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Abstract

The mission of theoretical cryptography is to define and construct provably secure
cryptographic protocols and schemes. Without proofs of security, cryptographic con-
structs offer no guarantees whatsoever and no basis for evaluation and comparison. As
most security proofs necessarily come in the form of a reduction between the security
claim and an intractability assumption, such proofs are ultimately only as good as the
assumptions they are based on. Thus, the complexity implications of every assumption
we utilize should be of significant substance, and serve as the yard stick for the value
of our proposals.

Lately, the field of cryptography has seen a sharp increase in the number of new
assumptions that are often complex to define and difficult to interpret. At times, these
assumptions are hard to untangle from the constructions which utilize them.

We believe that the lack of standards of what is accepted as a reasonable crypto-
graphic assumption can be harmful to the credibility of our field. Therefore, there is
a great need for measures according to which we classify and compare assumptions, as
to which are safe and which are not. In this paper, we propose such a classification
and review recently suggested assumptions in this light. This follows the footsteps of
Naor (Crypto 2003).
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1 Introduction

Conjectures and assumptions are instrumental for the advancement of science. This is true in
physics, mathematics, computer science, and almost any other discipline. In mathematics, for
example, the Riemann hypothesis (and its extensions) have far reaching applications to the
distribution of prime numbers. In computer science, the assumption that P ̸= NP lies in the
foundations of complexity theory. The more recent Unique Games Conjecture [Kho05] has
been instrumental to our ability to obtain tighter bounds on the hardness of approximation
of several problems. Often, such assumptions contribute tremendously to our understanding
of certain topics and are the force moving research forward.

Assumptions are paramount to cryptography. A typical result constructs schemes for
which breaking the scheme is an NP computation. As we do not know that P ̸= NP, an
assumption to that effect (and often much more) must be made. Thus, essentially any cryp-
tographic security proof is a reduction from the existence of an adversary that violates the
security definition to dispelling an underlying conjecture about the intractability of some
computation. Such reductions present a “win-win” situation which gives provable cryptog-
raphy its beauty and its power: either we have designed a scheme which resists all polynomial
time adversaries or an adversary exists which contradicts an existing mathematical conjec-
ture. Put most eloquently, “Science wins either way1”.

Naturally, this is the case only if we rely on mathematical conjectures whose statement
is scientifically interesting independently of the cryptographic application itself. Most defi-
nitely, the quality of the assumption determines the value of the proof.

Traditionally, there were a few well-studied computational assumptions under which
cryptographic schemes were proven secure. These assumptions can be partitioned into two
groups: generic and concrete. Generic assumptions include the existence of one-way func-
tions, the existence of one-way permutations, the existence of a trapdoor functions, and
so on. We view generic assumptions as postulating the existence of a cryptographic prim-
itive. Concrete assumptions include the universal one-way function assumption [Gol01],2

the assumption that Goldreich’s expander-based function is one-way [Gol11], the Factor-
ing assumption, the RSA assumption, the Discrete Log assumption over various groups,
the Quadratic Residuosity assumption, the DDH assumption, the parity with Noise (LPN)
assumption, the Learning with Error (LWE) assumption, and a few others.

A construction which depends on a generic assumption is generally viewed as superior
to that of a construction from a concrete assumption, since the former can be viewed as
an unconditional result showing how abstract cryptographic primitives are reducible to one
another, setting aside the question of whether a concrete implementation of the generic
assumption exists. And yet, a generic assumption which is not accompanied by at least one
proposed instantiation by a concrete assumption is often regarded as useless. Thus, most

1Silvio Micali, private communication.
2A universal one-way function is a candidate one-way function f such that if one-way functions exist

then f itself is one-way [Gol01]. The universal one-way function assumption asserts that this universal f is
indeed one-way.
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of the discussion in this paper is restricted to concrete assumptions, with the exception of
Section 2.4, which discusses generic assumptions.

Recently, the field of cryptography has been overrun by numerous assumptions of radically
different nature than the ones preceding. These assumptions are often nearly impossible to
untangle from the constructions which utilize them. The differences are striking. Severe
restrictions are now assumed on the class of algorithms at the disposal of any adversary,
from assuming that the adversary is only allowed a restricted class of operations (such
as the Random Oracle Model restriction, or generic group restrictions), to assuming that
any adversary who breaks the cryptosystem must do so in a particular way (this includes
various knowledge assumptions). The assumptions often make mention of the cryptographic
application itself and thus are not of independent interest. Often the assumptions come in
the form of an exponential number of assumptions, one assumption for every input, or one
assumption for every size parameter. Overall, whereas the constructions underlied by the
new assumptions are ingenious, their existence distinctly lacks a “win-win” consequence.

Obviously, in order to make progress and move a field forward, we should occasionally
embrace papers whose constructions rely on newly formed assumptions and conjectures. This
approach marks the birth of modern cryptography itself, in the landmark papers of [DH76,
RSA78]. However, any conjecture and any new assumption must be an open invitation to
refute or simplify, which necessitates a clear understanding of what is being assumed in the
first place. The latter has been distinctly lacking in recent years.

Our Thesis. We believe that the lack of standards in what is accepted as a reasonable
cryptographic assumption is harmful to our field. Whereas in the past, a break to a provably
secure scheme would lead to a mathematical breakthrough, there is a danger that in the
future the proclaimed guarantee of provable security will lose its meaning. We may reach an
absurdum, where the underlying assumption is that the scheme itself is secure, which will
eventually endanger the mere existence of our field.

We are in great need of measures which will capture which assumptions are “safe”, and
which assumptions are “dangerous”. Obviously, safe does not mean correct, but rather cap-
tures that regardless of whether a safe assumption is true or false, it is of interest. Dangerous
assumptions may be false and yet of no independent interest, thus using such assumptions
in abundance poses the danger that provable security will lose its meaning.

One such measure was previously given by Naor [Nao03], who classified assumptions
based on the complexity of falsifying them. Loosely speaking,3 an assumption is said to be
falsifiable, if one can efficiently check whether an adversary is successful in breaking it.

We argue that the classification based on falsifiability alone has proved to be too inclusive.
In particular, assumptions whose mere statement refers to the cryptographic scheme they
support can be (and have been) made falsifiable. Thus, falsifiability is an important feature

3We refer here to the notion of falsifiability as formalized by Gentry and Wichs [GW11], which is slightly
different from the original notions proposed by Naor. We elaborate on these notions, and on the difference
between them, in Section 2.5 and in Appendix A.
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but not sufficient as a basis for evaluating current assumptions.4

In this position paper, we propose a stricter classification. Our governing principle is the
goal of relying on hardness assumptions that are independent of the constructions.

2 Our Classification

We formalize the notion of a complexity assumption, and argue that such assumptions is
what we should aim for.

Intuitively, complexity assumptions are non-interactive assumptions that postulate that
given an input, distributed according to an efficiently sampleable distribution D, it is hard
to compute a valid “answer” (with non-negligible advantage), where checking the validity of
the answers can be done in polynomial time.

More specifically, we distinguish between two types of complexity assumptions:

1. Search complexity assumptions, and

2. Decision complexity assumptions.

Convention: Throughout this manuscript, for the sake of brevity, we refer to a family of
poly-size circuitsM = {Mn} as a polynomial time non-uniform algorithmM.

2.1 Search Complexity Assumptions

Each assumption in the class of search complexity assumptions consists of a pair of proba-
bilistic polynomial-time algorithms (D,R), and asserts that there does not exist an efficient
algorithm M that on input a random challenge x, distributed according D, computes any
value y such that R(x, y) = 1, with non-negligible probability. Formally:

Definition 2.1. An assumption is a search complexity assumption if it consists of a pair
of probabilistic polynomial-time algorithms (D,R), and it asserts that for any efficient5 al-
gorithmM there exists a negligible function µ such that for every n ∈ N,

Pr
x←D(1n)

[M(x) = y s.t. R(x, y) = 1] ≤ µ(n).

Note that in Definition 2.1 above, we require that there is an efficient algorithm R that
takes as input a pair (x, y) and outputs 0 or 1. One could consider a more liberal definition, of
a privately-verifiable search complexity assumption, which is similar to the definition above,
except that algorithm R is given not only the pair (x, y) but also the randomness r used by
D to generate x.

4We note that this was also explicitly pointed out by Naor who advocated falsifiability as an important
feature, not as a sufficient one.

5“Efficient” can be interpreted in several ways. We elaborate on the various interpretations below.
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Definition 2.2. An assumption is a privately-verifiable search complexity assumption if it
consists of a pair of probabilistic polynomial-time algorithms (D,R), and it asserts that for
any efficient algorithmM there exists a negligible function µ such that for every n ∈ N,

Pr
r←{0,1}n

[M(x) = y s.t. R(x, y, r) = 1 | x = D(r)] ≤ µ(n).

The class of privately-verifiable search complexity assumptions is clearly more inclusive.

What is an efficient algorithm? Note that in Definitions 2.1 and 2.2 above, we re-
stricted the adversaryM to be an efficient algorithm. One can interpret the class of efficient
algorithms in various ways. The most common interpretation is that it consists of all non-
uniform polynomial time algorithms. However, one can interpret this class as the class of
all uniform probabilistic polynomial time algorithms, or parallel NC algorithms, leading to
the notions of search complexity assumption with uniform security or with parallel security,
respectively. One can also strengthen the power of the adversary M and allow it to be a
quantum algorithm.

More generally, one can define a (t, ϵ) search complexity assumption exactly as above,
except that we allow M to run in time t(n) (non-uniform or uniform, unbounded depth
or bounded depth, with quantum power or without) and require that it cannot succeed
with probability ϵ(n) on a random challenge x ← D(1n). For example, t(n) may be sub-
exponentially large, and ϵ(n) may be sub-exponentially small. Clearly the smaller t is, and
the larger ϵ is, the weaker (and thus more reasonable) the assumption is.

Uniformity of (D,R). In Definition 2.1 above, we require that the algorithms D and R
are uniform probabilistic polynomial-time algorithms. We could have considered the more
general class of non-uniform search complexity assumptions, where we allow D and R to
be non-uniform probabilistic polynomial-time algorithms. We chose to restrict to uniform
assumptions for two reasons. First, we are not aware of any complexity assumption in
the cryptographic literature that consists of non-uniform D or R. Second, allowing these
algorithms to be non-uniform makes room for assumptions whose description size grows with
the size of the security parameter, which enables them to be construction specific and not
of independent interest. We would like to avoid such dependence. We note that one could
also consider search complexity assumptions where D and R are allowed to be quantum
algorithms, or algorithms resulting from any biological process.

Examples. The class of (publicly-verifiable) search complexity assumptions includes al-
most all traditional search-based cryptographic assumptions, including the Factoring as-
sumption, the RSA assumption, the strong RSA assumption, the Discrete Log assumption
(in various groups), the Learning Parity with Noise (LPN) assumption, the Learning with
Error (LWE) assumption, and the assumption that finding square roots in a composite order
group is hard. An exception is the computational Diffie-Hellman assumption (in various
groups), which is a privately-verifiable search complexity assumption, since given (gx, gy, z)
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it is hard to test whether z = gxy, unless we are given x and y, which constitutes the
randomness used to generate (gx, gy).

Worst-case vs. average-case. Note that Definition 2.1 above captures average-case hard-
ness assumptions.6 One could have considered the stricter class of worse-case search com-
plexity assumptions, where we require that no polynomial-time non-uniform algorithm M
satisfies that for every x ∈ {0, 1}∗, R(x,M(x)) = 1. There are a few cryptographic assump-
tions which are worst-case search complexity assumptions, including the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP) in lattices. These assumptions have
been shown to be reducible to average-case assumptions [Ajt96]. More generally, random
self-reductions from worst-case to average-case for fixed-parameter problems7 were shown
for a variety of other hardness assumptions such as quadratic-residuosity, discrete logarithm,
RSA inversion in the early eighties [GM84]. Whereas being a worst-case complexity assump-
tion is a desirable property and average to worst case reductions are a goal in itself, we believe
that at this point in the life-time of our field establishing the security of novel cryptographic
schemes (e.g., IO obfuscation) based on an average case complexity assumption would be a
triumph. We note that traditionally cryptographic hardness assumptions were average-case
assumptions (as exemplified above).

2.1.1 t-Search Complexity Assumptions

The efficient algorithm R associated with a search complexity assumption can be thought
of as an NP relation algorithm. We believe that it is worth distinguishing between search
complexity assumptions for which with overwhelming probability, x ← D(1n) has at most
polynomially many witnesses, and assumptions for which with non-negligible probability,
x ← D(1n) has exponentially many witnesses. We caution that the latter may be too
inclusive, and lead to an absurdum where the assumption assumes the security of the cryp-
tographic scheme itself, as exemplified below.

Definition 2.3. For any function t = t(n), a search complexity assumption (D,R) is said
to be a t-search complexity assumption if there exists a negligible function µ such that

Pr
x←D(1n)

[|{y : (x, y) ∈ R}| > t] ≤ µ(n)

Most traditional search-based cryptographic assumptions are 1-search complexity as-
sumptions; i.e., they are associated with a relation R for which every x has a unique witness.
Examples include the Factoring assumption, the RSA assumption, the Discrete Log assump-
tion (in various groups), the LPN assumption, and the LWE assumption. The square-root

6Since the security requirements for cryptographic schemes require adversary attacks to fail with high
probability rather than in the worst case, average case hardness is necessary to prove the security of crypto-
graphic schemes.

7By a “worst-case to average-case reduction for a fixed-parameter problem”, we think of a problem
instance as a pair (n, x) and a reduction which holds per fixed n.
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assumption in composite order group is an example of a 4-search complexity assumption,
since each element has at most 4 square roots modulo N = pq.

An example of a traditional search complexity assumption that is a t-search assumption
only for an exponentially large t, is the strong RSA assumption. Recall that this assumption
assumes that given an RSA modulus N and a random element y ← Z∗N , it is hard to find any
exponent e ∈ Z∗N together with the e’th root ye

−1
mod N . Indeed, in some sense, the strong

RSA assumption is “exponentially” stronger, since the standard RSA assumption assumes
that it is hard to find the e’th root, for a single e, whereas the strong RSA assumption
assumes that this is hard for exponentially many e’s.

Whereas the strong RSA assumption is considered quite reasonable in our community,
the existence of exponentially many witnesses allows for assumptions that are overly tailored
to cryptographic primitives, as exemplified below.

Consider for example the assumption that a given concrete candidate two-message del-
egation scheme for a polynomial-time computable language L is adaptively sound. This
asserts that there does not exist an efficient non-uniform algorithmM that given a random
challenge from the verifier, produces an instance x ̸∈ L together with an accepting answer
to the challenge. By our definition, this is a t-complexity assumption for an exponential t,
which is publicly verifiable if the underlying delegation scheme is publicly verifiable, and
is privately verifiable if the underlying delegation scheme is privately verifiable. Yet, this
complexity assumption is an example of an absurdum where the assumption assumes the
security of the scheme itself. This absurdum stems from the fact that t is exponential. If we
restricted t to be polynomial this would be avoided.

2.2 Decisional Complexity Assumptions

Each assumption in the class of decisional complexity assumptions consists of two probabilis-
tic polynomial-time algorithms D0 and D1, and asserts that there does not exist an efficient
algorithmM that on input a random challenge x← Db for a random b← {0, 1}, outputs b
with non-negligible advantage.

Definition 2.4. An assumption is a decision complexity assumption if it is associated with
two probabilistic polynomial-time distributions (D0,D1), such that for any efficient8 algorithm
M there exists a negligible function µ such that for any n ∈ N,

Pr
b←{0,1},x←Db(1n)

[M(x) = b] ≤ 1

2
+ µ(n).

Examples. This class includes all traditional decisional assumptions, such as the DDH
assumption, the Quadratic Residuosity (QR) assumption, the N ’th Residuosity assumption,
the decisional LWE assumption, the decisional linear assumption over bilinear groups, and
the Φ-Hiding assumption. This class also includes the Multi-linear Subgroup Elimination

8“Efficient algorithms” can be interpreted in several ways, as we elaborated on in Section 2.1.
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assumption, which was recently used to construct IO obfuscation in [GLSW14]. Thus, this
class is quite expressive.

An example of a decisional assumption that does not belong to this class is the strong
DDH assumption over a prime order group G [Can97]. This assumption asserts that for
every distribution D with min-entropy k = ω(log n), it holds that

(gr, gx, grx) ≈ (gr, gx, gu),

where x← D and r, u← Zp, where p is the cardinality of G, and g is a generator of G.

This assumption was introduced by Canetti [Can97], who used it to prove the security of
his point function obfuscation construction. Since for point function obfuscation the require-
ment is to get security for every point x, it is impossible to base security under a polynomial
complexity assumption. This was shown by Wee [Wee05], who constructed a point function
obfuscation scheme under a complexity assumption with an extremely small ϵ. We note that
if instead of requiring security to hold for every point x, we require security to hold for every
distribution on inputs with min-entropy nϵ, for some constant ϵ > 0, then we can rely on
standard (polynomial) complexity assumptions, such as the LWE assumption [GKPV10],
and a distributional assumption as above is not necessary.

Many versus two distributions. One can consider an “extended” decision complexity
assumption which is associated with polynomially many distributions, as opposed to only
two distributions. Specifically, one can consider the decision complexity assumption that is
associated with a probabilistic polynomial-time distribution D that encodes t = poly(n) dis-
tributions, and the assumption is that for any efficient algorithmM there exists a negligible
function µ such that for any n ∈ N,

Pr
i←[t],x←D(1n,i)

[M(x) = i] ≤ 1

t
+ µ(n).

We note however that such an assumption can be converted into an equivalent decision
assumption with two distributions D0 and D1, using the Goldreich-Levin hard-core predicate
theorem [GL89], as follows: The distribution D0 will sample at random i ← [t], sample at
random x ← D(1n, i), sample at random r ← [t], and output (x, r, r · i). The algorithm D1

will similarly sample i, x, r but will output (x, r, b) for a random bit b← {0, 1}.

Worst-case vs. average-case. Definition 2.4 above captures only average-case decision
complexity assumptions. One could consider the stricter class of worse-case decision com-
plexity assumptions. These assumptions are promise assumptions, where Definition 2.4 is
replaced with the requirement that there exist two sets of inputs S0 and S1, and there is no
polynomial-time non-uniform algorithm M, that for every x ∈ {0, 1}∗, given the promise
that it is in S0 ∪S1, guesses correctly whether x ∈ S0 or x ∈ S1. An example of a worst-case
decision complexity assumption is the GapSVP assumption. This assumption is reducible
to an average-case decisional assumption [BLP+13], which makes them useable for cryptog-
raphy.
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2.3 Search versus Decision Complexity Assumptions

An interesting question is whether search complexity assumptions can always be converted
to decision complexity assumptions and vice versa.

We note that any decision complexity assumption can be converted into a privately-
verifiable search complexity assumption that is sound assuming the decision assumption is
sound, but not necessarily into a publicly verifiable search complexity assumption. Con-
sider, for example, the DDH assumption. Let fDDH be the function that takes as input n
tuples (where n is the security parameter), each tuple is either a DDH tuple or a random
tuple, and outputs n bits, predicting for each tuple whether it is a DDH tuple or a ran-
dom tuple. The direct product theorem [IJKW10] implies that if the DDH assumption
is sound then it is hard to predict fDDH except with negligible probability. The resulting
search complexity assumption is privately-verifiable, since in order to verify whether a pair
((x1, . . . , xn), (b1, . . . , bn)) satisfies that (b1, . . . , bn) = fDDH(x1, . . . , xn), one needs the private
randomness used to generate (x1, . . . , xn).

In the other direction, it would seem at first that one can map any (privately-verifiable
or publicly verifiable) search complexity assumption into an equivalent decision assumption,
using the hard-core predicate theorem of Goldreich and Levin [GL89]. Specifically, given any
(privately-verifiable) search complexity assumption (D,R), consider the following decision
assumption: The assumption is associated with two distributions D0 and D1. The distri-
bution Db generates (x, y), where x ← D(1n) and where R(x, y) = 1, and outputs a triplet
(x, r, u) where r is a random string, and if b = 0 then u = r · y(mod 2) and if b = 1 then
u ← {0, 1}. The Goldreich-Levin hard-core predicate theorem states that the underlying
search assumption is sound if and only if x← D0 is computationally indistinguishable from
x ← D1. However, D0 and D1 are efficiently sampleable only if generating a pair (x, y),
such that x← D(1n) and R(x, y) = 1, can be done efficiently. Since the definition of search
complexity assumptions only assures that D is efficiently sampleable and does not mandate
that the pair (x, y) is efficiently sampleable, the above transformation from search to decision
complexity assumption does not always hold.

2.4 Concrete versus Generic Assumptions

The examples of assumptions we mentioned above are concrete assumptions. Another type of
assumption made in cryptography is a generic assumption, such as the assumption that one-
way functions exist, collision resistant hash families exist, or IO secure obfuscation schemes
exist.

We view generic assumptions as cryptographic primitives in themselves, as opposed to
cryptographic assumptions. We take this view for several reasons. First, in order to ever
make use of a cryptographic protocol based on a generic assumption, we must first instantiate
it with a concrete assumption. Thus, in a sense, a generic assumption is only as good as the
concrete assumptions it can be based on. Second, generic assumptions are not falsifiable. The
reason is that in order to falsify a generic assumption one needs to falsify all the candidates.
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The one-way function primitive has the unique feature that it has a universal concrete
instantiation, and hence is falsifiable. Namely, there exists a (universal) concrete one-way
function candidate f such that if one-way functions exist then f itself is one-way [Gol01].
This state of affairs would be the gold standard for any generic assumption; see discussion
in Section 2.6. Moreover, one-way functions can be constructed based on any complexity
assumption, search or decision.

In the other extreme, there are generic assumptions that have no instantiation under
any (search or decisional) complexity assumption. Examples include the generic assumption
that there exists a 2-message delegation scheme for NP, the assumption that P-certificates
exist, and the assumption that extractable collision resistant hash functions exist. The
generic assumption that IO obfuscation exists was recently instantiated under a family of
new decisional complexity assumptions, namely, a family of subgroup elimination assump-
tions [GLSW14]. We elaborate on this in Section 3.

2.5 Falsifiability of Complexity Assumptions.

Naor [Nao03] defined the class of falsifiable assumptions. Intuitively, this class includes all
the assumptions for which there is a constructive way to demonstrate that it is false, if this
is the case. Naor defined three notions of falsifiability: efficiently falsifiable, falsifiable, and
somewhat falsifiable. We refer the reader to Appendix A for the precise definitions.

Gentry and Wichs [GW11] re-formalized the notion of a falsifiable assumption. They
provide a single formulation, that arguably more closely resembles the intuitive notion of
falsifiability. According to [GW11] an assumption is falsifiable if it can be modeled as
an interactive game between an efficient challenger and an adversary, at the conclusion of
which the challenger can efficiently decide whether the adversary won the game. Almost
all followup work that use the term of falsifiable assumptions use the falsifiability notion
of [GW11], which captures the intuition that one can efficiently check (using randomness
and interaction) whether an attacker can indeed break the assumption. By now, when
researchers say that an assumption is falsifiable they most often refer to the falsifiability
notion of [GW11]. In this paper we follow this convention.

Definition 2.5. [GW11] A falsifiable cryptographic assumption consists of a probabilistic
polynomial-time interactive challenger C. On security parameter n, the challenger C(1n)
interacts with a non-uniform machine M(1n) and may output a special symbol win. If this
occurs, we say that M(1n) wins C(1n). The assumption states that for any efficient non-
uniformM,

Pr[M(1n) wins C(1n)] = negl(n),

where the probability is over the random coins of C. For any t = t(n) and ϵ = ϵ(n), an (t, ϵ)
assumption is falsifiable if it is associated with a probabilistic polynomial-time C as above,
and for everyM of size at most t(n), and for every n ∈ N,

Pr[M(1n) wins C(1n)] ≤ ϵ(n).
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The following claim is straightforward.

Claim 2.6. Any (search or decision) complexity assumption is also a falsifiable assumption
(according to Definition 2.5), but not vice versa.

2.6 Desirable Properties of Complexity Assumptions

We emphasize that our classification described above is minimal and does not take into
account various measures of how “robust” the assumption is, such as:

Robustness to auxiliary inputs. Assumptions that are known to be resilient to auxiliary
inputs are more robust, and hence and more desirable. In particular, schemes that are built
on such assumptions have some leakage resilient properties built into them.

Definition 2.7. A search complexity assumption (D,R) is said to be resilient to t(n)-hard-
to-invert auxiliary inputs if for any t(n)-hard-to-invert function L : {0, 1}n → {0, 1}∗,

Pr
r←{0,1}n,x←D(r)

[M(x, L(r)) = y s.t. R(x, y) = 1] ≤ µ(n),

where L is said to be t(n)-hard-to-invert if for every t(n)-time non-unform algorithm M
there exists a negligible µ such that for every n ∈ N,

Pr
y←L(Un)

[M(y) = x : L(x) = y] = µ(n).

It was shown in [GKPV10] that the decisional version of the LWE assumption is resilient
to t(n)-hard-to-invert auxiliary inputs for t(n) = 2n

δ
, for any constant δ > 0. In particular,

this implies that the LWE assumption is robust to leakage attacks. In contrast, the RSA
assumptions is known to be completely broken even if only 0.27 fraction of random bits of
the secret key are leaked [HS09].

Universal assumptions. We say that a (concrete) complexity assumption A is universal
with respect to a generic assumption if the following holds: If A is false then the generic
assumption is false. In other words, if the generic assumption has a concrete sound instan-
tiation then A is it. Today, the only generic assumption for which we know a universal
instantiation is one-way functions [Gol01].

Open problem: We pose the open problem of finding a universal instantiations for
other generic assumptions, in particular for IO obfuscation, witness encryption, or 2-message
delegation for NP.
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3 Recently Proposed Cryptographic Assumptions

Recently, there has been a proliferation of cryptographic assumptions. We next argue that
many of the recent assumptions proposed in the literature, even the falsifiable ones, are not
complexity assumptions.

IO Obfuscation constructions. Recently, several constructions of IO obfuscation have
been proposed. These were proved under ad-hoc assumptions [GGH+13], meta assump-
tions [PST14], and ideal-group assumptions [BR14, BGK+14]. These assumptions are not
complexity assumptions, for several reasons: They are either overly tailored to the construc-
tion, or artificially restrict the adversaries.

The recent result of [GLSW14] constructed IO obfuscation under a family of new com-
plexity assumptions, called “subgroup elimination assumptions.” This is a significant step
towards constructing IO under a complexity assumption. We note however, that this con-
struction relies on a family of complexity assumptions, one assumption for each circuit size.
This still lacks the desired independence property between the cryptographic scheme and
the underlying cryptographic assumption. We thus view the problem of constructing IO
obfuscation based on a single complexity assumption as an important open problem.

Assuming IO obfuscation exists. A large body of work which emerged since the con-
struction of [GGH+13], constructs various cryptographic primitives assuming IO obfuscation
exists. Some of these results require only the existence of IO obfuscation for circuits with
only polynomially many inputs (eg., [BGL+15]). Note that any instantiation of this assump-
tion is falsifiable. Namely, the assumption that a given obfuscation candidate O (for circuits
with polynomially many inputs) is IO secure, is falsifiable. The reason is that to falsify it
one needs to exhibit two circuits C0 and C1 in the family such that C0 ≡ C1, and show
that it can distinguish between O(C0) and O(C1). Note that since the domain of C0 and
C1 consists of polynomially many elements one can efficiently test whether indeed C0 ≡ C1,
and of course the falsifier can efficiently prove that O(C0) ̸≈ O(C1) by showing that one can
distinguish between these two distributions. On the other hand, this is not a complexity as-
sumption. Rather, such an assumption consists of many (often exponentially many) decision
complexity assumptions: For every C0 ≡ C1 in the family Cn (there are often exponentially
many such pairs), the corresponding decision complexity assumption is that O(C0) ≈ O(C1).
Thus, intuitively, such an assumption is exponentially weaker than a decisional complexity
assumption.

Artificially restricted adversaries assumptions. We next consider the class of assump-
tions that make some “artificial” restriction on the adversary. Examples include the Random
Oracle Model (ROM) and various generic group models. The ROM restricts the adversary to
use a given hash function only in a black-box manner. Similarly, generic group assumptions
assume the adversary uses the group structure only in an “ideal” way. Another family of
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assumptions that belongs to this class is the family knowledge assumptions.9 Knowledge
assumptions artificially restrict the adversaries to compute things in a certain way. For ex-
ample, the Knowledge-of-Exponent assumption assumes that any adversary that given (g, h)
computes (gz, hz), must do so by “first” computing z and then computing (gz, hz).

We note that such assumptions cannot be written even as exponentially many complexity
assumptions. Moreover, for the ROM and the generic group assumptions, we know of several
examples of insecure schemes that are proven secure under these assumptions [CGH04, Bar01,
GK03].

We thus believe that results that are based on such assumption should be viewed as
intermediate results, towards the goal of removing such artificial constraints and constructing
schemes that are provably secure under complexity assumptions.

4 Summary

Theoretical cryptography is in great need for a methodology for classifying assumptions. In
this paper, we define the class of search and decision complexity assumptions. An overall
guiding principle in the choices we made was to rule out hardness assumptions which are
construction dependent.

We believe that complexity assumptions as we defined them are general enough to capture
all “desirable” assumptions, and we are hopeful that they will suffice in expressive power to
enable proofs of security for sound constructions. In particular, all traditional cryptographic
assumptions fall into this class.

We emphasize, that we do not claim that all complexity-based complexity assumptions
are necessarily desirable or reasonable. For example, false complexity assumptions are clearly
not reasonable. In addition, our classification does not incorporate various measures of how
“robust” an assumption is, such as: how well studied the assumption is, whether it is known
to be broken by quantum attacks, whether it has a worst-case to average-case reduction, or
whether it is known to be robust to auxiliary information.
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A Falsifiable Assumptions

Naor [Nao03] defined three notions of falsifiability: efficiently falsifiable, falsifiable, and some-
what falsifiable.

Definition A.1. A (t, ϵ) assumption is efficiently falsifiable if there exists a family of dis-
tributions {Dn}n∈N, a verifier V : {0, 1}∗ × {0, 1}∗ → {0, 1}, such that the following holds
for any parameter δ > 0:

1. If the assumption is false then there exists a falsifier B that satisfies

Pr
x→Dn

[B(x) = y s.t. V (x, y) = 1] ≥ 1− δ.

Moreover, the runtime of B is polynomial in the runtime of the adversary that breaks
the assumption and polynomial in n, log 1/ϵ, log 1/δ.

2. The runtime of V and the time it takes to sample an element from Dn is poly(n, log 1/ϵ, log 1/δ).

3. If there exists a falsifier B that runs in time t and solves random challenges x ← Dn

with probability γ, then there exists an adversary A that runs in time poly(t) and breaks
the original assumption with probability poly(γ).

Definition A.2. A (t, ϵ) assumption is falsifiable if everything is as in Definition A.1 except
that the runtime of V and of sampling Dn may depend on 1/ϵ (as opposed to log 1/ϵ).

Definition A.3. A (t, ϵ) assumption is somewhat falsifiable if everything is as in Defini-
tion A.1 except that the runtime of V and of sampling Dn may depend on 1/ϵ (as opposed
to log 1/ϵ), and on the runtime of B. In particular, this means that V may simulate B.

Remark A.4. We note that any efficiently falsifiable assumption is also a relation-based
complexity assumption. However, we find the notion of efficiently falsifiable to be very re-
strictive, since intuitively it only includes assumptions that are random self reducible. The
definition of falsifiable is less restrictive, however a falsifiable assumption is not necessarily
a complexity assumption, since in order to verify a break of the assumption one needs to run
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in time 1/ϵ which is super-polynomial. We view the notion of somewhat falsifiable to be too
weak. Allowing the runtime of the verifier to depend on the runtime of the falsifier B makes
this class very inclusive, and it includes many interactive assumptions (we refer the reader
to [Nao03] for details).
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