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Abstract. Tweakable blockcipher (TBC) is an extension of standard
blockcipher introduced by Liskov, Rivest and Wagner in 2002. TBC is a
versatile building block for efficient symmetric-key cryptographic func-
tions, such as authenticated encryption.
In this paper we study the problem of extending tweak of a given TBC
of fixed-length tweak, which is a variant of popular problem of convert-
ing a blockcipher into a TBC, i.e., blockcipher mode of operation. The
problem is particularly important for known dedicated TBCs since they
have relatively short tweak. We propose a simple and efficient solution,
called XTX, for this problem. XTX converts a TBC of fixed-length tweak
into another TBC of arbitrarily long tweak, by extending the scheme of
Liskov, Rivest andWagner that converts a blockcipher into a TBC. Given
a TBC of n-bit block and m-bit tweak, XTX provides (n+m)/2-bit se-
curity while conventional methods provide n/2 or m/2-bit security. We
also show that XTX is even useful when combined with some blockcipher
modes for building TBC having security beyond the birthday bound.

Keywords: Tweakable blockcipher, Tweak extension, Mode of opera-
tion, LRW

1 Introduction

Tweakable blockcipher. Tweakable blockcipher (TBC) is an extension of
standard blockcipher introduced by Liskov, Rivest and Wagner in 2002 [17].
An encryption of TBC takes a parameter called tweak, in addition to key and
plaintext. Tweak is public and can be arbitrarily chosen. Due to its versatility,
TBC is getting more and more popularity. Known constructions of TBCs are
generally classified into two categories: dedicated design and blockcipher mode
of operation, i.e. using a blockcipher as a black box.

For the first category, Hasty pudding cipher [30] and Mercy [10] are examples
of early designs. More recently Skein hash function uses a dedicated TBC called
Threefish [2]. Jean, Nikolić and Peyrin [13] developed several dedicated TBCs as
components of their proposals to CAESAR [1], a competition of authenticated
encryption (AE).

⋆ A preliminary version of this paper appears in the proceedings of IMA international
conference on cryptography and coding (IMACC) 2015. This is the full version.



For the second category, Liskov et al. [17] provided two blockcipher modes
to build TBC, and their second mode is known as LRW3. Rogaway [28] re-
fined LRW and proposed XE and XEX modes, and Minematsu [22] proposed a
generalization of LRW and XEX. These schemes have provable security up to
so-called “birthday bound”, i.e. they can be broken if adversary performs around
2n/2 queries, where n is the block length of TBC. The first scheme to break this
barrier was shown by Minematsu [23], though it was limited to short tweak and
rekeyed for every tweak. Landecker, Shrimpton and Terashima [16] showed that
a chain of two LRWs has security beyond the birthday bound, which is the first
scheme with this property which does not use rekeying. Lampe and Seurin [15]
extended the work of [16] for longer chains. Tweakable variants of Even-Mansour
cipher [11] are studied by Cogliati, Lampe and Seurin [8] and Mennink [21]. A
concrete example is seen in a CAESAR proposal, called Minalpher [29].

Tweak extension. In this paper, we study tweak extension of a given TBC.
More formally, let Ẽ be a TBC of n-bit block and m-bit tweak, and we want to
arbitrarily extend m-bit tweak of Ẽ keeping n-bit block. Here m is considered to
be fixed. At first sight the problem looks trivial since most of previous studies
in the second category already cover the case of arbitrarily long tweak when
combined with a universal hash (UH) function of variable-length input, and a
TBC with any fixed tweak is also a blockcipher. Coron et al. (Theorem 6, [9])
pointed out another simple solution by applying a UH function H to tweak
and then use the hash value H(T ) as the tweak of Ẽ. However, the problem is

security. For TBC Ẽ of n-bit block and m-bit tweak, applying LRW or XEX to
(fixed-tweak) Ẽ the security is up to O(2n/2) queries. Coron et al.’s solution is
also secure up to O(2m/2) queries. We would get a better security bound by using
the chained LRW [16, 15], but it would significantly increase the computation

cost from Ẽ.

In this paper we provide an alternative solution, called XTX, which can be
explained as an intuitive yet non-trivial combination of LRW and Coron et al.’s
method mentioned above, applicable to any black-box TBC. Specifically, XTX
converts a TBC Ẽ of n-bit block and m-bit tweak into another TBC of n-bit
block and t-bit tweak for any t > m, using H which is a (variant of) UH function
of t-bit input and (n+m)-bit output. See Fig. 1 for XTX. We proved the security
bound of q2ϵ where ϵ denotes the bias of UH function. This implies security up
to O(2(n+m)/2) queries if ϵ is ideally small. As well as LRW, XTX needs one

calls of Ẽ and H, hence the computation cost is only slightly increased, and H
is called only once for multiple encryptions sharing the same tweak, by caching
the output of H.

We observe that tweak length of existing dedicated TBCs are relatively short,
at least not much longer than the block length. For instance, KIASU-BC [13] has
128-bit block and 64-bit tweak, and Threefish has 256 or 512 or 1024-bit block

3 The two schemes shown by [17] are also called LRW1 and LRW2, and we refer to
LRW2 throughout this paper.



with 128-bit tweak for all block sizes. One apparent reason for having fixed, short
tweak is that it is enough for their primary applications, however, if tweak can be
effectively extended it would expand their application areas. For another reason,
we think the complexity of security analysis for dedicated TBC is expected to be
dependent on the size of tweak space, since we have to make sure that for each
tweak the instance should behave as an independently-keyed blockcipher. The
TWEAKEY framework of Jean, et al. [13] provided a systematic way to build
TBCs by incorporating tweak in the key schedule, and it shows that building
efficient TBCs from scratch is far from trivial, in particular when we want to
have long tweaks. Our XTX can efficiently extend tweak of dedicated TBCs
with reasonably small security degradation in terms of the maximum number of
allowable queries. In addition, XTX is even useful when applied to some modes
of operations when the baseline TBC from a (non-tweakable) blockcipher has
beyond-birthday-bound security. We summarize these results in Section 4.

Applications of tweak extension. We remark that a TBC with long tweak
is useful. In general, a tweak of a TBC can be used to contain various additional
information associated with plaintext block, hence it would be desirable to make
tweak substantially longer than the block length (say 128 bits). For concrete
examples, a large-block TBC of Shrimpton and Terashima [31] used a TBC with
variable-length tweak, which was instantiated by a combination of techniques
from [9, 16]. Hirose, Sasaki and Yasuda [12] presented an AE scheme using TBC
with tweak something longer than the unit block.

2 Preliminaries

Notation. Let {0, 1}∗ be the set of all finite bit strings. For an integer ℓ ≥ 0, let
{0, 1}ℓ be the set of all bit strings of ℓ bits. For X ∈ {0, 1}∗, |X| is its length in
bits, and for ℓ ≥ 1, |X|ℓ = ⌈|X|/ℓ⌉ is the length in ℓ-bit blocks. When ℓ denotes
the length of a binary string we also write ℓn to mean ⌈ℓ/n⌉. A sequence of a
zeros is denoted by 0a. For set S ⊆ {0, 1}n and x ∈ {0, 1}n, S ⊕ x denotes the
set {s ⊕ x : s ∈ S}. If random variable X is uniformly distributed over X we
write X ∈U X .

Cryptographic functions. For any keyed function we assume that its first
argument denotes the key. For keyed function F : K × X → Y, we write FK(x)
to denote F (K,x) for the evaluation of input x ∈ X with key K ∈U K.

A blockcipher E : K × M → M is a keyed permutation over the message
space M. We write encryption of M using K as C = EK(M) and its inverse
as M = E−1

K (C). Similarly, a tweakable blockcipher (TBC) is a family of n-bit

blockcipher indexed by tweak T ∈ T . It is written as Ẽ : K × T × M → M.
If M = {0, 1}n and T = {0, 1}t, we say Ẽ is an (n, t)-bit TBC. An encryption

of message M with tweak T is written as ẼT
K(M), and if we have C = ẼT

K(M)



then M = ẼT,−1
K (C) holds for any (T,M). Let Perm(n) be the set of all n-

bit permutations. For a finite set X , let PermX (n) be the set of all functions
: X ×{0, 1}n → {0, 1}n such that, for any f ∈ PermX (n) and x ∈ X , f(x, ∗) is a
permutation. An n-bit uniform random permutation (URP) is a keyed permuta-
tion with uniform key distribution over Perm(n) (where a key directly represents
a permutation). Note that implementation of n-bit URP is impractical when n is
a block size of conventional blockciphers (say, 64 or 128). We also define an n-bit
tweakable URP (TURP) with tweak space T as a keyed tweakable permutation
with uniform key distribution over PermT (n).

Let A be the adversary trying to distinguish two oracles, O1 and O2, by
possibly adaptive queries (which we call chosen-plaintext attack, CPA for short).
We denote the event that the final binary decision of A after querying oracle O
is 1 by AO ⇒ 1. We write

Adv
cpa
O1,O2

(A)
def
= Pr[AO1 ⇒ 1]− Pr[AO2 ⇒ 1], (1)

where the probabilities are defined over the internal randomness of Oi and A. In
particular if O1 = EK and O2 = GK′ for two keyed permutations, EK and GK′ ,
we assume A performs a chosen-ciphertext attack (CCA), i.e., has encryption
and decryption queries and define

AdvccaE,G(A)
def
= Pr[A(EK ,E−1

K ) ⇒ 1]− Pr[A(GK′ ,G
−1

K′ ) ⇒ 1], (2)

where A(EK ,E−1
K ) denotes that A can choose one of EK or E−1

K for each query. In
the same manner we define Advcca

ẼK ,G̃K′
(A) for two keyed tweakable permutations,

where tweaks in queries are arbitrarily chosen.
For n-bit blockcipher EK and (n, t)-bit TBC ẼK , we define SPRP (for strong

pseudorandom permutation) and TSPRP (for tweakable SPRP) advantages for
A as

Adv
sprp
E (A)

def
= AdvccaE,P(A), and Adv

tsprp

Ẽ
(A)

def
= Advcca

Ẽ,P̃
(A), (3)

where P is n-bit URP and P̃ is (n, t)-bit TURP.
If A is information-theoretic, it is only limited in the numbers and lengths

of queries. If A is computational, it also has a limitation on computation time
in some fixed model, which is required to define computationally-secure ob-
jects, e.g. pseudorandom function (PRF). In this paper most security proofs are
information-theoretic, i.e. the target schemes are built upon URP or TURP.
When their components are substituted with conventional blockcipher or TBC,
a computational security bound is obtained using a standard technique [4].

2.1 Universal hash function and polynomial hash function

We will need a class of non-cryptographic functions called universal hash func-
tion [7] defined as follows.



Definition 1. For function H : K × X → Y being keyed by K ∈U K, we say it
is ϵ-almost uniform (ϵ-AU) if

max
x ̸=x′

Pr
K
[HK(x) = HK(x′)] ≤ ϵ (4)

holds. Moreover if Y = {0, 1}n for some n, we say it is ϵ-almost XOR uniform
(ϵ-AXU) if

max
x ̸=x′,∆∈{0,1}n

Pr
K
[HK(x)⊕HK(x′) = ∆] ≤ ϵ (5)

holds.

From the definition if H is ϵ-AXU then it is also ϵ-AU.
Next we introduce polynomial hash function as a popular class of AU and

AXU functions. Let Poly[a] : L× {0, 1}∗ → {0, 1}a for key space L = GF(2a) be
the polynomial hash function defined over GF(2a). Formally, we have

Poly[a]L(X) =
∑

i=1,...,|X|a

L|X|a−i+1 ·X[i], (6)

where multiplications and additions are over GF(2a), and (X[1], . . . , X[|X|a])
denotes an a-bit partition of X ∈ {0, 1}∗ with a mapping between {0, 1}a and
GF(2a) and a padding for partial message. Here, padding must have the prop-
erty that the original message is uniquely recovered from the padded message.
For example we can pad the non-empty sequence with v = 100 . . . 0 so that
|X∥v| is a multiple of a. Moreover, we write Poly[a, b] : L × {0, 1}∗ → {0, 1}a ×
{0, 1}b for L = GF(2a) × GF(2b) to denote the function Poly[a, b](L1,L2)(X) =
(Poly[a]L1(X),Poly[b]L2(X)), where L1 and L2 are independent. Further exten-
sions, such as Poly[a, b, c], are similarly defined.

If we limit the input space of Poly to {0, 1}ℓ for some predetermined ℓ, we
have the following.

Proposition 1. A polynomial hash function Poly[n] : L × {0, 1}ℓ → {0, 1}n is
ϵ-AXU with ϵ = ℓn/2

n. Moreover, Poly[n1, n2, . . . , nc] : L × {0, 1}ℓ → Y for
L = GF(2n1) × · · · × GF(2nc) and Y = {0, 1}n1 × · · · × {0, 1}nc is ϵ-AXU for
ϵ =

∏
i(ℓni/2

ni).

Polynomial hash function can work over inputs of different lengths if com-
bined with appropriate encoding. However, for simplicity this paper mainly dis-
cusses the case where Poly has a fixed input length, and in this respect we treat
tweak length (in block or bit) appeared in the security bound as a constant,
which is usually denoted by ℓ. Recall that we use ℓn to denote ⌈ℓ/n⌉.

3 Main construction

3.1 Previous schemes

We start with a description of one of the most popular TBC schemes based on
blockcipher. It is the second construction of Liskov et al. [17] and is called LRW.



Using blockcipher E : K × M → M with M = {0, 1}n and a keyed function
H : L × T → M, LRW is described as

LRWT
K,L(M) = HL(T )⊕ EK(M ⊕HL(T )), (7)

where T ∈ T is a tweak and K ∈U K and L ∈U L are independent keys.
Let LRWP,L denote LRW using n-bit URP, P, as a blockcipher and H with
independent key L ∈U L. Its TSPRP-advantage is bounded as4

Adv
tsprp
LRWP,L

(A) ≤ ϵ · q2, (8)

for any CCA-adversary A using q queries, if H is ϵ-AXU. Since ϵ ≥ 1/2n this
implies provable security up to the birthday bound. The bound is tight in that
there is an attack matching the bound. Rogaway’s XEX [28] and Minematsu’s
scheme [22] reduce the two keys of LRW to one blockcipher key.

For tweak extension of given (n,m)-bit TBC, Ẽ, we have two previous solu-

tions: the first one is to use LRW with blockcipher instantiated by Ẽ taking a
fixed tweak. This has security bound of (8), hence n/2-bit security when H is
(e.g.) Poly[n]. The second one, proposed by Coron et.al. [9] as mentioned earlier,

is to use H : L×T → V and combine Ẽ and H as C = ẼV
K(M) for V = HL(T ).

If H is ϵ-AU, this clearly has security bound of O(ϵq2) which implies m/2-bit
security at best. Then, what will happen if we use both solutions all together?
In the next section we show that in fact this combination gives a better result.

3.2 XTX

We describe our proposal. Let Ẽ : K×V ×M → M be a TBC of message space
M = {0, 1}n and tweak space V = {0, 1}m. Let T be another (larger) tweak
space. Let H : L × T → M × V be a function keyed by L ∈U L. We define
XTX : (K×L)×T ×M → M be a TBC of message space M and tweak space

T and key space (K × L), using Ẽ and H, such that

XTXT
K,L(M) = ẼV

K(M ⊕W )⊕W, where (W,V ) = HL(T ). (9)

Fig. 1 shows the scheme. For security we need that H is a variant of ϵ-AXU
function defined as follows.

Definition 2. Let H be a keyed function H : L × T → {0, 1}n × {0, 1}m. We
say H is (n,m, ϵ)-partial AXU ((n,m, ϵ)-pAXU) if it satisfies

max
x,x′∈T ,x ̸=x′
∆∈{0,1}n

Pr
L
[HL(x)⊕HL(x

′) = (∆, 0m)] ≤ ϵ. (10)

Clearly an ϵ-AXU function of (n+m)-bit output is also (n,m, ϵ)-pAXU.
A change of a tweak in XTX affects to both block and tweak of inner TBC,

whereas in LRW or XEX it affects only to input block, and in Coron et al.’s

4 Originally proved by [17] with a slightly larger constant, then improved by [22].
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Fig. 1. XTX. A thick black line in Ẽ denotes tweak input.

method it affects only to inner tweak. XTX’s structure is somewhat similar to a
construction of (n, n)-bit TBC presented by Mennink [20], though [20] was based
on ideal-cipher model, while XTX works on standard model and has no limitation
on the outer tweak length. As well as LRW, XTX needs two keys. However it
can be easily reduced to one by reserving one tweak bit for key generation. For
instance, when L = {0, 1}n, we let L = Ẽ(0m)(0n) and use (n,m − 1)-bit TBC

defined as Ẽ(∗∥1)(∗).

3.3 Security

We prove the security of XTX when underlying TBC is perfect, i.e. a TURP.

Theorem 1. Let XTXP̃,L be XTX using (n,m)-bit tweakable URP, P̃, and H :

L × T → {0, 1}n × {0, 1}m for tweak space T with independent key L ∈U L.
Then we have

Adv
tsprp
XTXP̃,L

(A) ≤ ϵ · q2, (11)

for any CCA-adversary A using q queries if H is (n,m, ϵ)-pAXU.

In particular, when T = {0, 1}ℓ for some ℓ and H is Poly[n + m], we have
Adv

tsprp
XTXP̃,L

(A) ≤ ℓn+mq2/2n+m from Theorem 1 and Proposition 1.

3.4 Proof of Theorem 1

Overview. Following the proof of LRW [22], our proof is based on the method
developed by Maurer [18]5, though other methods such as game-playing proof [6]

5 In some special cases the result obtained by the method of [18] cannot be converted
into computational counterparts [25, 19]. However the proof presented here does not
have such difficulty. A bug in a theorem of [18] was pointed out by Jetchev, Özen
and Stam [14], however we did not use it.



or Coefficient-H technique [24] can be used as well. Basically, the proof is an
extension of LRW proofs [17, 22], which shows that the advantage is bounded
by the probability of “bad” event, defined as a non-trivial input collision in
the underlying blockcipher of LRW. Intuitively, the security bound of XTX is
obtained by extending this observation, and we can set “bad” event as non-
trivial, simultaneous collisions of input and tweak in the underlying TBC.

Proof. We start with basic explanations on Maurer’s method. They are mostly
the same as those of [18], with minor notational changes. Consider the game that
an adversary tries to distinguish two keyed functions, F and G, with queries.
The game we consider is information-theoretic, that is, adversary has no com-
putational limitation and F and G have no computational assumption, say, they
are URF or URP. There may be some conditions of valid adversaries, e.g. no
repeating queries etc. Let αi denote an event defined at time i, i.e. when ad-
versary performs i-th query and receives a response from oracle. Let αi be the
negation of αi. We assume αi is monotone, i.e., αi never occurs if αi−1 oc-
curs. For instance, αi is monotone if it indicates that all i outputs are distinct.
An infinite sequence of monotone events α = α0α1 . . . is called a monotone
event sequence (MES). Here, α0 denotes some tautological event. Note that
α ∧ β = (α0 ∧ β0)(α1 ∧ β1) . . . is a MES if α = α0α1 . . . and β = β0β1 . . .
are both MESs. Here we may abbreviate α ∧ β as αβ. For any sequence of
random variables, X1, X2, . . . , let Xi denote (X1, . . . , Xi). We use dist(Xi) to
denote that X1, X2, . . . , Xi are distinct. We also write dist((X,Y )i) to denote
that (X1, Y1), . . . , (Xi, Yi) are distinct. Let MESs α and β be defined for two
keyed functions, F : K × X → Y and G : K′ × X → Y, respectively. For sim-
plicity, we omit the description of keys in this explanation. Let Xi ∈ X and
Yi ∈ Y be the i-th input and output. Let PF be the probability space defined
by F . For example, PF

Yi|XiY i−1(yi, xi) means Pr[Yi = yi|Xi = xi, Y i−1 = yi−1]

where Yj = F (Xj) for j ≥ 1. If PF
Yi|XiY i−1(yi, xi) = PG

Yi|XiY i−1(yi, xi) for all

possible (yi, xi), i.e. all assignments for which probabilities are defined, then we
write PF

Yi|XiY i−1 = PG
Yi|XiY i−1 . Inequalities such as PF

Yi|XiY i−1 ≤ PG
Yi|XiY i−1 are

similarly defined. Using MES α = α0α1, . . . and β = β0β1, . . . defined for F and
G we define the following notations, which will be used in our proof.

Definition 3. We write Fα ≡ Gβ if PF
Yiαi|XiY i−1αi−1

= PG
Yiβi|XiY i−1βi−1

holds

for all i ≥ 1, which means PF
Yiαi|XiY i−1αi−1

(yi, xi) = PG
Yiβi|XiY i−1βi−1

(yi, xi)

holds for all possible (yi, xi) such that both PF
αi−1|Xi−1Y i−1(yi−1, xi−1) and

PG
βi−1|Xi−1Y i−1(yi−1, xi−1) are positive.

Definition 4. We write F |α ≡ G|β if PF
Yi|XiY i−1αi

= PG
Yi|XiY i−1βi

holds for all
i ≥ 1.

In general if Fα ≡ Gβ , then F |α ≡ G|β holds, but not vice versa.



Definition 5. We define ν(F, αq) as the maximal probability of αq for any ad-
versary using q queries to F , considered as valid in the definition of game, which
we assume clear in the context.

Theorem 2. (Theorem 1 (i) of [18]) If Fα ≡ Gβ or F |α ≡ G holds, we have
Adv

cpa
F,G(A) ≤ ν(F, αq) for any adversary using q queries.

We also use the following two lemmas of [18].

Lemma 1. (Lemma 1 (iv) of [18]) Let MESs α and β be defined for F and G.
Moreover, let Xi and Yi denote the i-th input and output of F (or G), respec-
tively. Assume F |α ≡ G|β. If PF

αi|XiY i−1αi−1
≤ PG

βi|XiY i−1βi−1
for i ≥ 1, which

means PF
αi|XiY i−1αi−1

(xi, yi−1) ≤ PG
βi|XiY i−1βi−1

(xi, yi−1) holds for all (xi, yi−1)

such that PF
αi−1|Xi−1Y i−1(xi−1, yi−1) and PG

βi−1|Xi−1Y i−1(xi−1, yi−1) are positive.

Then there exists an MES γ defined for G such that Fα ≡ Gβγ .

Lemma 2. (Lemma 6 (iii) of [18]) ν(F, αq ∧ βq) ≤ ν(F, αq) + ν(F, βq).

Analysis of XTX. We abbreviate XTXP̃,L to XTX1. We define XTX2 be TURP
with tweak space T . What is needed is the indistinguishability of XTX1 and
XTX2 for CCA adversary.

We write the adversary’s query as Xi = (Xi, Ti, Bi) ∈ {0, 1}n × T × {0, 1}.
Here Bi = 0 (Bi = 1) indicates that i-th query is an encryption (a decryption)
query. Let Yi ∈ {0, 1}n be the corresponding response and we write HL(Ti) =
(Wi, Vi) following (9). We also assume XTX2 has computation of HL(Ti) =
(Wi, Vi) as dummy, using independent and uniform sampling of L. In XTX2, Wi

and Vi are not used in the computation of Yi. We write the set of scripts for
all i = 1, . . . , j-th queries as Zj = (X1, . . . ,Xj , Y1, . . . , Yj). We may use Mi to
denote Xi when Bi = 0 or Yi when Bi = 1, and use Ci to denote Yi when Bi = 0
or Xi when Bi = 1. We say Zj is valid if Ti = Tj and Mi ̸= Mj (Ci ̸= Cj) then
Ci ̸= Cj (Mi ̸= Mj) holds. We note that a transcript which is not valid is one
that cannot be obtained from a TBC.

We define Si = Mi ⊕ Wi and Ui = Ci ⊕ Wi for both XTX1 and XTX2.
They correspond to the input and output of P̃ in XTX1, and dummy variables
in XTX2. MESs are defined as αq = dist((S, V )q) and βq = dist((U, V )q). We
observe that in XTX1, αq and βq are equivalent, however not equivalent in

XTX2. Let us define D(Vq)
def
= {1 ≤ i < q : Vi = Vq} and for n-bit variable

A ∈ {X,Y,W, S, U} define A[D(Vq)]
def
= {Ai : i ∈ D(Vq)}. Here A[D(Vq)]

c =
{0, 1}n \A[D(Vq)]. Fig. 2 shows XTX1 with the labels mentioned above.

We investigate the distribution PG
Yq|Zq−1Xqαqβq

for G ∈ {XTX1,XTX2}. We

have

PG
Yq|Zq−1Xqαqβq

=
∑
L

PG
Yq|Zq−1XqαqβqL

· PG
L|Zq−1Xqαqβq

, (12)

where the summation is taken for all values of L = l. We first focus on the
term PG

L|Zq−1Xqαqβq
. Let us assume Bq = 0. For both G = XTX1 and XTX2,
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Mi (if Bi = 0 then Xi = Mi, else Yi = Mi)

Ci (if Bi = 0 then Xi = Ci, else Yi = Ci)

Fig. 2. XTX1 with labels used in the proof of Theorem 1.

L is uniform over all values consistent with the conditional clause (note that L
defines W q, V q, Sq and Uq−1, thus αq and βq−1 are deterministic events given
L). Hence we have

PXTX1

L|Zq−1Xqαqβq
= PXTX2

L|Zq−1Xqαqβq
. (13)

For PG
Yq|Zq−1XqαqβqL

, if Bq = 0 and G = XTX1, Uq is uniform over U def
=

U [D(Vq)]
c, thus Yq = Cq = Uq ⊕ Wq is uniform over U ⊕ Wq. If Bq = 0 and

G = XTX2 and there is no conditional clause αqβq, Yq(= Cq) is uniform over

C def
= C[D(Tq)]

c. Here Uq is uniform over

{Ci ⊕Wq : i ∈ D(Tq)}c = {Ci ⊕Wi : i ∈ D(Tq)}c = {Ui : i ∈ D(Tq)}c. (14)

With condition αqβq (here only βq is relevant since αq is deterministic given
L), Ui for i ∈ D(Vq) (but Ti ̸= Tq) is further removed from possible values for
Uq, hence Uq is uniform over U = U [D(Vq)]

c and Yq is uniform over U ⊕ Wq.
Therefore Cq’s distributions are identical for both XTX1 and XTX2. The same
analysis holds for the case Bq = 1, and we have

PXTX1

Yq|Zq−1XqαqβqL
= PXTX2

Yq|Zq−1XqαqβqL
. (15)

Thus Yq’s distributions are identical for both XTX1 and XTX2 if conditioned
by αqβq and L = l for any l. Therefore from (13) and (15) we have

PXTX1

Yq|Zq−1Xqαqβq
= PXTX2

Yq|Zq−1Xqαqβq
, that is, XTX1|αβ ≡ XTX2|αβ. (16)

Let us assume Bq = 0, and we focus on p(G) = PG
αqβq|Zq−1Xqαq−1βq−1L

. Note

that the conditional clause uniquely determines whether αq holds or not. If αq

does not hold, p(G) = 0 for both G = XTX1 or XTX2. If αq holds, p(XTX1) = 1
as βq ≡ αq in XTX1, however p(XTX2) < 1 since βq depends on Uq which is not
determined by the conditional clause. This shows that

PXTX2

αqβq|Zq−1Xqαq−1βq−1L
≤ PXTX1

αqβq|Zq−1Xqαq−1βq−1L
. (17)



Moreover using similar argument as (12), we have

PXTX1

L|Zq−1Xqαq−1βq−1
= PXTX2

L|Zq−1Xqαq−1βq−1
. (18)

Thus, from (17) and (18), we have

PXTX2

αqβq|Zq−1Xqαq−1βq−1
≤ PXTX1

αqβq|Zq−1Xqαq−1βq−1
. (19)

From (16) and (19) and Lemma 1, we observe that XTXαβγ
1 ≡ XTXαβ

2 holds
true for some MES γ. With this equivalence, Theorem 2 and Lemma 2, we have

AdvccaXTX1,XTX2
(A) ≤ ν(XTX2, αq ∧ βq) ≤ ν(XTX2, αq) + ν(XTX2, βq) (20)

for any CCA adversary A using q queries.
Let XTX2[p̃] be XTX2 using a fixed tweakable permutation p̃ ∈ PermT (n).

We observe that the last two terms of (20) are bounded as

ν(XTX2, αq) ≤ max
p̃∈PermT (n)

ν(XTX2[p̃], αq) (21)

ν(XTX2, βq) ≤ max
p̃∈PermT (n)

ν(XTX2[p̃], βq). (22)

As p̃ is fixed, the adversary can evaluate it without oracle access, hence the right
hand side terms of (21) are obtained by considering the maximum of possible
and valid (Mq, T q, Cq). For fixed (Mq, T q, Cq), the probabilities of αq and βq

are determined by W q and V q. Thus, for any p̃ we have

ν(XTX2[p̃], αq)

≤ max
(Mq,Tq,Cq)

valid

Pr
(Wq,V q)

(Wi,Vi)=HL(Ti)

[∃i, j, s.t. (Wi ⊕Wj = Mi ⊕Mj) ∧ (Vi = Vj)]

≤
(
q

2

)
· ϵ, and (23)

ν(XTX2[p̃], βq)

≤ max
(Mq,Tq,Cq)

valid

Pr
(Wq,V q)

(Wi,Vi)=HL(Ti)

[∃i, j, s.t. (Wi ⊕Wj = Ci ⊕ Cj) ∧ (Vi = Vj)]

≤
(
q

2

)
· ϵ, (24)

since H is (n,m, ϵ)-pAXU. From (20) and (23) and (24), we conclude the proof.
⊓⊔

Tightness of our bound. We note that the bound is tight in the sense that we
have an attack with about q = O(2(n+m)/2) queries. The attack is simple, and let
M = 0n. The adversary makes q encryption queries (M,T1), . . . , (M,Tq), where
T1, . . . , Tq are distinct tweaks. With a high probability, we have i and j such that
Ci = Cj , where Ci is the ciphertext for (M,Ti) and Cj is that for (M,Tj). Now,



the adversary can make two more encryption queries (M ′, Tj) and (M ′, Tj) for
any M ′ ̸= M , and see if the corresponding ciphertexts collide, in which case,
with a high probability, the oracle is the tweakable blockcipher.

The attack works since in the ideal case, there exit i and j such that Ci = Cj

with a non-negligible probability, but we have the collision between ciphertexts
of (M ′, Ti) and (M ′, Tj) with only a negligible probability.

4 Applications

Suppose we have an (n,m)-bit TBC Ẽ and want to extend tweak by applying

XTX. We first remark if Ẽ is obtained by LRW this is almost pointless because
Ẽ itself has only security up to the birthday bound. In this case a simple solution
would be to extend the input domain of UH function used in LRW. However if Ẽ
is a dedicated TBC, or a mode of operation having security beyond the birthday
bound, application of XTX to Ẽ can have practical merits.

4.1 Dedicated TBC

Let us assume Ẽ is an (n,m)-bit dedicated TBC. As mentioned, using Ẽ with
fixed tweak then applying LRW with some UH function only provides n/2-bit
security, and Coron’s method only providesm/2-bit security, while XTX provides
(n+m)/2-bit security. For example, KIASU-BC [13] is a (128, 64)-bit TBC based
on AES. By combining XTX using H as Poly[192] or Poly[64, 64, 64] we obtain a
TBC of longer tweak with 96-bit security with respect to the number of queries,
while previous methods provide 64 or 32-bit security. Similarly, a (256, 128)-bit
TBC version of Threefish can be conveted into a TBC of longer tweak having
192-bit security, using XTX with H being Poly[384] or Poly[128, 128, 128].

We remark that the use of Poly[m,m,m] for m = n/3 instead of Poly[n +
m] can reduce the implementation size and gain efficiency. For example Aoki
and Yasuda [3] proposed to use Poly[n/2, n/2] instead of Poly[n] used in GCM
authenticated encryption. A drawback is that it will increase the advantage with
respect to tweak length, from linear to cubic in our case (though we assumed it
as a constant in Section 2.1). Therefore, the use of a polynomial hash function
with a small field is not desirable if the impact of such increase is not negligible.
In addition we have to be careful with the existence of weak keys in polynomial
hash function pointed out by Procter and Cid [27].

4.2 Rekeying construction

Minematsu’s rekeying construction for TBC [23] is described as follows. Using
a blockcipher E : K ×M → M with K = M = {0, 1}n, [23] builds a (n,m)-bit
TBC for m < n such that

MinTK(M) = EK′
T
(M) where K ′

T = EK(T∥0n−m). (25)



M

n

m

THL

EKE 0n−m

XTXT
Min,L(M)

Fig. 3. XTX applied to Minematsu’s TBC.

The security bound of this construction is as follows. For any A using q queries
with τ time, we have another adversary B using q queries with τ ′ = τ + O(q)

time such that AdvtsprpMin (A) ≤ (η + 1)AdvsprpE (B) + η2

2n+1 , where η = min{q, 2m}.
As analyzed by [23] this can provide a TBC with beyond-birthday security when
m < n/2. In particular [23] suggested m = n/3 which provides security against
2n−m = 22n/3 queries. Despite the simple construction, one big shortcoming
is its short tweak length, as mentioned by (e.g.) [20, 15, 16]. This is, however,
recovered if (25) is combined with XTX. Let XTXMin,L be XTX with internal
TBC being Min having n-bit block, m-bit tweak using n-bit blockcipher E. Here
we assume that tweak space of XTXMin,L is T = {0, 1}ℓ, and underlying H :
L × T → {0, 1}n+m is Poly[n + m]. Then for any adversary A using q queries
and τ time, from (25) and Proposition 1 and Theorem 1, we have

Adv
tsprp
XTXMin,L

(A) ≤ (η + 1)AdvsprpE (B) + η2

2n+1
+

ℓn+mq2

2n+m
, (26)

for some adversary B using q queries with τ +O(q) time, where η = min{q, 2m}
as above. For choosing m, we can assume that Adv

sprp
E (B) is at least q/2n for

adversary B using q queries and τ time when q is about τ (since E has n-
bit key and B can perform exhaustive key search, as observed by Bellare et
al. [5]). Ignoring ℓn+m and substituting η with 2m in the bound, the first and
last terms are about q/2n−m and q2/2n+m. Then m = n/3 is a reasonable
choice which makes these terms (q/22n/3)i for i = 1 and i = 2. This shows that
we can extend tweak keeping the original security of rekeying construction. The
resulting scheme is shown in Fig. 3, where a triangle in E denotes key input,
and HL denotes Poly[n+m]. Still, we need rekeying for each tweak and this can
be another drawback for performance.

4.3 Chained LRW

A provably-secure TBC construction which does not rely on rekeying construc-
tion [23] was first proposed by Landecker et al. [16]. It is an independently-



keyed chain of LRW, and is called6 CLRW2. Assuming LRW shown as (7) using
H : L × T → M and E : K × M → M for M = {0, 1}n and T = {0, 1}ℓ as
underlying components, they proposed the construction described as

CLRW2TK1,K2,L1,L2
(M) = LRWT

K2,L2
(LRWT

K1,L1
(M)). (27)

The authors proved7 that its TSPRP-advantage is O(q3ϵ2) when H is ϵ-AXU.
More formally, TSPRP-advantage is at most 8q3ϵ̂2/(1− q3ϵ̂2) where ϵ̂ is defined
as max{ϵ, 1/(2n − 2q)}. Thus, assuming ϵ̂ = ϵ and the denominator being larger
than 1/2, the bound is at most

16q3ϵ2. (28)

If H is Poly[n], we have ϵ = ℓn/2
n, then the bound is 16q3ℓ2n/2

2n. In this case
CLRW2 needs 2ℓn GF(2n) multiplications for each ℓ-bit tweak.

A natural extension of CLRW2, i.e. a longer chain more than two, was
proposed by Lampe and Seurin [15]. The construction for r chains is simply
described as r-CLRWT

K1,...,Kr,L1,...,Lr
(M) in the same manner to (27), where

2-CLRW is equivalent to CLRW2. If r blockciphers are independent URPs, they
proved that r-CLRW for any even r has TSPRP-advantage of

crq
(r+2)

4 ϵ
r
4 , where cr =

4
√
2√

r + 2
· 2 r

4 , (29)

when the underlying H : L×T → M is ϵ-AXU. If T is {0, 1}ℓ and H is Poly[n],
the bound is

crq
(r+2)

4 ℓ
r
4
n

2
nr
4

. (30)

Let r-CLRW(m) be the r-CLRW with n-bit blockcipher EK and m-bit tweak
(for some fixed m > 0) processed by independently-keyed r instances of Poly[n].
We note that r-CLRW(ℓ) needs rℓn multiplications over GF(2n).

r-CLRW combined with XTX. Let r > 2 be an even integer. We apply XTX
with H being Poly[n, n] using two keys in GF(2n) to r-CLRW(n), to build an
(n, ℓ)-bit TBC. The resulting scheme uses r+2ℓn GF(2n) multiplications, hence
uses fewer multiplications than r-CLRW(ℓ) if ℓn > 1 and r ≥ 4. See Fig. 4 for the
combined scheme. From Theorem 1, Proposition 1 and (30), TSPRP-advantage
of the resulting scheme is

crq
(r+2)

4

2
nr
4

+
ℓ2nq

2

22n
. (31)

6 The name CLRW2 means it is a chain of the second construction of [17], which we
simply call LRW.

7 Originally the constant was 6, however an error in the proof was pointed out by
Procter [26]. He fixed the proof with an increased constant, 8.



This provides the same level of security as (30), unless ℓn is huge.
In case r = 2 the above combination gives no efficiency improvement. Still,

by combining CLRW2(m) for some m < n with XTX a slight improvement is
possible. This is because CLRW2 needs two n-bit UH functions and the product
of their biases is multiplied by q3, while the bias of (n + m)-bit UH function
in XTX is multiplied by q2. For example, assuming n is divisible by 3, we set
m = n/3, and consider CLRW2(m) using two Poly[n] (with padding of tweak),
combined with XTX using Poly[n,m] to process ℓ-bit tweak. This requires ℓn
GF(2n) multiplications and 3ℓn GF(2m) multiplications. It is not straightfor-
ward to compare the complexity of one multiplication over GF(2n) and three
multiplications over GF(2m), however, in most cases the latter is considered to
be lighter than the former, though the gain will be depending on whether the
underlying computing platform operates well over m-bit words. If this is the case
our scheme will have a better complexity than the plain use of CLRW2.

As a more concrete example, let us consider CLRW2 using two instances of
Poly[m,m,m] with m = n/3 (See the top of Fig. 5). For ℓ-bit tweak, this CLRW2
requires 2 ·3 ·3ℓn = 18ℓn multiplications over GF(2m) and its TSPRP-advantage
is, based on (28), at most

16 · q3
(
(3ℓn)

3

(2
n
3 )3

)2

=
11664 · q3 · ℓ6n

22n
. (32)

If we combine this instance of CLRW2(m) with XTX using Poly[m,m,m,m],
then the advantage is at most

16 · 729q3

22n
+ q2

(3ℓn)
4

(2
n
3 )4

=
11664q3

22n
+

81ℓ4nq
2

2
4n
3

. (33)

See the bottom of Fig. 5 for the resulting scheme. As shown by (32) and (33),
for a moderate tweak length both bounds indicate the security against about
22n/3 queries, while the combined scheme uses fewer GF(2m) multiplications,
i.e. 6 + 4 · 3ℓn = 6 + 12ℓn. For comparison of these two bounds, Fig. 6 shows
the case of n = 128 and ℓn = 16. In Fig. 6 both bounds are close but CLRW2
combined with XTX is slightly better.

5 Conclusion

In this paper, we have studied the problem of tweak extension for a tweakable
blockcipher having fixed-length tweak. We proposed XTX as an effective solution
to this problem, by extending the work of Liskov et al. XTX uses one call of
a given tweakable blockcipher, Ẽ, and a variant of universal hash function, H,
for processing global tweak. When Ẽ has n-bit block and m-bit tweak, XTX
provides (n+m)/2-bit security, which is better than the conventional methods
known as Liskov et al.’s LRW or Corol et al.’s solution. The proposed method is
useful in extending tweak of dedicated tweakable blockciphers, which typically
have relatively short, fixed-length tweak. Moreover, XTX is even useful when
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Fig. 4. r-CLRW with XTX, using Poly[n, n] as outer universal hash function.

applied to some blockcipher modes for tweakable blockcipher which have beyond-
birthday-bound security. A natural open problem here is to find tweak extension
schemes that have better security bounds than that of XTX.
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