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Abstract

The paper presented an identity based encryption (IBE) under selective opening attack (SOA) whose
security is almost-tightly related to a set of computational assumptions. Our result is a combination of Bellare,
Waters, and Yilek’s method [TCC, 2011] for constructing (not tightly) SOA secure IBE and Hofheinz, Koch,
and Striecks’ technique [PKC, 2015] on building almost-tightly secure IBE in the multi-ciphertext setting. In
particular, we first tuned Bellare et al.’s generic construction for SOA secure IBE to show that a one-bit IBE
achieving ciphertext indistinguishability under chosen plaintext attack in the multi-ciphertext setting (with
one-sided publicly openability) tightly implies a multi-bit IBE secure under selective opening attack. Next,
we almost-tightly reduced such a one-bit IBE to static assumptions in the composite-order bilinear groups
employing the technique of Hofheinz et al. This yielded the first SOA secure IBE with almost-tight reduction.
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1 Introduction

1.1 Background and Problem

Boneh and Franklin [BF01] formalized the notion of ciphertext indistinguishability under chosen ciphertext
attack (IND-CCA) for identity based encryptions (IBE) and proposed the first practical solution in the random
oracle model. Since then IND-CCA security and its weakened version, ciphertext indistinguishability under
chosen plaintext attack (IND-CPA), have been accepted as standard security definitions for IBE. However
stronger security guarantee is required in some application scenarios. In 2011, Bellare, Waters, and Yilek
proposed the selective opening security (SOA) for IBE, which may act as the basis for discussing adaptively
secure multi-party computation protocol [BWY11].

Different from IND-CPA, the SOA security formalized in [BWY11] considers a communication system with
multiple senders and multiple receivers. Besides eavesdropping all ciphertexts from communication channel,
the adversary can also corrupt a subset of senders, extracting their plaintexts as well as random coins they used
when generating corresponding ciphertexts. The SOA security ensures that ciphertexts sent by uncorrupted
senders should not reveal any useful information on their corresponding plaintexts.

To construct an IBE achieving SOA security described above, Bellare et al. [BWY11] introduced a new
primitive, IND-CPA one-bit IBE with one-sided publicly openability (1SPO), which is analogous to a weaker
form of deniable public key encryption (PKE) [CDNO97]. Informally, the 1SPO property here requires that
one can publicly recover the random coins used to encrypt message 1. They showed that a one-bit IBE with
such a security guarantee can be generically transform to a multi-bit IBE with SOA security in a quite straight
way and provided two concrete constructions for such type of IBE based on Boyen and Waters’s anonymous
IBE [BW06] and De Caro, Iovino and Persiano’s anonymous IBE [DCIP10], which is further based on Lewko
and Waters’ IBE [LW10] employing the recently developed dual system technique [Wat09]. This results in two
SOA secure IBE schemes based on decisional linear assumption and general subgroup decision assumption,
respectively.

However both resulting constructions are not tight, the security loss is O (k`) where k is the number
of senders and ` is the length of each message in binary form. Namely the advantage of breaking the SOA
security of these scheme is bounded by the advantage of solving some computational assumption times a factor
O (k`). This means that, in order to reach certain bit security, we have to use a larger security parameters to
compensate the security loss, which often leads to large group size and inefficient group operation. Therefore
a tightly secure construction is desirable from both theoretical and practical point of view.

Our paper is devoted to develop an IBE scheme reaching SOA security in a tighter fashion. In particular,
we give a SOA secure IBE almost-tightly reduced to several static assumptions using composite order bilinear
groups. The “almost-tight” means the security loss is proportional to the security parameter λ and independent
of k and `. In general, we consider λ as a number far smaller than k`.

1.2 Our Technique

Our work is motivated by the work of Hofheinz, Koch, and Striecks on almost-tight IBE in the multi-
instance, multi-ciphertext setting [HKS15]. Roughly speaking, the so-called “ciphertext indistinguishability in
the multi-instance, multi-ciphertext setting” ensures the confidentiality of multiple ciphertexts simultaneously.
In the paper, we only consider a special case, i.e., the “single-instance, multi-ciphertext” setting (IND-mCPA).
On the other hand, in the terms of Hofheinz et al., the one-bit IBE used in Bellare et al.’s generic construction
of SOA secure IBE is IND-CPA in the single instance, single ciphertext setting. Therefore a straight observation
shows that, if we replace the one-bit IBE here with an IND-mCPA one-bit IBE also with 1SPO, this generic
construction would become constantly tight. This result is quite obvious and is easy to demonstrate, we briefly
present it in Section 3 to make the paper self-contained.

Having a tight generic transformation from IND-mCPA one-bit IBE to SOA secure multi-bit IBE, the re-
maining work is to build such a one-bit IBE whose security is almost-tightly related to some computational
assumptions. Our solution is a combination of Bellare, Waters, and Yilek’s second construction [BWY11] and
Hofheinz, Koch, and Striecks’ technique [HKS15]. Before explaining our solution, we first review these two
basic work.

Dual System Technique. Both work follows the dual system technique invented by Waters [Wat09]. For a
IBE scheme employing dual system technique, we define two forms for secret keys and ciphertexts, normal
and semi-functional, which should also be indistinguishable from each other. The normal keys and ciphertexts
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are used in the real system. We will say they are in the normal space. The semi-functional keys and ciphertexts
will only be used in security proof and are always defined as normal keys and ciphertexts mixed with some
additional components. We will call these components semi-functional components and say they are in the
semi-functional space. Relying on certain algebraic feature, we can ensure the independence of normal space
and semi-functional space in some sense, which allows us to make some changes (say, increasing entropy
and breaking some algebraic structure) in the semi-functional space but avoid negative impact on the normal
space, i.e., the real system.

Bellare, Waters, and Yilek’s Method. Bellare et al.’s idea [BWY11] is originated from the work on deniable
encryption [CDNO97]. From a high level, they built a one-bit IBE with both IND-CPA and one-sided invertible
sampleability (1SIS). An encryption of message 0 has some specific algebraic structure which is detectable for
secret keys (of course, related to the same identity) but is pseudo-random from view of outsiders (adversaries);
an encryption of message 1 is truly random and invertible samplable using just master public key.

Assume a composite order bilinear groups (G,GT , e, N = p1p2p3p4), we let GN ′ be the subgroup of order
N ′|N . We note that one can decompose G as Gp1

×Gp2
×Gp3

×Gp4
and pairing operation on two elements

from two subgroups of co-prime orders equals 1GT
. Their second construction works as follows. An encryption

of 0 for identity ID ∈ ZN is in the form of

�

U ID
14X14

�s
g t4

4 , W s
14 g

t ′4
4

where U14, X14, W14 ∈ Gp1 p4
, g4 ∈ Gp4

are parts of the master public key and s, t4, t ′4 ∈ ZN are random coins
for encryption. Since both encryption and master public key are independent in subgroup Gp4

, the algebraic
structure is hidden for the outsider, which can be proved following [DCIP10, LW10]. However the structure
can be detected using the secret key in the form of

g r
1 g r3

3 ,
�

U ID
1 X1

�r
g

r ′3
3

because they let U1, X1, g1 ∈Gp1
share the same Gp1

-component with U14, X14, W14, respectively, and subgroup
Gp1

, Gp3
and Gp4

are pairwise orthogonal under pairing operations. Here the subgroup Gp1
acts as the normal

space while the subgroup Gp2
is the semi-functional space. The remaining two subgroups Gp3

and Gp4
are

used to additionally randomize keys and ciphertexts, respectively.

Hofheinz, Koch, and Striecks’s Construction and Proof Technique. Their construction inherited the main
algebraic structure of Chen and Wee’s almost-tightly secure IBE in the single-ciphertext setting [CW13] which
employed a variant form of Waters Hash [Wat05]. It also works on a bilinear group of composite order
N = p1p2p3p4 as above but supports the identity space defined as the set of all n-bit binary string. An
encryption of message M for identity ID ∈ {0,1}n is in the form of

gs
1, g

∑

w[2i−ID[i]]·s
1 , e(g1, h)αs · M

where g1 ∈ Gp1
, gw

1 ∈ G
2n
p1

and e(g1, h)α ∈ GT are parts of the master public key, and s is the random coin for
encryption, while secret keys are in the form of

hα · h
∑

w[2i−ID[i]]·r
123 · R4, hr

123 · R
′
4

where α ∈ ZN , h ∈G, h123 ∈Gp1 p2 p3
, hw

123 ∈Gp1 p2 p3
are given in the master secret keys, and r ∈ ZN , R4, R′4 ∈Gp4

are random coins. Here subgroup Gp1
again acts as the normal space, the semi-functional space consists of

subgroup Gp2
and Gp3

. The last subgroup Gp4
is now used to randomize keys.

We now briefly review the proof procedure. The proof begins with introducing Gp2
-component into ci-

phertexts and conceptually inserting an random function R0 mapping identity space to subgroup Gp2 p3
whose

output is truly random but independent of the input as follows.

CT : (g1 g2 )
s, (g1 g2 )

∑

w[2i−ID[i]]·s, e((g1 g2 )
s, hα · R0(ID) ) · M

SK : hα · R0(ID) · h
∑

w[2i−ID[i]]·r
123 · R4, hr

123 · R
′
4

The next step is to gradually increase the dependence of R0’s output on its input, from 0 bit to n bits. Here we
need n computationally arguments and arise O (n) security loss but unrelated to the number of secret keys or
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ciphertexts. Technically, each step relies on the orthogonality of subgroup Gp2
and Gp3

to independently adpot
the proof technique introduced by Chen and Wee [CW13] in each of the two subgroups. Finally, we will reach
the scenario with

CT : (g1 g2)
s, (g1 g2)

∑

w[2i−ID[i]]·s, e((g1 g2)
s, hα · Rn(ID) ) · M

SK : hα · Rn(ID) · h
∑

w[2i−ID[i]]·r
123 · R4, hr

123 · R
′
4

where now Rn’s output depends on all bits of identity ID. Combining the feature of random function and
the entropy of s, the random coin for encryption, we can readily show the pseudo-randomness of term
e((g1 g2)s, hα ·Rn(ID)) in all ciphertexts simultaneously in a tight fashion.

Our Attempt and Solution. At first glance, we can apply Bellare et al.’s idea directly to Hofheinz, Koch,
and Striecks’ construction. We may remove the master secret key hα and drop payload mask e(g1, h)α, put the
structure into a bilinear group of order N = p1p2p3p4p5 and use the extra subgroupGp5

to hide the structure of
ciphertexts as [DCIP10, BWY11]. The result is as follows. An encryption of message 0 for identity ID ∈ {0, 1}n

looks like
gs

1 g t5
5 , g

∑

w[2i−ID[i]]·s
1 g

t ′5
5

where g t5
5 , g

t ′5
5 ∈ Gp5

function as g t4
4 and g

t ′4
4 , while g1 ∈ Gp1

and gw
1 ∈ G

2n
p1

should be multiplied by a random
element of Gp5

before they are published with g5 as the master public key. On the other hand, secret keys for
ID should look like

h
∑

w[2i−ID[i]]·r
123 · R4, hr

123 · R
′
4

It is easy to verify the correctness of this construction. However the proof technique for proving IND-mCPA is
not applicable now. We remark that it is the master secret α that allows us to introduce the random function
into the system after introducing Gp2

-components into all ciphertexts.
A natural idea to overcome this problem may be to take hα back in secret keys and put an additional term

e(g1, h)αs in ciphertexts. However we still don’t know how to prove the resulting scheme to be IND-mCPA
yet even though Hofheinz et al.’s proof technique now works. To see that we remind the reader of the fact
that our technical goal is to show all components in ciphertexts of message 0 are pseudo-random. The proof

technique here finally allows us to argue the pseudo-randomness of e(g1, h)αs, but not g
∑

w[2i−ID[i]]·s
1 g

t ′5
5 , since

no additional entropy has been introduced in it during the proof.
Our solution is to turn to the original version of Waters Hash [Wat05] where the encoding of identity ID is

not linear but affine. In particular, we define an encryption for message 0 as

gs
1 g t5

5 , g(
u+
∑

w[2i−ID[i]])·s
1 g

t ′5
5

where the newly introduced gu
1 ∈Gp1

is also published as a part of master public key after hidden by a random
element of Gp5

; secret keys are accordingly defined as

h(
u+
∑

w[2i−ID[i]])·r
123 · R4, hr

123 · R
′
4

where u is also introduced to maintain correctness. At this time, we can insert a random function relying on
the entropy of u ∈ ZN and continue the proof procedure, which circumvents the issues in our first attempt. In
particular, the first step of the proof now results in the following ciphertexts and secret keys

CT : (g1 g2 )
s g t5

5 , (g1 g2 )(
u+
∑

w[2i−ID[i]])·s g
t ′5
5 · gR0(ID)·s

2

SK : hR0(ID)·r
23 · h(u+

∑

w[2i−ID[i]])·r
123 · R4, hr

123 · R
′
4

where we define the random function mapping from identity space to ZN instead of Gp2 p3
. We note that,

different from Hofheinz et al.’s proof, the random function in our proof is associated with random coin r in
secret keys instead of standing alone, and is associated with random coin s directly in ciphertexts instead of
connected through bilinear pairing e. Finally, we will reach the following configuration using Hofheinz et al.’s
technique with tiny technical tuning.

CT : (g1 g2)
s g t5

5 , (g1 g2)(
u+
∑

w[2i−ID[i]])·s g
t ′5
5 · gRn(ID)·s

2

4



SK : hRn(ID)·r
23 · h(u+

∑

w[2i−ID[i]])·r
123 · R4, hr

123 · R
′
4

At this moment, we see that the pseudo-random terms gRn(ID)·s
2 and hRn(ID)·r

23 are bound with g(
u+
∑

w[2i−ID[i]])·s
1

and h(
u+
∑

w[2i−ID[i]])·r
123 respectively, which facilitates the proof of pseudo-randomness of the entire ciphertexts

and circumvents the problem in our second attempt. We show the formal description of this construction and
its security analysis in Section 4.

1.3 Related Work

Identity Based Encryption. The notion of identity based encryption was introduced by Shamir [Sha85] to
alleviate the cost of key management in traditional PKI framework. The first practical solution with for-
mal security analysis for this promising primitive was found by Boneh and Franklin [BF01] in 2001 using
bilinear groups. A bunch of constructions are proposed in the next several years, including classical Boneh-
Boyen [BB04b, BB04a], Waters [Wat05], and Gentry [Gen06] construction.

A recent breakthrough in this field is the introduction of dual system technique by Waters [Wat09], which
is now widely used for building various types of adaptively secure functional encryptions [LW10, LOS+10,
OT10, LW11, CLL+13, Lew12, LW12, OT12b, OT12a, RCS12, JR13]. There also appears general frameworks
investigating the dual system technique, especially its application in functional encryption [Att14, BKP14,
Wee14, CGW15].

In 2013, Chen and Wee [CW13] eastablished the first IBE scheme with almost-tight reduction to static
assumptions in the standard model, combining the dual system technique with Naor-Reingold technique for
pseudo-random functions [NR04]. The method was extended to the “multi-instance, multi-ciphertext” setting
by Hofheinz, Koch, and Striecks [HKS15]. Two very recent work [AHY15, GCD+15] gave the prime-order real-
ization of Hofheinz et al.’s composite-order construction. Besides that the work by Attrapadung et al. [AHY15]
also proposed a framework for building almost-tight IBE from broadcast encodings [Att14], which leads to a
lot of new constructions with diverse features.

Selective Opening Security. The study of selective opening security started from the field of public key
encryption. Since the work of Bellare, Hofheinz, and Yilek [BHY09], the community obtained several solu-
tions [FHKW10, HLOV11, Hof12, HLQ13] covering various settings such as chosen plaintext attack (SO-CPA)
and chosen ciphertext attack (SO-CCA). In 2011, Bellare, Hofheinz, and Yilek brought SOA security into the
field of IBE [BWY11] by considering SO-CPA security. The blank of SO-CCA security was recently filled by
Lai et al. [LDL+14] relying on several newly introduced primitives. This paper only considers SO-CPA follow-
ing [BWY11]. Very recently, He et al. [HLL+15] gave an IBE scheme achieving indistinguishability-based SOA
security under chosen-plaintext attack in the selective identity model, which is weaker than the security model
used in [BWY11, LDL+14] and ours as well.

2 Preliminaries

2.1 Notations

We employ x := f (y) to denote the process of assigning to x the result of f (y) for some formula f (·)
and some value y . For any positive number n, we define [n] := {1, . . . , n}. For any list or vector w, we
let w[i] denote the ith entry of w. Similarly, for any binary string ID ∈ {0, 1}∗, we use ID[i] to indicate
the ith bit of ID. The notation y ← Alg(x1, . . . , xn; r1, . . . , rm) or Alg(x1, . . . , xn; r1, . . . , rm) → y refers to
the process of running algorithm Alg with inputs x1, . . . , xn and random coins r1, . . . , rm, then assigning the
result to variable y . The random coins may be omitted for brevity. We may also use a more compact form
y ← Alg(x; r) where x :=

�

x1, . . . , xn
�

and r :=
�

r1, . . . , rm
�

. For any fixed input x, the set [Alg(x)] is defined
as
�

y : ∃r s.t. Alg(x; r) = y
	

.
Given a finite cyclic group G, we use X ← G to denote the process of sampling a random element in G.

In particular, the notation is for the so-called “lazy sampling”. Assuming g ∈ G is a generator of group G of
order N , we sample X from G by randomly sampling x from ZN and set X := g x . As [BWY11], we consider
sampling random element from ZN (for any N ∈ Z>0) as the unique random source in our system, and denote
this atomic process by x ← ZN .
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2.2 Code-Based Games

Following [BWY11], we employ code based games [BR06] for our security definitions and proofs. A code
based game is defined by an Initialize procedure and a Finalize procedure plus a series of procedures, which
will be used to answer adversary A ’s queries and depends on the security notion we concern. The game
begins with running Initialize procedure and transmitting the result to adversary A . During the game, A is
allowed to make various types of queries in any order. In general, A is capable of making polynomial-many
queries. Finally,A is expected to return an output before it halts. The output of the game is then obtained by
invoking Finalize procedure onA ’s output. As usual, we let GameA (λ) = y denote the event that the output
of executing Game with adversaryA on security parameter 1λ is y .

2.3 Identity Based Encryptions

Algorithms. An identity-based encryption scheme with identity space IdSp and message space MsgSp con-
sists of four (probabilistic) polynomial time algorithms defined as follows:

– Setup(1λ) → (MPK, MSK). The setup algorithm takes as input a security parameter 1λ, and outputs a
master public key MPK and the corresponding master secret key MSK.

– KeyGen(MPK, MSK, ID) → SK. The key generation algorithm takes as input a master public key MPK, a
master secret key MSK and an identity ID ∈ IdSp, and outputs a secret key SKID.

– Enc(MPK, ID, M) → CT. The encryption algorithm takes as input a master public key MPK, an identity
ID ∈ IdSp and a message M ∈MsgSp, outputs a ciphertext CTID.

– Dec(MPK, SK, CT)→ M. The decryption algorithm takes as input a master public key MPK, a secret key SK

and a ciphertext CT, outputs a message M or a failure symbol ⊥.

Correctness. The correctness (with negligible failure probability) requires that, for all security parameter λ,
for all (MPK, MSK) ∈ [Setup(1λ)], all ID ∈ IdSp, and all M ∈MsgSp, it holds that

Pr [Dec(MPK,KeyGen(MPK, MSK, ID),Enc(MPK, ID, M)) = M]¾ 1− ε,

where ε is negligible in λ and the probability space is defined by random coins consumed by algorithm KeyGen
and Enc.

More Notations. We now define two sets for an IBE scheme. We let Coins(MPK, M) be the set of random
coins used to encrypt message M for all (MPK, MSK) ∈ [Setup(1λ)]. We also use Coins(MPK, ID, CT, M) to denote
{r : CT = Enc(MPK, ID, M; r)}, the set of all random coins which makes algorithm Enc to produce CT as the
ciphertext for message M under MPK and ID.

2.4 Security against Selective Opening Attacks

Bellare et al. [BWY11] formally defined selective opening security in the setting of IBE based on the work
of [BHY09]. This subsection review their definition through two games: SOAREAL and SOASIM, defined in
Figure 1 and Figure 2, respectively. In the figures,M is called (k,`)-message sampler which takes α ∈ {0,1}∗

as input and returns m such that |m|= k and m[i] ∈ {0, 1}` for all i ∈ [k], andR is any randomized algorithm
with binary output. In both games, an adversary must make one NewMesg query before one Corrupt query.
Besides, game SOAREAL additionally allows the adversary to adaptively make polynomially-many Extract
queries.

The SOA-advantage function of SOA-adversary A against an SOA-simulator S with respect toM and R
is defined as follows.

AdvSOA
A ,S ,M ,R(λ) :=

�

�

�Pr
�

SOAREALA ,M ,R(λ) = 1
�

− Pr
�

SOASIMS ,M ,R(λ) = 1
�

�

�

� .

An IBE scheme is said to be SOA secure if and only if, for any message sampler M , any binary relation R ,
any probabilistic polynomial time SOA-adversaryA , there exists an SOA-simulator S such that the advantage
function AdvSOA

A ,S ,M ,R(λ) is negligible in λ.
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Initialize
(MPK, MSK)← Setup(1λ)
return MPK

NewMesg(id,α)
if id∩ExID 6= ; then return ⊥
ChID := ChID∪ id
m←M (α)
for i ∈ [k] do
r[i]← Coins(MPK,m[i])
ct[i]← Enc(MPK, id[i],m[i]; r[i])

return ct

Extract(ID)
if ID ∈ ChID then return ⊥
ExID := ExID∪ {ID}
return KeyGen(MPK, MSK, ID)

Corrupt(I)
return r[I],m[I]

Finalize(OUT)
return R(m,ChID, I , OUT)

Figure 1: SOAREAL Game

Initialize
return ⊥

NewMesg(id,α)
ChID := ChID∪ id
m←M (α)
return ⊥

Corrupt(I)
return m[I]

Finalize(OUT)
return R(m,ChID, I , OUT)

Figure 2: SOASIM Game

2.5 Indistinguishability with One-sided Publicly Openability

The ciphertext indistinguishability under chosen plaintext attack [BF01] (IND-CPA) is one of well-known
security definitions for IBE. In the model, given master public key, an adversary is able to obtain polynomially-
many secret keys adaptively and a single challenge ciphertext for one of challenge messages, and is asked
to guess a secret bit (which indicates which challenge message is used to generate challenge ciphertext).
We consider IND-CPA in the multi-ciphertext setting (IND-mCPA) where the adversary now has access to
polynomially-many challenge ciphertexts, which is recently proposed and investigated in more general multi-
instance, multi-ciphertext setting [HKS15].

More formally, we review the notion of IND-mCPA [HKS15] through game INDmCPA shown in Figure 3.
The advantage function of adversaryA in game INDmCPA is defined as

AdvINDmCPA
A (λ) :=

�

�Pr
�

INDmCPAA (λ) = 1
�

− 1/2
�

� .

An IBE scheme is said to be IND-mCPA if and only if the advantage function AdvINDmCPA
A (λ) is negligible in λ

for any probabilistic polynomial time adversaryA .

Initialize
(MPK, MSK)← Setup(1λ)
β ← {0, 1}
return MPK

Extract(ID)
if ID ∈ ChID then return ⊥
ExID := ExID∪ {ID}
return KeyGen(MPK, MSK, ID)

Challenge(ID∗, M∗0, M∗1)
if ID∗ ∈ ExID then return ⊥
ChID := ChID∪ {ID∗}
return Enc(MPK, ID∗, M∗β)

Finalize(β ′)
return (β = β ′)

Figure 3: INDmCPA Game

However the IND-mCPA alone is not sufficient for realizing SOA security. We require an additional property,
called One-Sided Publicly Openability (1SPO), proposed by Bellare et al. [BWY11] based on the concept of
deniable PKE [CDNO97]. Roughly speaking, 1SPO for an IBE with MsgSp= {0,1}means that one can publicly
open a ciphertext for message 1 by presenting its random coins. More formally, we review the following
algorithm.
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– OpenToOne(MPK, ID, CT)→ r. The setup algorithm takes as input a master public key MPK, an identity
ID ∈ IdSp and a ciphertext CT of 1, outputs a random coin r such that CT = Enc(MPK, ID, 1; r).

We allow algorithm OpenToOne to output failure symbol ⊥ with probability δ and require that, for all MPK ∈
[Setup(1λ)], all ID ∈ IdSp, all CT ∈ [Enc(MPK, ID, 1)], and all br ∈ Coins(MPK, ID, CT, 1),

Pr [r ←OpenToOne(MPK, ID, CT) : r = br|r 6=⊥] =
1

|Coins(MPK, ID, CT, 1)|

The algorithm is called δ-1SP opener and an IBE with a δ-1SP opener is called δ-one-sided publicly openable
(δ-1SPO).

3 Tightly Reducing SOA Security to IND-CPA with δ-1SPO

Bellare et al. [BWY11] presented a trivial construction for `-bit IBE IBE` from one-bit IBE IBE, and proved
that IBE` achieves SOA security if the underlying IBE is IND-CPA with δ-1SPO with polynomial security loss.
This section first review this trivial construction (with different identity space) and prove that IBE` achieves
SOA security if the underlying IBE is IND-mCPA with δ-1SPO with constant security loss.

3.1 Construction

Assume an one-bit IBE IBE = (Setup,KeyGen,Enc,Dec) with IdSp = {0,1}n and MsgSp = {0,1}. The
`-bit IBE IBE` =

�

Setup`,KeyGen`,Enc`,Dec`
�

with IdSp= {0, 1}n (identical to IBE) and MsgSp= {0,1}` is
defined as in Figure 4.

Setup`(1λ, n)
return Setup(1λ, n)

Dec`(MPK, SK,ct)
for i ∈ [`] do

M[i]←Dec(MPK, SK,ct[i])
return M

KeyGen`(MPK, MSK, ID)
return KeyGen(MPK, MSK, ID)

Enc`(MPK, ID, M)
for i ∈ [`] do
ct[i]← Enc(MPK, ID, M[i])

return ct

Figure 4: From IBE to IBE`.

It is quite clear that the correctness of the resulting IBE follows from the underlying one. More concretely,
if IBE is correct with failure probability ε, IBE` is correct with failure probability ` · ε.

3.2 Security Analysis

We want to prove the following theorem.

Theorem 1 For any message samplerM , any binary relationR , any probabilistic polynomial time SOA-adversary
A making at most QK Extract queries, there exists a probabilistic polynomial time SOA-simulator S and adver-
saryB such that

AdvSOA
A ,S ,M ,R(λ)≤ 2 ·AdvINDmCPA

B (λ) + k` ·δ.

The proof begins with constructing a SOA-simulator S in SOASIM game, which takes any probabilistic
polynomial time SOA-adversary A as oracle. Our proof continues employing Bellare et al.’s construction
and we recall it in Figure 5. The SOA-simulator S prepares a fresh master public/secret key pair (MPK, MSK)
and initializes a SOA-adversary A using MPK. To obtain A ’s output, S answers all queries made by it, i.e.,
simulating SOAREAL game for A . The Extract queries are directly answered using MSK. For the NewMesg
query, SOA-simulator S returns k encryptions of message 0`. In the figure, we use NewMesgS to denote
the NewMesg oracle for S in SOASIM game, which returns nothing to S . For the Corrupt query, S opens
corrupted messages correctly relying on the power of OpenToOne algorithm. In particular, if the corrupted
message bit is 0, the random coin used when answering NewMesg query could be returned directly; if the bit
is 1 instead, the random coin must be resampled so as to explain the corresponding ciphertext S has given to
A , which is originally an encryption of 0, to be an encryption of 1.
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main()
(MPK, MSK)← Setup`(1λ)
return A (MPK)

NewMesg(id,α)
NewMesgS (id,α)
for i ∈ [k] do
r[i]← Coins(MPK, 0`)
ct[i]← Enc`(MPK, ID[i], 0`; r[i])

return ct

Corrupt(I)
m[I]← CorruptS (I)
for i ∈ I and j ∈ [`] do
if m[i][ j] = 1 then
r[i][ j]←OpenToOne(MPK, id[i],ct[i][ j])

return r[I],m[I]

Extract(ID)
return KeyGen`(MPK, MSK, ID)

Figure 5: SOA-simulator S .

One may see that the simulation of S is different from the specification of SOAREAL. Therefore the next
step of the proof is to show that the simulation described in Figure 5 and the real SOAREAL are computa-
tionally indistinguishable from the viewpoint of A . In detail, we employ hybrid argument using the game
sequence shown in Figure 6.

Game0, Game1 , Game2

Game3

Initialize
(MPK, MSK)← Setup(1λ)
return MPK

Extract(ID)
if ID ∈ ChID then return ⊥
ExID := ExID∪ {ID}
return KeyGen(MPK, MSK, ID)

Finalize(OUT)
return R(m,ChID, I , OUT)

NewMesg(id,α)
if id∩ExID 6= ; then return ⊥
ChID := ChID∪ id
m←M (α)
m←⊥

for i ∈ [k] and j ∈ [`] do
r[i][ j]← Coins(MPK,m[i][ j])

r[i][ j]← Coins(MPK, 0)

ct[i][ j]← Enc(MPK, id[i],m[i][ j]; r[i][ j])

ct[i][ j]← Enc(MPK, id[i], 0; r[i][ j])

return ct

Corrupt(I)

m←M (α)

for i ∈ I and j ∈ [`] do

if m[i][ j] = 1then

r[i][ j]←OpenToOne(MPK, id[i], CT[i][ j])
return r[I],m[I]

Figure 6: Game Sequence for SOA security

We have the following lemmas immediately.

Lemma 1 For any message samplerM , any binary relation R , any adversaryA , we have
�

�Pr[Game0,A ,M ,R(λ) = 1]− Pr[Game1,A ,M ,R(λ) = 1]
�

�≤ k` ·δ.

Lemma 2 For any message samplerM , any binary relation R , any adversaryA , we have

Pr[Game2,A ,M ,R(λ) = 1] = Pr[Game3,A ,M ,R(λ) = 1].

Lemma 3 For any message samplerM , any binary relation R , any adversaryA , we have

Pr[Game3,A (λ) = 1] = Pr[SOASIMS ,M ,R(λ) = 1].

The first lemma follows from the fact that the algorithm OpenToOne is not perfect, its failure probability is δ,
and there are at most k` applications of OpenToOne. For the second lemma, since we can answer NewMesg
queries without knowing anything about m, it is safe to defer the sampling of m. The last lemma follows the
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observation that the SOA-simulator described in Figure 5 is able to simulate Game3 and S ’s output always
equalsA ’s.

To finish the proof of the theorem, we must fill the gap between Game1 and Game2. Especially, we prove
the following lemma.

Lemma 4 (Game1 ≈ Game2) For any message samplerM , any binary relation R , any probabilistic polynomial
time adversaryA making at most QK key extraction queries, there exists an adversaryB such that

�

�

�Pr
�

Game1,A ,M ,R(λ) = 1
�

− Pr
�

Game2,A ,M ,R(λ) = 1
�

�

�

�≤ 2 ·AdvINDmCPA
B (λ).

and Time(B)≈ Time(A ) + (k`+QK) · poly(λ) where poly is independent ofA .

Proof. Given MPK and oracle access to ExtractB and Challenge, algorithmB proceeds as follows:

Initialize Return MPK.

Extract(ID) Return ExtractB(ID).

NewMesg(id,α) Return ⊥ when id∩ ExID 6= ;. Update ChID := ChID∪ id. Sample m←M (α). For i ∈ [k]
and j ∈ [`], if m[i][ j] = 1, set

ct[i][ j]← Challenge(id[i], 0, 1),

otherwise, sample

r[i][ j]← Coins(MPK,m[i][ j]) and ct[i][ j]← Enc(MPK, id[i], 0; r[i][ j]).

Return ct.

Corrupt(I) For i ∈ I and j ∈ [`], if m[i][ j] = 1, set

r[i][ j]←OpenToOne(MPK, id[i],ct[i][ j]).

Return (r[I],m[I]).

WhenA halts with output OUT, algorithmB outputs R(m,ChID, I , OUT).
Observe that if β = 0, the outputs of Challenge are encryptions of 0 and the simulation is identical to

Game2. On the other hand, if β = 1, the outputs of Challenge are encryptions of 1 and the simulation is iden-

tical to Game1. Therefore we can conclude that
�

�

�Pr
�

Game1,A ,M ,R(λ) = 1
�

− Pr
�

Game2,A ,M ,R(λ) = 1
�

�

�

� ≤

2 ·AdvINDmCPA
B (λ). �

4 Tightly Reducing IND-CPA IBE with δ-1SPO to Static Assumptions

4.1 Composite-order Bilinear Groups

We assume a group generator GrpGen for composite-order bilinear groups, which takes as input a security
parameter 1λ, outputs

�

N ,G,GT , e, p1, . . . , p5
�

where N = p1 · · · p5 and all pi are prime numbers in [2λ−1, 2λ−
1], both G and GT are cyclic groups of order N , and e : G×G → GT is an admissible bilinear map. We let
G and GT also contain their generators, denoted by g ∈ G and gT ∈ GT , respectively. We define public group
description G =

�

N ,G,GT , e
�

and take factoring of N , i.e., p1, . . . , p5, as secret information. It is the secret
information that allow us to derive the generator of such subgroup from the generator of the entire group, i.e.,
g ∈G, and sample random element from it.

For positive integer N ′ with N ′|N , we use GN ′ to indicate the unique subgroup of order N ′. Given g ∈ Gn

and h ∈ Gm such that gcd(n, m) = 1, we have e(g, h) = 1GT
. In fact, we can decompose G as Gp1

× · · · ×Gp5

and write g x for x ∈ ZN as
∏5

i=1 g x i
i where Gpi

is generated by gi ∈ Gpi
and x i ∈ ZN is unique modulo pi .

Under the representation, we call
∏

i∈I g x i
i for some I ⊆ [5] the GN ′ -part of g x where N ′ =

∏

i∈I pi .
We need the following six computational assumptions to reach IND-CPA security. Assumption 1, 2, 5, 6 are

concrete instantiations of General Subgroup Decision Assumption formalized by Bellare et al. [BWY11] which is
inspired by several concrete assumptions used in [BGN05, DCIP10, LW10]. Assumption 3 and 4 are modified
from Hofheinz et al.’s Dual System Assumption 3 [HKS15] and Chen and Wee’s second assumption in [CW13],
respectively. In fact the Dual System Assumption 3 [HKS15] was also derived from Chen and Wee’s second
assumption. All of them could be viewed as Diffie-Hellman Assumption on subgroups of composite-order G.
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Assumption 1 For any probabilistic polynomial time adversaryA , the advantage function defined as follows are
negligible in λ.

AdvSD1
A (λ) :=

�

�Pr
�

A (D, T0) = 1
�

− Pr
�

A (D, T1) = 1
�

�

�

where
�

N ,G,GT , e, p1, . . . , p5
�

← GrpGen(1λ); G =
�

N ,G,GT , e
�

;

g1←Gp1
; g4←Gp4

; g5←Gp5
; X1X2X3←Gp1 p2 p3

;

D←
�

G , g1, g4, g5, X1X2X3
�

;

T0←Gp1
; T1←Gp1 p2

.

Assumption 2 For any probabilistic polynomial time adversaryA , the advantage function defined as follows are
negligible in λ.

AdvSD2
A (λ) :=

�

�Pr
�

A (D, T0) = 1
�

− Pr
�

A (D, T1) = 1
�

�

�

where
�

N ,G,GT , e, p1, . . . , p5
�

← GrpGen(1λ); G =
�

N ,G,GT , e
�

;

g1←Gp1
; g4←Gp4

; g5←Gp5
; X2X5←Gp2 p5

; Y2Y3←Gp2 p3
;

D←
�

G , g1, g4, g5, X2X5, Y2Y3
�

;

T0←Gp2 p5
; T1←Gp3 p5

.

Assumption 3 For any probabilistic polynomial time adversaryA , the advantage function defined as follows are
negligible in λ.

AdvDDH1
A (λ) :=

�

�Pr
�

A (D, T0) = 1
�

− Pr
�

A (D, T1) = 1
�

�

�

where
�

N ,G,GT , e, p1, . . . , p5
�

← GrpGen(1λ); G =
�

N ,G,GT , e
�

;

g1←Gp1
; g2←Gp2

; g3←Gp3
; g4←Gp4

; g5←Gp5
;

eX4, eY4, X 4, Y 4←Gp4
; x , y, z← Z∗N ;

D =
�

G , g1, g2, g3, g4, g5, g x
2
eX4, g y

2
eY4, g x

3 X 4, g y
3 Y 4

�

;

T0←
�

g x y
2 , g x y

3

�

; T1←
�

g x y+z
2 , g x y+z

3

�

.

Assumption 4 For any probabilistic polynomial time adversaryA , the advantage function defined as follows are
negligible in λ.

AdvDDH2
A (λ) :=

�

�Pr
�

A (D, T0) = 1
�

− Pr
�

A (D, T1) = 1
�

�

�

where
�

N ,G,GT , e, p1, . . . , p5
�

← GrpGen(1λ); G =
�

N ,G,GT , e
�

;

g1←Gp1
; g2←Gp2

; g3←Gp3
; g4←Gp4

; g5←Gp5
;

eX5, eY5←Gp5
; x , y, z← Z∗N ;

D =
�

G , g1, g2, g3, g4, g5, g x
2
eX5, g y

2
eY5

�

;

T0← g x y
2 ; T1← g x y+z

2 .

Assumption 5 For any probabilistic polynomial time adversaryA , the advantage function defined as follows are
negligible in λ.

AdvSD3
A (λ) :=

�

�Pr
�

A (D, T0) = 1
�

− Pr
�

A (D, T1) = 1
�

�

�

where
�

N ,G,GT , e, p1, . . . , p5
�

← GrpGen(1λ); G =
�

N ,G,GT , e
�

;

g2←Gp2
; g3←Gp3

; g4←Gp4
; g5←Gp5

;

X1X5←Gp1 p5
; Y1Y2Y3←Gp1 p2 p3

;

D =
�

G , g2, g3, g4, g5, X1X5, Y1Y2Y3
�

;

T0←Gp2 p5
; T1←Gp1 p2 p5

.
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Assumption 6 For any probabilistic polynomial time adversaryA , the advantage function defined as follows are
negligible in λ.

AdvSD4
A (λ) :=

�

�Pr
�

A (D, T0) = 1
�

− Pr
�

A (D, T1) = 1
�

�

�

where
�

N ,G,GT , e, p1, . . . , p5
�

← GrpGen(1λ); G =
�

N ,G,GT , e
�

;

g1←Gp1
; g2←Gp2

; g5←Gp5
; X2X3X4←Gp2 p3 p4

;

D←
�

G , g1, g2, g5, X2X3X4
�

;

T0←Gp1 p2 p5
; T1←G.

To realize the One-sided Publicly Openability, we need G to be equipped with publicly reversible sam-
pling [BWY11, FHKW10, LDL+14]. Formally, there exist two algorithms defined as follows.

– SampleG() → G. The publicly reversible sampler takes no input and outputs a random element from
group G with probability 1− ζ or outputs a failure symbol ⊥ with probability ζ. In particular, for all
G′ ∈G, we require that

Pr
�

G = G′|G 6=⊥
�

= 1/|G|,

where the probability space is defined by random coins consumed by algorithm SampleG.

– Sample−1G (G)→ r. The public re-sampler takes an element G ∈ G as input and outputs random coins r
with probability 1− θ such that SampleG(; r) = G or outputs a failure symbol ⊥ with probability θ . In
particular, we require that, for all r ′ ∈ RG where RG :=

�

br : SampleG(;br) = G
	

,

Pr
�

r = r ′|r 6=⊥
�

= 1/|RG |,

where the probability space is defined by random coins consumed by algorithm Sample−1G .

Bellare, Waters, and Yilek [BWY11] had realized these two algorithms for bilinear group G with ζ ≈ 1/2ρ

and θ ≈ 1/2ρ where ρ is an independent parameter, based on the technique for hashing into elliptic curve
groups [BLS01]. We will invoke SampleG and Sample−1G as black box, their detailed specifications can be
found in Appendix A of [BWY11].

4.2 Construction

Assuming a group generator GrpGen described in previous subsection, our main construction is shown in
Figure 7, an IBE scheme with identity space IdSp = {0,1}n and message space MsgSp = {0, 1} which is also
equipped with algorithm OpenToOne for achieving One-Sided Publicly Openability.

The correctness of our construction is obvious. Fix an ID ∈ IdSp. For the case
�

C , C ′
�

∈ [Enc(MPK, ID, 0)],
we have

e(C , K) = e

  

U
n
∏

i=1

W[2i− ID[i]]

!s

gs5
5 , bG r g r4

4

!

= e
�

g(
u+
∑n

i=1 w[2i−ID[i]])s
1 , g r

1

�

= e
�

gs
1, g(

u+
∑n

i=1 w[2i−ID[i]])r
1

�

= e

 

Gs g
s′5
5 ,

 

bU
n
∏

i=1

bW[2i− ID[i]]

!r

g
r ′4
4

!

= e(C ′, K ′),

which means Pr [Dec(MPK, SK,Enc(MPK, ID, 0)) = 0] = 1. For the case
�

C , C ′
�

∈ [Enc(MPK, ID, 1)], we let C = g c

and C ′ = g c′ where c, c′ ∈ ZN , and we have, with the probability space defined by sampling r, r4, r ′4, c, c′← ZN ,

Pr [Dec(MPK, SK,Enc(MPK, ID, 1)) = 0]

= Pr
�

e(C , K) = e(C ′, K ′)
�

= Pr



e
�

g c , bG r g r4
4

�

= e

 

g c′ ,

 

bU
n
∏

i=1

bW[2i− ID[i]]

!r

g
r ′4
4

!



= Pr
h

e
�

�

g1 g2 g3 g4
�c ,
�

g1 g2 g3
�r g r4

4

�

= e
�

�

g1 g2 g3 g4
�c′ ,
�

g1 g2 g3
�(u+

∑

w[2i−ID[i]])r g
r ′4
4

�i

¶ 64/24λ
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Setup(1λ, n)
G := (N ,G,GT , e)← GrpGen(1λ)
for i ∈ [5] do gi ←Gpi

v5← ZN ; G := g1 g v5
5 ; bG := g1 g2 g3

u, u5← ZN ; w,w5← Z2n
N

U := gu
1 gu5

5 ; W := gw
1 gw5

5 ;
bU :=

�

g1 g2 g3
�u; bW :=

�

g1 g2 g3
�w

MPK :=
�

G , G, U ,W, g5
�

MSK :=
�

bG, bU , bW, g4

�

return MPK, MSK

Dec(MPK, SK, CT)
if e(C , K) = e(C ′, K ′) then return 0
else return 1

OpenToOne(MPK, ID, CT)
r← Sample−1G (C)
r′← Sample−1G (C

′)
return

�

r, r′
�

IdSp= {0,1}n, MsgSp= {0, 1}

KeyGen(MPK, MSK, ID)
r, r4, r ′4← ZN

K := bG r g r4
4

K ′ :=
�

bU
∏n

i=1
bW[2i− ID[i]]

�r
g

r ′4
4

return
�

K , K ′
�

Enc(MPK, ID, M)
if M = 0 then
s, s5, s′5← ZN

C :=
�

U
∏n

i=1 W[2i− ID[i]]
�s

gs5
5

C ′ := Gs g
s′5
5

else
C , C ′← SampleG()

return
�

C , C ′
�

Figure 7: Our Main Construction: IBE with 1SPO

Therefore we conclude that Pr [Dec(MPK, SK,Enc(MPK, ID, 1)) = 1]¾ 1− 64/24λ.
As [BWY11], algorithm OpenToOne indeed satisfies our requirement defined in Section 2 by the property

of algorithm SampleG and Sample−1G shown in previous subsection. We remark that algorithm OpenToOne
runs Sample−1G twice independently and thus has failure probability δ ¶ 2θ .

4.3 Security Analysis

We prove the following theorem in this subsection.

Theorem 2 (Main Theorem) For any probabilistic polynomial time adversary A making QK key extraction
queries and QC challenge queries, there exist adversariesB1,B2,B3,B4,B5 andB6 such that

AdvINDmCPA
A (λ) ¶ AdvSD1

B1
(λ) + 2n ·AdvSD2

B1
(λ) + (n+ 1) ·AdvDDH1

B3
(λ)

+ AdvDDH2
B4

(λ) +AdvSD3
B5
(λ) +AdvSD4

B6
(λ) + 2ζ.

and maxi∈[6]Time(Bi)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .

4.3.1 Organization of Proof

Before we proceed, we define two functions for brevity:

h(u,w, ID) := u+
n
∑

i=1

w[2i− ID[i]] and H(U ,W, ID) := U ·
n
∏

i=1

W[2i− ID[i]] (1)

where ID ∈ {0, 1}n, u ∈ ZN , w ∈ Z2n
N , U ∈ G, and W ∈ G2n. When we set U = gu and W = gw for some g ∈ G,

we immediately have the following relation

H(U ,W, ID) = gh(u,w,ID).

In our proof, we need a family of random functions
�

Ri(·)
	

i∈{0}∪[n] defined as follows:

Ri(ID) : ID|i → ZN , ∀i ∈ {0} ∪ [n],

where ID|i denotes the i-bit prefix of ID. We note that the Chinese Reminder Theorem implies that Ri(ID)mod
p2 and Ri(ID)mod p3 are distributed independently, which correspond to bRi and eRi , respectively, in [HKS15].
Although the range of random functions is ZN , the actual working range is Ri(ID)mod p2 and Ri(ID)mod p3

corresponding to semi-functional space Gp2
and Gp3

, respectively.
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The proof follows hybrid arguments using a series of games, which can be roughly divided into four phases.
We describe these games in a phase-by-phase fashion in Figure 8, Figure 9, Figure 10, Figure 11, respectively.
In particular, we state that

– In phase 1, we introduce semi-functional components (elements in Gp2
) into ciphertexts and introduce

random function R0 into the system.

– In phase 2, we increase the entropy of random function we have introduced following the method of
Hofheinz et al.[HKS15]. In particular, by executing phase 2 for n times, we replace the initial random
function R0 with Rn, whose output depends on all bits of ID.

– In phase 3, we handle the multiple occurrences of a single identity in challenge ciphertexts as well
as in secret keys. We finally argue that multiple ciphertexts for a single identity are computationally
independent in semi-functional space and so do secret keys. The proof will also follows Hofheinz et al.’s
idea for full security [HKS15].

– In phase 4, we show that all ciphertexts for M = 0 are computationally indistinguishable from those for
M = 1, which is truly random following the method used in [DCIP10, BWY11].

The remaining of the section includes four parts corresponding to four phases in order. Each part begins
with games involved and then proves a series of lemmas showing computational indistinguishability of these
games. Putting them together, we immediately obtain the main theorem. In the proof, we define the advantage
function of adversaryA in Gamex .x .x as

Advx .x .x
A (λ) :=

�

�

�Pr
�

Gamex .x .x ,A (λ) = 1
�

− 1/2
�

�

� .

4.3.2 Phase 1: Prelude

Initialize
G := (N ,G,GT , e)← GrpGen(1λ)
for i ∈ [5] do gi ←Gpi

v5← ZN

G := g1 g v5
5 ; eG :=

�

g1 g2
�

g v5
5

bG := g1 g2 g3

u, u5← ZN ; w,w5← Z2n
N

U := gu
1 gu5

5 ; W := gw
1 gw5

5

eU :=
�

g1 g2
�u gu5

5 ; eW :=
�

g1 g2
�w gw5

5

bU :=
�

g1 g2 g3
�u; bW :=

�

g1 g2 g3
�w

β ← {0, 1}
return

�

G , G, U ,W, g5
�

Extract(ID)
if ID ∈ ChID then return ⊥
ExID := ExID∪ {ID}
r, r4, r ′4← ZN

K := bG r g r4
4

K ′ := H(bU , bW, ID)r g
r ′4
4

K ′ :=
�

g2 g3
�R0(ID)·r ·H(bU , bW, ID)r g

r ′4
4

return
�

K , K ′
�

Game0, Game1 , Game2.0

R0 : IdSp→ ZN

Challenge(ID∗, M∗0, M∗1)
if ID∗ ∈ ExID then return ⊥
ChID := ChID∪ {ID∗}
if M∗β = 0 then
s, s5, s′5← ZN

C := H(U ,W, ID)s gs5
5

C := H(eU , eW, ID)s gs5
5

C := gR0(ID∗)·s
2 ·H(eU , eW, ID)s gs5

5

C ′ := Gs g
s′5
5

C ′ := eGs g
s′5
5

else
C , C ′← SampleG()

return
�

C , C ′
�

Finalize(β ′)
return (β = β ′)

Figure 8: Game0, Game1, Game2.0

Lemma 5 (Game0 ≈ Game1) For any probabilistic polynomial time adversary A making QK key extraction
queries and QC challenge queries, there exists an adversaryB such that

�

�Adv0
A (λ)−Adv1

A (λ)
�

�¶ AdvSD1
B (λ)

and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .
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Proof. Given
�

G , g1, g4, g5, X1X2X3, T
�

where T is a random element of either Gp1
or Gp1 p2

, adversary B
simulates the procedures as follows. We assume g2←Gp2

, g3←Gp3
and implicitly parse X1X2X3 =

�

g1 g2 g3
�x

for some x ∈ ZN , and either T = g t
1 or T =

�

g1 g2
�t from some t ∈ ZN .

Initialize Sample v5← ZN and set G := g1 · g
v5
5 . We implicitly define eG :=

�

g1 g2
�

· g v5
5 and bG := g1 g2 g3. Sam-

ple u, u5 ← ZN , w,w5 ← Z2n
N and set U := gu

1 gu5
5 , W := gw

1 gw5
5 . We implicitly define eU :=

�

g1 g2
�u gu5

5 ,
eW :=

�

g1 g2
�w gw5

5 , bU :=
�

g1 g2 g3
�u, bW :=

�

g1 g2 g3
�w. Randomly pick β ← {0,1} and output MPK :=

�

G , G, U ,W, g5
�

.

Extract(ID) Return ⊥ when ID ∈ ChID. Update ExID := ExID∪ {ID}. Sample r ′, r4, r ′4← ZN and set

K :=
�

X1X2X3
�r ′ · g r4

4 and K ′ :=
�

X1X2X3
�h(u,w,ID)·r ′ · g r ′4

4 .

Output
�

K , K ′
�

. Here we implicitly set r := x r ′ ∈ ZN .

Challenge(ID∗, M∗0, M∗1) Return ⊥ when ID∗ ∈ ExID. Update ChID := ChID ∪ {ID∗}. If M∗β = 0, sample
s′, s′′5 , s′′′5 ← ZN and set

C := T h(u,w,ID)·s′ · gs′′5
5 and C ′ := T s′ · gs′′′5

5 .

If M∗β = 1, sample C , C ′ ← SampleG(). Output
�

C , C ′
�

. Here we implicitly set s ∈ ZN such that s =
ts′ mod p1p2.

Finalize(β ′) Output (β = β ′).

The algorithmB outputs 1 if and only if Finalize(β ′) = 1, i.e., the adversaryA wins the game.
Observe that if T = g t

1 ∈Gp1
, the simulation described above is identical to Game0; if T =

�

g1 g2
�t ∈Gp1 p2

,
the simulation is identical to Game1. Therefore we can conclude that

�

�Adv0
A (λ)−Adv1

A (λ)
�

�¶ AdvSD1
B (λ). �

Lemma 6 (Game1 = Game2.0) For any adversaryA , we have Adv1
A (λ) = Adv2.0

A (λ).

Proof. Since random function R0(·) is consistent on all possible identities in IdSp, R0(ID) for all ID ∈ IdSp
is a single random variable independently distributed over ZN . If we sample u′ ← ZN and set, in Initialize
procedure in Game1,

U := gu′
1 gu5

5 and eU :=
�

g1 g2
�u′ gR0

2 gu5
5 and bU :=

�

g1 g2 g3
�u′ �g2 g3

�R0 ,

the resulting game remains unchanged, since we in fact implicitly define

u= u′ mod p1 and u= u′ +R0 mod p2p3,

which is still distributed over ZN as we required in Game1. Observe that the simulation is also identical to
Game2.0 with u = u′ except the definition of eU and bU in Initialize procedure. However we note that the
difference is just conceptual as both eU and bU are not given to adversary in MPK. Therefore we can conclude
that Game1 and Game2.0 are statistically identical. �

4.3.3 Phase 2: From R0 to Rn

Lemma 7 (Game2.i ≈ Game2.i.1) For any probabilistic polynomial time adversary A making QK key extraction
queries and QC challenge queries, there exists an adversaryB such that

�

�Adv2.i
A (λ)−Adv2.i.1

A (λ)
�

�¶ AdvSD2
B (λ)

and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .

Proof. Given
�

G , g1, g4, g5, X2X5, Y2Y3, T
�

where T is a random element of either Gp2 p5
or Gp3 p5

, adversaryB
simulates the procedures as follows. We assume g2←Gp2

, g3←Gp3
and implicitly parse X2X5 =

�

g2 g5
�x for

some x ∈ ZN , Y2Y3 =
�

g2 g3
�y for some y ∈ ZN and either T =

�

g2 g5
�t or T =

�

g3 g5
�t for some t ∈ ZN .

Initialize Sample v5 ← ZN and set G := g1 g v5
5 . We implicitly define eG :=

�

g1 g2
�

g v5
5 , G :=

�

g1 g3
�

g v5
5 and

bG := g1 g2 g3. Sample u, u5 ← ZN and w,w5 ← Z2n
N , and set U := gu

1 gu5
5 and W := gw

1 gw5
5 . We implicitly

define eU :=
�

g1 g2
�u gu5

5 , eW :=
�

g1 g2
�w gw5

5 , U :=
�

g1 g3
�u gu5

5 , W :=
�

g1 g3
�w gw5

5 , bU :=
�

g1 g2 g3
�u and

bW :=
�

g1 g2 g3
�w. Randomly pick β ← {0,1} and output MPK :=

�

G , G, U ,W, g5
�

. B also maintains a
random function Ri(·) in an on-the-fly manner.
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Initialize
G := (N ,G,GT , e)← GrpGen(1λ, 5)
for i ∈ [5] do gi ←Gpi

v5← ZN ; G := g1 g v5
5

eG :=
�

g1 g2
�

g v5
5 ; G :=

�

g1 g3
�

g v5
5

bG := g1 g2 g3

u, u5← ZN ; w,w5← Z2n
N

U := gu
1 gu5

5 ; W := gw
1 gw5

5
eU :=

�

g1 g2
�u gu5

5 ; eW :=
�

g1 g2
�w gw5

5

U :=
�

g1 g3
�u gu5

5 ; W :=
�

g1 g3
�w gw5

5

bU :=
�

g1 g2 g3
�u; bW :=

�

g1 g2 g3
�w

β ← {0,1}
return

�

G , G, U ,W, g5
�

Extract(ID)
if ID ∈ ChID then return ⊥
ExID := ExID∪ {ID}
r, r4, r ′4← ZN

K := bG r g r4
4

K ′ :=
�

g2 g3
�Ri(ID)·r ·H(bU , bW, ID)r g

r ′4
4

K ′ :=
�

g2 g3
�Ri+1(ID)·r ·H(bU , bW, ID)r g

r ′4
4

return
�

K , K ′
�

Finalize(β ′)
return (β = β ′)

Game2.i , Game2.i.1 , Game2.i.2

Ri : IdSp→ ZN

Challenge(ID∗, M∗0, M∗1)
if ID∗ ∈ ExID then return ⊥
ChID := ChID∪ {ID∗}
if M∗β = 0 and ID∗[i+ 1] = 0 then
s, s5, s′5← ZN ;
C := gRi(ID∗)·s

2 ·H(eU , eW, ID∗)s gs5
5

C := gRi+1(ID∗)·s
2 ·H(eU , eW, ID∗)s gs5

5

C ′ = eGs g
s′5
5

elif M∗β = 0 and ID∗[i+ 1] = 1 then
s, s5, s′5← ZN

C := gRi(ID∗)·s
2 ·H(eU , eW, ID∗)s gs5

5

C := gRi(ID∗)·s
3 ·H(U ,W, ID∗)s gs5

5

C := gRi+1(ID∗)·s
3 ·H(U ,W, ID∗)s gs5

5

C ′ := eGs g
s′5
5

C ′ := G
s
g

s′5
5

else
C , C ′← SampleG()

return
�

C , C ′
�

Figure 9: Game2.i , Game2.i.1, Game2.i.2

Extract(ID) Return ⊥ when ID ∈ ChID. Update ExID := ExID∪ {ID}. Sample r ′, r ′′, r4, r ′4← ZN and set

K := g r ′
1 ·
�

Y2Y3
�r ′′ · g r4

4 and K ′ := gh(u,w,ID)·r ′
1 ·

�

Y2Y3
�(Ri(ID)+h(u,w,ID))·r ′′ · g r ′4

4 .

Output
�

K , K ′
�

. Here we implicitly set r ∈ ZN such that r = r ′ mod p1 and r = y r ′′ mod p2p3.

Challenge(ID∗, M∗0, M∗1) Return ⊥ when ID∗ ∈ ExID. Update ChID := ChID∪{ID∗}. If M∗β = 0 and ID∗[i+1] = 0,
sample s′, s′′, s′′5 , s′′′5 ← ZN and set

C := gh(u,w,ID∗)·s′
1 ·

�

X2X5
�(Ri(ID∗)+h(u,w,ID∗))·s′′ · gs′′5

5 and C ′ := gs′
1 ·
�

X2X5
�s′′ · gs′′′5

5 .

Here we implicitly set s ∈ ZN such that s = s′ mod p1 and s = xs′′ mod p2. If M∗β = 0 and ID∗[i + 1] = 1,
sample s′, s′′, s′′5 , s′′′5 ← ZN and set

C := gh(u,w,ID∗)·s′
1 · T (Ri(ID∗)+h(u,w,ID∗))·s′′ · gs′′5

5 and C ′ := gs′
1 · T

s′′ · gs′′′5
5 .

Here we implicitly set s ∈ ZN such that s = s′ mod p1, and s = ts′′ mod p2p3. Finally, if M∗β = 1, sample
C , C ′← SampleG(). Output

�

C , C ′
�

.

Finalize(β ′) Output (β = β ′).

The algorithmB outputs 1 if and only if Finalize(β ′) = 1, i.e., the adversaryA wins the game.
Observe that if T =

�

g2 g5
�t ∈Gp2 p5

, the simulation described above is identical to Game2.i; if T =
�

g3 g5
�t ,

the simulation is identical to Game2.i.1. Therefore we can conclude that
�

�Adv2.i
A (λ)−Adv2.i.1

A (λ)
�

�¶ AdvSD2
B (λ).

�

Lemma 8 (Game2.i.1 ≈ Game2.i.2) For any probabilistic polynomial time adversaryA making QK key extraction
queries and QC challenge queries, there exists an adversaryB such that

�

�Adv2.i.1
A (λ)−Adv2.i.2

A (λ)
�

�¶ AdvDDH1
B (λ)
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and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .

Proof. Given
�

G , g1, g2, g3, g4, g5, g x
2
eX4, g y

2
eY4, g x

3 X 4, g y
3 Y 4, T

�

where T is either
�

g x y
2 , g x y

3

�

or
�

g x y+z
2 , g x y+z

3

�

,
adversaryB generates QK tuples (using Many Tuple Lemma [CW13])

�

g
x j

2
eX4, j , g

x j

3 X 4, j , T j

�

, ∀ j ∈ [QK]

where eX4, j , X 4, j ← Gp4
and T j is either

�

g
x j y
2 , g

x j y
3

�

or
�

g
x j y+z j

2 , g
x j y+z j

3

�

for x j , z j ← ZN , and then simulates
the procedures as follows.

Initialize Sample v5 ← ZN and set G := g1 g v5
5 , eG :=

�

g1 g2
�

g v5
5 , G :=

�

g1 g3
�

g v5
5 and bG := g1 g2 g3. Sample

u, u5 ← ZN and set U := gu
1 gu5

5 , eU :=
�

g1 g2
�u gu5

5 , U :=
�

g1 g3
�u gu5

5 and bU :=
�

g1 g2 g3
�u. Sample

w′,w5← Z2n
N and set W := gw′

1 gw5
5 . We implicitly define

eW :=
�

g1 g2
�w′ g

ye2(i+1)−1

2 gw5
5 and W :=

�

g1 g3
�w′ g

ye2(i+1)−0

3 gw5
5 and bW :=

�

g1 g2 g3
�w′ g

ye2(i+1)−1

2 g
ye2(i+1)−0

3 .

Randomly pick β ← {0, 1} and output MPK :=
�

G , G, U ,W, g5
�

. Note that we implicitly set w ∈ Z2n
N such

that
w=w′ mod p1 and w=w′ + ye2(i+1)−1 mod p2 and w=w′ + ye2(i+1)−0 mod p3,

and note that neither eW[2(i+1)−1] nor W[2(i+1)−0] is known toB . Besides that,B also maintains
a random function Ri(·) in an on-the-fly manner.

Extract(ID) Return ⊥ when ID ∈ ChID. Update ExID := ExID ∪ {ID}. If Ri(ID) has not been used before,
sample r ′, r ′′4 , r ′′′4 ← ZN and set

K :=
�

g1 g2 g3
�r ′ ·

�

g
x j

2
eX4, j

�

·
�

g
x j

3 X 4, j

�

· g r ′′4
4

K ′ :=







g−Ri(ID)·r ′
1 · KRi(ID)+h(u,w′,ID) ·

�

g y
3 Y 4

�r ′
· T j[2] · g

r ′′′4
4 , if ID[i+ 1] = 0

g−Ri(ID)·r ′
1 · KRi(ID)+h(u,w′,ID) ·

�

g y
2
eY4

�r ′
· T j[1] · g

r ′′′4
4 , if ID[i+ 1] = 1

where T j[1] and T j[2] refers to the first and second entry of T j , respectively. Here we implicitly set
r ∈ ZN such that r = r ′ mod p1 and r = r ′ + x j mod p2p3. Output

�

K , K ′
�

. On the other hand, if Ri(ID)
has been touched, we find out the index j and random coins r ′, r ′′4 , r ′′′4 used at the first time Ri(ID) was
met, and create

�

K , K ′
�

using the old index and these random coins but with the new ID following the
above method. Then we sample r ′′ ← ZN and output

�

K r ′′ , (K ′)r
′′�

as reply to the query. In this case,

we implicitly set r such that r = r ′r ′′ mod p1 and r =
�

r ′ + x j

�

r ′′ mod p2p3.

Challenge(ID∗, M∗0, M∗1) Return ⊥ when ID∗ ∈ ExID. Update ChID := ChID∪{ID∗}. If M∗β = 0 and ID∗[i+1] = 0,
sample s, s5, s′5← ZN and set

C := gRi(ID∗)·s
2 ·H(eU , eW, ID∗)s · gs5

5 and C ′ := eGs · gs′5
5 .

Note that we do not need eW[2(i + 1)− 1] which is unknown. If M∗β = 0 and ID∗[i + 1] = 1, sample
s, s5, s′5← ZN and set

C := gRi(ID∗)·s
3 ·H(U ,W, ID∗)s · gs5

5 and C ′ := eGs · gs′5
5 .

Note that we do not need W[2(i+1)−0] which is unknown. In a word, even thoughB does not know
all elements in eW and W, it still can compute ciphertext for M∗β = 0 as usual. Finally, if M∗β = 1, sample
C , C ′← SampleG(). Output

�

C , C ′
�

.

Finalize(β ′) Output (β = β ′).

The algorithmB outputs 1 if and only if Finalize(β ′) = 1, i.e., the adversaryA wins.
Clearly, if T j =

�

g
x j y
2 , g

x j y
3

�

for all j ∈ [q], the simulation described above is identical to Game2.i.1. On the

other hand, if T j =
�

g
x j y+z j

2 , g
x j y+z j

3

�

for all j ∈ [q], we implicitly set

Ri+1(ID) :=

¨

Ri(ID)mod p2, if ID[i+ 1] = 0
Ri(ID) + z j/(r ′ + x j)mod p2, if ID[i+ 1] = 1

and
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Ri+1(ID) :=

¨

Ri(ID) + z j/(r ′ + x j)mod p3, if ID[i+ 1] = 0
Ri(ID)mod p3, if ID[i+ 1] = 1

where index j ∈ [q] and index r ′ ∈ ZN were selected at the first time Ri(ID) was met in the simulation. There-
fore the simulation in this case is identical to Game2.i.2. Therefore we can conclude that

�

�Adv2.i.1
A (λ)−Adv2.i.2

A (λ)
�

�¶
AdvDDH1

B (λ). �

Lemma 9 (Game2.i.2 ≈ Game2.(i+1)) For any probabilistic polynomial time adversaryA making QK key extrac-
tion queries and QC challenge queries, there exists an adversaryB such that

�

�

�Adv2.i.2
A (λ)−Adv2.(i+1)

A (λ)
�

�

�¶ AdvSD2
B (λ)

and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .

Proof. The proof is almost the same as the proof for Lemma 7. The only difference is to employ the high-
entropy random function Ri+1 instead of the low-entroy Ri in the simulation. �

4.3.4 Phase 3: Handling multi-ciphertexts, multi-keys setting

Initialize
G := (N ,G,GT , e)← GrpGen(1λ)
for i ∈ [5] do gi ←Gpi

v5← ZN ; G := g1 g v5
5

eG :=
�

g1 g2
�

g v5
5 ; eG :=⊥

bG := g1 g2 g3; bG := g1

u, u5← ZN ; w,w5← Z2n
N

U := gu
1 gu5

5 ; W := gw
1 gw5

5
eU :=

�

g1 g2
�u gu5

5 ; eW :=
�

g1 g2
�w gw5

5

eU :=⊥; eW :=⊥
bU :=

�

g1 g2 g3
�u; bW :=

�

g1 g2 g3
�w

bU := gu
1 ; bW := gw

1

β ← {0, 1}
return

�

G , G, U ,W, g5
�

Extract(ID)
if ID ∈ ChID then return ⊥
ExID := ExID∪ {ID}
r, r4, r ′4← ZN ; r ′← ZN ; r ′′← ZN

K := bG r g r4
4

K :=
�

g2 g3
�r ′′ · bG r g r4

4

K ′ :=
�

g2 g3
�Rn(ID)·r ·H(bU , bW, ID)r g

r ′4
4

K ′ :=
�

g2 g3
�r ′ ·H(bU , bW, ID)r g

r ′4
4

Game2.n, Game3 ,

Game4 , Game5

Rn : IdSp→ ZN

Challenge(ID∗, M∗0, M∗1)
if ID∗ ∈ ExID then return ⊥
ChID := ChID∪ {ID∗}
if M∗β = 0 then
s, s5, s′5← ZN

s′← ZN ; s′′← ZN

C := gRn(ID∗)·s
2 ·H(eU , eW, ID)s gs5

5

C := gs′
2 ·H(eU , eW, ID)s gs5

5

C := gs′
2 ·H(U ,W, ID)s gs5

5

C ′ := eGs g
s′5
5

C ′ := gs′′
2 · G

s g
s′5
5

else
C , C ′← SampleG()

return
�

C , C ′
�

Finalize(β ′)
return (β = β ′)

Figure 10: Game2.`, Game3, Game4, Game5

Lemma 10 (Game2.` ≈ Game3) For any probabilistic polynomial time adversary A making QK key extraction
queries and QC challenge queries, there exists an adversaryB such that

�

�Adv2.`
A (λ)−Adv3

A (λ)
�

�¶ AdvDDH2
B (λ)

and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .
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Proof. Given
�

G , g1, g2, g3, g4, g5, g x
2
eX5, g y

2
eY5, T

�

where T is either g x y
2 or g x y+z

2 , adversary B generates QC

tuples (using Many Tuple Lemma [CW13])
�

g
x j

2
eX5, j , T j

�

, ∀ j ∈ [QC]

where eX5, j ←Gp5
and T j is either g

x j y
2 or g

x j y+z j

2 for x j , z j ← ZN , and then simulates the procedures as follows.

Initialize Sample v5 ← ZN and set G := g1 g v5
5 , eG :=

�

g1 g2
�

g v5
5 and bG := g1 g2 g3. Sample u, u5 ← ZN and

w,w5 ← Z2n
N , and set U := gu

1 gu5
5 , W := gw

1 gw5
5 , eU :=

�

g1 g2
�u gu5

5 , eW :=
�

g1 g2
�w gw5

5 , bU :=
�

g1 g2 g3
�u

and bW :=
�

g1 g2 g3
�w. Randomly pick β ← {0,1} and output MPK :=

�

G , G, U ,W, g5
�

. Besides that, B
also maintains a random function Rn(·) in an on-the-fly manner.

Extract(ID) Return ⊥ when ID ∈ ChID. Update ExID := ExID∪ {ID}. Sample r, r4, r ′4← ZN and set

K := bG r g r4
4 and K ′ :=

�

g2 g3
�Rn(ID)·r ·H(bU , bW, ID)r g

r ′4
4

Output
�

K , K ′
�

.

Challenge(ID∗, M∗0, M∗1) Return ⊥ when ID∗ ∈ ExID. Update ChID := ChID ∪ {ID∗}. We maintain another
independent random function R′ : IdSp→ ZN whose output depends on all bits of ID. If M∗β = 0, pick a
new j ∈ [q], sample s′, s′′5 , s′′′5 ← ZN and set

C := gh(u,w,ID∗)s′

1 ·
�

g
x j

2
eX5, j

�h(u,w,ID∗)
· TR′(ID∗)

j · gs′′5
5 and C ′ := gs′

1 ·
�

g
x j

2
eX5, j

�

· gs′′′5
5 .

Here we implicitly set s ∈ ZN such that s = s′ mod p1, s = x j mod p2 and Rn(ID∗) = y ·R′(ID∗)mod p2 for
ID∗ ∈ ChID. We note that the assignment for Rn is always consistent since the simulation ensures that
ExID∩ChID= ;. If M∗β = 1, sample C , C ′← SampleG(). Output

�

C , C ′
�

.

Finalize(β ′) Output (β = β ′).

The algorithmB outputs 1 if and only if Finalize(β ′) = 1, i.e., the adversaryA wins the game.
Observe that if T j = g

x j y
2 for all j ∈ [q], the simulation described above is identical to Game2.n. On

the other hand, if T j = g
x j y+z j

2 for all j ∈ [q], the simulation is identical to Game3 where we implicitly set
s′ = R′(ID) · (x j y + z j). Therefore we can conclude that

�

�Adv2.n
A (λ)−Adv3

A (λ)
�

�¶ AdvDDH2
B (λ). �

Lemma 11 (Game3 ≈ Game4) For any probabilistic polynomial time adversary A making QK key extraction
queries and QC challenge queries, there exists an adversaryB such that

�

�Adv3
A (λ)−Adv4

A (λ)
�

�¶ AdvDDH1
B (λ)

and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .

Proof. Given
�

G , g1, g2, g3, g4, g5, g x
2
eX4, g y

2
eY4, g x

3 X 4, g y
3 Y 4, T

�

where T is either
�

g x y
2 , g x y

3

�

or
�

g x y+z
2 , g x y+z

3

�

,
adversaryB generates a shared term and QK tuples (using Many Tuple Lemma [CW13])

�

g2 g3
�y Y4 and

�

�

g2 g3
�x j X4, j , T j

�

, ∀ j ∈ [QK]

where Y4, X4, j ← Gp4
and T j is either

�

g2 g3
�x j y or

�

g2 g3
�x j y+z j for x j , z j ← ZN , and then simulates the

procedures as follows.

Initialize Sample v5 ← ZN and set G := g1 g v5
5 , eG :=

�

g1 g2
�

g v5
5 and bG := g1 g2 g3. Sample u, u5 ← ZN and

w,w5 ← Z2n
N , and set U := gu

1 gu5
5 , W := gw

1 gw5
5 , eU :=

�

g1 g2
�u gu5

5 , eW :=
�

g1 g2
�w gw5

5 , bU :=
�

g1 g2 g3
�u

and bW :=
�

g1 g2 g3
�w. Randomly pick β ← {0,1} and output MPK :=

�

G , G, U ,W, g5
�

.

Extract(ID) Return ⊥ when ID ∈ ChID. Update ExID := ExID ∪ {ID}. We maintain a random function R′ :
IdSp→ ZN whose output depends on all bits of ID. Pick a new j ∈ [q], sample r ′, r ′′4 , r ′′′4 ← ZN and set

K := g r ′
1 ·
�

�

g2 g3
�x j X4, j

�

· g r ′′4
4 and K ′ := gh(u,w,ID)r ′

1 ·
�

�

g2 g3
�x j X4, j

�h(u,w,ID)
· TR′(ID)

j · g r ′′′4
4

Here we implicitly set r ∈ ZN such that r = r ′ mod p1, r = x j mod p2p3 and define Rn(ID) = y ·
R′(ID)mod p2p3 for ID ∈ ExID. We note that the assignment for Rn is consistent since ExID∩ChID= ;.

19



Challenge(ID∗, M∗0, M∗1) Return ⊥ when ID∗ ∈ ExID. Update ChID := ChID ∪ {ID∗}. If M∗β = 0, sample
s, s′, s5, s′5← ZN and set

C := gs′
2 ·H(eU , eW, ID∗)s · gs5

5 and C ′ := eGs · gs′5
5 .

If M∗β = 1, sample C , C ′← SampleG(). Output
�

C , C ′
�

.

Finalize(β ′) Output (β = β ′).

The algorithmB outputs 1 if and only if Finalize(β ′) = 1, i.e., the adversaryA wins the game.
Clearly, if T j =

�

g
x j y
2 , g

x j y
3

�

for all j ∈ [q], the simulation described above is identical to Game3. On the

other hand, if T j =
�

g
x j y+z j

2 , g
x j y+z j

3

�

for all j ∈ [q], the simulation is identical to Game4 where we implicitly

set r ′ = R′(ID) · (x j y + z j). Therefore we can conclude that
�

�Adv3
A (λ)−Adv4

A (λ)
�

�¶ AdvDDH1
B (λ). �

Lemma 12 (Game4 = Game5) For any adversaryA , Adv4
A (λ) = Adv5

A (λ).

Proof. The transformation from Game4 to Game5 is just conceptual following the Chinese Remainder Theo-
rem. In both games, the Gp2 p3

-parts of K and K ′ are independent, and so do the Gp2
-part of C and C ′. Of

course, the Gp1
-parts of them are still structural. �

4.3.5 Phase 4: Epilogue

Initialize
G := (N ,G,GT , e)← GrpGen(1λ)
for i ∈ [5] do gi ←Gpi

v5← ZN ; G := g1 g v5
5 ; bG := g1

u, u5← ZN ; w,w5← Z2n
N

U := gu
1 gu5

5 ; W := gw
1 gw5

5
bU := gu

1 ; bW := gw
1

β ← {0,1}
return

�

G , G, U ,W, g5
�

Extract(ID)
if ID ∈ ChID then return ⊥
ExID := ExID∪ {ID}
r, r ′, r ′′, r4, r ′4← ZN

K := bG r ·
�

g2 g3
�r ′′ g r4

4

K ′ := H(bU , bW, ID)r ·
�

g2 g3
�r ′ g

r ′4
4

return
�

K , K ′
�

Game5, Game6 ,

Game7 , GameFin

Challenge(ID∗, M∗0, M∗1)
if ID∗ ∈ ExID then return ⊥
ChID := ChID∪ {ID∗}
if M∗β = 0 then
s, s′, s′′, s5, s′5← ZN

C := H(U ,W, ID)s · gs′
2 gs5

5

C ′ := Gs · gs′′
2 g

s′5
5

C , C ′←Gp1 p2 p5

C , C ′←G

C , C ′← SampleG()
else
C , C ′← SampleG()

return
�

C , C ′
�

Finalize(β ′)
return (β = β ′)

Figure 11: Game5, Game6, Game7

Lemma 13 (Game5 ≈ Game6) For any probabilistic polynomial time adversary A making QK key extraction
queries and QC challenge queries, there exists an adversaryB such that

�

�Adv5
A (λ)−Adv6

A (λ)
�

�¶ AdvSD3
B (λ)

and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .

Proof. Given
�

G , g2, g3, g4, g5, X1X5, Y1Y2Y3, T
�

where T is a random element of either Gp2 p5
or Gp1 p2 p5

, ad-
versary B simulates the procedures as follows. We implicitly set g1 = X1 and parse X1X5 = g1 g x

5 from some
x ∈ ZN , Y1Y2Y3 =

�

g1 g2 g3
�y for some y ← ZN and either T =

�

g2 g5
�t or T =

�

g1 g2 g5
�t for some t ← ZN .
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Initialize Set G := X1X5. Sample u, u′5 ← ZN and w,w′5 ← Z
2n
N , and set U :=

�

X1X5
�u g

u′5
5 and W :=

�

X1X5
�w g

w′5
5 . We implicitly define bG := g1, bU := gu

1 and bW := gw
1 . Randomly pick β ← {0,1} and

output MPK :=
�

G , G, U ,W, g5
�

.

Extract(ID) Return ⊥ when ID ∈ ChID. Update ExID := ExID∪ {ID}. Sample br,br ′,br ′′, r4, r ′4← ZN and set

K :=
�

Y1Y2Y3
�

br ·
�

g2 g3
�

br ′′ g r4
4 and K ′ :=

�

Y1Y2Y3
�h(u,w,ID)·br ·

�

g2 g3
�

br ′ · g r ′4
4 .

Output
�

K , K ′
�

. Here we implicitly set r = ybr.

Challenge(ID∗, M∗0, M∗1) Return ⊥ when ID∗ ∈ ExID. Update ChID := ChID∪{ID∗}. If M∗β = 0, sample s, t ′, t ′′←
ZN and set

C := H(U ,W, ID∗)s · T t ′ and C ′ = Gs · T t ′′ .

If M∗β = 1, sample C , C ′← SampleG(). Output
�

C , C ′
�

.

Finalize(β ′) Output (β = β ′).

The algorithmB outputs 1 if and only if Finalize(β ′) = 1, i.e., the adversaryA wins the game.
Observe that if T =

�

g2 g5
�t ∈ Gp2 p5

, the simulation described above is identical to Game5; if T =
�

g1 g2 g5
�t , the simulation is identical to Game6 where the Gp1

-parts of C and C ′ are hidden by g t t ′
1 and

g t t ′′
1 , respectively. Therefore we can conclude that

�

�Adv5
A (λ)−Adv6

A (λ)
�

�¶ AdvSD3
B (λ). �

Lemma 14 (Game6 ≈ Game7) For any probabilistic polynomial time adversary A making QK key extraction
queries and QC challenge queries, there exists an adversaryB such that

�

�Adv6
A (λ)−Adv7

A (λ)
�

�¶ AdvSD4
B (λ)

and Time(B)≈ Time(A ) + (QC +QK) · poly(λ, n) where poly is independent ofA .

Proof. Given
�

G , g1, g2, g5, X2X3X4, T
�

where T is a random element of either Gp1 p2 p5
or G, adversary B

simulates the procedures as follows. We implicitly parse X2X3X4 =
�

g2 g3 g4
�x for some x ∈ ZN and either

T =
�

g1 g2 g5
�t or T = g t for some t ∈ ZN .

Initialize Sample v5 ← ZN and set G := g1 g v5
5 and bG := g1. Sample u, u5 ← ZN and w,w5 ← Z2n

N , and
set U := gu

1 gu5
5 , W := gw

1 gw5
5 , bU := gu

1 and bW := gw
1 . Randomly pick β ← {0,1} and output MPK :=

�

G , G, U ,W, g5
�

.

Extract(ID) Return ⊥ when ID ∈ ChID. Update ExID := ExID∪ {ID}. Sample r, r ′, r ′′← ZN and set

K := bG r ·
�

X2X3X4
�r ′ and K ′ := H(bU , bW, ID)r ·

�

X2X3X4
�r ′′ .

Output
�

K , K ′
�

.

Challenge(ID∗, M∗0, M∗1) Return ⊥ when ID∗ ∈ ExID. Update ChID := ChID∪ {ID∗}. If M∗β = 0, sample t ′, t ′′ ←
ZN and set

C := T t ′ and C ′ := T t ′′ .

If M∗β = 1, sample C , C ′← SampleG(). Output
�

C , C ′
�

.

Finalize(β ′) Output (β = β ′).

The algorithmB outputs 1 if and only if Finalize(β ′) = 1, i.e., the adversaryA wins game.
Observe that if T =

�

g1 g2 g5
�t ∈ Gp1 p2 p5

, the simulation described above is identical to Game6; if T = g t ,
the simulation is identical to Game7. Therefore we can conclude that

�

�Adv6
A (λ)−Adv7

A (λ)
�

�¶ AdvSD4
B (λ). �

Lemma 15 (Game7 ≈ GameFin) For any adversaryA , we have
�

�Adv7
A (λ)−AdvFin

A (λ)
�

�¶ 2ζ.

Proof. These two games are exactly the same until publicly reversible sampler SampleG outputs ⊥ when
encrypting message 0 in GameFin. Clearly we can bound the probability of this event by 2ζ where ζ is the
error probability of SampleG. Therefore we can conclude that

�

�Adv7
A (λ)−AdvFin

A (λ)
�

�¶ 2ζ. �
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Final Analysis. In the last game GameFin, ciphertexts for message 0 and 1 are produced following the same
procedure, i.e., invoking SampleG() twice. Therefore we have AdvFin

A (λ) = 0 for any adversaryA . Combining
all lemmas above together, we have proved the main theorem.
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