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Abstract. The application of the concept of linear cryptanalysis to the
domain of key-less primitives is largely an open problem. In this paper we,
for the first time, propose a model in which its application is meaningful
for distinguishing block ciphers.
Combining our model with ideas from message modification and rebound-
like approaches, we initiate a study of cryptographic primitives with re-
spect to this new attack vector and choose the lightweight block cipher
PRESENT as an example target. This leads to known-key distinguishers
over up to 27 rounds, whereas the best previous result is up to 18 rounds
in the chosen-key model.
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1 Introduction

We start off with a simple, clearly undesirable property of a block cipher and
generalize it; suppose there is an n-bit block cipher which allows, for a particular
known or chosen key, to determine a plaintext, such that the plaintext is the
same as the ciphertext. For a good block cipher, accomplishing this should be
very unlikely with much less than 2n trials. It would, for example, allow preimage
attacks in fully preimage-secure compression function constructions that use this
block cipher.

Now, consider an n-bit block cipher where the key is known or chosen by
the attacker and let us focus on a single bit at position i of the plaintext pi and
ciphertext ci in this setting. We would expect that the equation pi = ci holds
in exactly half the cases. In fact, any statistically significant deviation from this
expectation can be interpreted as a sign of non-randomness in the cipher.

Such an attack would be in the so-called key-less model, which covers both
the known-key and chosen-key models, and is hence of relevance if the cipher is
used as part of a hash function construction. More generally, it allows to make
meaningful statements and differentiate between ciphers beyond what is possible
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in other models. Should we consider such a cipher as a good building block for a
compression function? Not if there would be an alternative cipher with similar
implementation characteristics that does not allow for such a distinguisher!

1.1 Contributions

We discuss the two types of contributions in this paper. One is of a more con-
ceptual/modeling nature, while the other is a concrete cryptanalytic application
of the former.

A New Way of Formulating Key-less Distinguishers. The property
described in the beginning resembles properties used in linear cryptanalysis to
recover secret keys. The problem with the above line of reasoning was that so far
there did not exist a meaningful model to properly express the setting. By this,
we mean a model which has a proper characterization of the power of generic
attackers and a clear distinction as to when a dedicated attack in fact can be
considered a valid distinguisher, i.e. outperforms generic attackers. In this paper,
after starting off by giving notation and preliminary notions of block ciphers and
linear cryptanalysis in Section 2, we put in Section 3 the above very informal
description of a possible demonstration of non-randomness on more rigorous
grounds.

The usual requirement for a distinguisher to be valid is, that one must com-
pare the cost of satisfying a specific property, which varies from case to case, for
a concrete permutation π, with achieving the same property for an ideal permu-
tation. In our model, we expand on this by posing the problem of determining
for a concrete permutation π: i) a linear relation over π in the form of an in-
put/output mask and ii) a set of inputs to π, such that the number of inputs
satisfying the linear relation is expected to deviate from what one expects of
an ideal permutation, by a significant amount. A property which should not be
attainable for an ideal primitive.

Our proposed key-less linear distinguisher model captures the possibility of
distinguishing a cipher using any previous linear cryptanalysis, in the sense that
the attacker needs only a linear hull and the probability distribution on the
absolute correlation, to perform his analysis. To amplify the distinguisher to
either cover more rounds or to need less computation, approaches inspired by
message modification [43] and rebound attacks [36,28] are used.

Application to PRESENT. We can find concrete results in the new model
in round-reduced versions of the leading lightweight-cipher PRESENT [10] (used
in compression function designs advocated e.g. in [11]). In Section 4 we describe
the relevant aspects of the PRESENT block cipher and give results on linear
hulls and keys pertaining to it. Section 5 details the application of the key-less
linear distinguisher to PRESENT. We fix a bit position i, devise an algorithm
for determining up to 261.97 key-dependent plaintexts in a very efficient manner,
and study the expected number of plaintext and ciphertext pairs where pi = ci.



What we claim to be able to find is a deviation from the expectation that the
equation pi = ci is fulfilled with probability 1

2 . Depending on the size of the
allowable key-set, this will work for up to 27 rounds of PRESENT. Detailed
results are summarized in Table 4, before our conclusions and a discussion of open
problems in Section 6. We confirm the results with experimental verifications (see
Appendix C and [29]).

1.2 Related Work

Linear cryptanalysis, a technique to recover keys in ciphers, was pioneered by
Matsui from 1992 on [33,35], with extensions or variants such as multiple lin-
ear approximations [5,20], linear hulls [39], multidimensional variants [16], zero-
correlations [12] and considerations of a general statistical framework [3,31,38].

The application of linear cryptanalysis to key-less constructions, i.e. in mod-
els where the key is either known or chosen by the attacker, is largely an open
problem. Sometimes, designs are evaluated with respect to standard linear crypt-
analysis [2,32]. Some designers of SHA-3 candidates state properties with respect
to this class of attacks (such as linear probability) without ever mentioning spe-
cific models. The reason is that there simply was no model, a situation that we
address in this paper.

In all cases of linear cryptanalysis applied in a key-less setting, the analysis
done is exactly the same as in a setting with a secret key: a linear approximation
with a non-zero correlation is presented. The only known exception to us is a
linear analysis of Cubehash by Ashur and Dunkelman [2]. There, an 11-round
linear approximation with bias 2−235 is used to describe a standard distinguisher
with 2470 queries. Then, inspired by a chosen-plaintext variant of linear crypt-
analysis of DES by Knudsen and Mathiassen [23], the authors fix 80 bits of the
plaintext input of modular additions, thereby gaining the first round for free,
arriving at a 12-round result with a complexity below 2512. This can be seen as
a predecessor to our deterministic technique of Section 5.2.

The only analysis of PRESENT in a setting without secret keys we know
of is by Koyama, Sasaki, and Kunihiro [25]. In their work, differential chosen-
key distinguishers (a setting that gives the attacker more freedom than in our
known-key model) for up to 18 rounds are obtained.

At its core is a differential rebound attack with an inbound phase of 5 rounds
that needs 100 degrees of freedom1. In the method we propose, we allow the key
to be fixed arbitrarily, and out of the remaining 64 degrees of freedom from the
plaintext input more than 61 degrees of freedom remain. Hence our results, that
cover more rounds, and use our deterministic phase over 3 rounds that needs
only 3 degrees of freedom, compare favorably to this result.

1 Authors mention that 92 degrees of freedom out of 192 (from key and plaintext
input) are left for the outbound phase



2 Preliminaries

In this section we introduce our notation, give basic definitions and recall known
properties related to our analysis throughout the paper.

Notation. For an n-bit block cipher with key space K, let E : Fn2 × K → Fn2
and D : Fn2 ×K → Fn2 denote encryption and decryption functions, respectively.
For convenience, we also use the notation that EK(x) := E(x,K) and DK(c) :=
D(c,K). We use ]X to denote the size of a set X. For a real number w, |w|
denotes the absolute value of w. We let Perm(n) denote the set of all permutations

on n-bit inputs and we let x
$←− X denote the assignment of x by an element of X

chosen uniformly at random. We use N (µ, σ2) and B(n, p) to denote the normal-
and binomial distributions respectively. For a distribution D we use Φ(D,x) to
denote the cumulative distribution function of D at point x. We use the notation
that ei is a binary string with a 1 in position i and zeroes elsewhere.

In this paper, when we talk about the key-less setting, we implicitly mean
adversarial assumptions where the key K ∈ K is either known or chosen by the
attacker.

Trails and Hulls. In the following, let F : Fn2 → Fn2 be an iterated function
of the form F = FR ◦ · · · ◦ F1. We borrow to a large extent the notation from
Leander’s treatment on linear cryptanalysis [31]. We define a mask as a vector
α ∈ Fn2 . For two masks α, β, we denote by 〈α, β〉 the inner product of the two
masks:

〈(α0, . . . , αn−1), (β0, . . . , βn−1)〉 :=

n−1⊕
i=0

αiβi.

We define an R-round trail as an element (δ, α1, . . . , αR−1, γ) ∈ (Fn2 )R+1, where
δ and γ are the input and output masks, respectively. The αi are called the
intermediate masks. For a randomly chosen x ∈ Fn2 , and for i = 1, . . . , R (letting
α0 = δ and αR = γ), we have

Pr [〈x, αi−1〉 = 〈Fi(x), αi〉] =
1

2
+

CFi(αi−1, αi)

2
,

where CFi(αi−1, αi) is the correlation over Fi. The trail correlation over F is
defined in terms of the CFi as

CF (δ, α1, . . . , αR−1, γ) = CF1
(δ, α1)

(
R−1∏
i=2

CFi(αi−1, αi)

)
CFR(αR−1, γ). (1)

We say that a trail is valid if and only if each constituent correlation of (1) is
non-zero.

We define an R-round linear hull LHR(δ, γ) as the union of all valid linear
trails with input mask δ and output mask γ. As such, we use the notation that



t ∈ LHR(δ, γ) for an R-round trail t. Note that a linear hull LHR(δ, γ) defines an
R-round linear relation between x and F (x), which we denote RFδ,γ : Fn2 → F2,
where

RFδ,γ(x) =

{
1 , 〈x, δ〉 = 〈F (x), γ〉
0 , 〈x, δ〉 6= 〈F (x), γ〉

.

When RFδ,γ(x) = 1 we say the relation is satisfied for input x and otherwise it is
not. The linear hull correlation [17, Theorem 7.8.1] is given by

CF (LHR(δ, γ)) =
∑

t∈LHR(δ,γ)

CF (t)

=
∑

t∈LHR(δ,γ)

(−1)sgn(t) · |CF (t)|, sgn(t) =

{
0 ,CF (t) ≥ 0

1 ,CF (t) < 0
.

When the trail or hull is understood, we write CF for simplicity to mean the
correlation of the trail or hull over F . For a block cipher, the value of sgn(t)
for t ∈ LHR(δ, γ) depends on the secret key K ∈ K, and hence the value of
|CF (LHR(δ, γ))| depends on the difference between the number of trails with
sgn(t) = 1 and those with sgn(t) = 0. In this paper, we use the following as-
sumption.

Assumption 1 For any fixed key K ∈ K, we assume that for any two trails
t, t′ ∈ LHR(δ, γ), where t 6= t′, the signs sgn(t) and sgn(t′) are independent
Bernoulli random variables with p = 1

2 .

We note that Assumption 1 has been experimentally verified for PRESENT, see
e.g. [13,31].

For readers familiar with differential-type attacks in the known-key setting,
we offer the following loose analogy. We say that x ∈ Fn2 follows an R-round
trail over F if and only if

〈x, δ〉 = 〈F1(x), α1〉 = · · · = 〈(FR−1 ◦ · · · ◦ F1)(x), αR−1〉 = 〈F (x), γ〉.

This notion will be used in Section 5, when we describe how to use a technique
similar to message modification, to extend a presented distinguisher in the key-
less setting.

3 Key-Less Linear Distinguishers for Block Ciphers

Even though block ciphers have been used for a very long time, either implic-
itly or explicitly, to construct hash functions, a separate study of the security of
block ciphers where the key is either known or under control of the adversary, has
started only recently. Knudsen and Rijmen proposed so-called known-key dis-
tinguishers [24]. Later Biryukov, Khovratovich, and Nikolic [8] and Lamberger,



Mendel, Schläffer, Rechberger and Rijmen [27] proposed open- or chosen-key
models to evaluate the security of block ciphers.

Even though these models often exhibit a rather contrived looking property,
and evade a formally rigorous definition2 (a property they share with collision
attacks), cryptanalysts largely agree that these distinguishers are useful and
interesting. Indeed, techniques developed to improve the original known-key dis-
tinguishers from [24], such as the rebound attack later led to collision attacks
on various hash functions [21,37,27]. Also, the findings in the open-key model
from [8] were later used to find the first related-key key-recovery attacks on
AES-256 and AES-192 [6,7].

3.1 Motivation for our Distinguisher

Sometimes distinguisher descriptions are merely motivated by the fact that they
can be formulated, as e.g. the 7-round known-key distinguisher on AES from [24],
where byte-level zero-sums are used as a distinguishing property. Another ex-
ample is the rotational rebound attack on reduced Skein [22], where the exis-
tence of rotational collisions with errors is defined as a distinguishing property.
Sometimes, however, they are better motivated, e.g. by the construction of near-
collisions, or the subspace- and limited-birthday distinguishers [19,27,28] that
resemble some generalization of the concept of near-collisions.

The distinguisher we propose below comes with a new motivation that stems
from preimage attacks on hash functions or compression functions3. As an exam-
ple, consider the compression function construction using a single call to a block
cipher in Matyas-Meyer-Oseas mode. The ith message block mi is compressed
by using it as the plaintext input when computing the next chaining value Hi+1

using Hi as the cipher key, i.e. Hi+1 = EHi(mi) ⊕ mi. If an attacker can de-
termine a relation stating that the jth bit of mi equals the jth bit of EHi(mi)
with a high probability, then it is likely that the jth bit of Hi+1 equals zero. In
a preimage attack, if the target preimage is zero at position j, this then leads to
an advantage over brute-force search.

Motivated by this example, we proceed with our new key-less linear distin-
guisher model for block ciphers that we will use throughout the paper.

3.2 The Key-less Linear Distinguisher Model

In the following, we give our definition of a model for key-less linear distinguish-
ers. Essentially, the model captures the possibility of distinguishing any block
cipher in the key-less setting, given that a linear relation (in the form of a linear
hull) of sufficiently high absolute correlation for a reasonable fraction of the key
space K, is available. The notions of Definitions 1 and 2 are largely inspired by
the recent work of Gilbert on pushing known-key attacks further on the AES [18].

2 One exception being [1]
3 We emphasize here that the application to PRESENT later in the paper will not be

a preimage attack



The following definition of α-separability formalizes how a linear relation,
combined with a set of inputs for a permutation π : Fn2 → Fn2 , can exhibit a
significant deviation from the behavior of a random permutation.

Definition 1 (α-separability). Let P be a set of permutations from Fn2 to Fn2
and let π ∈ P denote a particular, fixed permutation from P. Let S ⊆ Fn2 with
size M and let δ, γ ∈ Fn2\{(0, . . . , 0)}.

Without checking each input, each xi ∈ S has an (a priori) associated proba-

bility pi = Pr
[
Rπδ,γ(xi) = 1

]
that the linear relation is satisfied for that particular

input. Let X = ]{x ∈ S | Rπδ,γ(x) = 1}, then E [X ] =
∑M
i=1 pi. We say that the

tuple (P, π,S,Rπδ,γ) is α-separable if and only

Pr

[∣∣∣∣E [X ]− M
2

∣∣∣∣ ≥ √M] ≥ α,
where the probability is taken over π ∈ P.

Definition 2 ((T,M, α)-intractability). Let P be a set of permutations from
Fn2 to Fn2 and let π ∈ P denote a particular, fixed permutation from P. Let S ⊆ Fn2
of size M and let δ, γ ∈ Fn2\{(0, . . . , 0)}. We say that the tuple (P, π,S,Rπδ,γ) is
(T,M, α)-intractable if and only if it is impossible, for any algorithm A to

1. Commit to a choice of δ′, γ′ ∈ Fn2\{(0, . . . , 0)} and

2. When given access to a fixed pair Π,Π−1 with Π
$←− Perm(n), construct a set

S ′ of size M in time T , s.t. the tuple (Perm(n), Π,S ′,RΠδ′,γ′) is α-separable.

Note 1. For our distinguisher model, the notion of one time unit corresponds to
a single evaluation of the respective permutation.

With the definition of α-separability and (T,M, α)-intractability in hand, we
are ready to formulate our proposed key-less linear distinguisher.

Definition 3 (Key-less linear distinguisher). Let E : Fn2 × K → Fn2 be a
block cipher and let E to denote the set of permutations due to choices of the key
K ∈ K. Let EK denote some fixed permutation from E.

Fix δ, γ ∈ Fn2\{(0, . . . , 0)} and let A be an algorithm producing in time T a
set S ⊆ Fn2 of size M. Then the tuple (A, E , EK ,S, T,REKδ,γ , α) is said to be a

key-less linear distinguisher if and only if (E , EK ,S,REKδ,γ ) is both α-separable
and (T,M, α)-intractable.

Note 2. In all of the definitions above, the fixed linear masks δ, γ ∈ Fn2\{(0, . . . , 0)}
are chosen by the algorithm A, but the choice must be made before the produc-
tion of the input set S commences.

In the context of distinguishing a block cipher, the adversary commits to δ
and γ and then obtains access to EK upon which the production of S in time
T begins. The parameter α directly expresses a lower bound on the fraction of
the permutations π ∈ P for which the key-less linear distinguisher is valid. The
time T allowed to construct S is a parameter chosen by the adversary.



Analysis. In the following, we analyze and argue that the key-less linear dis-
tinguisher is meaningful. First, informally, the notion of α-separability expresses
that for a concrete permutation π : Fn2 → Fn2 , one can provide a linear relation
which captures, for some constructed set of inputs, a significant non-random
behavior in a permutation which is supposed to behave randomly. The signifi-
cant part is captured by the requirement that the number of inputs satisfying
the relation Rπδ,γ should deviate from what is expected in the ideal case by at

least
√
M. This reflects the usual requirement in linear cryptanalysis, that the

data complexity is inversely proportional to the squared correlation. Second, on
top of that, Definition 2 captures the notion that for a random permutation

Π
$←− Perm(n), it should not be possible, in the same amount of time, to pro-

vide such a relation with a set of inputs which exhibits the same significant
non-random behavior.

With respect to Definition 2, one of the components to analyzing our pro-
posed key-less linear distinguisher is to answer the following question: what is
the upper bound on the probability α′ that an algorithm A, when given access
to the fixed pair Π and Π−1, can produce in time T a set S ′ ⊆ Fn2 of sizeM, to-
gether with a pre-determined relationRΠδ,γ , such that (Perm(n), Π,S ′,RΠδ,γ) is α′-
separable? Our analysis answers this question in the following, and it implicitly
provides a lower bound on α for when a concrete permutation π : Fn2 → Fn2 ∈ P
(in the notation of Definitions 1 and 2) can be shown to be (T,M, α)-intractable,
for fixed T and M. We begin our analysis with Lemma 1.

Lemma 1. In the notation of Definition 2, let δ′, γ′ ∈ Fn2\{(0, . . . , 0)} be fixed
non-zero linear masks, and let then an algorithm A be given access to Π,Π−1,

where Π
$←− Perm(n). The optimal way for A to construct S ′ ⊆ Fn2 of size M in

time T is the following:

1. Construct an arbitrarily chosen set Q ⊆ Fn2 of size T .
2. Partition Q into Q1 = {x ∈ Q | RΠδ′,γ′(x) = 1} and Q0 = {x ∈
Q | RΠδ′,γ′(x) = 0} by querying Π(x) for all x ∈ Q (this has time
complexity T ).

3. Set S ′ equal to the larger of the sets Q0 and Q1.
4. Fill up S ′ with arbitrarily chosen inputs from Fn2\Q until ]S ′ =M.

Proof. As Π
$←− Perm(n), the particular choice of δ′, γ′ ∈ Fn2\{(0, . . . , 0)} does

not affect the analysis. The most information A can learn about Π in time T is
to obtain T pairs (x,Π(x)), as is done when determining Q and its image under
Π. In order to optimally shift the balance of the expected number of inputs of
S ′ satisfying RΠδ′,γ′ away fromM/2, A should take the larger of Q1 and Q0 and

pool it with randomly chosen inputs x for which the value of RΠδ′,γ′(x) is not
known. ut

Continuing our analysis, assuming an algorithmA constructs S ′ as in Lemma 1,
we determine an upper bound on the value α′ as a function of M and T , such
that the resulting tuple (Perm(n), Π,S ′,RΠδ′,γ′) is α′-separable. We give this re-
sult in Theorem 1.



Theorem 1 (Generic success probability). Let A, Π, δ′, γ′,S ′ and T be as
in Lemma 1, where T ≤ 4

√
M, and let X := ]{x ∈ S ′ | RΠδ,γ(x) = 1}. Then

Pr

[∣∣∣∣E [X ]− M
2

∣∣∣∣ ≥ √M] = 2−T ·

T−2√M∑
k=0

(
T

k

)
+

T∑
k=2
√
M

(
T

k

) .
Proof. First, note that ]Q1 ∼ B(T, 12 ). We want to determine the probability

that we have
∣∣E [X ]− M2

∣∣ ≥ √M. The consideration is split into two cases
depending on whether or not ]Q1 ≥ T/2.

Case ]Q1 ≥ T/2. In this case, we know that at least ]Q1 of the M inputs
satisfy the relation. Thus, E [X ] = E [Z] + ]Q1 where Z ∼ B

(
M− ]Q1,

1
2

)
.

Thus, E [X ] = M+]Q1

2 , and the requirement
∣∣E [X ]− M2

∣∣ ≥ √M is equivalent

to either ]Q1 ≥ 2
√
M or ]Q1 ≤ −2

√
M, the latter not being possible as ]Q1 is

non-negative.

Case ]Q1 < T/2. In this case, we know that there are at least T − ]Q1 of
the M inputs that do not satisfy the relation. Thus, E [X ] = E [Z] where Z ∼
B
(
M− T + ]Q1,

1
2

)
. Thus, E [X ] = M−T+]Q1

2 , and the requirement
∣∣E [X ]− M2

∣∣ ≥√
M is equivalent to either ]Q1 ≥ T + 2

√
M or ]Q1 ≤ T − 2

√
M, the former

not being possible as ]Q1 ≤ T .
In both cases considered, there is one event which makes the inequality∣∣E [X ]− M2

∣∣ ≥ √M true. The combined probability of those two events is

Pr
[
]Q1 ≥ 2

√
M
]

+ Pr
[
]Q1 ≤ T − 2

√
M
]

= 2−T ·

T−2√M∑
k=0

(
T

k

)
+

T∑
k=2
√
M

(
T

k

) .
From this, the result follows. ut

Note 3. The requirement T ≤ 4
√
M in the statement of Theorem 1 arises be-

cause otherwise the two sums would overlap and add the same terms twice.
The probability which is derived as a function of M and T provides a lower
bound on α for when, in the notation of Definition 2, a tuple (P, π,S,Rπδ,γ)
can be (T,M, α)-intractable. By using the normal approximation of ]Q1, i.e.
]Q1 ∼ N

(
T
2 ,

T
4

)
, one obtains a very precise and easily-computable approxima-

tion of the probability as

1− Φ
(
N
(
T

2
,
T

4

)
, 2
√
M
)

+ Φ

(
N
(
T

2
,
T

4

)
, T − 2

√
M
)
.

Corollary 1. Let A be an algorithm which, after a choice of δ, γ ∈ Fn2\{(0, . . . , 0)}
is fixed, is given access to some permutation π : Fn2 → Fn2 ∈ P.



When T < 2
√
M and P = Perm(n), it is impossible for A to produce in time

T a set S ⊆ Fn2 of size M s.t. the tuple (P, π,S,Rπδ,γ) is α-separable for any
α > 0.

On the other hand, when T ≥ 4
√
M and P = E (in the notation of Defini-

tion 3), then it is impossible for A to produce in time T a set S ⊆ Fn2 of size
M s.t. the tuple (A,P, π,S, T,Rπδ,γ , α) is a key-less linear distinguisher for any
α > 0.

Proof. The first result follows directly from Theorem 1 when observing that the
both sums are zero when T < 2

√
M. The second result follows from Theorem 1

when observing that the sums equal one when T = 4
√
M. This makes (T,M, α)-

intractability impossible. ut

Note 4. The key-less linear distinguisher specified in Definition 3 does not ask
to provide outputs. Thus, it is not ruled out to give a valid key-less linear distin-
guisher without pre-computation, i.e. to have T = 0. Indeed, one of the concrete
applications we show to the block cipher PRESENT does not need any compu-
tations.

From Corollary 1 it follows that when no pre-computation is allowed, i.e.
when T = 0, any algorithm A producing a set S ⊆ Fn2 together with any re-
lation δ, γ ∈ Fn2\{(0, . . . , 0)} for a permutation EK ∈ E , yields a key-less linear
distinguisher (A, E , EK ,S, T,REKδ,γ , α) for some α > 0. Note, however, that the
parameter α measures how likely such a distinguisher is to succeed for a specific
key. For example, when α is very low, one might have a valid key-less linear
distinguisher for many rounds, but for a tiny fraction of the key space. As such,
when T = 0, such a key-less linear distinguisher is to be taken with a grain of
salt, depending on the value α. In the following dicussions, we always provide
together with our distinguishers the parameter α, to make clear the lower bound
on the fraction of the key space for which it is valid.

Having analyzed the generic case, we move on to stating in Theorem 2 a
necessary condition for when, for a particular fixed π ∈ P and non-zero linear
masks δ, γ ∈ Fn2\{(0, . . . , 0)}, an algorithm A can construct S ⊆ Fn2 of size M
in time T , s.t. the tuple (P, π,S,Rπδ,γ) is a α-separable.

Theorem 2. Let π ∈ P and fix non-zero linear masks δ, γ ∈ Fn2\{(0, . . . , 0)}.
Let S ⊆ Fn2 have size M. Then the tuple (P, π,S,Rπδ,γ) can be α-separable for

α > 0 if and only if the absolute correction |Cπ| of Rπδ,γ satisfies |Cπ| ≥ 2/
√
M.

Furthermore, the largest α for which α-separability is obtained, is given by α =

Pr
[
|Cπ| ≥ 2/

√
M
]
.

Proof. Let X := {x ∈ S | Rπδ,γ(x) = 1}. Then X ∼ B
(
M, 12 + Cπ

2

)
. We have α-

separability if and only if Pr
[∣∣E [X ]− M2

∣∣ ≥ √M] ≥ α. Thus, we require either

E [X ] ≥ M2 +
√
M or E [X ] ≤ M2 −

√
M. Since E [X ] = M

2 +M· Cπ2 , this happens

exactly when |Cπ| ≥ 2/
√
M. From this, the results follow. ut



4 The Block Cipher PRESENT, Keys and Linear Hulls

PRESENT is a 64-bit iterated block cipher [10] for use in lightweight applications
such as RFID tags and wireless sensor networks. Its use in compression function
designs is e.g. studied and advocated for in [11]. The key space is K = Fκ2 with
κ either 80 or 128 bits. The respective block ciphers are denoted PRESENT-80
and PRESENT-128. Both ciphers have 31 rounds. The PRESENT key-schedule
(see Appendix A for details) produces 32 κ-bit round keys, but only the 64 most
significant bits are used in the key addition of each round. We refer to these
64-bit round keys as Ki with i = 0, . . . , 31.

The structure of PRESENT is a substitution-permutation network, repeating
the round function

Ri(x) = P ◦ S(x⊕Ki),

where x is the 64-bit state input to round i, S is the parallel application of
sixteen identical 4-bit S-boxes and P is a fixed bitwise permutation4. The full
cipher is composed of 31 applications of the round function followed by addition
of a post-whitening key, i.e.

EK = (R30 ◦ · · · ◦R0)(x)⊕K31.

An illustration of a single round of PRESENT is given in Figure 1. For the
specification of the PRESENT S-box and permutation P , see Appendix A.

S S S S S S S S S S S S S S S S

Fig. 1: Top-to-bottom illustration of a single round of PRESENT

4.1 Keys and Linear Hulls in PRESENT

One of the first thorough treatments of linear cryptanalysis on PRESENT is
by Ohkuma [40]. This work defines optimal linear trails using solely masks of
Hamming weight one. Furthermore, 64 optimal hulls using these trails are de-
termined, along with the number of trails in each hull.

The absolute correlation for one of Ohkuma’s R-round optimal trails t is
|CEK (t)| = 2−2R. Considering a particular R-round optimal hull LHR(δ, γ), let
T+
R (respectively T−R ) denote the number of trails t in the hull for which sgn(t) =

0 (respectively sgn(t) = 1). We also let TR := ]LHR(δ, γ), i.e. TR = T+
R + T−R .

4 S and P are called sBoxLayer and pLayer, respectively, in the specification.



By Assumption 1, for a fixed key K ∈ K, we have T+
R ∼ B

(
TR,

1
2

)
, which

for sufficiently large TR is well approximated by T+
R ∼ N

(
TR
2 ,

TR
4

)
. Let Z =

T+
R −T

−
R = 2T+

R −TR. Thus, Z is normally distributed with µ = 2 · TR2 −TR = 0

and σ2 = 22 · TR4 = TR, so Z ∼ N (0, TR). When |Z| ≥ N , for some N , where
0 ≤ N ≤ TR, the absolute linear hull correlation is

|CEK | ≥ N · 2−2R.

Thus, there is a clear trade-off between the lower bound on |CEK | and the
probability that a randomly chosen K ∈ K yields such a lower bound.

For the TR values, we refer to [40] or Table 6 in Appendix B. For a fixed num-
ber of rounds R, using the analysis above, TR can be used directly to determine
i) a lower bound on |CEK | and ii) the probability that for a random K ∈ K,
this bound is obtained. Table 1 gives, for various probabilities α and number
of rounds R the value β such that α = Pr [|CEK | ≥ β]. Table 7 in Appendix B
gives the same data points for R ∈ {1, . . . , 31}.

Table 1: Values log2 β s.t. α = Pr [|CEK | ≥ β] for R-round PRESENT

α

R 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99

7 −9.55 −9.94 −10.20 −10.86 −11.48 −12.29 −13.91 −14.91 −17.23
11 −14.74 −15.14 −15.39 −16.06 −16.68 −17.48 −19.10 −20.10 −22.43
16 −21.27 −21.66 −21.92 −22.58 −23.20 −24.01 −25.63 −26.63 −28.95
24 −31.71 −32.11 −32.36 −33.03 −33.65 −34.46 −36.07 −37.07 −39.40
26 −34.33 −34.72 −34.97 −35.64 −36.26 −37.07 −38.68 −39.69 −42.01
28 −36.94 −37.33 −37.58 −38.25 −38.87 −39.68 −41.30 −42.30 −44.62
31 −40.85 −41.25 −41.50 −42.17 −42.79 −43.60 −45.21 −46.22 −48.54

Example 1. For R = 28, we have T28 = 45170283840. Thus, with probability
α = 0.30, a randomly chosen K ∈ K yields that one of Ohkuma’s optimal hulls
has |CEK | ≥ 2−38.25.

5 Application to PRESENT

In this section we give key-less linear distinguishers on PRESENT for varying
parameters; the number of rounds R; the pre-computation time T ; the size M
of the set S produced and the lower bound α on the fraction of the key space
for which they are valid. PRESENT has previously received attention in the
context of key-recovery attacks, especially with respect to linear cryptanaly-
sis [13,15,31,40] on which our results build. The attack described is completely
independent of the key size used, and hence also of the key schedule.



5.1 Probabilistic Phase

In this section we present key-less linear distinguishers on PRESENT using the
model introduced in Section 3. We refer to approach described here as the prob-
abilistic phase, which in Section 5.2 is combined with a deterministic phase to
extend the distinguishers for three more rounds. The distinguishers we present
here do not use any pre-computation, i.e. in the notation of the model, we have
T = 0. Corollary 1 implies in this case that when |CEK | > 0, the tuple pro-
duced by any algorithm A is always (T,M, α)-intractable for some α > 0, and
hence a valid distinguisher. The results match those of distinguishers used in
key-recovery attacks and are as such of limited interest. We hope the discussion
below makes it easier to follow (and appreciate) the real use of the model intro-
duced, namely the case described in Section 5.2 when we do some, albeit very
little, pre-computation.

In the following, let REKδ,γ be the linear relation used, where δ = γ = e21,
which is one of the optimal linear hulls for PRESENT identified by Ohkuma.
Also, let A be an algorithm constructing S ⊆ Fn2 by pickingM arbitrary x ∈ Fn2 .
In Table 2 we give, for various M and number of rounds R, lower bounds α on
the fraction of the key space, s.t. (A, E , EK ,S, T = 0,REKδ,γ , α) are key-less linear
distinguishers.

Table 2: Lower bounds α on the fraction of the key space K susceptible to key-
less linear distinguishers using T = 0, and the specifiedM and number of rounds
R. A dash indicates that α < 0.00.

Rounds R

M 10 11 12 13 14 15 16 17 18 19 20 21 22 23

240 0.96 0.89 0.74 0.41 0.04 − − − − − − − − −
244 0.99 0.97 0.93 0.84 0.61 0.21 − − − − − − − −
246 0.99 0.99 0.97 0.92 0.80 0.53 0.12 − − − − − − −
252 1.00 1.00 1.00 0.99 0.97 0.94 0.85 0.63 0.24 − − − − −
254 1.00 1.00 1.00 0.99 0.99 0.97 0.92 0.81 0.55 0.14 − − − −
256 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.90 0.77 0.46 0.07 − − −
262 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.93 0.82 0.58 0.17 −
263 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.95 0.87 0.69 0.33 0.02
264 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.96 0.91 0.78 0.49 0.09

Note, that the α parameter from Table 2 gives immediately the probability
that such an R-round key-less linear distinguisher without pre-computation for
PRESENT is valid in practice, for a fixed chosen- or known key K ∈ K. As
examples, we see that with M = 240, the probability of having a valid key-less
linear distinguisher for 13-round PRESENT with a fixed key K is at least α =
0.41. Another example is a key-less linear distinguisher on 22-round PRESENT
which is valid for a fraction of at least α = 0.33 of the key space, usingM = 263.



5.2 Extension by Deterministic Phase

Next, we describe how one can use pre-computation to extend the key-less linear
distinguishers from Section 5.1 to cover three more rounds with no degradation
to the valid key space fraction α. In the notation of the model, we now have
T > 0, which in turn means that (T,M, α)-intractability is no longer granted
for free by Corollary 1, unless below T < 2

√
M. In Appendix D we outline an

approach for a deterministic phase over 6 rounds, reminiscent of the rebound
approach [36,28], which however has a computational complexity too high to fit
into our model.

We describe in the following the algorithm A which will construct the set
of inputs S. The algorithm we give will construct S such that each x ∈ S is
guaranteed to follow the linear trail T = (e21, e21, e21, e21) over the first three
rounds. We remark that this choice of trail is not unique; several others choices
are possible, this is but one example. We refer to the approach we describe as
the deterministic phase.

R0

S S S S S S S S S S S S S S S SS S S S S S S S S S S S S S S S

R1

S S S S S S S S S S S S S S S SS S S S

R2

S S S S S S S S S S S S S S S SS

Fig. 2: Construction of S for 3-round PRESENT using the trail T =
(e21, e21, e21, e21). The highlighted parts show the S-boxes and key bits involved
in the construction. The trail is indicated by the thick dotted line.

For notation, in round r ∈ {0, 1, 2}, let Sr,j denote the jth S-box of round
Rr (counting from right to left) and let Kr,j denote the jth least significant
bit of the round key Kr, where all indices start from zero. Consider then S2,5

which is highlighted in Figure 2. By inspection, the PRESENT S-box has 10
inputs x which satisfy 〈x, (0, 0, 1, 0)〉 = 〈S(x), (0, 0, 1, 0)〉 and hence follow the
trail (e21, e21) over the round R2, no matter what the inputs on the other S-
boxes are. By adding the key bits (K2,23‖ · · · ‖K2,20) to each x, we can trace
those back through the permutation layer of the round R1. For each value of
x ⊕ (K2,23‖ · · · ‖K2,20), we now have a particular value on output bit 1 of each



of the S-boxes S1,7, . . . , S1,4, as indicated in Figure 2. By the bijectivity of the
S-box, it holds that for each of these S-boxes, half the inputs will give the desired
output bit. However, for the S-box S1,5 we have the extra requirement that the
input bit on position 1 should equal the output bit on position 1, and only 5
inputs satisfy both properties simultaneously. As such, we can trace each of the
ten values for x back through R1 and also adding the key bits (K1,31‖ · · · ‖K1,16)
to obtain 10 ·83 ·5 = 25600 inputs to R2 ◦R1 which follow the trail (e21, e21, e21)
by construction. By tracing each of these values back through R0 the same way,
and adding the full round key K0, algorithm A has a construction of the set S
which consists of inputs which follow T over three rounds with probability 1.
Using this approach to constructing S, the size of the set can be up to M =
25600 · 815 · 5 = 4503599627370496000 ≈ 261.97. As such, if one should wish to
use a smallerM for the key-less linear distinguisher, this is also possible, simply
by leaving out elements in the construction of S.

Table 3: Tight values α such that (E , EK ,S,REKδ,γ ) is α-separable, where EK is
R-round PRESENT for a fixed, known K ∈ K (and thus EK ∈ E)

Rounds R 18 19 20 21 22 23 24 25 26
α 0.998 0.995 0.988 0.970 0.926 0.819 0.571 0.162 0.001

Consider EK being R-round PRESENT for a particular fixed K ∈ K, and
thus EK ∈ E . Let A be an algorithm for constructing S using the 3-round
deterministic phase described, with M ≈ 261.97 for one of Ohkuma’s optimal
linear hull relations REKδ,γ . Table 3 gives, for various number of rounds R, the

highest possible α s.t. (E , EK ,S,REKδ,γ ) is α-separable as per Definition 1. Of

course, in order for the key-less linear distinguisher (A, E , EK ,S, T,REKδ,γ , α) to be

valid, it also has to hold that the tuple (E , EK ,S,REKδ,γ ) is (T,M, α)-intractable
as per Definition 2, where T is the time required by A to construct the set S.

In Section 5.3, we show that the time T required to construct S by A is equiv-
alent to T = 409641

16R calls to an R-round PRESENT encryption oracle. As such,

we have that T < 2
√
M, and from Corollary 1, it follows that (E , EK ,S,REKδ,γ )

is (T,M, α)-intractable.

In Appendix C, we give examples of experimental verification of the key-
less linear distinguishers presented on 9-round PRESENT. The code for this
experimental verification is available as [29].

5.3 Computational Complexity

In this section we analyze the computational complexity, i.e. the time T required
by A to construct S in the deterministic phase of Section 5.2. In order to measure
the time T spent in this phase, we determine the number of S-box lookups



performed by A and then compare this to the number of S-box applications for
a full call to the encryption oracle.

Let us consider all S-boxes as being different for generality, as the complexity
in this case will certainly upper bound the case where they are all equal. In
particular, since the key is known, this allows us to consider the key addition
as part of the S-boxes. The analysis follows the construction of S by A itself,
starting from round R2 and working its way up (referring again to Figure 2).
To determine the 10 inputs to S2,5, A performs one lookup into this S-box. For
each of these 10 values, one bit is traced back to an S-box of R1, so this adds
10 · 4 S-box lookups. Finally, A has 25600 inputs to round R1 for which it traces
one bit back to each of the 16 S-boxes of round R0, contributing by 25600 · 16
S-box lookups.

In total, the number of lookups is 1+10·4+25600·16 = 409641. Now, compar-
ing to the number of S-box lookups involved with a call to an R-round PRESENT
oracle, the number of lookups would be 16R, not counting key scheduling. As
such, we find that the time T spent by A for constructing S is T = 409641

16R .

Memory Complexity. The memory complexity, though not a formal part of
the key-less linear distinguisher model, is at a practical level. The storage of the
set S can be encoded efficiently as follows. We define three sets

Q = {X | X1 = S(X)1},
S0 = {X | S(X)1 = 0}, and

S1 = {X | S(X)1 = 1}.
(2)

In a set L we store the 25600 inputs which follow the trail (e21, e21) over R2◦R1.
Let X = X15‖ · · · ‖X0 denote one such 16-bit from L. The corresponding set of
inputs to R0 is now determined as the Cartesian product

SX15
× · · · × SX6

×Q ∩ SX5
× SX4

× · · · × SX0
. (3)

The storage of Q, S0 and S1 take up 5 bytes, 4 bytes and 4 bytes, respectively.
The storage of L takes up 50 KB.

Using these simple observations, we give in Table 4 an overview of selected
results for key-less linear distinguishers on R-round PRESENT. We give the
size M of S ⊆ Fn2 constructed by A, the time T required to do so, and the
parameter α (implicitly, as we give α · 2128) for the distinguisher, i.e. the lower
bound on the fraction of the key space for which the distinguisher is valid. As
such, the table is representative for PRESENT-128. Numbers for PRESENT-80
can be directly determined with the same T and α · 280. Note, however, that for
27-round PRESENT-80 using M = 261.97, α · 280 < 0, so one can distinguish at
most 26 rounds of PRESENT-80.

What is evident from Table 4 is, that there is a clear limit to how many
rounds can be distinguished using a particular M. This shows in the diagonal
line through the table. Another observation is that for a fixed M, there is a
clear drop in the fraction of the key space α for which the distinguisher works



Table 4: Overview of parameters for key-less linear distinguishers on PRESENT.
The entries give, for each M and each total number of rounds R a pair
(log2 T, log2(α · 2128)) s.t. algorithm A can construct S in time T and result
in a distinguisher for at least a fraction α of the key space. Here, we indicate for
PRESENT-128 the number of keys supporting the distinguisher. The equivalent
number for PRESENT-80 is obtained as α·280. A dash indicates that α·2128 < 0.

Rounds R

M 14 18 22 25 26 27 28

222 − − − − − − −
225 − − − − − − −
228 (−3.4, 70.9) − − − − − −
231 (−3.4, 119.2) − − − − − −
234 (−3.4, 126.2) − − − − − −
237 (−3.4, 127.5) − − − − − −
240 (−3.4, 127.8) (−3.8, 107.1) − − − − −
243 (−3.4, 127.9) (−3.8, 124.3) − − − − −
246 (−3.4, 128.0) (−3.8, 127.1) − − − − −
249 (−1.7, 128.0) (−2.1, 127.7) (−2.4, 75.1) − − − −
252 (0.9, 128.0) (0.5, 127.9) (0.3, 119.8) − − − −
255 (3.9, 128.0) (3.5, 128.0) (3.2, 126.3) − − − −
258 (6.9, 128.0) (6.5, 128.0) (6.2, 127.5) (6.0, 103.1) − − −
261 (9.9, 128.0) (9.5, 128.0) (9.2, 127.8) (9.0, 123.7) (9.0, 108.5) (8.9, 21.0) −
261.97 (10.8, 128.0) (10.5, 128.0) (10.2, 127.9) (10.0, 125.4) (9.9, 117.1) (9.9, 71.8) −



between R and R + 1 rounds. For example, with M = 261, we see a drop from
2108.5 keys supporting the distinguisher for 26 rounds to just 221 for 27 rounds.
What is also apparent is that in all cases, T � 2

√
M, indeed sometimes T < 1,

so by Corollary 1, (T,M, α)-intractability is for granted.
One thing worth discussion is the time complexity T . This is the time, con-

verted to equivalent calls to an R-round encryption oracle, required by the key-
less linear distinguisher algorithm A to construct the set S. In a scenario where
one would verify the distinguisher for a concrete block cipher EK , i.e. for a par-
ticular value of K, one would need to determine the value of the random variable
X of Definition 1. What we denote as the verifying complexity in this case is
dominated by M, because this is the number of inputs to the permutation that
needs to be evaluated in order to determine X .

6 Conclusion and Open Problems

In this paper we have formalized the notion of distinguishers for block ciphers
using linear cryptanalysis in the key-less setting, i.e. where the block cipher is
instantiated with a single known or chosen key.

The introduced key-less statistical distinguisher based on linear cryptanalysis
led to a wide variety of results on PRESENT, for example a linear distinguisher
of up to 26 and 27 rounds of PRESENT-80 and PRESENT-128, with respec-
tive computational complexities of about 29 and 210, and verifying complexities
of about 261 and 261.97, for both PRESENT variants. The very low computa-
tional complexity made a practical verification possible for a reduced number
of rounds, but also leaves room for improvements. For example, it is an open
question whether it is possible to extend the deterministic phase to cover more
rounds, while still keeping the work factor in the order of 230 to allow for a valid
distinguisher c.f. Corollary 1.

While PRESENT was chosen because it is a relatively high profile cryptan-
alytic target and the fact that relatively long useful linear hulls exist, we point
out that the new distinguisher model is not specifically tailored for it. KATAN,
a cipher with a very different round transformation and design philosophy, ex-
hibits linear effects as described in [14] that makes it another interesting target
for an application of the techniques introduced in this paper.

More research is needed on the relations between the use of degrees of free-
dom and the number of rounds that can be sidestepped, e.g. in our deterministic
phase. Even though there is no good theoretical understanding of this yet, the
literature already contains many data points for differential properties. The lin-
ear counterpart seems different and interesting enough to warrant a separate
study, see also Appendix D.

The techniques we developed for the presented distinguisher might also have
applications to preimage attacks that are inspired by linear cryptanalysis, or at
least to somewhat speed-up brute-force preimage search. It will be interesting to
see how this approach compares to other such methods [9,42]. Also, the approach
naturally and directly applies to permutations, which become an increasingly



important primitive in their own right, also due to the popularization of the
Sponge [4] construction.
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A PRESENT Components

Table 5 gives the 4-bit S-box used in PRESENT. The bit-permutation P is
defined s.t. bit i is moved to bit P (i) where

P (i) = 16 · (i mod 4) + 4 ·
⌊
i

16

⌋
+

⌊
i mod 16

4

⌋
.

Algorithms 1 and 2 give pseudo-code for the key-scheduling algorithms for PRESENT-
80 and PRESENT-128, respectively.

Table 5: The 4-bit PRESENT S-box in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Algorithm 1: PRESENT-80 key schedule

Data: 80-bit master key K
Result: PRESENT-80 round key array ki, 0 ≤ i ≤ 31
for i← 0 to 31 do

k`i ← [K79‖ . . . ‖K16];
kri ← [K15‖ . . . ‖K0];
[K79‖K78‖ . . . ‖K1‖K0]← [K18‖K17‖ . . . ‖K20‖K19];
[K79‖K78‖K77‖K76]← S[K79‖K78‖K77‖K76];
[K19‖K18‖K17‖K16‖K15]← [K19‖K18‖K17‖K16‖K15]⊕ (i+ 1);

end

Algorithm 2: PRESENT-128 key schedule

Data: 128-bit master key K
Result: PRESENT-128 round key array ki, 0 ≤ i ≤ 31
for i← 0 to 31 do

k`i ← [K127‖ . . . ‖K64];
kri ← [K63‖ . . . ‖K0];
[K127‖K126‖ . . . ‖K1‖K0]← [K66‖K65‖ . . . ‖K68‖K67];
[K127‖K126‖K125‖K124]← S[K127‖K126‖K125‖K124];
[K123‖K122‖K121‖K120]← S[K123‖K122‖K121‖K120];
[K66‖K65‖K64‖K63‖K62]← [K66‖K65‖K64‖K63‖K62]⊕ (i+ 1);

end

B Data Pertaining to Correlation Bounding

Table 6 is the one determined by Ohkuma in [40], giving the number of optimal
trails in an optimal hull for R rounds with R ∈ {1, . . . , 31}. Table 7 gives values
log2 β such that Pr [|CEK | ≥ β] = α for various α and number of rounds R.



Table 6: Number of trails TR in optimal hull for R-round PRESENT, R ∈
{1, . . . , 31}

R TR R TR R TR R TR

1 1 9 512 17 1140480 25 2517252696
2 1 10 1344 18 2985984 26 6590254272
3 1 11 3528 19 7817472 27 17253512704
4 3 12 9261 20 20466576 28 45170283840
5 9 13 24255 21 53582633 29 118257341400
6 27 14 63525 22 140281323 30 309601747125
7 72 15 166375 23 367261713 31 810547899975
8 192 16 435600 24 961504803

Table 7: Values log2 β s.t. α = Pr [|CEK | ≥ β] for R-round of PRESENT

α

R 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

1 −0.63 −1.03 −1.28 −1.64 −1.95 −2.25 −2.57 −2.93 −3.38 −3.98 −4.99 −6.00 −8.32
2 −2.63 −3.03 −3.28 −3.64 −3.95 −4.25 −4.57 −4.93 −5.38 −5.98 −6.99 −8.00 −10.32
3 −4.63 −5.03 −5.28 −5.64 −5.95 −6.25 −6.57 −6.93 −7.38 −7.98 −8.99 −10.00 −12.32
4 −5.84 −6.24 −6.49 −6.85 −7.16 −7.46 −7.78 −8.14 −8.58 −9.19 −10.20 −11.20 −13.53
5 −7.05 −7.44 −7.70 −8.06 −8.36 −8.66 −8.98 −9.35 −9.79 −10.40 −11.41 −12.41 −14.73
6 −8.26 −8.65 −8.90 −9.26 −9.57 −9.87 −10.19 −10.55 −11.00 −11.60 −12.61 −13.62 −15.94
7 −9.55 −9.94 −10.20 −10.56 −10.86 −11.16 −11.48 −11.85 −12.29 −12.90 −13.91 −14.91 −17.23
8 −10.84 −11.24 −11.49 −11.85 −12.16 −12.46 −12.78 −13.14 −13.58 −14.19 −15.20 −16.20 −18.53
9 −12.13 −12.53 −12.78 −13.14 −13.45 −13.75 −14.07 −14.43 −14.88 −15.48 −16.49 −17.50 −19.82
10 −13.44 −13.83 −14.09 −14.45 −14.75 −15.05 −15.37 −15.74 −16.18 −16.78 −17.80 −18.80 −21.12
11 −14.74 −15.14 −15.39 −15.75 −16.06 −16.36 −16.68 −17.04 −17.48 −18.09 −19.10 −20.10 −22.43
12 −16.05 −16.44 −16.69 −17.05 −17.36 −17.66 −17.98 −18.34 −18.79 −19.39 −20.40 −21.41 −23.73
13 −17.35 −17.75 −18.00 −18.36 −18.67 −18.97 −19.29 −19.65 −20.09 −20.70 −21.71 −22.71 −25.04
14 −18.66 −19.05 −19.30 −19.66 −19.97 −20.27 −20.59 −20.95 −21.40 −22.00 −23.01 −24.02 −26.34
15 −19.96 −20.36 −20.61 −20.97 −21.28 −21.58 −21.90 −22.26 −22.70 −23.31 −24.32 −25.32 −27.65
16 −21.27 −21.66 −21.92 −22.28 −22.58 −22.88 −23.20 −23.56 −24.01 −24.61 −25.63 −26.63 −28.95
17 −22.57 −22.97 −23.22 −23.58 −23.89 −24.19 −24.51 −24.87 −25.32 −25.92 −26.93 −27.93 −30.26
18 −23.88 −24.27 −24.53 −24.89 −25.19 −25.49 −25.81 −26.18 −26.62 −27.23 −28.24 −29.24 −31.56
19 −25.19 −25.58 −25.83 −26.19 −26.50 −26.80 −27.12 −27.48 −27.93 −28.53 −29.54 −30.55 −32.87
20 −26.49 −26.89 −27.14 −27.50 −27.80 −28.11 −28.42 −28.79 −29.23 −29.84 −30.85 −31.85 −34.17
21 −27.80 −28.19 −28.44 −28.80 −29.11 −29.41 −29.73 −30.09 −30.54 −31.14 −32.15 −33.16 −35.48
22 −29.10 −29.50 −29.75 −30.11 −30.42 −30.72 −31.04 −31.40 −31.84 −32.45 −33.46 −34.46 −36.79
23 −30.41 −30.80 −31.06 −31.42 −31.72 −32.02 −32.34 −32.71 −33.15 −33.75 −34.77 −35.77 −38.09
24 −31.71 −32.11 −32.36 −32.72 −33.03 −33.33 −33.65 −34.01 −34.46 −35.06 −36.07 −37.07 −39.40
25 −33.02 −33.41 −33.67 −34.03 −34.33 −34.63 −34.95 −35.32 −35.76 −36.37 −37.38 −38.38 −40.70
26 −34.33 −34.72 −34.97 −35.33 −35.64 −35.94 −36.26 −36.62 −37.07 −37.67 −38.68 −39.69 −42.01
27 −35.63 −36.03 −36.28 −36.64 −36.95 −37.25 −37.57 −37.93 −38.37 −38.98 −39.99 −40.99 −43.31
28 −36.94 −37.33 −37.58 −37.94 −38.25 −38.55 −38.87 −39.23 −39.68 −40.28 −41.30 −42.30 −44.62
29 −38.24 −38.64 −38.89 −39.25 −39.56 −39.86 −40.18 −40.54 −40.98 −41.59 −42.60 −43.60 −45.93
30 −39.55 −39.94 −40.20 −40.56 −40.86 −41.16 −41.48 −41.85 −42.29 −42.90 −43.91 −44.91 −47.23
31 −40.85 −41.25 −41.50 −41.86 −42.17 −42.47 −42.79 −43.15 −43.60 −44.20 −45.21 −46.22 −48.54

C Experimental Verification

In this section we describe experiments performed to verify the validity of the
proposed key-less linear distinguishers. Concretely, we describe a key-less linear
distinguisher A trying to distinguish 9-round PRESENT (regardless of key size).
We let REKδ,γ be the linear relation used in Section 5.

We know that to distinguish 9-round PRESENT, we can do a 3-round de-
terministic phase to construct S as described in Section 5. In this case, the
probabilistic phase is 6 rounds. In the following, we give two examples using two
different values α ∈ {0.33, 0.75}.



For the first example, we have α = 0.33. From Theorem 2, we know that to
have 0.33-separability, we require that the event |CEK | ≥ 2/

√
M happens with

probability (at least) α = 0.33. From the analysis of Section 4.1, we find that
for 6-round PRESENT we have Pr [|CEK | ≥ β] = α for β = 2−9.66. When using
the inequality |CEK | ≥ 2/

√
M, we find this bound is tight whenM = 2619369.

As such, A is an algorithm for constructing an S of this size in the 3-round
deterministic phase described in Section 5.2. For this key-less linear distinguisher
A, we now have 0.33-separability, because we expect that

∣∣E [X ]− M2
∣∣ ≥ √M,

where X is the number of inputs satisfying the linear relation.
The experimental part comes now from actually encrypting each x ∈ S un-

der a fixed, known key K ∈ K using 9-round PRESENT. We then check each
REKδ,γ (x) = 1 by checking the relation on the input/output pair. For our ex-
periment, we repeated 1000 times the experiment of computing X for a ran-
dom key K and the corresponding set S. We found that 389 keys satisfied∣∣E [X ]− M2

∣∣ ≥ √M, and as such we see that this fits with 389
1000 ≥ α = 0.33.

We repeated the same experiment again with α = 0.75. In this case, we found
that we requireM = 24480331. In the same way, we did 1000 experiments with
random keys K and found that 764 keys satisfied

∣∣E [X ]− M2
∣∣ ≥ √M. Again,

this fits with 764
1000 ≥ α = 0.75.

D 6-round Deterministic Phase

By combining the 3-round deterministic phase of Section 5.2 with another 3
rounds appearing before, it is possible to construct a 6-round deterministic phase,
reminiscent of the rebound approach [36,28] (see Figure 3). The idea is, that for
rounds 3 to 5, the same approach as in Section 5.2 is used. Also, the same
approach is used, but going in the other direction, for rounds 0 to 2.

This describes a construction to independently obtain (i) a set of outputs from
round R2, for which the inputs follow the trail over the first three rounds and (ii)
a set of inputs to R3 which follow the trail over the last three rounds. These two
sets meet at the same point: Right around the addition of the round key of round
R3. Thus, one can use said round key to determine a matching between the two
sets, to obtain a set which has the desirable property of following the trail over
both the top and bottom part. However, as the approaches are independent,
there are constraints put on the round key of round R3 due to both parts, and
this loss in degrees of freedom must be taken into account.

While the technique described here is not directly applicable with our model,
as it by nature needs to use several different keys to match the two sets, it could
potentially be useful in chosen-key models which allow an adversary to make a
statement using multiple different keys.
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Fig. 3: 6-round deterministic phase for PRESENT using the trail
(e21, e21, e21, e21, e21, e21, e21)
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