S picks two random strings x0, x1 ← Zp and secret shares them using SS . In particular, S
computes [xb] = (x1

b , . . . , x
2κ
b)← Share(xb) for b ∈ {0, 1}. S commits to the shares [x0], [x1] as follows.

It picks random matrices A0, B0 ← Zκ×2κ
p and A1, B1 ← Zκ×2κ

p such that ∀i ∈ [κ]:

A0[i, ·] +B0[i, ·] = [x0], A1[i, ·] +B1[i, ·] = [x1].

S computes two matrices Z0, Z1 ∈ Zκ×κ−1
p and sends them in the clear such that:

Z0[i, ·] = ϕ(A0[i, ·]), Z1[i, ·] = ϕ(A1[i, ·]).

S sends:

(a) Matrices (comA0 , comB0 , comA1 , comB1) to R, where,

∀ i ∈ [κ], j ∈ [2κ], β ∈ {0, 1} comAβ [i,j] = (Ext(uAβ [i,j] ⊕Aβ [i, j], v
Aβ [i,j])

comBβ [i,j] = (Ext(uBβ [i,j] ⊕Bβ [i, j], v
Bβ [i,j])

where (uAβ [i,j], uBβ [i,j]) ← {0, 1}5κ and (vAβ [i,j], vBβ [i,j]) are obtained by sending (Run, sid,

mid[i,j,β], u
Aβ [i,j]) and (Run, sid,mid2κ2+[i,j,β], u

Bβ [i,j]), respectively, to the token TK
PRF,[i,j,β]
R

where [i, j, β] is an encoding of the indices i, j, β into an integer in [2κ2].
(b) C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to R.
(c) For all j ∈ [2κ], S creates a token TKj sending (Create, sid, S,R,mid3κ+j ,M3) to FgWRAP where

M3 is the functionality that on input (sid, bj , decombj), aborts if sid ̸= sid or if decombj is not
verified correctly. Otherwise it outputs (Abj [·, j], decomAbj

[·,j], Bbj [·, j], decomBbj
[·,j]).

(d) For all i ∈ [κ], S creates a token T̂Ki sending (Create, sid, S,R,mid5κ+i,M4) toFgWRAP where M4

is the functionality that on input (sid, ci, decomci) aborts if sid ̸= sid or if decomci is not verified
correctly. Otherwise it outputs,

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

4. Output Phase:
For all j ∈ [2κ], R sends (Run, sid,mid3κ+j , (bj , decombj)) and receives

(Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j]).

For all i ∈ [κ], R sends (Run, sid,mid5κ+i, (ci, decomci)) and receives

(A0[·, i], A1[·, i]) or (B0[·, i], B1[·, i]).

(a) SHARES VALIDITY CHECK PHASE: For all i ∈ [κ], if ci = 0 check that Z0[i, ·] = ϕ(A0[i, ·]) and
Z1[i, ·] = ϕ(A1[i, ·]). Otherwise, if ci = 1 check that ϕ(B0[i, ·]) + Z0[i, ·] = 0 and ϕ(B1[i, ·]) +
Z1[i, ·] = 0. If the tokens do not abort and all the checks pass, the receiver proceeds to the next
phase.

37

(b) SHARES CONSISTENCY CHECK PHASE: For each b ∈ {0, 1}, R randomly chooses a set Tb for
which bj = b of κ/2 coordinates. For each j ∈ Tb, R checks that there exists a unique xj

b such that
Ab[i, j] + Bb[i, j] = xj

b for all i ∈ [κ]. If so, xj
b is marked as consistent. If the tokens do not abort

and all the shares obtained in this phase are consistent, R proceeds to the reconstruction phase.
Else it abort.

(c) OUTPUT RECONSTRUCTION: For j ∈ [2κ]/T1−b, if there exists a unique xj
b such that Ab[i, j] +

Bb[i, j] = xj
b, mark share j as a good column. If R obtains less than κ + 1 good shares, it

aborts. Otherwise, let xj1
b , . . . , x

jκ+1

b be any set of κ + 1 consistent shares. R computes xb ←
Recon(xj1

b , . . . , x
jκ+1

b) and outputs sb = Cb ⊕ xb.

Next, we prove the following theorem,

Theorem 5.1 Assume the existence of one-way functions, then protocol ΠOT
GUC GUC realizes FOT in the

FgWRAP-hybrid.

Proof overview. On a high-level, when the sender is corrupted our simulation proceeds analogously to the
simulation from [ORS15] where the simulator generates the view of the malicious sender by honestly gen-
erating the receiver’s messages and then extracting all the values committed to by the sender. Nevertheless,
while in [ORS15] the authors rely on extractable commitments and extract the sender’s inputs via rewind-
ing, we directly extract its inputs by retrieving the queries made by the malicious sender to the {TKPRF,i

R }i
tokens. The proof of correctness follows analogously. More explicitly, the share consistency check ensures
that for any particular column that the receiver obtains, if the sum of the values agree on the same bit, then
the receiver extracts the correct share of [xb] with high probability. Note that it suffices for the receiver to
obtain κ+ 1 good columns for its input b to extract enough shares to reconstruct xb since the shares can be
checked for validity. Namely, the receiver chooses κ/2 indices Tb and sets its input for these OT executions
as b. For the rest of the OT executions, the receiver sets its input as 1 − b. Denote this set of indices by
T1−b. Then, upon receiving the sender’s response to its challenge and the OT responses, the receiver first
performs the shares consistency check. If this check passes, it performs the shares validity check for all
columns, both with indices in T1−b and for the indices in a random subset of size κ/2 within Tb. If one
of these checks do not pass, the receiver aborts. If both checks pass, it holds with high probability that the
decommitment information for b = 0 and b = 1 are correct in all but s ∈ ω(log n) indices. Therefore, the
receiver will extract [xb] successfully both when its input b = 0 and b = 1. Furthermore, it is ensured that
if the two checks performed by the receiver pass, then a simulator can extract both x0 and x1 correctly by
simply extracting the sender’s input to the OT protocol and following the receiver’s strategy to extract.

On the other hand, when the receiver is corrupted, our simulation proceeds analogous to the simulation
in [ORS15] where the simulator generates the view of the malicious receiver by first extracting the receiver’s
input b and then obtaining sb from the ideal functionality. It then completes the execution following the hon-
est sender’s code with (s0, s1), where s1−b is set to random. Moreover, while in [ORS15] the authors rely
on a special type of interactive commitment that allows the extraction of the receiver’s input via rewind-
ing, we instead extract this input directly by retrieving the queries made by the malicious receiver to the
{TKPRF,l

S }l∈[3κ] tokens. The proof of correctness follows analogously. Informally, the idea is to show that
the receiver can learn κ + 1 or more shares for either x0 or x1 but not both. In other words there exists
a bit b for which a corrupted receiver can learn at most κ shares relative to s1−b. Thus, by replacing s1−b

with a random string, it follows from the secret-sharing property that obtaining at most κ shares keeps s1−b

information theoretically hidden.
The next claim establishes that the commitments made by the parties are statistically hiding. We remark

that this claim is analogous to Claim 20 from [GIS+10]. For completeness, we present it below.

38

Lemma 5.1 For any i ∈ [κ], let Db denote the distribution obtained by sampling a random combi with
bi = b. Then D0 and D1 are 2−κ+1-close.

Proof: Informally, the proof follows from the fact that ui has high min-entropy conditioned on vi and there-
fore (Ext(ui, h), h) hides ui information theoretically as it is statistically close to the uniform distribution.
More formally, consider a possibly maliciously generated token M1 that incorporates an arbitrary function-
ality from 5κ bits to κ. It is possible to think of M1 as a function even if the token is stateful since we only
consider the min-entropy of the input with respect to the output when M1 is invoked from the same state.

Let Sv denote the subset of {0, 1}5κ that contains all x ∈ {0, 1}5k such that M1(x) = v. First, we claim
that for a randomly chosen x ← {0, 1}5κ, SM1(x) is of size at least 23κ with probability at least 1 − 2−κ.
Towards proving this we calculate the number of x’s for which |SM1(x)| < 23κ and denote such an x by bad.
Now, since there are at most 2k possible values that M1 may output, then the number of bad x’s is:∑

v:|Sv |<23κ

|Sv| < 2κ × 23κ = 24κ.

Therefore, the probability that a uniformly chosen x is bad is at most 24k/25k = 2−k. Let U and V denote
random variables such that V is the response of M1 on U . It now holds that

Pr[u← {0, 1}5κ : H∞(U |V = M1(u)) ≥ 3κ] > 1− 2−κ.

In other words, the min-entropy of U is at least 3κ with very high probability. Now, whenever this is the
case, using the Leftover Hash Lemma (cf. Definition 3.7) with ϵ = 2−κ, m = 1 and k = 3κ implies that
(Ext(U, h), h) is 2−κ-close to the uniform distribution. Combining the facts that comb = (Ext(U, h) ⊕
b, h, V) and that U has high min-entropy at least with probability 1 − 2−κ, we obtain that D0 and D1 are
2−κ + 2−κ-close. �

We continue with the complete proof.

Proof: LetA be a malicious PPT real adversary attacking protocol ΠGUC
OT in the FgWRAP-hybrid model. We

construct an ideal adversary S with access to FOT which simulates a real execution of ΠGUC
OT with A such

that no environment Z can distinguish the ideal process with S and FOT from a real execution of ΠGUC
OT

with A. S starts by invoking a copy of A and running a simulated interaction of A with environment Z ,
emulating the honest party. We describe the actions of S for every corruption case.

Simulating the communication with Z: Every message that S receives from Z it internally feeds to A
and every output written by A is relayed back to Z .

In case the adversary A issues a transfer query (transfer, ·), S relays the query to the FgWRAP.

Simulating the corrupted S. We begin by describing our simulation:

1. A communicates with the functionality FgWRAP on behalf of the corrupted parties by sending create
messages {(Create, sid, S,R,midl,M1)}l∈[3κ]. Then FgWRAP forwards these tokens to the honest
parties by sending receipt messages {(Receipt, sid, S,R,midl,M1)}l∈[3κ].

2. Upon receiving acknowledgement messages {(Receipt, sid, S,R,midl,M1)}l∈[3κ] that all [3κ] tokens
have been created byA, S communicates with the functionalityFgWRAP on behalf of the honest parties
by sending create messages {(Create, sid,R, S,midl′ ,M2)}l′∈[8κ2], where the code M2 implements

39

truly random functions (that is, M2 is encoded with a lookup table that includes some polynomial
number of queries bounded by the running time of the adversary). Then, the functionality FgWRAP

forwards receipt messages {(Receipt, sid,R, S,midl′ ,M2)}l′∈[8κ2] toA. For each query u ∈ {0, 1}5κ

made by A to the tokens TKPRF,l′

R , functionality FgWRAP runs M2 on that query and returns a random
v from {0, 1}κ.

3. S generates the first message by following the code of the honest receiver with input b = 0.

4. Upon receiving the second message from A, i.e. commitments (comA0 , comB0 , comA1 , comB1) and
(C0, C1), it completes the execution by following the honest receiver’s code.

5. Next, S tries to extract s0 and s1. For this, it first extracts matrices A0, B0, A1, B1 from the respective
commitments as described in the simulation for the proof of ΠOT. More precisely, given any com-
mitment β, v, it first checks if there exists a query/answer pair (u, v) that has already been recorded
by FgWRAP with respect to that token by sending a retrieve message (retreive, sid) to FgWRAP which
returns the list Qsid of illegitimate queries. If there exists such a query then the simulator sets the
decommitted value to be β⊕Ext(u), and⊥ otherwise. Next, to extract sb, S proceeds as follows: For
every i ∈ [κ], it computes Ab[i, j]⊕Bb[i, j] for all j ∈ [2κ] and marks that column j good if they all
agree to the same value, say, γj . If it finds more than κ + 1 good columns, it reconstructs the secret
xb by using share reconstruction algorithm on {γj}j∈good. Otherwise, it sets xb to ⊥.

6. S computes s0 = C0 ⊕ x0 and s1 = C1 ⊕ x1 and sends (s0, s1) to the trusted party that computes
FOT and halts, outputting whatever A does.

Next, we prove the correctness of our simulation in the following lemma.

Lemma 5.2
{

ViewFgWRAP

ΠGUC
OT ,A,Z(κ)

}
κ∈N

c≈
{

ViewFOT
πIDEAL,S,Z(κ)

}
κ∈N.

Proof: Our proof follows by a sequence of hybrid executions defined below.

Hybrid H0: In this hybrid game there is no trusted party that computes functionality FOT. Instead, we
define a simulator S0 that receives the real input of the receiver and internally emulates the protocol
ΠGUC

OT with the adversary A by simply following the honest receiver’s strategy. Finally, the output of
the receiver in the internal emulation is just sent to the external honest receiver (as part of the protocol
ΠH0) that outputs it as its output. Now, since the execution in this hybrid proceeds identically to the
real execution, we have the following claim,

Claim 5.3
{

ViewFgWRAP

ΠGUC
OT ,A,Z(κ)

}
κ∈N ≈

{
ViewΠH0

,S0,Z(κ)
}
κ∈N.

Hybrids H1,0 . . . ,H1,8κ2 : We define a collection of hybrid executions such that for every l′ ∈ [8κ2]

hybrid H1,l′ is defined as follows. We modify the code of token TKPRF,l′

R by replacing the function
PRFγl′ with a truly random function fl′ . In particular, given a query u the token responds with a
randomly chosen κ bit string v, rather than running the original code of M2. We maintain a list ofA’s
queries and responses so that repeated queries will be consistently answered. It is simple to verify that
the adversary’s view in every two consecutive hybrid executions is computationally indistinguishable
due to the security of the pseudorandom function embedded within TKPRF,l′

R . Moreover, since the

40

PRF key is hidden from the sender, it follows from the pseudorandomness property that the views in
every two consecutive hybrid are computationally indistinguishable. As in the previous hybrid, the
simulator hands the output of the receiver in the internal emulation to the external receiver as part of
the protocol ΠH1,l′ . More formally, we have the following claim,

Claim 5.4 For every l′ ∈ [8κ2],
{

ViewΠH1,l′−1
,S1,l′−1,Z(κ)

}
κ∈N

c≈
{

ViewΠH1,l′
,S1,l′ ,Z(κ)

}
κ∈N.

Hybrids H2,0 . . . ,H2,8κ2 : This sequence of hybrids executions is identical to hybrid H1,8κ2 except that
here S2 aborts if two queries made by A to the token TKPRF,l′

R results in the same response. Using a
proof analogous to Lemma 4.10, we obtain the following claim.

Claim 5.5 For every l′ ∈ [8κ2],
{

ViewΠH2,l′−1
,S2,l′−1,Z(κ)

}
κ∈N

s≈
{

ViewΠH2,l′
,S2,l′ ,Z(κ)

}
κ∈N.

Hybrid H3: In this hybrid, S3 proceeds identically to S2,8κ2 using the honest receiver’s input b with the
exception that it does not report the output of the receiver as what is computed in the emulation by
the simulator. Instead, S3 follows the code of the actual simulator to extract (s0, s1) and sets the
receiver’s output as sb. Note that the view of the adversary is identical in both hybrids H2,8κ2 and
H3. Therefore, to prove the indistinguishability of the joint output distribution, it suffices to show that
the output of the honest receiver is the same. On a high-level, this will follow from the fact that if
the honest receiver does not abort then the two checks performed by the receiver, namely, the shares
validity check and the shares consistency check were successful, which would imply that there are at
least κ+ 1 good columns from which the simulator can extract the shares. Finally, we conclude that
the reconstruction performed by the honest receiver and the simulator will yield the same value for sb.

More formally, we argue indistinguishability conditioned on when the two consistency checks pass
in the execution emulated by the simulator (in the event at least one of them do not pass, the receiver
aborts and indistinguishability directly holds). Then, the following hold for any s ∈ ω(log n):

Step 1: Since the shares validity check passed, following a standard cut-and-choose argument, it
holds except with probability 2−O(s) that there are at least κ − s rows for which ϕ(Ab[i, ·]) +
ϕ(Bb[i, ·]) = 0. In fact, it suffices if this holds at least for one row, say i∗. For b ∈ {0, 1}, let the
secret corresponding to Ab[i

∗, ·] +Bb[i
∗, ·] be s̃b.

Step 2: If for any column j ∈ [2κ] and b ∈ {0, 1} there exists a value γj such that for all i ∈ [κ]

γb[j] = Ab[i, j] +Bb[i, j],

then, combining with Step 1, we can conclude that γb[j] = Ab[i
∗, j] +Bb[i

∗, j]. Furthermore, if
either the receiver or the simulator tries to extract the share corresponding to that column it will
extract γb[j] since the commitments made by the sender are binding. Therefore, we can conclude
that if either the receiver or the simulator tries to reconstruct the secret for any b ∈ {0, 1}, it will
reconstruct only with shares in {γb[j]}j∈J which implies that they reconstruct only s̃b.

Step 3: Now, since the shares consistency check passed, following another cut-and-choose argument,
it holds except with probability 2−O(s) that there is a set J of at least 2κ−s columns such that for
any j ∈ J the tokens do not abort on a valid input from the receiver and yield consistent values
for both bj = 0 and bj = 1. This means that if the honest receiver selects 3κ/4 columns with

41

input as its real input b, the receiver is guaranteed to find at least κ+1 indices in J . Furthermore,
there will be κ + 1 columns in J for both inputs for the simulator to extract and when either of
them extract they can only extract s̃b.

Then to prove indistinguishability in this hybrid, it suffices to prove that the simulator reconstructs sb
if and only if the receiver extracts sb and this follows directly from Step 3 in the proceeding argument,
since there is a unique value s̃b that either of them can reconstruct and they will reconstruct that value
with probability 1− 2−O(s) if the two checks pass. As the checks are independent of the real input of
the receiver, indistinguishability of the hybrids follow.

Claim 5.6
{

ViewΠH
2,8κ2

,S2,8κ2 ,Z(κ)
}
κ∈N

s≈
{

ViewΠH3
,S3,Z(κ)

}
κ∈N.

Hybrid H4: In this hybrid, S4 proceeds identically to S3 with the exception that the simulator sets the
receiver’s input in the main execution as 0 instead of the real input b. Finally, it reconstructs sb and
sets that as the honest receiver’s output. It follows from Lemma 5.1 that the output of H3 and H4 are
statistically-close. Therefore, we have the following claim,

Claim 5.7
{

ViewΠH3
,S3,Z(κ)

}
κ∈N

s≈
{

ViewΠH4
,S4,Z(κ)

}
κ∈N.

Hybrid H5: In this hybrid, we consider the simulation. Observe that our simulator proceeds identi-
cally to the simulation with S4 with the exception that it communicates with FgWRAP instead of
creating/sending the tokens by itself and further it feeds the extracted values s0 and s1 to the ideal
functionality while S4 instead just outputs sb. Furthermore, the ideal simulator sends (s0, s1) to the
FOT functionality. It follows from our simulation that the view of the adversary in H5 and the ideal
execution are identically distributed. Furthermore, for both b = 0 and b = 1 we know that the value sb
extracted by the simulator and the value output by the honest receiver in the ideal execution are equal.
Therefore, we can conclude that the output of H4 and the ideal execution are identically distributed.

Claim 5.8
{

ViewΠH4
,S4,Z(κ)

}
κ∈N ≈

{
ViewFOT

πIDEAL,S,Z(κ)
}
κ∈N.

Simulating the corrupted R. We begin by describing our simulation:

1. S communicates withFgWRAP on behalf of the honest parties by sending create messages {(Create, sid, S,R,
midl,M1)}l∈[3κ], where the code M1 implements truly random functions (that is, M1 is encoded with
a lookup table that includes some polynomial number of queries bounded by the running time of the
adversary). Then FgWRAP forwards these tokens by sending receipt messages {(Receipt, sid, S,R,
midl,M1)}l∈[3κ] to A. For each query u ∈ {0, 1}5κ made by A to the tokens TKPRF,l

S , functionality
FgWRAP runs M1 on that query and returns a random v from {0, 1}κ.

2. A communicates with FgWRAP on behalf of the corrupted parties by sending create messages to the
functionality {(Create, sid,R, S,midl′ ,M2)}l′∈[8κ2]. Then, the functionality FgWRAP forwards these
tokens to the honest parties by sending receipt messages {(Receipt, sid,R, S,midl′ ,M2)}l′∈[8κ2].

42

3. Upon receiving acknowledgement messages {(Receipt, sid,R, S,midl′ ,M2)}l′∈[8κ2] that all [8κ2] to-
kens have been created by A, and upon receiving the first message from A, i.e. the commitments
combj and comci where i ∈ [κ] and j ∈ [2κ], S tries to extract b by sending a retrieve message
(retreive, sid) to FgWRAP which returns the list Qsid of illegitimate queries. For this, just as in pre-
vious simulations, it first extracts all the bj values and then sets the receiver’s input as that bit that
occurs at least κ+1 times among the bj’s. If no such bit exists, it sets b to be random. Next it sends b
to the FOT functionality to obtain sb, and completes the protocol following the honest sender’s code
with inputs (s0, s1) where s1−b is set to random. In particular, it computes Cb = xb ⊕ sb and sets
C1−b to a random string.

Next, we sketch the correctness of our simulation in the following lemma.

Lemma 5.9
{

ViewFgWRAP

ΠGUC
OT ,A,Z(κ)

}
κ∈N

c
≈
{

ViewFOT
πIDEAL,S,Z(κ)

}
κ∈N.

Proof: Our proof follows by a sequence of hybrid executions defined below.

Hybrid H0: In this hybrid game there is no trusted party that computes functionality FOT. Instead, we
define a simulator S0 that receives the real input of the sender and internally emulates the protocol
ΠGUC

OT with the adversary A by simply following the honest sender’s strategy. Finally, the output of
the sender in the internal emulation is just sent to the external honest sender (as part of the protocol
ΠH0) that outputs it as its output. Now, since the execution in this hybrid proceeds identically to the
real execution, we have the following claim,

Claim 5.10
{

ViewFgWRAP

ΠGUC
OT ,A,Z(κ)

}
κ∈N ≈

{
ViewΠH0

,S0,Z(κ)
}
κ∈N.

Hybrids H1,0 . . . ,H1,3κ: We define a collection of hybrid executions such that for every l ∈ [3κ] hybrid
H1,l is defined as follows. We modify the code of token TKPRF,l

S by replacing the function PRFγl with
a truly random function fl. In particular, given a query u the token responds with a randomly chosen
κ bit string v, rather than running the original code of M1. We maintain a list of A’s queries and
responses so that repeated queries will be consistently answered. In addition, the code of token TKl

(for l ≤ 2κ) or T̂Kl−2κ (for 2κ+1 ≤ l ≤ 3κ) is modified, as now this token does not run a check with
respect to the PRF that is embedded within token TKPRF,l

S but with respect to the random function
fl. It is simple to verify that the adversary’s view in every two consecutive hybrid executions is
computationally indistinguishable due to the security of the pseudorandom function PRFγl . Moreover,
since the PRF key is hidden from the receiver, it follows from the pseudorandomness property that
the views in every two consecutive hybrid are computationally indistinguishable. As in the previous
hybrid, the simulator hands the output of the sender in the internal emulation to the external receiver
as part of the protocol ΠH1,l

. More formally, we have the following claim,

Claim 5.11 For every l ∈ [3κ],
{

ViewΠH1,l−1
,S1,l−1,Z(κ)

}
κ∈N

c
≈
{

ViewΠH1,l
,S1,l,Z(κ)

}
κ∈N.

HybridsH2,0 . . . ,H2,3κ: This sequence of hybrids executions is identical to hybrid H1,3κ except that here
S2 aborts if two queries made by A to the token TKPRF,l

S results in the same response. Using a proof
analogous to Lemma 4.10, we obtain the following claim.

43

Claim 5.12 For every l ∈ [3κ],
{

ViewΠH2,l−1
,S2,l−1,Z(κ)

}
κ∈N

s≈
{

ViewΠH2,l
,S2,l,Z(κ)

}
κ∈N.

Hybrid H3: In this hybrid execution, simulator S3 plays the role of the sender as in hybrid H2,3κ except
that it extracts the adversary’s input bit b as carried out in the simulation by S and the challenge string
c. Clearly, this does not make any difference to the receiver’s view which implies that,

Claim 5.13
{

ViewΠH2,3κ
,S2,3κ,Z(κ)

}
κ∈N

s
≈
{

ViewΠH3
,S3,Z(κ)

}
κ∈N.

Hybrid H4: In this hybrid execution, the simulator instead of creating the original tokens {TKj}j∈[2κ],
simulator S4 emulates functionalities {T̃Kj}j∈[2κ] in the following way. For all j ∈ [2κ], if T̃Kj is
queried on (bj , decombj) and decombj is verified correctly, S4 outputs the column

(Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j])

where bj is the bit extracted by S4 as in the prior hybrid. Otherwise, if T̃Kj is queried on (1 −
bj , decom1−bj) then S4 outputs ⊥. Following the same argument as in Claim 4.11 it follows that
the commitments made by the receiver are binding and thus a receiver will not be able to produce
decommitments to obtain the value corresponding to 1− bj . Therefore, we have the following claim.

Claim 5.14
{

ViewΠH3
,S3,Z(κ)

}
κ∈N

s≈
{

ViewΠH4
,S4,Z(κ)

}
κ∈N.

HybridH5: In this hybrid execution, instead of creating the original tokens {T̂Ki}i∈[κ], simulator S5 emu-
lates functionalities {TKi}i∈[κ] in the following way. For all i ∈ [κ], if TKi is queried on (ci, decomci)
and decomci is verified correctly, S5 outputs the row

(A0[i, ·], decomA0[i,·], A1[i, ·], decomAi[i,·]), if ci = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomBi[i,·]), if ci = 1

where ci is the bit extracted by S5 as in the prior hybrid. Otherwise, if TKi is queried on (1 −
ci, decom1−ci) then S5 outputs ⊥. Indistinguishability follows using the same argument as in the
previous hybrid. Therefore, we have the following claim.

Claim 5.15
{

ViewΠH4
,S4,Z(κ)

}
κ∈N

s
≈
{

ViewΠH5
,S5,Z(κ)

}
κ∈N.

Hybrid H6: In this hybrid, the simulator S6 chooses an independent random string x∗ ← Zp instead
of generating the matrices A1−b and B1−b according to the shares of x1−b. We remark that C1−b =
s1−b ⊕ x1−b is still computed as in H5 with x1−b.

Claim 5.16
{

ViewΠH5
,S5,Z(κ)

}
κ∈N

s≈
{

ViewΠH6
,S6,Z(κ)

}
κ∈N.

Proof: Let Ã1−b, B̃1−b contain the same entries as A1−b, B1−b in H5 with the exception that the
entries whose decommitments have been removed both in TK and T̃K as described in hybrids H4 and

44

H5 are set to ⊥. More precisely, given the extracted values for bj’s and ci’s, for every j ∈ [2κ] such
that bj = b, Ã1−b(i, j) = ⊥ if ci = 1 and B̃1−b(i, j) = ⊥ if ci = 0 for all i ∈ [κ].

Observe that, for every i, j, either Ã1−b[i, j] = A1−b[i, j] or Ã1−b[i, j] = ⊥. The same holds for the
B̃1−b. We claim that the information of at most κ shares of x1−b is present in matrices Ã1−b, B̃1−b.
To this end, for every column j such that bj ̸= 1 − b and for every row i, depending on ci, either
Ã1−b[i, j] = ⊥, or B̃1−b[i, j] = ⊥. For every pair i, j, since A1−b[i, j] and B1−b[i, j] are both
uniformly distributed, obtaining the value for at most one of them keeps A1−b[i, j] + B1−b[i, j] sta-
tistically hidden. Now, since bj ̸= 1− b for at least κ+ 1 shares, it follows that at least κ+ 1 shares
of x1−b are hidden. In other words, at most κ shares of x1−b can be obtained by the receiver in H5.
Analogously at most κ shares of x∗ are obtained in H6. From our secret-sharing scheme, it follows
that κ shares information theoretically hides the value. Therefore, the decommitments obtained by
the receiver in H5 and H6 and identically distributed. The claim now follows from the fact that the
commitments to the matrices (comA0 , comB0 , comA1 , comB1) are statistically-hiding. �

Hybrid H7: In this hybrid execution simulator S7 does not know the sender’s inputs (s0, s1), but rather
communicates with a trusted party that computes FOT. S7 behaves exactly as S6, except that when
extracting the bit b, it sends it to the trusted party which sends back sb. Moreover, S7 uses random
values for s1−b and C1−b. Note that since the value committed to in the matrices corresponding to
1− b is independent of x1−b, this hybrid is identically distributed to the previous hybrid. We conclude
with the following claim.

Claim 5.17
{

ViewΠH6
,S6,Z(κ)

}
κ∈N ≡

{
ViewΠH7

,S7,Z(κ)
}
κ∈N.

Hybrid H8: In this hybrid execution, tokens {TKj}j∈[2κ] are created instead of tokens {T̃Kj}j∈[2κ]. In
addition, tokens {T̂Ki}i∈[κ] are created instead of tokens {T̃Ki}i∈[κ]. Due to similar claims as above,
it holds that

Claim 5.18
{

ViewΠH7
,S7,Z(κ)

}
κ∈N

c≈
{

ViewΠH8
,S8,Z(κ)

}
κ∈N.

Finally, we note that hybrid H8 is identical to the simulated execution which concludes the proof.

On relying on one-way functions. In this protocol the only place where one-way permutations are used is
in the commitments made by the sender in the second round of the protocol via a non-interactive perfectly-
binding commitment. This protocol can be easily modified to rely on statistically-binding commitments
which have two-round constructions based on one-way functions [Nao91]. Specifically, since the sender
commits to its messages only in the second-round, the receiver can provide the first message of the two-
round commitment scheme along with the first message of the protocol.

5.1 Two-Round 2PC Using Stateless Tokens

In [IKO+11], the authors provide a two-round UC secure protocol in the OT-hybrid between a sender and a
receiver where the receiver obtains the output of the computation at the end of the second round. First, we
observe that we can repeat our OT protocol in parallel. Then, obtaining UC secure two-party computation
using tokens is carried out by running the two-round protocol of [IKO+11] in parallel with our OT protocol.

45

Namely, upon receiving the second message for the [IKO+11] and OT protocols, the receiver computes the
OT outcome and uses these to compute the outcome of the [IKO+11] protocol.

In more details, in order to achieve simulation when the sender is corrupted, we rely on the receiver
simulation for both our OT protocol and the [IKO+11] protocol. Next, we observe that, after the simulation
submits the receiver’s first message, it can extract the sender’s input by extracting the sender’s input to the
OT tokens. To achieve simulation when the receiver is corrupted, the simulator first extracts the receiver’s
input by extracting the receiver’s input to the OT tokens. Then the simulation queries the ideal functionality
to obtain the output of the function evaluation on their private inputs. Using the output, the simulator next
sets up the OT part of the sender’s message using the OT simulation and submits the [IKO+11] sender’s
message using the [IKO+11] simulation. Thus, we obtain the following theorem:

Theorem 5.2 Assuming one-way functions, there exists a two-round two-party protocol for any well-formed
functionality that is GUC secure in the presence of static malicious adversaries.

5.2 GUC-Secure MPC using Stateless Tokens from One-Way Functions

From the work of [IPS08], we know that assuming one-way functions, there exists a multiparty protocol
in the OT-hybrid to securely realize any well-formed functionality with UC-security. Since, we realize the
GUC-OT functionality combining with the works of [IPS08] we obtain the following corollary:

Theorem 5.3 Assuming one-way functions, there exists a O(df) multi-party protocol for any well-formed
functionality f that is GUC secure in the presence of static malicious adversaries where df is the depth of
the circuit implementing the function f .

5.3 On Reusability

As in our protocol from Section 4, we discuss below how to handle exchange tokens just once and reusing
them for an unbounded number of oblivious transfers. Recall that the sender sends two sets of tokens: PRF
tokens in the first message and OT tokens in the second message whose codes depend on the first message
of the receiver. We handle each of these sets in a different way, where reducing the number of PRF tokens
is as discussed in Section 4.3. More concretely, we consider the following modified tokens.

PRF Tokens:

1. {TKPRF,l
S }l∈[6κ2]: S chooses 3κ random PRF keys {γl′}[l′∈3κ] for family F . Let PRFγl′ : {0, 1}

5κ →
{0, 1}κ denote the pseudorandom function. Then for each l′ ∈ [3κ], S creates the sequence of tokens
TK

PRF,l′1
S , . . . ,TK

PRF,l′2κ
S by sending the message {Create, sid, ssid,R, S,mid1+(l′−1)2κ+j ,M1}j∈[2κ],

that on input x, outputs PRFγl′ (x), where M1 is the functionality.

2. Similarly, R generates the tokens {TKPRF,l̂
R }l̂∈[16κ3] which are analogous to the sender’s PRF tokens

by sending {Create, sid, ssid, S,R,mid6κ2+1+(l̂−1)2κ+j ,M2}j∈[2κ] for all l̂′ ∈ [8κ2].

OT Tokens:

1. {TKj}j∈[2κ]: S chooses a random PRF key γ′ for family F ′. Let PRF′γ′ : {0, 1}5κ → {0, 1}κ
denote the pseudorandom function. Then, for each j ∈ [2κ], S creates a token TKj by sending
(Create, sid, ssid,R, S,mid6κ2+16κ3+1+j ,M3), where M3 is the functionality that on input (σ, sid, ssid,

46

bj , combj , decombj), aborts if decombj is not verified correctly or σ is not (the unique) valid signa-
ture of combj , corresponding to the verification key vkτ , where vkτ is the key generated for τ =
sid∥ssid∥combi∥j.

If both the checks pass then the token computes (x0, x1) = PRF′γ′(sid∥ssid) and secret shares them
using SS as in ΠOT

GUC. Finally, it outputs (Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j]).

2. {T̂Ki}i∈[κ]: S chooses a PRF key γ′ for family F ′ (same key as above). Let PRF′γ′ : {0, 1}∗ →
{0, 1}κ denote the pseudorandom function. Then, for each i ∈ [κ], S creates a token T̂Ki by send-
ing (Create, sid, ssid,R, S,mid16κ2+6κ2+1+2κ+i,M4), where M4 is the functionality that on input
(σ, sid, ssid, ci, comci , decomci) aborts if decomci is not verified correctly or σ is not (the unique)
valid signature of comci , corresponding to the verification key vkτ , where vkτ is the key generated for
τ = sid∥ssid∥comci∥i.
If both the checks pass then the token picks two random strings (x0, x1) = PRF′γ′(sid∥ssid) and secret
shares them using SS as in ΠOT

GUC. Finally, it outputs

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

Condition on the event that none of the parties successfully forges a signature, then our proof for Theo-
rem 5.1 follows similarly (with the modifications that involve extraction from 2κ tokens per commitment).

6 Three-Round Token-Based GUC Secure Multi-Party Computation

In this section, we show how to compile an arbitrary round semi-honest protocol Π to a three-round protocol
using stateless tokens. As discussed in the introduction, the high-level of our approach is borrowing the
compressing round idea from [GGHR14] which proceeds in three steps. In the first step, all parties commit
to their inputs via an extractable commitment and then in the second step, each party provides a token
to emulate their actions with respect to Π given the commitments. Finally, each party runs the protocol
Π locally and obtains the result of the computation. For such an approach to work, it is crucial that an
adversary, upon receiving the tokens, is not be able to “rewind” the computation and launch a resetting
attack. This is ensured via zero-knowledge proofs that are provided in each round. In essence, the zero-
knowledge proofs validates the actions of each party with respect to the commitments made in the first step.
Such a mechanism is also referred to as a commit-and-prove strategy. In Section 6.1.1, we will present a
construction of a commit-and-prove protocol in the FgWRAP-hybrid and then design our MPC protocol using
this protocol. We then take a modular approach by describing our MPC protocol in an idealized version of
the commit-and-prove functionality analogous to [CLOS02] and then show how to realize this functionality.
As we mentioned before we then rely on the approach of Garg et al. [GGHR14] to compress the rounds of
our MPC protocol compiled with our commit and prove protocol in 3 rounds. Due to space constraints we
present this in the full version [?].

6.1 One-Many Commit-and-Prove Functionality

The commit and prove functionality FCP introduced in [CLOS02] is a generalization of the commitment
functionality and is core to constructing protocols in the GUC-setting. The functionality parameterized by

47

an NP-relation R proceeds in two stages: The first stage is a commit phase where the receiver obtains a
commitment to some value w. The second phase is a prove phase where the functionality upon receiving a
statement x from the committer sends x to the receiver along with the valueR(x,w). We will generalize the
FCP-functionality in two ways. First, we will allow for asserting multiple statements on a single committed
value w in the FgWRAP-hybrid. Second, we will allow a single party to assert the statement to many parties.
In an MPC setting this will be useful as each party will assert the correctness of its message to all parties in
each step. Our generalized functionality can be found in Figure 5 and is parameterized by an NP relationR
and integer m ∈ N denoting the number of statements to be proved.

Functionality F1:M
CP

Functionality F1:M
CP is parameterized by an NP-relationR, an integer m and an implicit security parameter

κ, and runs with set of parties P = {P1, . . . , Pn}.

Commit Phase: Upon receiving a message (commit, sid,P, w) from Pi, where w ∈ {0, 1}κ, record the
tuple (sid, Pi,P, w, 0) and send (receipt, Pi,P, sid) to all parties in P .

Prove Phase: Upon receiving a message (prove, sid,P, x) from Pi, where w ∈ {0, 1}poly(κ), find the
record (sid, Pi,P, w, ctrsid). If no such record is found or ctrsid ≥ m then ignore. Otherwise,
send (proof, sid,P, (x,R(x,w))) to all parties in P . Replace the tuple (sid, Pi,P, w, ctrsid) with
(sid, Pi,P, w, ctrsid + 1).

Figure 5: The one-many multi-theorem commit and prove functionality [CLOS02].

To realize this functionality, we will rely on the so-called input-delayed proofs [LS90, CPS+16a, CPS+16b,
HV16]. In particular, we rely on the recent work of Hazay and Venkitasubramaniam [HV16], who showed
how to obtain a 4-round commit-and-prove protocol where the underlying commitment scheme and one-
way permutation are used in a black-box way, and requires the statement only in the last round. Below,
we extend their construction and design a protocol ΠCP that securely realizes functionality F1:M

CP , and then
prove the following theorem.

Theorem 6.1 Assuming the existence of one-way functions, then protocol ΠCP securely realizes the F1:M
CP -

functionality in the FgWRAP-hybrid.

6.1.1 Realizing F1:M
CP in the FgWRAP-Hybrid

In the following section we extend ideas from [HV16] in order to obtain a one-many commit-and-prove
protocol with negligible soundness using a specialized randomized encodings (RE) [IK00, AIK04], where
the statement is only known at the last round. Loosely speaking, RE allows to represent a “complex”
function by a “simpler” randomized function. Given a string w0 ∈ {0, 1}n, the [HV16] protocol considers
a randomized encoding of the following function:

fw0(x,w1) = (R(x,w0 ⊕ w1), x, w1)

whereR is the underlying NP relation and the function has the value w0 hardwired in it. The RE we consider
needs to be secure against adaptively chosen inputs and robust. Loosely speaking, an RE is secure against
adaptive chosen inputs if both the encoding and the simulation can be decomposed into offline and online
algorithms and security should hold even if the input is chosen adaptively after seeing the offline part of the

48

encoding. Moreover, an offline/online RE is said to be robust if no adversary can produce an offline part
following the honest encoding algorithm and a (maliciously generated) online part that evaluates to a value
outside the range of the function. Then the ZK proof follows by having the prover generate the offline phase
of the randomized encoding for this functionality together with commitments to the randomness r used for
this generation and w1. Next, upon receiving a challenge bit ch from the verifier, the prover completes the
proof as follows. In case ch = 0, then the prover reveals r and w1 for which the verifier checks the validity
of the offline phase. Otherwise, the prover sends the online part of the encoding and a decommitment of w1

for which the verifier runs the decoder and checks that the outcome is (1, x, w1).
A concrete example based on garbled circuits [Yao86] implies that the offline part of the randomized

encoding is associated with the garbled circuit, where the randomness r can be associated with the input
key labels for the garbling. Moreover, the online part can be associated with the corresponding input labels
that enable to evaluate the garbled circuit on input x,w1. Clearly, a dishonest prover cannot provide both a
valid garbling and a set of input labels that evaluates the circuits to 1 in case x is a false statement. Finally,
adaptive security is achieved by employing the construction from [HJO+15] (see [HV16] for a discussion
regarding the robustness of this scheme).

We discuss next how to extend Theorem 5.5 from [HV16] by adding the one-many multi-theorem fea-
tures. In order to improve the soundness parameter of their ZK proof Hazay and Venkitasubramaniam re-
peated their basic proof sufficiently many times in parallel, using fresh witness shares each time embedding
the [IKOS09] approach in order to add a mechanism that verifies the consistency of the shares. Consider a
parameter N to be the number of repetitions and let m denote the number of proven theorems. Our protocol
employs two types of commitments schemes: (1) Naor’s commitment scheme [Nao91] denoted by Com. (2)
Token based extractable commitment scheme in the FgWRAP-hybrid denoted by ComgWRAP and defined as
follows. First, the receiver R in the commitment scheme will prepare a token that computes a PRF under a
randomly chosen key k and send it to the committer in an initial setup phase, incorporated with the session
identifier sid. Such that on input (x, sid) the token outputs PRF evaluated on the input x. More, precisely,
the receiver on input sid creates a token TKPRFk with the following code:

• On input (x, s̃id): If s̃id = sid output PRFk(x). Otherwise, output ⊥.

Then, to commit to a bit b, the committer C first queries the token TKPRFk on input (u, sid) where u ∈
{0, 1}5κ is chosen at random and sid is the session identifier. Upon receiving the output v from the token, it
sends (Ext(u)⊕ b, v) where Ext is a randomness extractor as used in Section 5. We remark here that if the
tokens are exchanged initially in a token exchange phase, then the commitment scheme is non-interactive.

Protocol 3 Protocol ΠCP - one-many commit-and-prove protocol.

• Input: The prover holds a witness w, where the prover is a designated party Pτ for some τ ∈ [n].

• The Protocol:

1. Each party Pk for k ̸= τ plays the role of the verifier and picks random m t-subsets Ikj of [N] for each
j ∈ [m] and k ∈ [n − 1] where m is the number of proven statements. It also picks t random challenge
bits {chk

i,j}i∈Ik
j

and commits to them using Comk
gWRAP. It further sends the first message of the Naor’s

commitment scheme.

2. The prover then continues as follows:

(a) It first generates N ×m× (n− 1) independent XOR sharings of the witness w, say

{w0
i,j,k, w

1
i,j,k}(i×j×k)∈[N×m×(n−1)].

49

(b) Next, for each j ∈ [m] and k ∈ [n− 1], it generates the views of 2N parties P 0
i,j,k and P 1

i,j,k for all
i ∈ [N] executing a t-robust t-private MPC protocol, where P b

i,j,k has input wb
i,j,k, that realizes the

functionality that checks if w0
i,j,k ⊕ w1

i,j,k are all equal. Let V b
i,j,k be the view of party P b

i,j,k.
(c) Next, for each j ∈ [m] and k ∈ [n − 1], it computes N offline encodings of the following set of

functions:
fw0

i,j,k,V
0
i,j,k

(xj , w
1
i,j,k, V

1
i,j,k) = (b, xj , w

1
i,j,k, V

1
i,j,k)

where b = 1 if and only ifR(xj , w
0
i,j,k ⊕w1

i,j,k) holds and the views V 0
i,j,k and V 1

i,j,k are consistent
with each other.

(d) Finally, the prover broadcasts to all parties the set containing{
(foff

w0
i,j,k,V

0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(w1

i,j,k),

Com(V 0
i,j,k),Com(V 1

i,j,k))
}
(i×j×k)∈[N×m×(n−1)]

.

Moreover, let decomri,j,k , decomw0
i,j,k

, decomw1
i,j,k

, decomV 0
i,j,k

, decomV 1
i,j,k

be the respective de-
commitment information of the above commitments. Then for every k ∈ [n − 1], Pi commits to
the above decommitment information with respect to party Pk and all (i × j) ∈ [N] × [m], using
ComgWRAP.

3. The verifier decommits to all its challenges.

4. For every index (i, j) in the t subset the prover replies as follows:

– If chi
j,k = 0 then it decommits to ri,j,k, w0

i,j,k and V 0
i,j,k. The verifier then checks if the offline part

was constructed correctly.
– If chi

j,k = 1 then it sends fon
w0

i,j,k,V
0
i,j,k

(ri,j,k, xj , w
1
i,j,k, V

1
i,j,k) and decommits w1

i,j,k and V 1
i,j,k. The

verifier then runs the decoder and checks if it obtains (1, xj ,
w1

i,j,k, V
1
i,j,k).

Furthermore, from the decommitted views V
chi

j,k

i,j,k for every index (i, j) that the prover sends, the verifier
checks if the MPC-in-the-head protocol was executed correctly and that the views are consistent.

Theorem 6.2 Assuming the existence of one-way functions, then protocol ΠCP GUC realizes F1:M
CP in the

FgWRAP-hybrid.

Proof: Let A be a malicious PPT real adversary attacking protocol ΠCP in the FgWRAP-hybrid model. We
construct an ideal adversary S with access to F1:M

CP which simulates a real execution of ΠCP with A such
that no environment Z can distinguish the ideal process with S and FgWRAP-hybrid from a real execution of
ΠCP with A in the FgWRAP-hybrid. S starts by invoking a copy of A and running a simulated interaction of
A with environment Z , emulating the honest party. We describe the actions of S for every corruption case.

Simulating the communication with Z: Every message that S receives from Z it internally feeds to A
and every output written by A is relayed back to Z . In case the adversary A issues a transfer query on any
token (transfer, ·), S relays the query to the FgWRAP.

Party Pτ is not corrupted. In this scenario the adversary only corrupts a subset of parties I playing the
role of the verifiers in our protocol. The simulator proceeds as follows.

1. Upon receiving a commitment Comk
gWRAP from a corrupted party Pk, the simulator extracts the m

committed t-subsets Ikj and the challenge bits {chki,j}i∈Ikj for all j ∈ [m], by retrieving the queries
made to the tokens.

50

2. For each j ∈ [m] and k ∈ [I], the simulator generates the views of 2N parties P 0
i,j,k and P 1

i,j,k for all
i ∈ [N] emulating the simulator of the t-robust t-private MPC protocol underlying in the real proof,
where the set of corrupted parties for the (j, k)th execution is fixed to be Ikj extracted above. Let V b

i,j,k

be the view of party P b
i,j,k.

3. Next, for each j ∈ [m] and k ∈ [I], the simulator computes N offline encodings as follows.

• For every index i in the t subset Ikj the simulator replies as follows:

– If chki,j = 0, then the simulator broadcasts the following honestly generated message:
foff
w0

i,j,k,V
0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(0),

Com(V ′0
i,j,k),Com(V ′1

i,j,k). where V ′0
i,j,k = 0 and V ′1

i,j,k = V 1
i,j,k if the matched challenge

bit equals one, and vice versa.
– Else, if chki,j = 1, then the simulator invokes the simulator for the randomized encoding

and broadcasts the following message:{
Soffw0

i,j,k,V
0
i,j,k

(ri,j,k),Com(0),Com(0),Com(w1
i,j,k),

Com(V ′0
i,j,k),Com(V ′1

i,j,k)
}
(i×j×k)∈[N×m×(n−1)]

where w1
i,j,k is a random string and V ′0

i,j,k = 0 and V ′1
i,j,k = V 1

i,j,k if the matched challenge
bit equals one, and vice versa.

• For every index i not in the t subset Ikj the simulator broadcasts

foff
w0

i,j,k,V
0
i,j,k

(ri,j,k),Com(ri,j,k),Com(w0
i,j,k),Com(0),Com(0),Com(0).

The simulator correctly commits to the decommitments information with respect to the honestly gen-
erated commitments (namely, as the honest prover would have done) using ComgWRAP. Else, it com-
mits to the zero string.

4. Upon receiving the decommitment information from the adversary, the simulator aborts if the adver-
sary decommits correctly to a different set of messages than the one extracted above by the simulator.

5. Else, S completes the protocol by replying to the adversary as the honest prover would do.

Note that the adversary’s view is modified with respect to the views it obtains with respect to the underlying
MPC and both types of commitments. Indistinguishability follows by first replacing the simulated views of
the MPC execution with a real execution. Namely the simulator for this hybrid game commits to the real
views. Indistinguishability follows from the privacy of the protocol. Next, we modify the fake commitments
into real commitments computed as in the real proof. The reduction for this proof follows easily as the
simulator is not required to open these commitments.

Party Pτ is corrupted. In this scenario the adversary corrupts a subset of parties I playing the role of
the verifiers in our protocol as well as the prover. The simulator for this case follows the honest verifier’s
strategy {Pk}k/∈[I], with the exception that it extracts the prover’s witness by extracting one of the witness’
pairs. Recall that only the decommitment information is committed via the extractable commitment scheme
ComgWRAP. Since a commitment is made using tokens from every other party and there is at least one honest

51

party, the simulator can extract the decommitment information and from that extract the real value. We point
out that in general extracting out shares from only one-pair could cause the problem of “over-extraction”
where the adversary does not necessarily commit to shares of the same string in each pair. In our protocol
this is not an issue because in conjunction with committing to these shares, it also commits to the views of
an MPC-in-the-head protocol which verifies that all shares are correct. Essentially, the soundness argument
follows by showing that if an adversary deviates, then with high-probability the set I will include a party
with an “inconsistent view”. This involves a careful argument relying on the so-called t-robustness of the
underlying MPC-in-the-head protocol. Such an argument is presented in [HV16] to get negligible soundness
from constant soundness and this proof can be naturally extended to our setting (our protocol simply involves
more repetitions but the MPC-in-the-head views still ensure correctness of all repetition simultaneously).

As for straight-line extraction, the argument follows as for the simpler protocol. Namely, when simu-
lating the verifier’s role the simulator extracts the committed values within the forth message of the prover.
That is, following a similar procedure of extracting the committed message via obtaining the queries to the
token, it is sufficient to obtain two shares of the witness as the robustness of the MPC protocol ensures that
all the pairs correspond to the same witness.

6.2 Warmup: Simple MPC Protocol in the F1:M
CP -Hybrid

We next describe our MPC protocol in theF1:M
CP -hybrid. On a high-level, we follow GMW-style compilation

[GMW87] of a semi-honest secure protocol Π to achieve malicious security using the F1:M
CP -functionality.

Without loss of generality, we assume that in each round of the semi-honest MPC protocol Π, each party
broadcasts a single message that depends on its input and randomness and on the messages that it received
from all parties in all previous rounds. We let mi,j denote the message sent by the ith party in the jth round
in the protocol Π. We define the function πi such that mi,t = πi(xi, ri, (M1, . . . ,Mt−1)) where mi,t is the
tth message generated by party Pi in protocol Π with input xi, randomness ri and where Mr is the message
sent by all parties in round i of Π.

Protocol description. Our protocol ΠMPC proceeds as follows:

Round 1. In the first round, the parties commit to their inputs and randomness. More precisely, on input
xi, party Pi samples random strings ri,1, ri,2, . . . , ri,n and sends (commit, sid,P, w) to F1:M

CP and
w = (x,Ri) where Ri = (ri,1, ri,2, . . . , ri,n).

Round 2. Pi broadcasts shares Ri = Ri − {ri,i} and sends (prove, Pi,P, Ri). Let M0 = (R1, . . . , Rn).

Round 2 + δ. Let Mδ−1 be the messages broadcast by all parties in rounds 3, 4, . . . , 2 + (δ − 1) and let
mi,δ = πi(xi, ri, (M1, . . . ,Mδ−1)) where ri = ⊕jrj,i. Pi broadcasts mi,δ and sends to F1:M

CP the
message (prove, Pi,P,M t−1 : mi,δ) where M δ−1 = (M0,M1, . . . ,Mδ−1).

The NP-relationR used to instantiate the F1:M
CP functionality will include:

1. (M0, Ri) : if M0 contains Ri as its ith component where Ri = Ri − {ri,i} and Ri = {ri,1, . . . , ri,n}.

2. ((M δ−1,mi,δ), (xi, Ri)) : if (M0, Ri) ∈ R and mi,δ = πi(xi, ri, (M1, . . . ,Mδ−1)) where ri =
⊕j∈[n]rj,i, M δ−1 = (M0,M1 . . . ,Mδ−1) and Ri = {ri,1, . . . , ri,n}.

52

Theorem 6.3 Let f be any deterministic polynomial-time function with n inputs and a single output. As-
sume the existence of one-way functions and an n-party semi-honest MPC protocol Π. Then the protocol
ΠMPC GUC realizes Ff in the F1:M

CP -hybrid.

Proof: Let A be a malicious PPT real adversary attacking protocol ΠMPC in the F1:M
CP -hybrid model. We

construct an ideal adversary S with access to Ff which simulates a real execution of ΠMPC with A such
that no environment Z can distinguish the ideal process with S interacting with Ff from a real execution of
ΠMPC with A in the F1:M

CP -hybrid. S starts by invoking a copy of A and running a simulated interaction of
A with environment Z , emulating the honest party. We describe the actions of S for every corruption case.

Simulating the communication with Z: Every message that S receives from Z it internally feeds to A
and every output written by A is relayed back to Z .

Simulating honest parties: Let I be the set of parties corrupted by the adversary A. This means S needs
to simulate all messages from parties in P/I. S emulates the F1:M

CP functionality for A as follows. For
every Pj ∈ P/I it sends the commitment message (receipt, Pj ,P, sid) to all parties Pi ∈ I. Next, for every
message (commit, sid, Pi,P, wi) received from A, it records wi = (xi, ri,1, . . . , ri,n). Upon receiving this
message on behalf of every Pi ∈ I, the simulator S sends xi on behalf of every Pi ∈ I to Ff and obtains
the result of the computation output. Then using the simulator of the semi-honest protocol Π, it generates
random tapes ri for every Pi ∈ I and messages mj,δ for all honest parties Pj ∈ P/I and all rounds δ.
Next, it sends Rj on behalf of the honest parties Pj ∈ P/I so that for every Pi ∈ I, ri = ⊕rj,i. This is
possible since there is at least one party Pj outside I and S can set rj,i so that it adds to ri. Next, in round
2 + δ, it receives the messages from Pi ∈ I and supplies messages from the honest parties according to the
simulation of Pi. Along with each message it receives the prove message that the parties in I send to F1:M

CP .
S simply honestly emulates F1:M

CP for these messages. For messages that the honest parties send to F1:M
CP , S

simply sends the receipt message to all parties in I.
Indistinguishability of the simulation follows from the following two facts:

• Given an input xi and random tape ri for every Pi ∈ I and the messages from the honest parties,
there is a unique emulation of the semi-honest protocol Π where all the messages from parties Pi if
honestly generated are deterministic.

• Since the simulation is emulating the F1:M
CP functionality, the computation immediately aborts if a

corrupted party Pi deviates from the deterministic strategy.

6.3 Three-Round MPC Protocol in the FgWRAP-Hybrid

In this section, we show how to modify the previous protocol ΠMPC to a three-round protocol. The high-level
idea is similar to the work of [GGHR14] which shows how to compress the rounds of communication in an
MPC protocol using obfuscation primitives. Instead of using obfuscation based primitives, we will directly
make each party create tokens for their next-message function in the previous protocol.

As our starting point, we will look into certain properties of the protocol used to realize the F1:M
CP to

achieve our goal and explain this next. In more details, our methodology in this section is to first unravel the
protocol ΠMPC from the previous section, namely, describe a protocol Π̃MPC directly in the FgWRAP-hybrid

53

as opposed to the F1:M
CP -hybrid. More formally, Π̃MPC is the protocol ΠMPC where the calls to the F1:M

CP

protocol are replaced with the actual protocol ΠCP that realizes this functionality in the FgWRAP-hybrid.
Then we show how to compress this protocol to a 3-round protocol Π̂MPC by adding extra tokens.

Step 1: Intermediate MPC protocol Π̃MPC in the FgWRAP-hybrid. We begin with an overview of our
protocol ΠCP that realizes the F1:M

CP functionality. In our protocol ΠCP between a prover Pi and the rest
of the parties as the verifier, the commit phase comprises of two messages and the prove phase for each
statement comprises of two rounds. In more detail,

1. Commit phase: first message. In the commit phase, all parties first commit to a “challenge” for
the zero-knowledge proof. The parties make the commitment using a token supplied by the prover,
which, as we recall is simply a PRF token. The parties further send the first message for the Naor’s
commitment scheme [Nao91] for the prover.

2. Commit phase: second message. In the second message the prover Pi broadcasts a message, namely
the offline part of randomized encodings (RE) of some function and a set of commitments. For each
commitment, the prover first commits the actual string using the Naor’s commitment. Then for each
party Pj , the prover also commits to the decommitment information using the PRF token given by Pj

(See Section 6.1).

3. Prove phase: first message. In the prove phase, for each statement in a first message, all receivers
decommit to their challenges made using ComgWRAP. Let ΠCH

CP(r) be the algorithm used by Pj to
generate this message where ch is the message committed to in the commit phase and r the random
tape used in the execution.

4. Prove phase: second message. If the challenges were decommitted to correctly, the prover generates
a string and a set of decommitments. We denote by ΠRESP

CP (x,w, r) the algorithm used by the prover
to verify the previous message and generate this message, where x is the statement, w is the message
committed in the commit phase and r the random tape.

We emphasize that the algorithms ΠCH
CP and ΠRESP

CP do not make use of any tokens and are deterministic
polynomial-time computations on the inputs. We are now ready to describe our protocol Π̃MPC where we
replace all calls to F1:M

CP with instructions from protocol ΠCP in the ΠMPC. First, we recall (and introduce)
some notations first.

• Ri = {ri,1, . . . , ri,n} are the shares committed to by Pi, where ri,j will be one of the shares used in
generating the random tape of party Pj .

• We denote by Ri = Ri − {ri,i} and M0 = (R1, . . . , Rn).

• mi,δ = πi(xi, ri,Mδ−1) is the next-message function according to the semi-honest protocol ΠMPC.
To simplify our notation we will denote by mi,0 = Ri.

• Let τi,j,δ denote the random tape used by party Pi for the proof of the δth statement with Pj using
ΠCP as the prover, and let τi,δ denote the random tape for Pi to generate messages for ΠCP acting as
the prover.

Round 1: Every party Pj generates the first message according to ΠCP acting as the receiver for a proof
received from Pi (for every Pi) and broadcasts it to all parties.

54

Round 2: Every party Pi generates the second message according to ΠCP acting as the prover and broad-
casts to all parties where party Pi commits to its input xi and random strings Ri = (ri,1, . . . , ri,n).

Then for δ = 0, . . . , T ,

Round 3 + 2δ: Recall that in the (2 + δ)th round of ΠMPC, party Pi sends mi,δ and proves its correctness
by sending the message to F1:M

CP . Since the prove phase of ΠCP comprises of two rounds, in round
3 + 2δ all parties Pj acting as the receiver in ΠCP send their prove phase first message (which are
decommitments to challenges). More precisely, party Pi computes ΠCH

CP(τi,j,(δ+1)) for every j ∈ [n].

Round 3 + 2δ + 1: In round 3 + 2δ + 1 all parties Pi sends mi,δ and the prover phase second message for
the corresponding NP-statement, namely ΠRESP

CP (τi,(δ+1))

By the construction and the GUC-composition theorem, we know that Π̃MPC securely realizes Ff in the
FgWRAP-hybrid. Next, we briefly describe our simulation.

High-level description of the simulation. Given an adversary A, the simulator S̃ will first extract the
inputs and shares of random tapes supplied by the corrupted parties Pj and queries Ff with these inputs
to obtain the output of computation. Next, it uses the simulation of ΠMPC as discussed in the previous
section to generate the random tapes for the corrupted parties Pj and the messages from the honest parties.
We remark here that once the random tapes for all corrupted parties Pj’s are fixed, there is only a valid
accepting transcript of the execution using Π̃MPC. This follows from the soundness of protocol ΠCP where
no corrupted Pj can deviate from the honest strategy.

Before, we proceed to our actual protocol, we make the following important observation regarding the
protocol ΠCP used in Π̃MPC.

Prove phase is token free. We remark that in protocol ΠCP the actions of each party (including the prover)
in the prove phase can be computed without querying any token. Namely, in the first message of the prove
phase the prover verifiers the decommitment of the challenges made using a token it supplied, and generates
the online parts of an RE. The REs are generated using stand-alone algorithms and does not involve tokens.
To verify the decommitments, since it knows the PRF keys used to make these commitments, the prover
can verify the decommitments directly using the key. In the second message, each party Pj performs a
“decoding” computation on the RE and verifies the decommitments. Decoding of the RE can be done again
using stand-alone algorithms. To verify a decommitment, recall that Pj verifies a Naor commitment, which
does not involve tokens and decomj which involves a commitment made using a token supplied by Pj .
Hence Pj can verify this without querying any token.

Step 2: our 3-round protocol Π̂MPC in the FgWRAP-hybrid. We describe our 3-round protocol and prove
correctness. Our protocol Π̂MPC is essentially Π̃MPC with the following modification. Each party Pi gener-
ates 2T + 2 tokens (one for each round after round 2 in Π̃MPC) for each party Pj . These tokens will execute
the next-message function on behalf of Pi for Pj . In more detail, the rth token will verify the partial tran-
script up until the 2 + (r − 1)st round according to Π̃MPC, and if correct, generates Pi’s message in the rth

round. We denote the rth token from party Pi to party Pj that performs its actions in round 2 + r as TKr
i,j .

More formally, the token TKr
i,j is defined as follows:

Hardwired parameters: The messages exchanged in rounds 1 and 2, Pi’s input xi and its random tape τi
for the protocol ΠCP.

55

Code: On input a partial transcript M r−1, it verifies if the transcript is consistent with the protocol Π̃MPC

and then outputs Pi’s message in the rth round. We recall here that given the partial transcript, all
actions of party Pi after round 2 are polynomial-time computable from the hardwired parameters. In
particular, these algorithms do not have to query any token supplied by other parties.

Theorem 6.4 Let f be any deterministic polynomial-time function with n inputs and a single output. As-
sume the existence of one-way functions and an n-party semi-honest MPC protocol Π. Then protocol Π̂MPC

GUC realizes Ff in the FgWRAP-hybrid model.

Proof: Let A be a malicious PPT real adversary attacking protocol Π̂MPC in the FgWRAP-hybrid model.
We construct an ideal adversary S with access to Ff which simulates a real execution of Π̂MPC with A such
that no environment Z can distinguish the ideal process with S interacting with Ff in the FgWRAP-hybrid
from a real execution of Π̂MPC with A in the FgWRAP-hybrid. S starts by invoking a copy of A and running
a simulated interaction of A with environment Z , emulating the honest party. We describe the actions of S
for every corruption case.

Simulating the communication with Z . Every message that S receives from Z it internally feeds to A
and every output written by A is relayed back to Z .

Simulating rounds 1 and 2 of the protocol. The messages exchanged in rounds 1 and 2 in both protocols
Π̃MPC and Π̂MPC are identical. The simulator S follows the simulation S̃ of the protocol Π̃MPC for these
rounds.

Simulating access to token TKr
i,j . Recall that in Π̂MPC, the parties exchange tokens TKr

i,j after the first
two rounds. Thus, S needs to generate these tokens and sends them to FgWRAP. Towards this, we recall that
the simulator S̃ for Π̃MPC, generates the messages of the honest parties in rounds 2+r from r = 1, . . . , 2T+2
by using the semi-honest simulation of the MPC protocol Π and the simulation of the commit-and-prove
protocol ΠCP. More precisely, given the input and randomness (extracted out) of all corrupted parties Pj and
the output of the computation, using the semi-honest simulation of Π, S̃ generates a transcript of messages
that will be exchanged with every corrupted party Pj . Next, it forces the computation to proceed according
to this transcript. This follows from the soundness of the prove phase of the protocol ΠCP. More formally,
the simulation forces a corrupted party Pj’s random tape to be a certain value, and then the protocol ΠCP

enforces semi-honest behavior from all corrupted parties.
The simulator Ŝ for Π̂MPC however does not have to generate messages on behalf of the honest parties,

rather it simply needs to create the code that, on behalf of an honest party, will perform its action in a
particular round of the MPC protocol. Since the transcript of the communication can be fixed before the
adversary queries the tokens TKr

i,j , the simulator simply hardwires the message that Pi needs to send in the
rth round to Pj in the token and sends it to Pj . The code of the token would be to verify the partial transcript
and to reveal Pi’s message in the rth round if the verification follows correctly.

Indistinguishability follows from the indistinguishability of the simulation by S̃ and the fact that the
soundness of protocol ΠCP ensures that there is a unique valid transcript given the random tapes and inputs
of the corrupted parties, and the fact that the adversary cannot deviate from the honest behavior. For any
adversary that deviates, we can construct another adversary B and environment Z where B can prove a false
statement using ΠCP and this will contradict the fact that ΠCP realizes the F1:M

CP -functionality.

56

7 Acknowledgements

We thank Vipul Goyal, Yuval Ishai, Jonathan Katz and Amit Sahai for several discussions regarding tamper-
proof hardware tokens. The first author acknowledges support from the Israel Ministry of Science and
Technology (grant No. 3-10883) and support by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. The
second author was supported by the Danish National Research Foundation; the National Science Foundation
of China (grant no. 61061130540) for the Sino-Danish CTIC; the CFEM supported by the Danish Strategic
Research Council. In addition, this work was done in part while visiting the Simons Institute for the Theory
of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptog-
raphy through NSF grant CNS-1523467. The third author was supported by Google Faculty Research Grant
and NSF Award CNS-1526377.

References
[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In FOCS, pages 166–175,

2004.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols with
relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[Bea91] Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–391, 1991.

[BOV15] Ioana Boureanu, Miyako Ohkubo, and Serge Vaudenay. The limits of composable crypto with transfer-
able setup devices. In CCS, pages 381–392, 2015.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent composition
via super-polynomial simulation. In FOCS, pages 543–552, 2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In TCC, pages 61–85, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, pages 19–40,
2001.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure computation using
tamper-proof hardware. In EUROCRYPT, pages 545–562, 2008.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random oracle.
In CCS, pages 597–608, 2014.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. J. Cryptology, 19(2):135–167, 2006.

[CKS+13] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and Hong-Sheng Zhou.
(efficient) universally composable oblivious transfer using a minimal number of stateless tokens. IACR
Cryptology ePrint Archive, 2013:840, 2013.

[CKS+14] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and Hong-Sheng Zhou.
(efficient) universally composable oblivious transfer using a minimal number of stateless tokens. In
TCC, pages 638–662, 2014.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In STOC, 2002.

57

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in the plain model
from standard assumptions. In FOCS, pages 541–550, 2010.

[COSV16a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-malleable
commitments (and more) in 3 rounds. To appear at CRYPTO, 2016.

[COSV16b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. On round-efficient non-
malleable protocols. IACR Cryptology ePrint Archive, 2016:621, 2016.

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect
reference string. In FOCS, pages 249–259, 2007.

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti. Im-
proved or-composition of sigma-protocols. In TCC, pages 112–141, 2016.

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti. On-
line/offline OR composition of sigma protocols. In EUROCRYPT, pages 63–92, 2016.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, pages 265–281, 2003.

[DKM11] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Unconditional and composable security
using a single stateful tamper-proof hardware token. In TCC, pages 164–181, 2011.

[DKMN15a] Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade, and Tobias Nilges. From stateful hardware to
resettable hardware using symmetric assumptions. In ProvSec, pages 23–42, 2015.

[DKMN15b] Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade, and Tobias Nilges. General statistically secure
computation with bounded-resettable hardware tokens. In TCC, pages 319–344, 2015.

[DMMN13] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Implementing resettable uc-
functionalities with untrusted tamper-proof hardware-tokens. In TCC, pages 642–661, 2013.

[DMRV13] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthuramakrishnan Venkitasubramaniam.
Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In ASI-
ACRYPT, pages 316–336, 2013.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys.
In PKC, pages 416–431, 2005.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using
preprocessing. In TCC, pages 621–641, 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indistin-
guishability obfuscation. In TCC, pages 74–94, 2014.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Founding cryp-
tography on tamper-proof hardware tokens. In TCC, pages 308–326, 2010.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In STOC, pages
25–32, 1989.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable com-
mitments: A black-box approach. In FOCS, pages 51–60, 2012.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact round
complexity of secure computation. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II, pages 448–476, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

58

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach to non-
malleability. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, pages 41–50, 2014.

[HHRS15] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of statistically hiding
commitments. SIAM J. Comput., 44(1):193–242, 2015.

[HJO+15] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs. Adap-
tively secure garbled circuits from one-way functions. IACR Cryptology ePrint Archive, 2015:1250,
2015.

[HV15] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On black-box complexity of universally
composable security in the CRS model. In ASIACRYPT, pages 183–209, 2015.

[HV16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the power of secure two-party com-
putation. To appear at CRYPTO, 2016.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In FOCS, pages 294–304, 2000.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient non-
interactive secure computation. In EUROCRYPT, pages 406–425, 2011.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure
multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO, pages 572–591, 2008.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof hardware. In
EUROCRYPT, pages 115–128, 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[KLP07] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent composition of secure proto-
cols in the timing model. J. Cryptology, 20(4):431–492, 2007.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In CRYPTO, pages
335–354, 2004.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report CSL-98,
SRI International, 1979.

[Lin03] Yehuda Lindell. General composition and universal composability in secure multi-party computation.
In FOCS, pages 394–403, 2003.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for con-
current security: universal composability from stand-alone non-malleability. In STOC, pages 179–188,
2009.

[LPV12] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for UC
from only OT. In ASIACRYPT, pages 699–717, 2012.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In CRYPTO,
pages 353–365, 1990.

[MMN16] Jeremias Mechler, Jörn Müller-Quade, and Tobias Nilges. Universally composable (non-interactive)
two-party computation from untrusted reusable hardware tokens. IACR Cryptology ePrint Archive,
2016:615, 2016.

59

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO, pages 392–404, 1991.

[MS08] Tal Moran and Gil Segev. David and goliath commitments: UC computation for asymmetric parties
using tamper-proof hardware. In EUROCRYPT, pages 527–544, 2008.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[Nil15] Tobias Nilges. The Cryptographic Strength of Tamper-Proof Hardware. PhD thesis, Karlsruhe Institute
of Technology, 2015.

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box two-party com-
putation. In CRYPTO, pages 339–358, 2015.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In
EUROCRYPT, pages 160–176, 2003.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal composability with-
out trusted setup. In STOC, pages 242–251, 2004.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554–571, 2008.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way functions.
In TCC, pages 403–418, 2009.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

60

A Issue with Over Extraction in Oblivious Transfer Combiners [GIS+10]

In the following we identify an issue that affects one of the feasibility results in [GIS+10, Section 5]. More
precisely, this result establishes that UC security for general functionalities is feasible in the tamper-proof
hardware model in O(κ)-round assuming only OWFs (or O(1)-round based on CRHFs) based on stateless
tokens. The issue arises as a result of over extraction where a fully-secure OT protocol is constructed from
a weaker variant and the simulation extracts values for sender’s inputs even on certain executions where the
receiver aborts. The term over extraction has been studied before in the context of commitment schemes
where a scheme with over extraction is constructed as an intermediate step towards achieving full security
[PW09, GLOV12].

On a high-level, in the work of [GIS+10], they first construct an OT protocol with milder security
guarantees. More precisely, a QuasiOT protocol achieves UC-security against a malicious receiver and
straight-line extraction against malicious sender. However, the scheme is not fully secure as a malicious
sender can cause an input-dependent abort for an honest receiver. Towards amplifying the security, [GIS+10]
consider the following protocol:

1. The sender with input (s0, s1) and receiver with input b interact in n executions of QuasiOTs. The
sender picks z1, . . . , zn and ∆ at random and sets the inputs to the ith QuasiOT instance as (zi, zi+∆).
The receiver on the other hand chooses bits b1, . . . , bn at random subject to the sum being its input b.

2. If the first step completes, the sender sends (s′0 = s0+
∑

i zi, s
′
1 = s1+

∑
i zi+∆) to the receiver. The

receiver computes its output as s′b +
∑

iwi where wi is the output of the receiver in the ith QuasiOT.

This protocol remains secure against a malicious receiver. However, an issue arises with a malicious
sender. To simulate a malicious sender in this protocol, [GIS+10] rely on the straight-line extractor of the n
QuasiOTs by sampling two sets of random (b1, . . . , bn), one set summing up to 0 and another set summing
up to 1 and computing what the receiver outputs in the two cases. As we demonstrate below such a strategy
leads to failure in the simulation. More precisely, consider the following malicious sender strategy.

• Pick z1, z2, ..., zn−1 and ∆ at random.

• The inputs of the first n− 1 tokens are set to z1, z1 +∆, . . . , zn−1, zn−1 +∆.

• Let z1 + . . .+ zn−1 = a and z1 + . . .+ zn−1 +∆ = b.

• The inputs to the n-th token are some fixed values c (when bn = 0) and d (when bn = 1), where
c+ d ̸= ∆.

Next, the sender modifies the code of the tokens used in the QuasiOT protocol so that the first n − 1
QuasiOTs never abort. The n-th instantiations however is made to abort whenever the input bn, the receiver’s
input is 1. Let s0 = 0 and s1 = 1 (we remark that we are not concerned about the actual inputs of the sender,
but focus on what the receiver learns). We next examine the honest receiver’s output in both the real and
ideal worlds. First, in the real world the honest receiver learns an output only if bn = 0 (since the n-th token
aborts whenever bn = 1). We consider two cases:

Case 1: The receiver’s input is b = 0. Then bn = 0 with probability 1/2, and bn = 1 with probability 1/2.
Moreover, when bn = 0, the sum of the outputs obtained by the receiver is a + c. This is because
when bn = 0, then, b1 + . . . + bn−1 = 0, and the receiver learns a as the sum of the outputs in the
the first n− 1 QuasiOTs and c from the n-th QuasiOT. On the other hand, if bn = 1 then the receiver
aborts in the n-th QuasiOT and therefore aborts.

61

Case 2: The receiver’s input is b = 1. Similarly, in this case the receiver will learn b + c with probability
1/2 and aborts with probability 1/2.

In the ideal world, the simulator runs first with a random bit-vector and extracts its inputs in the QuasiOTs
by monitoring the queries to the corresponding PRF tokens. Next, it generates two bit-vectors bi’s and b′i’s
that add up to 0 and 1, respectively, and computes the sums of the sender’s input that correspond to these
bits. Then the distribution of these sums can be computed as follows:

Case 1: In case that
∑

bi = 0, then bn = 0 with probability 1/2, and bn = 1 with probability 1/2. In the
former case the receiver learns a+ c, whereas in the latter case it learns b+ d.

Case 2: In case that
∑

b′i = 1, then with probability 1/2, b′n = 0 and with probability 1/2, b′n = 1. In the
former case the receiver learns b+ c, whereas in the latter it learns a+ d.

Note that this distribution is different from the real distribution, where the receiver never learns b + d or
a+d since the token will always abort and not reveal d. We remark that in our example the abort probability
of the receiver is independent of its input as proven in Claim 17 in [GIS+10], yet the distribution of what it
learns is different.

On a more general note, our attack presents the subtleties that need to be addressed with the “selec-
tive” abort strategy. Recent works by Ciampi et al. [COSV16a, COSV16b] have identified subtleties in
recent construction of non-malleable commitments [GRRV14] where selective aborts were not completely
addressed.

62

