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Abstract. This paper revisits related randomness attacks against public
key encryption schemes as introduced by Paterson, Schuldt and Sibborn
(PKC 2014). We present a general transform achieving security for pub-
lic key encryption in the related randomness setting using as input any
secure public key encryption scheme in combination with an auxiliary-
input reconstructive extractor. Specifically, we achieve security in the
function-vector model introduced by Paterson et al., obtaining the first
constructions providing CCA security in this setting. We consider in-
stantiations of our transform using the Goldreich-Levin extractor; these
outperform the previous constructions in terms of public-key size and
reduction tightness, as well as enjoying CCA security. Finally, we also
point out that our approach leads to an elegant construction for Corre-
lation Input Secure hash functions, which have proven to be a versatile
tool in diverse areas of cryptography.
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1 Introduction

In recent work, and motivated by numerous practical attacks involving diverse
kinds of randomness failure, Paterson, Schuldt and Sibborn [22] introduced re-
lated randomness attacks against public key encryption schemes. In such an
attack, the adversary is able to control the randomness and public keys used
during encryption; the security target is that messages encrypted under an hon-
estly generated public key should still remain hidden from the adversary to the
maximum extent that this is possible. In the model of Paterson et al. [22], the
adversary is able to force the encryption scheme to use random values that are
related to one another in ways that are specified by functions acting on the ran-
domness space of the scheme. This modelling is inspired by practical attacks like
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those by Ristenpart and Yilek in [25], which exploit randomness generation in
virtual machines, and extends the Reset Attack (RA) setting considered by Yilek
in [28]. As demonstrated in [22], it is also connected to other research topics such

as security against related key (RKA) attacks and leakage resilience?.

1.1 The RRA Setting

In the Related Randomness Attack (RRA) setting, the adversary can not only
force the reuse of existing random values as in the RA setting, but can also force
the use of functions of those random values. The extra adversarial power in the
RRA setting allows the modelling of reset attacks in which the adversary does not
have an exact reset capability, but where the randomness used after a reset is in
some way related to that used on previous resets. Such behaviours were observed
in the experimental work by Ristenpart et al. [25], for example. Via access to an
Enc oracle, the RRA adversary is able to get arbitrary messages encrypted under
arbitrary public keys, using functions ¢ of an initial set of well-distributed but
unknown random values. The public keys can even be maliciously generated, and
hence, the adversary might know the corresponding private keys. The adversary
is tasked with winning an indistinguishability-style game defined via a left-or-
right oracle, LR, which consistently returns the encryption of either the first or
second message of message pairs submitted to the oracle. The encryptions are
with respect to an honestly generated target public key pk*, but again where the
adversary can force the use of functions ¢ of the initial random values. When the
functions ¢ are limited to coming from some set @, we speak of a ®P-restricted
adversary.

Because the adversary may know all but one of the private keys, it can check
that its challenger is behaving correctly with respect to its encryption queries.
Moreover, these queries concern public keys that are outside the control of the
challenger. This makes achieving security in the RRA setting technically quite
challenging, while practically relevant.

1.2 Previous Results

Paterson et al. [22] gave a variety of security models and constructions for PKE
secure under related randomness attacks (RRA) in the CPA and CCA settings.
As a first contribution, they explored the use of the Random Oracle Model,
obtaining necessary and sufficient conditions on the function set & that are
required to obtain RRA security (these being collision-resistance and output-
unpredictability of @). They also showed how to transform any PKE scheme
PKE into a new PKE scheme Hash-PKE that is RRA-secure for &-restricted ad-
versaries, simply by hashing the random input together with the public key and

% See also [22] for an extended discussion of the practical motivation for studying
related randomness attacks based on the attack literature as represented by [12,13,
15,16,9,2,25,6,19,17,11,21,7].



message during encryption. This construction is closely related to approaches
in [25] and [3].

In the standard model, Paterson et al. were able to show that any @-restricted
related key attack-secure PRF (RKA-PRF) can be used to build a RRA-secure
PKE scheme for @-restricted adversaries, thus transferring security from the
RKA setting for PRFs to the RRA setting for PKE. Using the RKA-PRFs cur-
rently available in the literature [20, 4, 1] to instantiate this construction, schemes
secure for function families @ consisting of polynomials of bounded degree, can
be achieved. However, providing security for function families @ not enjoying
such a convenient algebraic structure would be much more relevant to practical
related randomness attacks. But this is a challenging task: in fact, the results by
Wichs [27] imply that, for a large class of encryption schemes®, security for ar-
bitrary function families @ cannot be shown via a black-box reduction, based on
any cryptographic game involving a single-stage adversary (e.g. computational
assumptions like DDH, IND-CCA security of a public key encryption scheme,
etc.). To obtain further constructions, Paterson et al. considered weakened secu-
rity models; the weakening taking place along two independent dimensions: the
degree of control that the adversary enjoys over the public keys under which it
can force encryptions for related random values, and the degree of adaptivity it
has in the selection of functions ¢ € ®. More specifically, they considered the
situations where:

— The public keys are all honestly generated at the start of the security game,
the public keys and all but one of the private keys are then given to the
adversary, and the adversary can adaptively specify the functions ¢ € @
involved in its queries. This is called the honest-key, related randomness
attack (HK-RRA) setting in [22].

— There is no restriction on public keys, but instead of letting the adver-
sary adaptively choose the functions ¢ € @, the security game itself is
parametrised by a vector of functions ¢ = (¢1,...,¢,) that will be used
in the attack, and security is required to hold for all choices of ¢ from some
set @. This is called the function-vector, related randomness attack (FV-
RRA) setting in [22]. The difference between this setting and the (adaptive)
HK-RRA setting is subtle, but note that in the FV-RRA setting, the adver-
sary’s choice of ¢; cannot depend on the oracles’ outputs for the previously
used functions ¢1,...,p;_1, whereas in the HK-RRA setting, it may.

In the first of these two settings, Paterson et al. obtained a generic construc-
tion for a scheme achieving HK-RRA security based on combining any PKE
scheme with a Correlated-Input Secure (CIS) hash function [14]. However, the
then-known instantiations of CIS hash functions only enabled them to obtain se-
lective, HK-RRA security for @-restricted adversaries where @ is a large class of
polynomial functions. In view of recent results on RKA-PRFs [1], this construc-
tion now appears to be superseded by their earlier generic construction using
d-restricted RKA-PRFs.

5 Specifically, Wichs’ results apply to encryption schemes which are injective with
respect to the used randomness.



In the second of the two settings, they gave a direct construction for a PKE
scheme that is FV-RRA-CPA secure solely under the DDH assumption, assuming
the component functions ¢; of ¢ are simultaneously hard to invert on a random
input. The scheme is based on a specific PKE scheme of Boneh et al. [8] that
is secure in the so-called auziliary input setting, wherein the adversary is given
a hard-to-invert function of the secret key as part of its input. However, in this
setting, only a CPA-secure scheme was given in [22].

1.3 Owur Contributions

In this paper, we give a new, general transform for achieving FV-RRA-ATK
security for hard-to-invert function families from standard IND-ATK security,
where ATK € {CPA,CCA}. In fact, the transform works for a stronger notion of
FV-RRA-ATK security than was originally introduced in [22]: we will allow an
adversary to also manipulate the randomness used for the LR queries, instead
of being restricted to using only the identity function in such queries. Further-
more, besides yielding schemes secure in the CCA setting, which was left as an
open problem in [22], we show that this transform allows us to construct en-
cryption schemes that have tighter security reductions (and are more efficient)
than the single FV-RRA-CPA secure scheme that was presented in [22]. As mo-
tivation for considering the class of hard-to-invert functions, note that achieving
FV-RRA-ATK security for this class would be relevant in modelling the one-
way state evolution of a PRNG which has exhausted its entropy pool but which
doesn’t receive new entropy.

Auziliary-input reconstructive extractors: Our transform makes use of a tech-
nical tool called an auziliary-input reconstructive extractor. Classically, an ex-
tractor is a function Ext, which, given an input and a seed, produces an output
that is statistically indistinguishable from elements chosen uniformly at random
from some set X', provided the input is chosen from a distribution with suffi-
cient min-entropy and the seed is chosen uniformly at random. A reconstructive
extractor is an extractor with the additional property that, roughly speaking,
allows the efficient reconstruction of the input = from any distinguisher D that
successfully distinguishes the output of the extractor from random. This is for-
malised in terms of the existence of an oracle machine Rec outputting x. Then
an auziliary-input reconstructive extractor is a reconstructive extractor in which
the output still remains indistinguishable when the distinguisher D is also given
access to the output of a leakage function A(-) on input . Our actual definition
(Definition 6) extends this idea further still: the distinguisher D is given either
a set of uniformly random values or the set of outputs of the extractor when
evaluated on ¢(x) for all ¢ € ¢, where ¢ is a vector of functions defined by the
game.

Our transform (intuition): Equipped with an auxiliary-input reconstructive ex-
tractor, our transform to achieve FV-RRA-ATK security is conceptually simple:



— We append a uniformly random extractor seed s to each public key, resulting
in a new public key denoted pAk.

— The encryption algorithm consumes a random value 7 from some set of bit
strings; this is fed into the extractor to create a value K < Ext(r,s). This
value K used as a key for a Pseudorandom Function (PRF) F' to compute
' < Fi(pk||m) where m is the message to be encrypted. Finally, 7/ is used
as the actual randomness for encryption, and we simply encrypt with the
original encryption algorithm.

— Decryption works exactly as in the original decryption algorithm.

Details of the construction are given in Figure 4 in Section 4.

Intuitively, a challenge encryption constructed using randomness value ¢(r)
remains secure, since the extractor guarantees an output indistinguishable from
random, even when the adversary gains access to encryptions under the related
randomness values ¢'(r). Hence, the PRF, which uses the extractor output as
a key, will guarantee that independent randomness values are used for different
public key and message pairs. In turn, this implies that the adversary is forced
to break the security of the underlying PKE scheme to learn anything about
the encrypted challenge messages. That this approach attains FV-RRA-ATK
security is formally proven in Theorem 1.

Instantiations In Section 5, we consider the instantiation of our transform using
the Goldreich-Levin extractor. This provides a particularly neat construction of
FV-RRA-ATK-secure PKE in which we start with an IND-ATK-secure scheme
and augment it with a simple inner-product computation to prepare the key for
the PRF. However, we stress that, given the limited strength of known results for
the security of the Goldreich-Levin extractor in the auxiliary input setting [10],
our results using this extractor are in turn limited to the original FV-RRA-ATK
security model of [22] (i.e. in which the adversary is restricted to using the
identity function in its LR queries). Still, the schemes obtained from using our
transform with this extractor have significant benefits compared to the single
concrete FV-RRA-CPA-secure scheme from [22]. For example, we obtain shorter
public keys and a tighter security reduction compared to the scheme from [22].
Most importantly, we obtain FV-RRA-CCA security in a completely generic
way.

Connection to CIS hash functions: As a final contribution, in Section 6, we
explore the connections between auxiliary-input reconstructive extractors and
Correlated-Input Secure (CIS) hash functions. The latter were introduced by
Goyal et al. in [14] and have proven useful in a variety of cryptographic con-
structions including password-based login, efficient searches on encrypted data
and RKA-PRFs. We will show that any reconstructive extractor can be used to
construct a secure CIS hash function of a certain type. Specifically, our security
definition for CIS hash functions involves functions that are selected from pre-
specified sets, as opposed to being adaptively selected as in the strongest (but
mostly unachieved) definitions in [14]. Using the Goldreich-Levin extractor once



more provides a construction for CIS hash functions that is exquisitely simple:
given key ¢ € Z; and input r € H" (where H is an arbitrary subset of Z,), the
CIS hash function output is simply:

he(r) :=(r,c)

where the inner product is evaluated over Z,.

2 Preliminaries

Notation. Throughout the paper we will use A € N to denote the security param-
eter, which will sometimes be written in its unary representation, 1*. We denote
by y < z the assignment of y to x, and by s <—g S we denote the selection of an
element s uniformly at random from the set S. The notation [n] represents the
set {1,2,...,n}. For an algorithm A, we denote by y < A(z;r) that A is run
with input x and random coins r, and that the output is assigned to y.

All our security games and proofs will utilise code-based games and the
associated language. Here we briefly recall the basic definitions from Bellare et
al. in [5]. A game consists of at least two procedures. We begin with Initialise,
which assigns starting values to all variables and then gives outputs, if there
are any, to the adversary. The adversary A may then submit queries to the
oracle procedures, and when A halts (and possibly outputs a value) the Finalise
procedure begins. Finalise will take the output from A (if there is one) as its
input and will output its own value. The value output by Finalise is defined to
be the output of the game. We write P[G* = b] to denote the probability that
game G outputs bit b when run with A. For brevity, in what follows ATK will
denote either CPA or CCA, where theorems or statements apply to both games.
Any proofs or figures will refer to the CCA setting, but may be easily modified
to the CPA case.

Public Key Encryption. We denote a specific PKE scheme by PKE = (PKEK,
PKE.E,PKE.D). All three algorithms are polynomial-time. The randomised key
generation algorithm PKE.K takes the security parameter as its input and outputs
a key pair (pk, sk). The encryption algorithm, on input a message m € M and
a public key pk chooses random coins from Rnd and uses these coins to output a
ciphertext c. The decryption algorithm is deterministic. Its inputs are a private
key sk and a ciphertext c. The algorithm either outputs a message m or an error
symbol 1. We require the scheme PKE to satisfy the correctness property. That
is, for all A € N| all all pairs (pk, sk) output by the key generation algorithm,
and all messages m € M, we require that PKE.D(sk, PKE.E(pk, m)) = m.

Definition 1. The advantage of an IND-ATK adversary A against a scheme
PKE is _
Advpg (N == 2 P[IND-ATKzp(A) = 1] — 1

where game IND-ATK is shown in Figure 1. A scheme PKE is IND-ATK secure
if the advantage of any polynomial-time adversary is negligible in the security
parameter \.



proc. Initialise(\): proc. LR (mo,m1): proc. Dec(c):

b <35 {0,1}; ¢ <3 PKE.E(pk, myp) if ce S, return L

(pk, sk) +g PKE.K(1); S+ Su{c} else return PKE.D(sk;, ¢)
S« 0 return ¢

return pk proc. Finalise(b'):

If b=V, return 1

Fig. 1. Game IND-ATK for PKE. (If ATK = CPA, the adversary’s access to proc.
Dec is removed.)

proc. Initialise(\): proc. Initialise()):
K <+ Keys, FunTab < 0
proc. Function(z): proc. Function(z):
return F (K, ) if FunTab[z] =L,
FunTab[z] <—¢ Rng,
proc. Finalise(b): return FunTab|z]
return b
proc. Finalise(b):
return b

Fig. 2. Games for PRF security. Game PRFReal is on the left, PRFRand on the right.

Pseudorandom Functions. We recall the standard definition of pseudorandom
functions:

Definition 2. Let F' : Keys, x Domy — Rng, be a family of functions. The
advantage of a PRF adversary A against I is

AdvY", (\) := P[PRFRealfi()\) = 1] — P[PRFRandg'(\) = 1]

where the games PRFReal and PRFRand are defined in Figure 2. We say F
is a secure PRF family if the advantage of any polynomial-time adversary is
negligible in the security parameter \.

3 Function Vector Related Randomness Security

In this section we recall the FV-RRA-ATK notion of security from [22], and then
slightly strengthen this definition to encompass a more general attack.

The FV-RRA-ATK game is designed to capture related randomness attacks,
in which the adversary is allowed to obtain challenge encryptions, as well as
encryptions for maliciously chosen keys, using related randomness values. This
is achieved by giving the adversary access to an encryption oracle Enc which
enables the adversary to manipulate the random values used for the encryption.
More specifically, the standard FV-RRA-ATK security game is parametrised by
a vector of functions ¢ = (¢1,...,¢,), where ¢ := ¢()\) is polynomial in the



proc. Initialise(\):
b<+s {07 1};

(pk*, sk*) +g PKE.K(1%);
CoinTab « 0; S < 0;
return pk*

proc. LR (mo,m1,1,j):

proc. Enc(pk,m,i,j):

If CoinTabl[i] =1,
CoinTab[i] ¢ Rnd

r; < CoinTab[i]

¢ < PKEE(pk™, my; ¢ (rs))

S+ Su{c}

if CoinTab[i] =1,
CoinTab[i] g Rnd

r; +— CoinTab][i]

¢ < PKE.E(pk, m; ¢ (1))

return ¢

proc. Dec(c): return ¢
if ¢ € S, then return L

else return PKE.D(sk", ¢)

proc. Finalise(b'):
if b=1"0', return 1

Fig. 3. Game (¢, ¢')-FV-RRA-ATK, where ¢ = (¢1,...,¢,) and ¢’ = (¢1,..., ).
(If ATK = CPA, then the adversary’s access to proc. Dec is removed.)

security parameter A, and the adversary may request encryption queries by sub-
mitting a tuple of the form (pk,m,,j) to its Enc oracle. This tuple consists
of a public key pk, a message m, an index ¢ selecting the random value r; with
which to encrypt, and an index j that selects the function ¢; that modifies
the randomness r; before encryption. Hence, the adversary will receive the re-
sponse PKE.E(pk, m;¢;(r;)), where the values r; are uniform and independent.
The adversary may furthermore query a Left or Right (LR) oracle with a tuple
(mg,m1,%). The response of this oracle will be PKE.E(pk*, myp;r;), where pk* is
the target public key and b is a bit, both of which are chosen uniformly and
independently during the initialisation stage of the security game. Note that
the randomness values r; used to respond to LR queries are uniformly chosen
random values. In the CCA version of the game, an adversary can additionally
submit ciphertexts ¢ to a decryption oracle Dec. The decryption oracle will re-
turn PKE.D(sk*, ¢) as long as the ciphertext ¢ was not returned by the LR oracle.
When the adversary has made all its (polynomially many) queries, it will submit
a bit b’ to a Finalise procedure, which represents the adversary’s guess for the
bit b. The Finalise procedure will output 1 (representing an adversarial win) if
b =1b". The security game for this notion is given in Figure 3.

We will now introduce some new definitions that slightly strengthen the
FV-RRA-ATK notion from [22] outlined above. Our strengthening allows an
adversary to manipulate the randomness used for the LR queries, instead of
being restricted to using only the identity function. The security game for our
new notion is given in Figure 3. The major difference from the definition of
[22] is that the game is parametrised by two sets of functions, ¢ and ¢'. An
adversary may only use functions from ¢ in its LR queries, and the functions
in ¢ may only be used for Enc queries. Notice that if ¢ = {id}, then this
definition recovers the corresponding FV-RRA-ATK security game and notion
from [22]. While our generic transform is proven secure in the stronger model
shown in Figure 3, we stress that, because of the limitations of currently known
reconstructive extractors, our concrete instantiation of the transform will be
secure only in the weaker model of [22].



The following definition has been adapted from [22] for our purposes. The
definition captures natural restrictions which must be placed on an adversary
with the capability of controlling the randomness of the challenge encryptions
in an IND-ATK style security game. This is reminiscent of the restrictions put
in place in the security definition for deterministic encryption (e.g. see [24]).

Definition 3. Let A be an adversary in Game (¢, ¢')-FV-RRA-ATK that queries
r different randomness indices to its LR and Enc oracles and makes q; 4 queries

to its LR oracle with index i and function ¢ € ¢. Let (m8’¢’1,mi’¢’1),...,
(mg(b’qi’d),mzl’(b’q“‘b) be A’s LR queries for index i € [r] and ¢ € ¢. Suppose
that for all pairs (i,¢) € [r] x ¢ and for all j # k € [¢; 4], we have:

X . e
Then we say that A is equality-pattern respecting.

Note that any adversary that is not equality-pattern respecting can trivially win
the game in Figure 3. More specifically, the adversary can simply query its LR
oracle with the tuples (mg, m1,1, ) and (mg, ma, 1, j), where mq, m; and ms are
all distinct. The values ¢ and j can be an arbitrary values from the appropriate
domain. If the bit b is equal to 0, the adversary will receive identical ciphertexts,
whereas the ciphertexts will differ if b equals 1. This results in a trivial win
for an adversary. In contrast, an equality-respecting adversary cannot exploit
the available oracles in this particular way, and is forced to mount a non-trivial
attack against the scheme to win the security game.

With the above definition in place, we can now formally define FV-RRA-ATK
security.

Definition 4. Let ¢ = (¢1,...,¢,) and @' = (¢, .. - @) be vectors of q =
qg(A) and ¢ = ¢'(\) functions respectively. We define the advantage of an
equality-pattern respecting, (¢, @')-FV-RRA-ATK adversary A against a PKE
scheme PKE to be:

AQvQ P TRt o Pr{(g, ¢')-FV-RRA-ATKg(\) = 1] — 1,

If & and &' are sets of vectors of functions, then a PKE scheme PKE is said
to be (®,9")-FV-RRA-ATK secure if, for all ¢ € ® and for all ¢' € &', the
advantage of any equality-pattern respecting, (¢, d')-FV-RRA-ATK adversary
against PKE that runs in polynomial time is negligible in the security parameter
A

Similar to the notion defined in [22], it is possible to reduce the above defined
FV-RRA-ATK security to a simpler notion in which the security game involves
only a single uniformly chosen random value used in all oracle queries. The
following lemma follows easily from Lemma 1 of [22] and is therefore presented
without a proof.

Lemma 1. Consider an equality-pattern respecting, (¢, ¢')-FV-RRA-ATK ad-
versary A that queries q, distinct randomness indices and makes at most qpr



LR queries. Then there exists an equality-pattern respecting, (¢, ¢')-FV-RRA-ATK
adversary B that queries at most 1 randomness index and makes at most qrr
LR queries such that

Advl()g;ﬁ )—fv—rra—atk(A) <q - Advl(,%(g )—fv—mra—autk()\)7
where B runs in approximately the same time as A. In the CCA setting, B makes
the same number of decryption queries as A.

4 Obtaining FV-RRA Security from Auxiliary-Input
Reconstructive Extractors

In this section we present the main result of the paper. Recall that this result
improves upon the work of Paterson et al. [22] by proposing a transform that
converts any IND-ATK scheme into an FV-RRA-ATK scheme via the use of
an auxiliary-input reconstructive extractor. Recall also that the authors of [22]
only provided a single concrete instantiation of a FV-RRA-CPA secure scheme.
In the later sections we will provide instantiations of our transform that are not
only able to meet the stronger FV-RRA-CCA notion, but also provide shorter
public keys and a tighter security reduction compared to the scheme from [22].

Before introducing the extractors we utilise in our transform, we first need to
define the notion of a vector of functions being §-hard-to-compute with respect
to another vector of functions.

Definition 5. Let ¢ = (¢1,...,¢4) and ¢' = (¢},.. - @) denote vectors of
functions on a set Rndy, where ¢ := q(\) and ¢’ := ¢(\) are polynomial in
the security parameter X. Let 6(\) be a function. We say that ¢ is 6(\)-hard-
to-compute with respect to ¢’ if, for all polynomial time algorithms A and all
sufficiently large A, we have:

Pr(gi(r) <= A(¢)(r), ..., ¢y(r)) : 7 <5 Rndy] < 6(N),

for all i € {1,...,q}. We say that a set of vectors of functions ® is 6-hard-to-
compute with respect to @' if each vector ¢ € P is §-hard-to-compute with respect
to every vector in @' (note that the vectors in such a set @ need not all be of the
same dimension, but we assume they each have dimension that is polynomial in
A). If § = negl()\), then we simply say that @ is hard-to-compute with respect to
&,

A natural question to ask is: what functions satisfy this notion of being -
hard-to-compute? For simplicity, consider the scenario where & = {id} (in which
case we simply say that &’ is d-hard-to-invert, cf. Definition 14 of [22]), and
assume that @’ consists of only one function, say ¢’. In this scenario, an obvious
example of a d-hard-to-invert function is a function that fixes certain bits of the
output e.g. a function ¢’ that takes a bit-string of length n as input, and returns
a string consisting of k zero bits followed by the least significant n — k bits of the



input (for 0 < k£ < n). No information is leaked about the first k bits of the input,
and hence no algorithm can invert ¢’ with probability greater than 2% when the
input string is uniformly random. Therefore, if & > — log, §, the function ¢’ (and,
consequently, @') is §-hard-to-invert. This example can naturally be extended
to the case where @' contains multiple vectors of functions and @ # {id}.

We now introduce our generalised definition of an auxiliary-input reconstruc-
tive extractor.

Definition 6. An (e, 6, ®, P )-auxiliary-input reconstructive extractor is a pair
of functions (Ext,Rec) such that Ext is an extractor that maps from {0,1}™ x
{0,1}? to X, and Rec is an oracle machine that on input (1*,1/€) runs in time
poly(n,1/e,log(|X|)). Furthermore, for every xz € {0,1}", every ¢ = (é1,...,¢q) €
b, every ¢' € ¥, and every function D such that

P DG B (04(2).9))ieqr, 0 ¢/ (@) = 1

- Pr d[D(S, {Oi}ie{l,...,q}v(ﬁl(‘r)) = 1] > €
s+5{0,1}
oig X

we require that
Pr[Rec”(1",1/¢,¢'(x)) = ¢i(x)] > 6

for some i € {1,...,q}, where ¢ = (P1,...,dq), ¢ := q(X) is polynomial, and
the probability is over the coin tosses of Rec. If, for every D with non-negligible
€, Rec reconstructs ¢;(x) with non-negligible probability, we may simply say that
(Ext,Rec) is a (@, D')-auziliary-input reconstructive extractor.

Armed with this new definition of an auxiliary-input reconstructive extractor,
we are ready to state and prove the main result of this paper. We show that any
extractor satisfying Definition 6 can be used in conjunction with an IND-ATK
secure PKE scheme and a PRF to meet the FV-RRA-ATK security notion in
Figure 3. The encryption scheme that achieves this result is in Figure 4. The
algorithm works by appending a uniformly random extractor seed to each public
key, but leaving the private key unmodified. The encryption algorithm generates
a uniformly random 7, which is then fed into the extractor (using the seed from
the public key). The output of the extractor is used as a key for a PRF, and
the input to the PRF is the public key appended with the message. Finally, the
output of the PRF is used as the new randomness for encryption, and then we
simply encrypt with the standard encryption algorithm.

Theorem 1. If & is hard-to-compute with respect to ®' and (Ext,Rec) is an
(@, D) -auziliary-input reconstructive extractor, then the PKE scheme EXT-PKE in
Figure 4 is (®,9")-FV-RRA-ATK secure when instantiated with a secure PRF
and an IND-ATK secure PKE scheme PKE. More precisely, consider any polynomial-
size vectors of functions ¢ € ® and ¢' € &', any (e, 0, D, D')-auziliary-input



Alg. EXT-PKE.K(11): Alg. EXT-PKE.E(pk,m): | Alg. EXT-PKE.D(sk, c):

(pk, sk) < PKEK(1*) | 7 +gRnd m <« PKE.D(sk, c)
s + seeds K + Ext(r,s) return m

pk « (pk, s) '« Fx(pk||m)

sk« (sk) ¢ + PKE.E(pk, m; ")

return pk return ¢

Fig. 4. Scheme EXT-PKE built from a reconstructive extractor, a PKE scheme PKE, and
a PRF F.

reconstructive extractor (Ext,Rec), and any equality-pattern respecting, (¢, @')-
FV-RRA-ATK adversary A against EXT-PKE. Suppose A makes qpr LR queries
and uses q, randomness indices. Then, either @ is not d-hard-to-compute with
respect to ', or there exists a PRF adversary B, and an IND-ATK adversary
C, all running in polynomial time, such that:

AQvQ D)t (y) 9g, g AdVEE(N) + gp - gr - AdVEEEE(N) + 2g,e.

Proof. See Appendix A.

5 Instantiation of an Auxiliary-Input Reconstructive
Extractor

Given Theorem 1, it now remains to see what extractors exist that satisfy Defini-
tion 6. The strongest extractor we are aware of is the Goldreich-Levin extractor,
whose properties are analysed in [10, Theorem 1]. That theorem states the fol-
lowing (with the notation changed to remain consistent with ours):

Theorem 2. Let p be a prime, and let H be an arbitrary subset of Z,. Let f :
H™ — {0,1}* be any (possibly randomised) function. If there is a distinguisher
D that runs in time t such that

Pr[r + H",y + f(r),s < Ly : D(y,s, (r,s)) = 1]

—Pr[r + H",y < f(r),s < Zy,u < Zp : D(y,s,u) = 1]| = ¢

then there is an inverter A that runs in time t' =t -poly(n, |H|,1/€) such that®

€3

Prr< H" y« f(r): Aly) =1] > ————. 1

[ My 1) Al) =) > oy 1)

5 The bound quoted in [10] had the denominator 512np?. However, we believe the
bound has a slight error and should in fact be 512np°, as given here. The bound in
equation (1) was also used by Paterson et al. in [23].



Alg. EXT-PKE.K(11): Alg. EXT-PKE.E(pk,m): | Alg. EXT-PKE.D(sk, c):

(pk, sk) < PKEX(1*) | r g H m < PKE.D(sk, c)
s Zp K < (r,s) return m

pk — (pk, s) '« Fx(pk||m)

sk« (sk) ¢ < PKE.E(pk, m;7’)

return pA]€ return c

Fig. 5. Scheme EIP-PKE (Euclidean Inner Product) built from a PKE scheme PKE, and
a PRF F. Here, H denotes a subset of Z,.

This theorem can be used to obtain an auxiliary-input reconstructive extractor.
Specifically, consider the extractor Ext that maps from H™ x Z7 to Z, (where
H is a subset of Z,,) defined as

Ext(r,s) = (r,s).

Matching the notation of Theorem 2 with Definition 6, Rec is now A, ¢ = {id},
&' is the set of 6-hard-to-invert vectors of functions, ¢’ is the function f, and the
extractor Ext is easily seen to be an (e, d,id, ®')-auxiliary-input reconstructive

extractor, where
€= /5120\p3.

Note that, in the proof of [10], the theorem is stated with one function f. How-
ever, we now use a vector of functions (g1, ..., quI) in our proof. Fortunately this
is not problematic, since we can simply interpret f (whose output is in {0,1}*)
as a vector of functions. That is, we can set f(r) = (¢1(r), ..., ¢(r)).

By combining Theorem 2 with Theorem 1, we easily obtain the following
theorem.

Theorem 3. Let &' be a set of hard-to-invert vectors of functions on {0,1}*.
Then PKE scheme EIP-PKE in Figure 5 is (id, ®')-FV-RRA-ATK secure. More
precisely, consider any polynomial-size vector of functions ¢ € &' which are
§-hard-to-invert, and any equality-pattern respecting, (id, ¢')-FV-RRA-ATK ad-
versary A against EIP-PKE. Suppose A makes qg LR queries and uses q, ran-
domness indices. Then there exists a PRF adversary B and an IND-ATK adver-
sary C, all running in polynomial time, such that:

Adv;‘;’fxgjm'atk(x) < 2q,- AdVE (N +¢r-qrr- Advig 2% (\)+2¢, /5120\p5.
While the above theorem limits the challenge functions modifying the input
to the extractor to being the identity function, the schemes resulting from our
transform using the above reconstructive extractor still enjoy several advantages
over the single FV-RRA-CPA-secure scheme that was presented in [22]. Most
notably, [22] only gave one concrete scheme, which is only secure in the CPA
version of the FV-RRA-ATK game. Our theorem not only shows how to achieve
CCA security (which was left as an open problem in [22]), but also shows how to



convert any IND-CCA scheme into an FV-RRA-CCA secure scheme. Further-
more, the security bound of our theorem is tighter than that of [22], and our
theorem facilitates the use of much smaller public keys. For comparison, when
using our transform with the above Goldreich-Levin extractor, the public key of
the underlying PKE scheme is modified to include A additional components from
H C Zg. Hence, transforming, for example, the PKE scheme by Kurosawa and
Desmedt [18], yields a scheme with public keys consisting of A\+4 group elements
and a hash function key. In contrast, the modified BHHO scheme presented in
[22] requires public keys consisting of 2- k() group elements (where k is polyno-
mial). Furthermore, the loss of security in the security reduction of the modified
BHHO scheme includes the component {/5128kp*, which originates from the
reduction to the d-hard-to-invert functions. In comparison, the corresponding
loss of security obtained from applying our transform is {/5126\p3, which leads
to a weaker requirement on the d-hard-to-invert functions.

It remains an open question whether there exists extractors that will en-
able stronger notions of FV-RRA-ATK security to be shown for schemes like
EXT-PKE (Figure 4), or alternative extractors that have, for example, shorter
seeds. However, this seems difficult at present. A standard technique to obtain
an (e, §)-auxiliary-input reconstructive extractor is to use complexity-leveraging
with a standard reconstructive extractor [26]. Unfortunately, this technique does
not appear to work in the FV-RRA-ATK setting. More specifically, if we wish to
use complexity-leveraging, we require the range of the auxiliary function to be
smaller than the domain. However, for our FV-RRA-ATK game to make sense,
we require that for each ¢ we have D(¢) = R(¢) = Rnd. Hence, complexity-
leveraging seems to be incompatible with the FV-RRA-ATK model.

6 Connections with CIS Hash Functions

We will now briefly explore the connections between (e, §, @, #')-auxiliary-input
reconstructive extractors and correlated-input secure (CIS) hash functions. In
particular, we will show that any reconstructive extractor can be used to con-
struct a secure CIS hash function. Correlated-input secure hash functions were
first studied by Goyal et al. in [14]. They introduced several definitions of secu-
rity, but the one we shall be concerned with is the pseudorandomness notion.
Intuitively, a hash function is (pseudorandom) correlated-input secure if the chal-
lenge output of the hash function is indistinguishable from random even when an
adversary is allowed to see outputs on correlated inputs. That is, an adversary
can submit correlation functions ¢ to its oracle and will receive h(¢(r)), where
h is the (possibly keyed) hash function, and r is a uniformly random input cho-
sen at the beginning of the security game. The adversary may submit multiple
oracle queries, and finally forwards a challenge function ¢* to the oracle. The
game will return either h(¢*(r)) or z, where z is chosen uniformly at random
from the range of the hash function. The hash function is (adaptively) secure if
the adversary has negligible advantage in distinguishing the outputs.



proc. Initialise(\): proc. Challenge(j): proc. Query(i):

b+s {0,1}; ifb=0, return h.(;(r))

hc s H Z g R(hc)

r <3 D(he) return z proc. Finalise(b'):
return h. else, If b=1"V, return 1

return he(¢;(r))

Fig. 6. The (¢, ¢')-CIS hash game, where ¢ = (¢1,...,¢q) and ¢' = (¢1,...,é).

As noted in [14], CIS hash functions have applications to password-based
login and efficient searches on encrypted data. Furthermore, they share interest-
ing connections with Related-Key Attack secure primitives. However, the CIS
hash function construction presented in [14] only achieves selective security for
correlation functions ¢ corresponding to polynomials of bounded degree, which
limits its usefulness in the above mentioned applications. Constructing adap-
tive CIS hash functions for a wide class of functions is a challenging task, in
particular for non-algebraic function classes. This is evidenced by the results
of Wichs [27], which show that injective CIS hash functions cannot be proved
secure for arbitrary correlation functions ¢ via a black-box reduction, based on
any cryptographic game. However, here we show that auxiliary-input reconstruc-
tive extractors can be used to construct a specific kind of CIS hash functions.
To explore this connection, we must consider a variant of the CIS hash security
game that was presented in [14]. The security game is shown in Figure 6, while
our definition of security is given below.

Definition 7. The advantage of an adversary A against a family of hash func-
tions H in the (¢, @')-CIS game (Figure 6) is defined to be

AQViPP () = 2 Prl(, ¢)-CISA(N) = 1] — 1.

Definition 8. A family of hash functions H is said to be (®,P")-pseudorandom
correlated-input secure if, for all ¢ € D, all ¢' € D', and all polynomial time
adversaries A, we have

AdvEP P (1) < negl().

Notice that in our new definition, instead of letting the adversary adaptively
choose the functions as in [14], the security game itself is parametrised with
function vectors ¢ and ¢, and security is required to hold for all choices of
¢ € ®and ¢’ € . It is worth stressing that there is a subtle difference between
the two approaches to defining security for CIS hash functions, and the definition
used here implies that the function vectors ¢ and ¢’ will be independent of the
chosen hash function (i.e. the hash function key c).

With these definitions and notions in place we can define our hash function
family H from an extractor as follows:

he(r) := Ext(r, ¢).



The following theorem establishes the security of the hash function, based
on the security of the underlying auxiliary-input reconstructive extractor.

Theorem 4. Let Ext be an (¢, 5, @, D')-auxiliary-input reconstructive extractor,
and let @ be §-hard-to-compute with respect to @' . Consider the hash function
family H defined by the hash functions h.(r) := Ext(c,r). Then, for any ¢ € P,
any ¢ € &', and all polynomial time adversaries A, we have

AP P < e

We will sketch the proof of the above theorem.

Proof (Sketch). If an adversary A has advantage greater than or equal to €, we
would be able to build an extractor adversary D that distinguishes the outputs of
the extractor with probability €. This in turn would allow us to build a function
Rec that recovers r with probability greater than ¢ (cf. Definition 6), which is
not possible by assumption. Hence, we have a contradiction, so the advantage
of the adversary A must be less than e. O

A concrete instantiation of such a CIS hash is possible via Theorem 1 of [10].
If we define

hc(T') = <Ta C>> (2)

where ¢ € Zg‘ and r € H* for H C Zy, then the following corollary is obvious.

Corollary 1. Consider the hash function family H defined by Equation 2, and
let &' be a set of 6-hard-to-invert functions. Then, for all ¢' € &', and all
polynomial time adversaries A, we have

AQvESPI () < {/512005.

As highlighted above, CIS hash functions share interesting connections with
RKA-secure primitives. In fact, [14] proposed a general approach for obtain-
ing RKA-security via a CIS hash function. For example, consider a standard
signature scheme given by algorithms {KeyGen,Sign,Verify}, and a (id, ®’)-
pseudorandom correlated-input secure hash function h for which we assume a
key c¢ is publicly available. To obtain a RKA-secure signature scheme for func-
tions @', simply replace the random coins r used by KeyGen with h.(7), and the
signing key with r. Furthermore, since the signing key of the original scheme is
no longer stored, the algorithm Sign must regenerate this from r using h. and
KeyGen. As shown in [14], the resulting signature scheme will be RKA-secure for
functions &'.

Note that, in this approach, only a (id, #’)-pseudorandom correlated-input
secure hash function is required. Hence, by using the CIS hash function from
Corollary 1 in the above sketched transformation, we can obtain a RKA-secure
signature scheme for hard-to-invert functions. As far as the authors are aware,
this is the first construction of a RKA-secure signature scheme for this class
of functions. Furthermore, a similar result can be obtained for any primitive for



which the above transformation applies. However, note that due to the properties
of the above described security model for CIS hash functions, which implies
that the functions @’ are independent of the hash function key, we only obtain
selective RKA-security.
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Setup LR query (mo, m1,%)

(pAk:,SAk:) — PKEK(1%) P F., (pAk*Hmb)
(pk , sk ) + (pk*||s, sk*) ¢ + PKE.E(pk™, myp;7’)
b+s {0,1} return ¢

Enc query (pAk,m, i) Dec query ¢
return EXT-PKE.E(pk, m; ¢i (1)) return PKE.D(sk™, c)

Fig. 7. Simulation used in the proof of Lemma 2

A Proof of Theorem 1

Proof. First, we invoke Lemma 1, so that we now only have to prove the theorem
for an adversary using just one randomness value. Furthermore, we assume that
an adversary never repeats a query. Identical queries will result in identical
outputs, hence any adversary that repeats a query may be replaced by a more
efficient adversary with the same advantage. We proceed via a sequence of game
hops. The games are as follows:

Go: Gy is the real game with the scheme defined in Figure 4.

G1: G is the same as G, except for LR queries, where the output of the extrac-
tor is replaced with a uniformly random value. If there existed an adversary
that could distinguish between these two games, then we could use this ad-
versary to reconstruct ¢;(r).

Go: G5 is the same as (G1, except for LR queries, where the outputs of the PRF
are replaced with uniformly random values. Finally, G5 may be simulated
by a standard IND-ATK adversary.

Go — G1: We will prove the following;:

Lemma 2. For any adversary A, the difference in success probabilities in games

Go and G1 is bounded by €:
PriG = 1] -Pr[Gl = 1] < e

Proof. Consider a distinguisher D, attempting to distinguish whether the ex-
tractor game has returned a real or random output. Adversary D is given a
seed s, two vectors of functions ¢ = (¢1,...,¢,) and ¢’ = (¢1,.. - #), and
the vector ¢' = (¢)(r),...,d,(r)), and a value z = (z1,...,2,) which is ei-
ther {Ext(¢i(r);s)}icq1,....q} OF (01,...,0,) where each o; is chosen uniformly
at random from the range X of the extractor. The distinguisher D sets up the
simulation as shown in Setup in Figure 7, and forwards the public key pAk* to
A. Then D answers A’s queries as shown in Enc query, LR query, and Dec
query in Figure 7.

When A halts and outputs ', D halts and outputs 1 if and only if b = ¥'. If
z = {Ext(di(7); 5) bie{1,....qy @ perfect simulation of Gy is provided. Otherwise,
a perfect simulation of G, is provided. Hence,

|Pr[G64 = 1}—Pr[G{4 = 1]| = |[Pr[D(s,Ext(r;s),¢'(r)) = 1]—Pr[D(s, 0, ¢(r)) = 1]|.



Setup LR query (mo,m1,1)

b+ {0,1} ifi<j+1
s <—g seeds r’ < Rnd
r <—g Rnd ifi=j+1
Kjta,..., K, <g PREK(1Y) forward pk™||ms to PRF oracle;
(pk*, sk*) « PKE.K(1) receive output r’
(pk™, sk™) < (pk*||s, sk*) ifi>j+1
v’ Fi, (k" |Ims)
Enc query (pAk,m, 1) C < PKE.E(pAk*7 mp; ")
return EXT-PKE.E(pk, m; ¢;(r)) return c
Dec query ¢

return PKE.D(sk, ¢)

Fig. 8. Simulation used in the proof of Lemma 3

If an adversary can distinguish outputs of the extractor from uniformly random
values with probability greater than or equal to € in polynomial time, then there
exists an algorithm Rec that will recover ¢;(r) (for some ¢ € {1,...,q}) with
probability greater than § (cf. Definition 6). However, this is a contradiction
since the ¢ is d-hard-to-compute with respect to ¢’. Hence, we must have

Pr[G{t = 1] - Pr[Gl = 1] < e
O

G1 — Gg: If an adversary can distinguish games 1 and 2 with a certain proba-
bility, then we may construct a PRF adversary B that wins the PRF game with
the same probability. Specifically:

Lemma 3. The difference between games G1 and G4 is bounded by the advan-
tage of a PRF adversary. More specifically,

Pr[Gf = 1] — Pr[G5' = 1]| < Adv(N).

Proof. The proof uses a hybrid argument. Consider the hybrid game G ;, where
the outputs of the PRF for functions {¢;}i<;j4+1 are replaced with uniformly
random values. Notice that G; = G 9 and G2 = G 4. B sets up the simulation

of G ; as shown in Setup in Figure 8, and returns the public key pAk* to A. Then
B answers A’s queries as shown in Enc query, LR query, and Dec query in
Figure 8.

When A halts and outputs o', B halts and outputs 1 if and only if b = ¥'.
When B’s outputs are from a PRF he simulates G ; perfectly. Otherwise, if B’s
outputs are uniformly random he simulates G1 ;11 perfectly. Hence, we have

Pr[Gf = 1] — Pr[G5' = 1]| < ¢ Advi(N).



Setup LR query (mo, m1)

T <—¢ Rnd If ctr < 4,
s <—g seeds r’ < Rnd
ctr + 1 ¢ < PKE.E(pk, mo;7")
(pk*, sk™) « PKEX(1*) Else if ctr > j,
(pk”, sk™) < (pk*||s, sk*) 7' <5 Rnd
¢ < PKE.E(pk,m;7")
Enc query (pk,m,1) Else submit (mo,m1) to C’s
return EXT-PKE.E(pk, m; ¢:(r)) LR oracle, receive c
ctr < ctr+1
Dec query ¢ return ¢ to A.

return PKE.D(sk, ¢)

Fig. 9. Hybrid game G2 ; used in the proof of Lemma 4

Finally, the game G2 may be simulated by a standard IND-ATK PKE adversary,
C. More formally,

Lemma 4. The success probability of an adversary attacking Go can be bound
as follows: 4
2-Pr(Gy = 1] - 1<qrr- Advgg,—gtk()\)

Proof. This proof uses a hybrid argument. Specifically, consider a hybrid game
G3,; in which the first j LR queries are answered with encryptions of mg, and the
following qrr — 7 LR queries are answered with encryptions of m;. Specifically,
game G ; is set up as shown in Setup in Figure 9, and the adversaries queries
are answered as shown in Enc query, LR query, and Dec query in Figure 9.

Note that the advantage of an adversary in game G5 is equivalent to the
adversary’s ability to distinguish G ¢ and Gg 4, . Furthermore, it is easily seen
that, from an adversary A which is able to distinguish game G ; and G j4+1, we
can construct an IND-ATK adversary C against PKE with the same advantage,
by using C’s challenge as the response to the jth LR query. Hence, we conclude
that .

2-Pr(Ggt = 1] — 1 < qrr - Advpgg o™ (N).

The theorem follows by combining all of these inequalities. ad



