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Abstract. Functional encryption (FE) enables sophisticated control over decryption rights in a
multi-user scenario, while functional signature (FS) allows to enforce complex constraints on sign-
ing capabilities. This paper introduces the concept of functional signcryption (FSC) that aims to
provide the functionalities of both FE and FS in an unified cost-effective primitive. FSC provides
a solution to the problem of achieving confidentiality and authenticity simultaneously in digital
communication and storage systems involving multiple users with better efficiency compared to a
sequential implementation of FE and FS. We begin by providing formal definition of FSC and formu-
lating its security requirements. Next, we present a generic construction of this challenging primitive
that supports arbitrary polynomial-size signing and decryption functions from known cryptographic
building blocks, namely, indistinguishability obfuscation (IO) and statistically simulation-sound non-
interactive zero-knowledge proof of knowledge (SSS-NIZKPoK). Finally, we exhibit a number of rep-
resentative applications of FSC: (I) We develop the first construction of attribute-based signcryption
(ABSC) supporting signing and decryption policies representable by general polynomial-size circuits
from FSC. (II) We show how FSC can serve as a tool for building SSS-NIZKPoK system and IO, a
result which in conjunction with our generic FSC construction can also be interpreted as establishing
an equivalence between FSC and the other two fundamental cryptographic primitives.

Keywords: functional signcryption, indistinguishability obfuscation, statistically simulation-sound
non-interactive zero-knowledge proof of knowledge, polynomial-size circuits.

1 Introduction

Confidential as well as authenticated message transfer and storage has been one of the central
focus of cryptography since years. In the public key setting, a standard approach for achieving
this goal has been to utilize digital signature and public key encryption primitives in sequence.
However, this strategy amounts to incurring a direct addition of the costs of both primitives.
Digital signcryption, introduced by Zheng [Zhe97], is an ambitious cryptographic paradigm that
unifies the functionalities of both encryption and authentication in a cost-effective formulation.

However, in the standard notion of digital signcryption, the control over signing and decryp-
tion rights is “all or nothing”: Only those in possession of the secret signing key corresponding
to the system public key can signcrypt a message and the resulting ciphertext can be unsign-
crypted by only those having the matching secret decryption key. In the modern era of Internet
communication and cloud technology where multiple users are involved, such an “all or nothing”
control over signing and decryption capabilities is no longer sufficient, rather highly sophisti-
cated restrictions over signing and decryption rights must be enforced.

In order to realize fine-grained control over decryption capabilities, the concept of functional
encryption (FE) has been introduced [BSW11]. An FE scheme includes a trusted authority which
holds a master secret key and publishes system public parameters. An encrypter uses this sys-
tem public parameters to encrypt a message. A decrypter may obtain a decryption key dk(g)

∗ An extended abstract of this paper will appear in the proceedings of ProvSec 2015. This is the full version.
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for some decryption function g from the authority if and only if the authority deems that the
decrypter is entitled to possess that key. The decrypter can now use the decryption key dk(g)
to decrypt a ciphertext encrypting some message m to obtain g(m) and nothing more.

On the other hand, functional signature (FS), introduced in [BGI14], [BF14], allows manag-
ing complex signing credentials. Just like an FE scheme, an FS system also involves a trusted
authority that publishes system public parameters and possesses a master signing key which
can be used for signing any message and providing a constrained signing key sk(f) for some
signing function f to a signer after verification of its signing credentials. This restricted signing
key sk(f) can be used for producing signatures, verifiable under the system public parameters,
on only those messages that are in the range of the function f .

In the past few years, a remarkable progress has taken place in the fields of FE and FS. In par-
ticular, FE and FS schemes supporting functions expressible in terms of general polynomial-size
circuits have been invented based on advanced cryptographic primitives such as indistinguishabil-
ity obfuscation, multilinear maps, statistically simulation-sound non-interactive zero-knowledge
proof of knowledge, and so on [GGH+13b], [ABG+13], [Wat14], [GGHZ14], [BGI14], [BF14],
[BMS13]. However, given this state of the art, exercising fine-grained control over the signing
and decryption rights in a multi-user confidential and authenticated digital communication or
storage system would necessitate implementing both FE and FS sequentially which would entail
summing up the cost incurred by both primitives.

In this work, we put forward a new cryptographic paradigm termed as functional signcryp-
tion (FSC) that unifies the functionalities of both FE and FS. In other words, FSC aims to provide
enhanced access control in the context of the traditional digital signcryption. FSC solves the is-
sue of simultaneously managing signing and decryption credentials in a multi-user environment
with better efficiency. More precisely, in an FSC scheme, we consider a trusted authority that
holds a master secret key and publishes system public parameters. Using its master secret key,
the authority can provide a signing key sk(f) for some signing function f to a signcrypter, as
well as, a decryption key dk(g) corresponding to some decryption function g to a decrypter after
verifying their credentials. Now such a signing key sk(f) enables a signcrypter to signcrypt, i.e.,
encrypt and authenticate simultaneously only those messages which are in the range of f , while
a decryption key dk(g) can be utilized to unsigncrypt a ciphertext, which is the signcryption
of some message m to retrieve g(m) only and to verify the authenticity of the ciphertext at the
same time.

We define two security notions for FSC: message confidentiality and ciphertext unforgeability.
Roughly speaking, message confidentiality guarantees that arbitrary collusion of decrypters can-
not retrieve any additional information about the signcrypted message from a ciphertext beyond
the union of what they could obtain individually. On the other hand, ciphertext unforgeability
assures that collusion of signcrypters cannot help them to generate a valid signcryption of a
message which none of them could have signcrypted on their own.

A motivating practical application of FSC could be the following: Suppose the government
of some country is collecting complete photographs of individuals as part of the census and
storing the collected data in a large server to allow utilizing it in future by other organizations
for various survey purposes. For maintaining the security and improving the quality of the col-
lected photos at the same time, the government is using some photo-processing software that
edits the photos and encrypts them before storing them to the server. Now, it is desirable that
the software is allowed to perform only some minor touch-ups of the photos such as changing
the color scale or removing red eyes, but is not allowed to make more significant changes such
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as merging two photos or cropping a picture. FSC can naturally address this issue as follows:
The government, acting as the trusted authority, would provide the photo-processing software
(signcrypter) the signing keys (sk(f)) which allows it to signcrypt original photographs with
only the allowable modifications (i.e., those in the range of f) and store the signcrypted photos
in the server. Later, when some organization (decrypter) wants to access only those informations
from stored photos meeting certain criteria (g), e.g., faces of individuals residing in a particular
city, the government would give the organization the corresponding functional decryption key
(dk(g)) after being fully convinced about the credentials of the organization. Now, when the
organization would access that data base (i.e., signcryption of m) using the obtained decryption
key, it could only obtain the face portion of the photographs of individuals living in that par-
ticular city (g(m)) and would be convinced that the photos obtained were undergone through
only minor photo-editing modifications.

Our Contributions: We begin with formally introducing (FSC) and formalizing its security
notions. We then present a generic construction of FSC that supports signing and decryp-
tion functions expressible as general polynomial-size circuits, assuming the existence of indis-
tinguishability obfuscation (IO) for all polynomial-size circuits and statistically simulation-sound
non-interactive zero-knowledge proof of knowledge (SSS-NIZKPoK) system for NP relations. Be-
sides, we use ordinary public key encryption and digital signature schemes as building blocks
for our FSC construction. We provide a rigorous security analysis of our FSC construction in our
proposed security model and prove that it achieves selective message confidentiality against cho-
sen plaintext attack (CPA), as well as, selective ciphertext unforgeability against chosen message
attack (CMA). An IO O for a class of circuits C guarantees that given two equivalent circuits
C1 and C2 from the class, the two distributions of obfuscations O(C1) and O(C2) should be
computationally indistinguishable. Very recently, few candidate constructions of IO have been
proposed [GGH+13b], [GLSW14], [PST14] based on multilinear maps [GGH13a], [CLT15]. On
the other hand, an SSS-NIZKPoK system [Gro06], [GGH+13b] for an NP relation R with as-
sociated language L is an extractable non-interactive proof system in which the proofs does
not reveal any information about the witness to a computationally bounded adversary and it is
infeasible to convince an honest verifier of a false statement even when the adversary is provided
with a simulated proof.

Utilizing FSC, we further develop attribute-based signcryption (ABSC) supporting arbitrary
polynomial-size circuits. ABSC is a related but weaker notion for controlling the signing and de-
cryption capabilities in signcryption. ABSC has two variants, namely, key-policy and ciphertext-
policy. Like FSC, in key-policy ABSC also there is a trusted authority who publishes system
public parameters and uses a master secret key to produce signing and decryption keys corre-
sponding to specific signing and decryption predicates. Now, the holder of such a signing key can
signcrypt messages with respect to any set of decryption attributes and only those sets of signing
attributes on which the predicate embedded in the signing key evaluates to 1. The signature
and decryption attribute sets are attached in the clear with the ciphertext, so that anyone with
a decryption key embedding a decryption predicate that outputs 1 on the associated decryption
attribute set can verify the authenticity of the ciphertext with respect to the associated sign-
ing attribute set and retrieve the signcrypted message. In ciphertext-policy ABSC, the roles of
predicates and attribute sets are reversed. Although in the last few years ABSC has gained a
lot of attention in the literature [GNSN10], [RD14b], [RD14a], [WH11], the class of allowable
signing and decryption predicates have been restricted to monotone Boolean formulas or, in
other words, to circuits with fan-out one. As noted in [GGH+13c], these schemes are vulnerable
to “backtracking” attack. To the best of our knowledge, our proposed ABSC scheme is the first
to realize general polynomial-size circuits for signing and decryption policies.
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Finally, we establish an equivalence between FSC and the two primitives, namely, SSS-
NIZKPoK for NP relations and IO for all polynomial-size circuits. Our generic construction,
described in §4.1 shows that those cryptographic tools are sufficient to build FSC. A natural
question that arises, therefore, is that whether SSS-NIZKPoK and IO are necessary, i.e., whether
those are implied by FSC. In §6, we address this question by exhibiting that FSC indeed implies
SSS-NIZKPoK for NP relations and IO for general polynomial-size circuits.

2 Preliminaries

Here we give the necessary background on the cryptographic primitives we will be using in
our FSC construction. For positive integers n, a, b (with a < b), we let [n] = {1, . . . , n} and
[a, b] = {a, . . . , b}. For any set S, x ← S represents the uniform random variable on S. For a
randomized algorithmM, we denote by θ =M(υ; r) the random variable defined by the output
ofM on input υ and randomness r, while θ ←M(υ) has the same meaning with the randomness
suppressed. For any circuit C, |C| denotes the size of C. For any two strings s, s′ ∈ {0, 1}∗, s‖s′
represents the concatenation of s and s′. A function ε is negligible if for every integer c, there
exists an integer K such that for all λ > K, |ε(λ)| < 1/λc.

2.1 Indistinguishability Obfuscation

Following formalization of indistinguishability obfuscation (IO) is due to Garg et al. [GGH+13b].

Definition 1 (Indistinguishability Obfuscation: IO). An indistinguishability obfuscator
(IO) O for a circuit class {Cλ} is a probabilistic polynomial-time (PPT) uniform algorithm
satisfying the following conditions:

• O(1λ, C) preserves the functionality of the input circuit C, i.e., for any C ∈ Cλ, if we com-
pute C ′ = O(1λ, C), then C ′(υ) = C(υ) for all inputs υ.

• For any λ and any two circuits C0, C1 ∈ Cλ with the same functionality, the circuits O(1λ, C0)
and O(1λ, C1) are computationally indistinguishable. More precisely, for all (not necessarily
uniform ) PPT adversaries D = (D1,D2), there exists a negligible function ε such that, if

Pr
[
(C0, C1, α)← D1(1λ) : ∀υ,C0(υ) = C1(υ)

]
> 1− ε(λ),

then
∣∣Pr
[
D2(α,O(1λ, C0)) = 1

]
− Pr

[
D2(α,O(1λ, C1)) = 1

]∣∣ < ε(λ).

The circuit classes we are interested in are polynomial-size circuits, i.e., when Cλ is the collection
of all circuits of size at most λ. This circuit class is denoted by P/poly. The first candidate con-
struction of IO for P/poly was presented in [GGH+13b] in a generic model of encoded matrices.
Later, [GLSW14], [PST14] have shown that IO for P/poly can be developed based on a single
instance-independent assumption.

When clear from the context, we will drop 1λ as an input to O and λ as a subscript of C.

The GGHRSW Candidate IO Construction [GGH+13b]

In view of providing an overview of the design of this challenging cryptographic primitive, here
we briefly discuss the IO construction of [GGH+13b]. However, this description is only a bird’s
eye-view with many technicalities omitted. In [GGH+13b], for building IO for P/poly, the au-
thors proceed in two steps:

(I) IO for NC1: At first, they construct an IO for a restricted circuit class, namely, the family
of circuits with logarithmic depth, polynomial size, and bounded fan-in. This circuit family is
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denoted as NC1. The construction utilizes a restricted version of multilinear maps [GGH13a],
[CLT15], referred to as multilinear jigsaw puzzles in [GGH+13b]. The celebrated theorem due
to Barrington [Bar86] shows that any NC1 circuit C with input length ζ and depth d can be
transformed into an oblivious matrix branching program, i.e., it can be converted into a sequence
bp = {(inp(i),Ai,0,Ai,1)}i∈[k] such that k ≤ 4d, where the function inp : [k] → [ζ] describes
what input bit is examined at the i-th step and Ai,β’s are 5× 5 permutation matrices. On any
particular ζ-bit input υ = υ1 . . . υζ , the evaluation of bp amounts to computing the product
matrix P =

∏
i∈[k]

Ai,υinp(i) , outputting 1 if P is the identity matrix I and 0 otherwise. With the

above transformation in place, the obfuscation procedure now attempts to garble the branching
program BP as described below. Let N = 2k + 5.

1. Run the instance generation routine of the multilinear jigsaw generator to get the underlying
ring Zp, the public parameters params, and a secret state ψ to be passed to the encoding algo-
rithm of the generator where we take the multilinearity level of the jigsaw puzzle to be [k+2].

2. Sample random and independent scalers {ωi,0, ωi,1, ω′i,0, ω′i,1}i∈[k] from Zp, subject to the con-
straint that

∏
i∈It

ωi,0 =
∏
i∈It

ω′i,0 and
∏
i∈It

ωi,1 =
∏
i∈It

ω′i,1 for all t ∈ [ζ], where It = {i : i ∈

[k]
∧

imp(i) = t}.

3. For every i ∈ [k], compute two pairs of (2N + 5) × (2N + 5) block-diagonal matrices
{Di,β}i∈[k]; β∈{0,1}, {D′i,β}i∈[k]; β∈{0,1} where the diagonal entries 1, . . . , 2N are chosen at
random and the bottom-right 5 × 5 are scaled Ai,β’s and the scaled identity matrix respec-
tively:

Di,β ∼


$

. . .
$

ωi,βAi,β

 , D′i,β ∼


$

. . .
$

ω′i,βI

 ,
where the $’s are random coefficients on main diagonal that are unique to each matrix and
the unspecified entries are 0.

4. Choose two sets of vectors {s, t} and {s′, t′} of dimension 2N + 5 as follows: The entries
1, . . . , N in the s and s′ vectors are set to 0, while the entries N + 1, . . . , 2N are selected at
random. In the t and t′ vectors, the entries 1, . . . , N are chosen at random, while N+1, . . . , 2N
are set to 0. Next two pairs of random vectors {s∗, t∗} and {s′∗, t′∗} of length 5 are chosen
such that 〈s∗, t∗〉 = 〈s′∗, t′∗〉. The last 5 entries of s, t, s′, t′ are taken to be the entries of
s∗, t∗, s′∗, t′∗ respectively.

5. Sample two sets of (k+1) random full-rank (2N+5)×(2N+5) matrices over Zp, {R0, . . . ,Rk}
and {R′0, . . . ,R′k} and compute their inverses.

6. Compute the randomized branching program as follows:

rndp(bp) = {p-prog,d-prog}

=
{(

s̃ = sR−1
0 , t̃ = Rkt

ᵀ,

{D̃i,β = Ri−1Di,βR−1
i }i∈[k];β∈{0,1}

)
,

(
s̃′ = s′(R′0)−1, t̃

′ = R′kt
′ᵀ,

{D̃′i,β = R′i−1D′i,β(R′i)−1}i∈[k];β∈{0,1}

)}
,

where uᵀ denotes transpose of the vector u. Note that the above “randomized”program con-
sists in essence of two parallel programs, namely, p-prog and d-prog. While p-prog embeds
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the original branching program bp with all the Ai,β’s, d-prog embeds a “dummy”program
of the same length, consisting only of identity matrices (so it computes the constant function
1). During the evaluation of the obfuscated program, the dummy program is used for the
purpose of equality test: The original program outputs 1 on a given input if and only if it
agrees with the dummy program on that input.

7. Use the encoding algorithm of the multilinear jigsaw generator to encode each element of
the step-i matrices D̃i,β, D̃

′
i,β relative to the singleton index-set i+ 1, each elements of the

vectors s̃, s̃′ relative to the singleton index-set {1}, and each element of the vectors t̃, t̃
′ with

respect to the singleton index-set {k + 2}.

8. The obfuscated program consists of the public parameters params of the jigsaw generator
plus all the encoded matrices and vectors.

The evaluation of the obfuscated program is carried out as follows: For any input υ = υ1 . . . υζ
to the original program, the corresponding matrices from both p-prog and d-prog are chosen
and it is tested whether they yield the same result using only the allowed multilinear operations.
More specifically, the evaluator computes encoding of s̃

∏
i∈[k]

D̃i,υinp(i) t̃− s̃′
∏
i∈[k]

D̃′i,υi,inp(i)
t̃
′ relative

to the index set [k+2] using multilinear operations and zero-test the result using the zero-testing
algorithm of the zigsaw puzzle. If the zero-test passes, then the evaluator outputs 1, otherwise,
it outputs 0.

The authors of [GGH+13b] prove that the above construction is indeed an IO for NC1 circuits
under a new complexity assumption whose validity they justify in a generic model of encoded
matrices.

(II) IO for P/poly: Having constructed an IO for NC1, the authors proceed to build an IO
for P/poly. More precisely, they utilize the IO for NC1 and (leveled) fully homomorphic encryp-
tion (FHE) [BGV12] with decryption in NC1 to obtain IO for P/poly. The key idea is to adopt
the two-key paradigm [NY90] to work using IO’s instead of witness-indistinguishable proofs.
To obfuscate a circuit C ∈ P/poly the following components are generated:

(a) Two public key-secret key pairs of the FHE scheme are selected and the public keys pk(1)
FHE

and pk(2)
FHE (say) are published.

(b) Encryptions of the circuit C being obfuscated under both the FHE public keys pk(1)
FHE,pk(2)

FHE,
yielding ciphertexts ct(1)

FHE,ct(2)
FHE are generated.

(c) Finally, the IO of a certain NC1 circuit CDEC,0 constructed as follows is prepared.

The obfuscated circuit evaluator who holds an input υ, uses the FHE evaluation algorithm
with input the FHE ciphertexts encrypting υ under pk(1)

PKE,pk(2)
PKE and ciphertexts ct(1)

FHE,ct(2)
FHE

to yield encryptions of C(υ) under both pk(1)
FHE,pk(2)

FHE. Suppose these encryptions be denoted
by e(1)

FHE and e
(2)
FHE respectively. The evaluator also keeps track of all the intermediate bit values

encountered during evaluation of the e
(1)
FHE and e

(2)
FHE which can be seen as a “proof” π that

it used υ to perform the evaluation correctly on both ct(1)
FHE and ct(2)

FHE. The evaluator then
feeds (e(1)

FHE, e
(2)
FHE, υ, π) into the obfuscated form of the circuit CDEC,0. This circuit CDEC,0 first

checks the proof π to make sure that e(1)
FHE and e(2)

FHE were correctly computed. Note that this can
be done easily in NC1. In fact, since the evaluator has included all the intermediate bit values
encountered during evaluation, so the circuit merely needs to check that each appropriate triple
of intermediate bit values respects the corresponding gate operations used during the evaluation
process. If the proof checks out, then the circuit CDEC,0 decrypts e(1)

FHE using the secret FHE key
sk(1)

FHE corresponding to pk(1)
FHE and outputs this decrypted value which should be C(υ).
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The principal insight behind the proof that the above construction indeed serves as an IO
is that there is another NC1 circuit CDEC,1 that is equivalent to CDEC,0, which simply decrypts
e

(2)
FHE using the secret key sk(2)

FHE corresponding to pk(2)
FHE instead provided the proof π is verified.

Because of the proof π that must be provided, both of these circuits always behave identically
on all inputs. Furthermore, when using CDEC,0, we note that sk(2)

FHE is never used anywhere, and,
therefore, the simantic security of the FHE scheme using pk(2)

FHE is maintained even given CDEC,0.
Thus, by alternatively applying the simantic security of the FHE scheme and switching back
and forth between CDEC,0 and CDEC,1 using the IO property, it is proven in [GGH+13b] that the
obfuscator presented above is indeed an IO for P/poly.

2.2 Statistically Simulation-Sound Non-Interactive Zero-Knowledge Proof of
Knowledge

Simulation-sound non-interactive zero-knowledge proof of knowledge have been introduced and
formalized in the full version of [Gro06]. However, here we slightly simplify the original definition
following [GGH+13b] and [BGI14].

Definition 2 (Statistically Simulation-Sound Non-Interactive Zero-Knowledge Proof
of Knowledge: SSS-NIZKPoK). Let R ⊂ {0, 1}∗ × {0, 1}∗ be an NP (binary) relation. For
pairs (X,W ) ∈ R, we call X the statement and W the witness. Let L ⊂ {0, 1}∗ be the language
consisting of statements in R. An SSS-NIZKPoK system for L consists of the following PPT
algorithms:

SSS-NIZKPoK.Setup(1λ): The trusted authority takes as input a security parameter 1λ and pub-
lishes a common reference string crs.

SSS-NIZKPoK.Prove(crs, X,W ): Taking as input the common reference string crs, a state-
ment X ∈ L along with a witness W , a prover outputs a proof π for X.

SSS-NIZKPoK.Verify(crs, X, π): On input the common reference string crs, a statement X ∈
{0, 1}∗, and a proof π, a verifier outputs 1, if the proof π is acceptable, or 0, otherwise.

SSS-NIZKPoK.SimSetup(1λ, X): The simulator takes as input the security parameter 1λ to-
gether with a statement X ∈ {0, 1}∗. It produces a simulated common reference string crs
along with a trapdoor tr that enables it to simulate a proof for X without access to a witness.

SSS-NIZKPoK.SimProve(crs,tr, X): Taking as input the simulated common reference string
crs, the trapdoor tr, and the statement X ∈ {0, 1}∗ for which crs and tr have been gen-
erated, the simulator outputs a simulated proof π for X.

SSS-NIZKPoK.ExtSetup(1λ): The extractor, on input the security parameter 1λ, outputs an
extraction-enabling common reference string crs and an extraction trapdoor t̂r.

SSS-NIZKPoK.Extr(crs, t̂r, X, π): The extractor takes as input the extraction-enabling common
reference string crs, the extraction trapdoor t̂r, a statement X ∈ {0, 1}∗, and a proof π. It
outputs a witness W .

An SSS-NIZKPoK system should possess the following properties:

• Perfect Completeness: An SSS-NIZKPoK system is said to be perfectly complete if for
all security parameter λ, all X,W ∈ R, all crs ← SSS-NIZKPoK.Setup(1λ), and all π ←
SSS-NIZKPoK.Prove(crs, X,W ), we have SSS-NIZKPoK.Verify(crs, X, π) = 1.
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• Statistical Soundness: An SSS-NIZKPoK system is statistically sound if for all non-
uniform adversaries A there exists a negligible function ε such that for any security parameter
λ, we have

AdvSSS-NIZKPoK,SOUND
A (λ) = Pr

[
crs← SSS-NIZKPoK.Setup(1λ); (X,π)← A(crs) :
SSS-NIZKPoK.Verify(crs, X, π) = 1

∧
X /∈ L

]
< ε(λ).

• Computational Zero-Knowledge: We define the SSS-NIZKPoK system to be computa-
tionally zero-knowledge if for all non-uniform PPT adversaries A there exists a negligible
function ε such that for any security parameter λ, we have for all X ∈ L

AdvSSS-NIZKPoK,ZK
A (λ) =∣∣Pr
[
crs← SSS-NIZKPoK.Setup(1λ);π ← SSS-NIZKPoK.Prove(crs, X,W ) : A(crs, X, π) = 1

]
− Pr

[
(crs,tr)← SSS-NIZKPoK.SimSetup(1λ, X);π ← SSS-NIZKPoK.SimProve(crs,tr, X) :

A(crs, X, π) = 1
]∣∣ < ε(λ)

where W is a witness corresponding to X.

• Knowledge Extraction: We call an SSS-NIZKPoK system a proof of knowledge for R if
for any security parameter λ the following holds: For all non-uniform adversaries A there
exists a negligible function ε1 such that

AdvSSS-NIZKPoK,CRS
A (λ) =

∣∣Pr
[
crs← SSS-NIZKPoK.Setup(1λ) : A(crs) = 1

]
− Pr

[
(crs, t̂r)← SSS-NIZKPoK.ExtSetup(1λ) : A(crs) = 1

]∣∣ < ε1(λ)

and for all non-uniform PPT adversaries A there exists a negligible function ε2 such that

AdvSSS-NIZKPoK,EXT
A (λ) = Pr

[
(X,π)← A(crs); W ∗ ← SSS-NIZKPoK.Extr(crs, t̂r, X, π) :
SSS-NIZKPoK.Verify(crs, X, π) = 1

∧
(X,W ∗) /∈ R

]
< ε2(λ).

• Statistical Simulation-Soundness: An SSS-NIZKPoK system is statistically simulation-
sound if for all non-uniform adversaries A there exists a negligible function ε such that for
any security parameter λ, we have for all statements X ∈ {0, 1}∗

AdvSSS-NIZKPoK,SIM-SOUND
A (λ) =

Pr
[
(crs,tr)← SSS-NIZKPoK.SimSetup(1λ, X);
π ← SSS-NIZKPoK.SimProve(crs,tr, X); (X∗, π∗)← A(crs, X, π) :
X∗ 6= X

∧
X∗ /∈ L

∧
SSS-NIZKPoK.Verify(crs, X∗, π∗) = 1

]
< ε(λ).

Realizing SSS-NIZKPoK

Constructions of non-interactive zero-knowledge proof of knowledge (NIZKPoK) for NP relations
are well-known [GOS06], [GOS12]. Using any NIZKPoK together with a non-interactive perfectly
binding commitment scheme we can construct an SSS-NIZKPoK system following the same tech-
nique as described in [GGH+13b]. For the sake of completeness we briefly sketch the construction
here.

Recall that an NIZKPoK system consists of similar algorithms as defined above for SSS-
NIZKPoK with the only exception that it lacks the statistical simulation-soundness feature pos-
sessed by SSS-NIZKPoK. On the other hand, a non-interactive perfectly binding commitment
scheme involves a commitment function Com(·; ·) which takes as input a message X along with
randomness r and outputs a commitment c = Com(X; r) of X. The commitment scheme must
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satisfy two properties, namely, computational hiding and perfect binding. Computational hiding
guarantees that no computationally bounded adversary can distinguish as to which message X
is locked in a commitment c, while perfect binding ensures that even an unbounded adversary
cannot open a commitment c in two different ways.

Let R be an NP relation with associated language L, κ be an upper bound on the length of the
statements in L, and 0κ represents a special statement outside L. Consider a non-interactive per-
fectly binding commitment scheme with commitment function Com(·; ·) for message space {0, 1}κ
along with randomness space {0, 1}η, and an NIZKPoK system NIZKPoK=(NIZKPoK.Setup,
NIZKPoK.Prove, NIZKPoK.Verify, NIZKPoK.SimSetup, NIZKPoK.SimProve, NIZKPoK.ExtSetup,
NIZKPoK.Extr) for the relation R′ whose statements are of the form X ′ = (X, c), witnesses are
of the form W ′ = (W, r), and

(X ′,W ′) ∈ R′ ⇐⇒ (X,W ) ∈ R
∨

c = Com(X; r). (1)

The SSS-NIZKPoK system is described as follows:
SSS-NIZKPoK.Setup(1λ): The trusted authority generates crs′ ← NIZKPoK.Setup(1λ) and
c = Com(0κ; r) using randomness r ← {0, 1}η. It publishes the common reference string
crs = (crs′, c).

SSS-NIZKPoK.Prove
(
crs = (crs′, c), X,W

)
: A prover computes π′ ← NIZKPoK.Prove

(
crs′,

X ′ = (X, c),W ′ = (W, r)
)

where r is some arbitrary random value in {0, 1}η. It outputs the
proof π = π′.

SSS-NIZKPoK.Verify
(
crs = (crs′, c), X, π = π′

)
: The verifier runs NIZKPoK.Verify(crs′, X ′ =

(X, c), π′) and outputs the result.

SSS-NIZKPoK.SimSetup(1λ, X): The simulator generates crs′ ← NIZKPoK.Setup(1λ) and c =
Com(X; r) using randomness r ← {0, 1}η. It outputs the simulated common reference string
as crs = (crs′, c). Its simulation trapdoor is tr = r.

SSS-NIZKPoK.SimProve
(
crs = (crs′, c),tr = r,X

)
: The simulator generates the proof π′ ←

NIZKPoK.Prove
(
crs′, X ′ = (X, c),W ′ = (W, r)

)
, where W is any arbitrary string, and out-

puts the simulated proof as π = π′.

SSS-NIZKPoK.ExtSetup(1λ): The extractor generates (crs′, t̂r′)← NIZKPoK.ExtSetup(1λ) and
c = Com(0κ; r) using randomness r ← {0, 1}η. It outputs the extraction enabling common
reference string as crs = (crs′, c). Its extraction trapdoor is t̂r = t̂r′.

SSS-NIZKPoK.Extr
(
crs = (crs′, c), t̂r = t̂r′, X, π = π′

)
: The extractor executes the algorithm

NIZKPoK.Extr(crs′, t̂r′, X ′ = (X, c), π′). If it obtains (W, r) for some strings W and r, then
it outputs W . Otherwise, it outputs ⊥ indicating failure.

The fact that the above construction satisfies all the properties of an SSS-NIZKPoK system can
be observed as follows:
• Perfect Completeness: This property follows directly from that of the NIZKPoK system.

• Statistical Soundness: This follows straightway from that of the NIZKPoK system and the
perfect binding property of the commitment scheme.

• Computational Zero-Knowledge: The computational zero-knowledge property of the
above SSS-NIZKPoK system follows from the following hybrid argument. Consider the se-
quence of hybrid experiments described below:
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– Hyb0: This hybrid corresponds to the honest generation of the common reference string
and proof.

– Hyb1: In this hybrid, we construct the common reference string as is done in SSS-
NIZKPoK.SimSetup. However, the proof is computed honestly with respect to the simu-
lated common reference string.

– Hyb2: Here, we generate the common reference string as in SSS-NIZKPoK.SimSetup and
compute the proof as in SSS-NIZKPoK.SimProve. Note that this hybrid coincides with
the simulation scenario.

Observe that, computational indistinguishability between Hyb0 and Hyb1 follows from the
computational hiding property of the commitment scheme, while that between hybrids Hyb1
and Hyb2 follows from the computational zero-knowledge property of the NIZKPoK system.

• Knowledge Extraction: The common reference strings generated by SSS-NIZKPoK.Setup
and that outputted by SSS-NIZKPoK.ExtSetup are statistically close as those produced by
NIZKPoK.Setup and NIZKPoK.ExtSetup are statistically close. The extraction property fol-
lows from the extraction property of NIZKPoK system and the perfect binding property of
the commitment scheme.

• Statistical Simulation Soundness: This follows directly from the statistical soundness of
the NIZKPoK system and the fact that, in the simulation scenario, the only false statement
for which an acceptable proof exists is the statement on which the simulated proof is provided
since the commitment scheme is perfectly binding.

3 The Notion of Functional Signcryption

We now give a formal definition of a functional signcryption (FSC) scheme and explain in more
detail the security requirements an FSC scheme must satisfy.

� Syntax: A functional signcryption (FSC) scheme for a message space M, a family of signing
functions F = {f : Df → M}, and a class of decryption functions G = {g : M→ Rg}, where
Df and Rg denote the domain of the function f and range of the function g respectively,
consists of the following PPT algorithms:

FSC.Setup(1λ): The trusted authority takes as input the security parameter 1λ and pub-
lishes the public parameters mpk, while keeps the master secret key msk to itself.

FSC.SKeyGen(mpk,msk, f): Taking as input the public parameters mpk, the master secret
key msk, and a signing function f ∈ F from a signcrypter, the trusted authority provides
a signing key sk(f) to the signcrypter.

FSC.Signcrypt(mpk, sk(f), z): A signcrypter takes as input the public parameters mpk, its
signing key sk(f) corresponding to some signing function f ∈ F, and an input z ∈ Df . It
produces a ciphertext ct which is a signcryption of f(z) ∈M.

FSC.DKeyGen(mpk,msk, g): On input the public parameters mpk, the master secret key
msk, and a decryption function g ∈ G from a decrypter, the trusted authority hands the
decryption key dk(g) to the decrypter.

FSC.Unsigncrypt(mpk,dk(g),ct): A decrypter, on input the public parameters mpk, its de-
cryption key dk(g) associated with its decryption function g ∈ G, and a ciphertext ct
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signcrypting a message m ∈ M, attempts to unsigncrypt the ciphertext ct and outputs
g(m), if successful, or a special string ⊥ indicating failure, otherwise.

� Correctness: An FSC scheme is correct if for all f ∈ F, z ∈ Df , and g ∈ G,

Pr
[
(mpk,msk)← FSC.Setup(1λ) : FSC.Unsigncrypt

(
mpk,FSC.DKeyGen(mpk,msk, g),

FSC.Signcrypt(mpk,FSC.SKeyGen(mpk,msk, f), z)
)

= g(f(z))
]
> 1− ε(λ)

for some negligible function ε.

� Security: An FSC scheme has two security requirements, namely, (I) message confidentiality
and (II)ciphertext unforgeability which are described below. For simplicity, we present our
security definitions for the selective model, where the adversary must decide the challenge
messages up front, before the system parameters are chosen.

(I) message confidentiality: We define this security notion on indistinguishability of ci-
phertexts against chosen plaintext attack (CPA) through the following game between a prob-
abilistic adversary A and a probabilistic challenger C.

Init: A submits two pairs (f∗0 , z∗0), (f∗1 , z∗1) of signing functions and inputs in the respec-
tive domains that will be used to frame the challenge.

Setup: C performs FSC.Setup(1λ) to obtain (mpk,msk) and hands mpk to A.

Query Phase 1: A may adaptively make any polynomial number of queries which may
be of the following types to be answered by C.

– Signing key query: Upon receiving a signing key query corresponding to a signing func-
tion f ∈ F from A, C returns sk(f) to A by running FSC.SKeyGen(mpk,msk, f).

– Decryption key query: When A queries a decryption key for a decryption function g ∈ G
to C subject to the constraint that g(f∗0 (z∗0)) = g(f∗1 (z∗1)), C provides the decryption key
dk(g) to A by executing FSC.DKeyGen(mpk,msk, g).

– Signcryption query: In response to a signcryption query made by A for a signing function
f ∈ F and an input z ∈ Df , C sends the ciphertext ct to A, which is a signcryption of
f(z), by executing FSC.Signcrypt

(
mpk,FSC.SKeyGen(mpk,msk, f), z

)
.

Challenge: C flips a random coin b← {0, 1} and generates the challenge ciphertext ct∗ by
executing FSC.Signcrypt

(
mpk,FSC.SKeyGen(mpk,msk, f∗b ), z∗b

)
.

Query Phase 2: A may continue adaptively to make a polynomial number of queries as in
Query Phase 1, subject to the same restriction as earlier, and C provides the answer to
them.

Guess: A eventually outputs a guess b′ for b and wins the game if b′ = b.

Definition 3. An FSC scheme is defined to be selectively message confidential against CPA
if for all PPT adversaries A there exists a negligible function ε such that for any security
parameter λ,

AdvFSC,s-IND-CPA
A (λ) = |Pr[b′ = b]− 1/2| < ε(λ).
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(II) Ciphertext Unforgeability: This notion of security is defined on existential unforge-
ability against chosen message attack (CMA) through the following game between a proba-
bilistic adversary A and a probabilistic challenger C.

Init: A declares a message m∗ ∈M to C on which the forgery will be outputted.

Setup: C runs FSC.Setup(1λ) to obtain (mpk,msk) and hands mpk to A.

Query Phase: A may adaptively make a polynomial number of queries of the following
types to C and C provides the answer to those queries.

– Signing key query: Upon receiving a signing key query from A corresponding to a signing
function f ∈ F subject to the constraint that there exists no z ∈ Df such that f(z) = m∗,
C returns sk(f) to A by executing FSC.SKeyGen(mpk,msk, f).

– Decryption key query: When A queries a decryption key for a decryption function g ∈ G,
C gives dk(g) to A by performing FSC.DKeyGen(mpk,msk, g).

– Signcryption query: In response to a signcryption query of A corresponding to a signing
function f ∈ F and input z ∈ Df , C returns the ciphertext ct, which is a signcryption of
f(z), to A by performing FSC.Signcrypt

(
mpk,FSC.SKeyGen(mpk,msk, f), z

)
.

– Unsigncryption query: Upon receiving an unsigncryption query form A for a ciphertext
ct under a decryption function g ∈ G, C performs dk(g)← FSC.DKeyGen(mpk,msk, g)
followed by FSC.Unsigncrypt(mpk,dk(g),ct), and sends the result to A.

Forgery: A eventually outputs a forgery ct∗ on m∗. A wins the game if ct∗ is indeed a
valid functional signcryption of m∗, i.e., FSC.Unsigncrypt(mpk,dk(g),ct∗) = g(m∗) for all
g ∈ G, and there does not exist any (f, z) pair such that (f, z) was a signcryption query of
A and m∗ = f(z).

Definition 4. An FSC scheme is defined to be selectively ciphertext unforgeable against CMA
if for all PPT adversaries A there exists a negligible function ε such that for any security
parameter λ,

AdvFSC,s-UF-CMA
A (λ) = Pr[A wins] < ε(λ).

4 Our FSC Scheme

In this section, we present our generic construction and proof of security of an FSC scheme sup-
porting signing and decryption functions in P/poly from IO for P/poly and SSS-NIZKPoK for NP.
In addition to these primitives, our construction utilizes public key encryption secure against
chosen plaintext attack (CPA) and signature scheme with existential unforgeability against cho-
sen message attack (CMA). Background material on these latter primitives can be found in
[KL07].

Let λ be the underlying security parameter. The cryptographic building blocks used in our
FSC construction are precisely the following:

– O: An indistinguishability obfuscator for P/poly.

– PKE=(PKE.KeyGen, PKE.Encrypt, PKE.Decrypt): A CPA-secure public key encryption scheme
with message space M ⊆ {0, 1}n(λ), for some polynomial n.
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– SIG=(SIG.KeyGen, SIG.Sign, SIG.Verify): An existentially unforgeable signature scheme with
message space {0, 1}λ.

– SSS-NIZKPoK = (SSS-NIZKPoK.Setup, SSS-NIZKPoK.Prove, SSS-NIZKPoK.Verify, SSS-
NIZKPoK.SimSetup, SSS-NIZKPoK.SimProve, SSS-NIZKPoK.ExtSetup, SSS-NIZKPoK.Extr):
An SSS-NIZKPoK system for the NP relation R, whose statements are of the form X =
(pk(1)

PKE,pk(2)
PKE,vkSIG, e1, e2) ∈ {0, 1}∗, witnesses are of the form W = (m, r1, r2, f, σ, z) ∈

{0, 1}∗, and

(X,W ) ∈ R ⇐⇒
(
e1 = PKE.Encrypt(pk(1)

PKE,m; r1)
∧

e2 = PKE.Encrypt(pk(2)
PKE,m; r2)

∧
SIG.Verify(vkSIG, f, σ) = 1

∧
m = f(z)

)
, (2)

for a function family F = {f : Df →M} ⊆ P/poly (with representation in {0, 1}λ).

We build an FSC scheme for message space M, family of signing functions F, and the class of
decryption functions G = {g : M→ Rg} ⊆ P/poly.

4.1 Construction

FSC.Setup(1λ): The trusted authority takes in a security parameter 1λ and proceeds as follows:
1. It generates(pk(1)

PKE, sk(1)
PKE), (pk(2)

PKE, sk(2)
PKE)← PKE.KeyGen(1λ).

2. It obtains (vkSIG, skSIG)← SIG.KeyGen(1λ).
3. It generates crs← SSS-NIZKPoK.Setup(1λ).
4. It publishes the public parameters mpk = (pk(1)

PKE,pk(2)
PKE,vkSIG,crs), while keeps the

master secret key msk = (sk(1)
PKE, skSIG) to itself.

FSC.SKeyGen(mpk,msk, f): Taking as input the public parameters mpk, the master secret
key msk, and a signing function f ∈ F from a signcrypter, the trusted authority runs
SIG.Sign(skSIG, f) to obtain a signature σ on f and return the signing key sk(f) = (f, σ) to
the signcrypter.

FSC.Signcrypt(mpk, sk(f), z): A signcrypter takes as input the public parameters mpk, its
signing key sk(f) = (f, σ) corresponding to some signing function f ∈ F, and an input
z ∈ Df . It prepares the ciphertext as follows:
1. It computes e` = PKE.Encrypt(pk(`)

PKE, f(z); r`) for ` = 1, 2, where r` is the randomness
selected for encryption.

2. It generates a proof π ← SSS-NIZKPoK.Prove(crs, X,W ) where X = (pk(1)
PKE,pk(2)

PKE,
vkSIG, e1, e2) is a statement of the NP relation R defined in equation (2) and W =
(f(z), r1, r2, f, σ, z) is the corresponding witness.

3. It outputs the ciphertext ct = (e1, e2, π).

FSC.DKeyGen(mpk,msk, g): On input the public parameters mpk, the master secret key msk,
and a decryption function g ∈ G from a decrypter, the trusted authority computes the
obfuscation O(P (g,sk(1)

PKE,mpk)) of the program P (g,sk(1)
PKE,mpk) using the circuit size value equal

to max{|P (g,sk(1)
PKE,mpk)|, |P̃ (g,sk(2)

PKE,mpk)|}, where the programs P (g,sk(1)
PKE,mpk) and P̃ (g,sk(2)

PKE,mpk)

are described in Figure 1. It provides the decryption key dk(g) =
(
g,O(P (g,sk(1)

PKE,mpk))
)

to
the decrypter.

FSC.Unsigncrypt(mpk,dk(g),ct): A decrypter, on input the public parameters mpk, its de-
cryption key dk(g) =

(
g,O(P (g,sk(1)

PKE,mpk))
)
, along with a ciphertext ct = (e1, e2, π), runs

the obfuscated program O(P (g,sk(1)
PKE,mpk)) with input (e1, e2, π) and outputs the result.
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P (g,sk(1)
PKE,mpk)

Given input (e1, e2, π), the program proceeds as follows:

1. Extract pk(1)
PKE, pk(2)

PKE, vkSIG, crs from mpk.
2. Set X = (pk(1)

PKE, pk(2)
PKE,vkSIG, e1, e2).

3. If SSS-NIZKPoK.Verify(crs, X, π) = 0, then output
⊥ and stop. Otherwise, continue to the next step.

4. Output g
(
PKE.Decrypt(sk(1)

PKE, e1)
)
.

P̃ (g,sk(2)
PKE,mpk)

Given input (e1, e2, π), the program proceeds as follows:

1. Extract pk(1)
PKE, pk(2)

PKE, vkSIG, crs from mpk.
2. Set X = (pk(1)

PKE, pk(2)
PKE,vkSIG, e1, e2).

3. If SSS-NIZKPoK.Verify(crs, X, π) = 0, then output
⊥ and stop. Otherwise, continue to the next step.

4. Output g
(
PKE.Decrypt(sk(2)

PKE, e2)
)
.

Fig. 1

Correctness: Note that the correctness of the proposed scheme follows immediately from the
correctness of O, PKE, and SIG, perfect completeness of SSS-NIZKPoK systems, as well as
description of the program template P (g,sk(1)

PKE,mpk).

Remark 1. Note that the size of the ciphertext in our FSC scheme is τ(λ, n) for some polynomial
τ .

4.2 Security Analysis

Theorem 1 (Message Confidentiality of FSC). Assuming IO O for P/poly, CPA-secure
public key encryption PKE, along with the statistical simulation-soundness and zero-knowledge
properties of SSS-NIZKPoK system, the FSC scheme described in §4.1 is selectively message
confidential against CPA as per the definition given in §3.

Proof. Suppose that any adversary in the selective CPA-message confidentiality game of §3 makes
at most q = q(λ) many decryption key queries. For simplicity, we assume that the adversary
always makes exactly q decryption key queries. We denote gi for i ∈ [q] to be the i-th decryption
function for which a decryption key query is made. By the rules of the game gi(f∗0 (z∗0)) is
constrained to be equal to gi(f∗1 (z∗1)) for all i ∈ [q].

We organize our proof into a sequence of hybrids. In the first hybrid the challenger signcrypts
f∗0 (z∗0). We then gradually change the signcryption in multiple hybrid steps into a signcryption
of f∗1 (z∗1) in the challenge ciphertext. We show that each hybrid experiment is indistinguishable
from the previous one, thus showing our FSC scheme to have selective message confidentiality
against CPA.

Sequence of Hybrids:

– Hyb0: This corresponds to the honest execution of the selective CPA-message confiden-
tiality game introduced in §3 when the challenger signcrypts f∗0 (z∗0) in the challenge ci-
phertext ct∗ = (e∗1, e∗2, π∗), i.e., e∗` = PKE.Encrypt(pk(`)

PKE, f
∗
0 (z∗0); r∗` ) for ` = 1, 2 and

π∗ ← SSS-NIZKPoK.Prove(crs, X∗,W ∗) where X∗ = (pk(1)
PKE,pk(2)

PKE,vkSIG, e
∗
1, e
∗
2) and W ∗

is a valid witness corresponding to X∗.

– Hyb1: In this hybrid, the common reference string crs included in the public parameters
mpk is generated as (crs,tr)← SSS-NIZKPoK.SimSetup(1λ, X∗), and the proof π∗ included
in the challenge ciphertext ct∗ is simulated as π∗ ← SSS-NIZKPoK.SimProve(crs,tr, X∗)
where X∗ = (pk(1)

PKE,pk(2)
PKE,vkSIG, e

∗
1, e
∗
2). The rest of the experiment continues as in Hyb0

using the simulated common reference string crs.

– Hyb2: This hybrid is the same as the last hybrid except that the challenge ciphertext is com-
puted as ct∗ =

(
e∗1 = PKE.Encrypt(pk(1)

PKE, f
∗
0 (z∗0); r∗1), e∗2 = PKE.Encrypt(pk(2)

PKE, f
∗
1 (z∗1); r∗2),
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π∗ ← SSS-NIZKPoK.SimProve
(
crs,tr, X∗)

)
where X∗ = (pk(1)

PKE,pk(2)
PKE,vkSIG, e

∗
1, e
∗
2).

– Hyb3,i for i ∈ [0, q]: In this sequence of hybrids, we change the form of the decryption keys
provided to the adversary in response to its decryption key queries. In Hyb3,i, for i ∈ [0, q],
the first i decryption keys requested by the adversary will result in decryption keys generated
as dk(gi) =

(
gi,O(P̃ (gi,sk(2)

PKE,mpk))
)

while the remaining i+ 1 to q decryption keys are gener-
ated as dk(gi) =

(
gi,O(P (gi,sk(1)

PKE,mpk))
)

as in Hyb2, where P (gi,sk(1)
PKE,mpk) and P̃ (gi,sk(2)

PKE,mpk)

are depicted in Figure 1. Observe that Hyb3,0 is equivalent to Hyb2.

– Hyb4: This hybrid is identical to the hybrid Hyb3,q with the exception that the challenge ci-
phertext is generated as ct∗ = (e∗1, e∗2, π∗) where e∗1 = PKE.Encrypt(pk(1)

PKE, f
∗
1 (z∗1); r∗1), e∗2 =

PKE.Encrypt(pk(2)
PKE, f

∗
1 (z∗1); r∗2), and the proof π∗ is still simulated.

– Hyb5,i for i ∈ [0, q]: In this sequence of hybrids, we again change the form of the decryp-
tion keys returned to the adversary in response to its decryption key queries. In Hyb5,i, for
i ∈ [0, q], the first i decryption key queries of the adversary will result in decryption keys
generated as dk(gi) =

(
gi,O(P (gi,sk(1)

PKE,mpk))
)

while the rest of the decryption keys i + 1
to q are generated as dk(gi) =

(
gi,O(P̃ (gi,sk(2)

PKE,mpk))
)

as in Hyb4, where P (gi,sk(1)
PKE,mpk) and

P̃ (gi,sk(2)
PKE,mpk) are defined in Figure 1. Note that Hyb5,0 is equivalent to Hyb4.

– Hyb6: In this hybrid, the common reference string crs included in mpk is obtained as crs←
SSS-NIZKPoK.Setup(1λ) and the proof π∗ included in the challenge ciphertext ct∗ is gen-
erated as π∗ ← SSS-NIZKPoK.Prove(crs, X∗,W ∗) where X∗ = (pk(1)

PKE,pk(2)
PKE,vkSIG, e

∗
1, e
∗
2)

and W ∗ is a valid witness corresponding to X∗. The remainder of the experiment continues
identically as in Hyb5,q using the honestly generated common reference string crs. Notice
that this hybrid corresponds to the selective CPA-message confidentiality game when f∗1 (z∗1)
is signcrypted in the challenge ciphertext.

Proofs of Hybrid Arguments:

We will present a sequence of lemmas which will demonstrate that no PPT adversary can dis-
tinguish with non-negligible advantage between any two consecutive hybrids described above,
and thus security in the selective CPA-message confidentiality game follows.
Lemma 1. Assuming SSS-NIZKPoK system is computationally zero-knowledge, no PPT adver-
sary can distinguish with non-negligible advantage between Hyb0 and Hyb1.

Proof. Suppose there is a PPT adversary A that can distinguish with non-negligible advan-
tage between Hyb0 and Hyb1. We construct a PPT algorithm C that breaks the zero-knowledge
property of SSS-NIZKPoK using A as a subroutine. C interacts with A as follows:

• C begins by initializing A and receiving (f∗0 , z∗0), (f∗1 , z∗1) from A.

• In order to setup the public parameters, C proceeds as follows:

– C itself generates (pk(1)
PKE, sk(1)

PKE), (pk(2)
PKE, sk(2)

PKE)← PKE.KeyGen(1λ) and (vkSIG, skSIG)←
SIG.KeyGen(1λ).

– After that, it computes e∗` = PKE.Encrypt(pk(`)
PKE, f

∗
0 (z∗0); r∗` ) using randomness r∗` , for

` = 1, 2 and σ∗ ← SIG.Sign(skSIG, f
∗
0 ).
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– It then submits the statement X∗ = (pk(1)
PKE,pk(2)

PKE,vkSIG, e
∗
1, e
∗
2) along with the corre-

sponding witness W ∗ = (f∗0 (z∗0), r∗1, r∗2, f∗0 , σ∗, z∗0) to its zero-knowledge challenger B and
receives back a common reference string crs′ together with a proof π′∗ on X∗ from B.

– C hands the public parameters mpk = (pk(1)
PKE,pk(2)

PKE,vkSIG,crs = crs′) to A and keeps
m̃sk = (sk(1)

PKE, skSIG, e
∗
1, e
∗
2, π
′∗).

• The signing key, decryption key, and signcryption queries of A are answered by C as described
below:

– Signing key query: Since C knows skSIG, it answers any signing key query of A for any
signing function f ∈ F by generating σ ← SIG.Sign(skSIG, f) and returning sk(f) = (f, σ)
to A.

– Decryption key query: Using sk(1)
PKE and mpk, C constructs the program P (gi,sk(1)

PKE,mpk)

described in Figure 1 upon receiving a decryption key query from A corresponding to a
decryption function gi ∈ G, and provides the decryption key
dk(gi) =

(
gi,O(P (gi,sk(1)

PKE,mpk))
)

to A.

– Signcryption query: When A makes a signcryption query corresponding to a signing
function f ∈ F and input z ∈ Df , C first computes σ ← SIG.Sign(skSIG, f), e` =
PKE.Encrypt(pk(`)

PKE, f(z); r`) using randomness r`, for ` = 1, 2, along with a proof π ←
SSS-NIZKPoK.Prove(crs, X,W ) whereX = (pk(1)

PKE,pk(2)
PKE,vkSIG, e1, e2) andW = (f(z),

r1, r2, f, σ, z). It provides the ciphertext ct = (e1, e2, π) to A.

• C sends the challenge ciphertext ct∗ = (e∗1, e∗2, π∗ = π′∗) to A.

• Finally, A outputs a bit b′ ∈ {0, 1}. C also outputs b′.

Note that if B used the real setup algorithm SSS-NIZKPoK.Setup(1λ) to generate crs′ and real
prover SSS-NIZKPoK.Prove(crs′, X∗,W ∗) to generate the proof π′∗, then we are exactly in Hyb0.
On the other hand, if the common reference string and the proof are simulated, then we are in
Hyb1. Thus, if ViewHyb0 and ViewHyb1 respectively denote the views of A in the hybrids Hyb0
and Hyb1, then we have∣∣Pr
[
A(ViewHyb0) = 1

]
− Pr

[
A(ViewHyb1) = 1

]∣∣
=
∣∣Pr
[
crs′ ← SSS-NIZKPoK.Setup(1λ);π′∗ ← SSS-NIZKPoK.Prove(crs′, X∗,W ∗) :

C(crs′, X∗, π′∗) = 1
]
− Pr

[
(crs′,tr)← SSS-NIZKPoK.SimSetup(1λ, X∗);

π′∗ ← SSS-NIZKPoK.SimProve(crs′,tr, X∗) : C(crs′, X∗, π′∗) = 1
]∣∣ = AdvSSS-NIZKPoK,ZK

C (λ).

Hence the lemma. ut

Lemma 2. Assuming PKE is CPA secure, no PPT adversary can distinguish with non-negligible
advantage between the hybrids Hyb1 and Hyb2.

Proof. Suppose there is a PPT adversary A that can distinguish with non-negligible advantage
between Hyb1 and Hyb2. We construct a PPT algorithm C that breaks the CPA-security of PKE
using A as a sub-routine. C interacts with A as follows:

• C begins by initializing A and receiving (f∗0 , z∗0), (f∗1 , z∗1) from A.
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• To setup the public parameters, C proceeds as follows:

– C itself generates (pk(1)
PKE, sk(1)

PKE)← PKE.KeyGen(1λ).

– It also receives a public key pk′PKE for PKE from its CPA-security challenger B and sets
pk(2)

PKE = pk′PKE.

– Then, it computes e∗1 = PKE.Encrypt(pk(1)
PKE, f

∗
0 (z∗0); r∗1) itself using randomness r∗1.

– Next, it sends the two messages f∗0 (z∗0), f∗1 (z∗1) to B which sends back a challenge cipher-
text e′∗. It designates e∗2 = e′∗.

– After that, C itself generates (vkSIG, skSIG)← SIG.KeyGen(1λ) together with (crs,tr)←
SSS-NIZKPoK.SimSetup(1λ, X∗) where X∗ = (pk(1)

PKE,pk(2)
PKE,vkSIG, e

∗
1, e
∗
2).

– It hands the public parameters mpk = (pk(1)
PKE,pk(2)

PKE,vkSIG,crs) to A while keeps
m̃sk = (sk(1)

PKE, skSIG,tr, e∗1, e∗2).

• Using skSIG and sk(1)
PKE, the signing key, decryption key, and signcryption queries of A are

answered by C in an analogous fashion as in the proof of Lemma 1.

• To compute the challenge ciphertext, C computes π∗ ← SSS-NIZKPoK.SimProve
(
crs,tr, X∗)

where X∗ = (pk(1)
PKE,pk(2)

PKE,vkSIG, e
∗
1, e
∗
2). It sends the challenge ciphertext ct∗ = (e∗1, e∗2, π∗)

to A.

• Eventually, A outputs a bit b′ ∈ {0, 1}. C also outputs b′.

Observe that, if B gave e′∗ ← PKE.Encrypt(pk′PKE, f
∗
0 (z∗0)), then we are exactly in hybrid

Hyb1. On the other hand, if it gave e′∗ ← PKE.Encrypt(pk′PKE, f
∗
1 (z∗1)), then we are in Hyb2.

Thus, if we denote by ViewHyb1 and ViewHyb2 the views of A in the hybrids Hyb1 and Hyb2
respectively, then we have∣∣Pr

[
A(ViewHyb1) = 1

]
− Pr

[
A(ViewHyb2) = 1

]∣∣
=
∣∣1− Pr

[
(pk′PKE, sk′PKE)← PKE.KeyGen(1λ); (f∗0 (z∗0), f∗1 (z∗1))← C(pk′PKE);
e′∗ ← PKE.Encrypt(pk′PKE, f

∗
0 (z∗0)) : C(pk′PKE, e

′∗) = 0
]

− Pr
[
(pk′PKE, sk′PKE)← PKE.KeyGen(1λ); (f∗0 (z∗0), f∗1 (z∗1))← C(pk′PKE);
e′∗ ← PKE.Encrypt(pk′PKE, f

∗
1 (z∗1)) : C(pk′PKE, e

′∗) = 1
]∣∣ = 2AdvPKE,IND-CPA

C (λ),

where AdvPKE,IND-CPA
C (λ) denotes the advantage of C in the CPA-security game for PKE. Hence

the lemma. ut

Lemma 3. Assuming O is an IO for P/poly and SSS-NIZKPoK is statistically simulation-sound,
no PPT adversary can distinguish with non-negligible advantage between Hyb3,i and Hyb3,i+1 for
i ∈ [0, q − 1].

Proof. Suppose that there is a PPT adversary A that can distinguish with non-negligible ad-
vantage between Hyb3,i and Hyb3,i+1. We build a PPT algorithm C that breaks the IO property
of O using A as a subroutine. C interacts with A as follows:

• C starts with initializing A and obtaining (f∗0 , z∗0), (f∗1 , z∗1) from A.
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• In order to setup the public parameters, C performs the following steps:

– C first generates (pk(1)
PKE, sk(1)

PKE), (pk(2)
PKE, sk(2)

PKE)← PKE.KeyGen(1λ) and (vkSIG, skSIG)←
SIG.KeyGen(1λ).

– It computes e∗1 = PKE.Encrypt(pk(1)
PKE, f

∗
0 (z∗0); r∗1) and e∗2 = PKE.Encrypt(pk(2)

PKE, f
∗
1 (z∗1); r∗2)

using randomness r∗1 and r∗2 respectively.

– Then it obtains (crs,tr)← SSS-NIZKPoK.SimSetup(1λ, X∗) whereX∗ = (pk(1)
PKE,pk(2)

PKE,
vkSIG, e

∗
1, e
∗
2).

– It gives the public parameters mpk = (pk(1)
PKE,pk(2)

PKE,vkSIG,crs) to A while keeps
m̃sk = (sk(1)

PKE, sk(2)
PKE, skSIG,tr, e∗1, e∗2) to itself.

• The signing key and signcryption key queries of A are answered by C in the same manner as
in the proof of Lemma 2 using skSIG. Now consider the decryption key queries made by A.
Recall that A makes q decryption key queries corresponding to decryption functions gi ∈ G.
The answers to these queries are provided as follows:
(a) For j ≤ i, C creates the j-th decryption key dk(gj) =

(
gj ,O(P̃ (gj ,sk(2)

PKE,mpk))
)
. Note that

C knows sk(2)
PKE and therefore can form the program P̃ (gj ,sk(2)

PKE,mpk) itself.
(b) For j > i+1, the j-th queried decryption key is created as dk(gj) =

(
gj ,O(P (gj ,sk(1)

PKE,mpk))
)

by C using sk(1)
PKE.

(c) For the (i + 1)-th decryption key query, C submits C0 = P (gi+1,sk(1)
PKE,mpk) and C1 =

P̃ (gi+1,sk(2)
PKE,mpk) to its IO challenger B and receives back an obfuscated circuit C ′. C gives

dk(gi+1) = (gi+1, C
′) to A.

• To prepare the challenge ciphertext, C computes π∗ ← SSS-NIZKPoK.SimProve(crs,tr, X∗)
where X∗ = (pk(1)

PKE,pk(2)
PKE,vkSIG, e

∗
1, e
∗
2). C sends the challenge ciphertext ct∗ = (e∗1, e∗2, π∗)

to A.

• Eventually, A outputs a bit b′ ∈ {0, 1}. C also outputs b′.

We now argue that (C0, C1) forms a valid instance of the IO assumption by exhibiting that
both the programs P (gi+1,sk(1)

PKE,mpk) and P̃ (gi+1,sk(2)
PKE,mpk) described in Figure 1 produce the same

output on each input. We break our argument into cases on the input to these programs.

(I) We first consider inputs (e1, e2, π) where e1, e2 are valid encryption of the same mes-
sage and π is a proof of the statement X = (pk(1)

PKE,pk(2)
PKE,vkSIG, e1, e2) for which

SSS-NIZKPoK.Verify(crs, X, π) = 1. For these inputs both programs will reach Step 4
where they decrypt the same message, no matter whether they use sk(1)

PKE or sk(2)
PKE, and

compute the same function gi+1 on the decrypted message. Thus the output of both
programs is the same on all inputs of this class.

(II) The next set of inputs considered are (e1, e2, π) for which SSS-NIZKPoK.Verify
(
crs, (pk(1)

PKE,

pk(2)
PKE,vkSIG, e1, e2), π

)
in Step 3 of both programs outputs 0. In this case both the pro-

grams output ⊥.
(III) Finally, we consider the set of inputs (e1, e2, π) for which SSS-NIZKPoK.Verify

(
crs, (pk(1)

PKE,

pk(2)
PKE,vkSIG, e1, e2), π

)
in Step 3 of both the programs outputs 1 but e1, e2 are not valid

encryptions of the same message. Note that, due to the statistical simulation-soundness
property of SSS-NIZKPoK, with all but negligible probability this can happen only when
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e1 = e∗1 and e2 = e∗2, and hence, decrypting e1 gives f∗0 (z∗0) while decrypting e2 results
in f∗1 (z∗1). However, P (gi+1,sk(1)

PKE,mpk) outputs gi+1(f∗0 (z∗0)) which is bound to be equal to
gi+1(f∗1 (z∗1)) (by the rules of the game), which is the output of P̃ (gi+1,sk(2)

PKE,mpk). Thus, we
can see that both programs have the same output for this input class as well.

Now, observe that, if B gave C ′ = O(C0), then we are exactly in Hyb3,i. Whereas, if it gave
C ′ = O(C1), then we are in Hyb3,i+1. Hence, we can derive a relation similar to that in the proof
of Lemma 2 between the advantages of A and C. The lemma follows. ut

Lemma 4. Assuming PKE is CPA secure, no PPT adversary can distinguish with non-negligible
advantage between Hyb3,q and Hyb4.

Lemma 5. Assuming O is an IO for P/poly and SSS-NIZKPoK is statistically simulation-sound,
no PPT adversary can distinguish with non-negligible advantage between Hyb5,i and Hyb5,i+1 for
i ∈ [0, q].

Lemma 6. Assuming SSS-NIZKPoK is computationally zero-knowledge, no PPT adversary can
distinguish with non-negligible advantage between Hyb5,q and Hyb6.

The proofs of Lemmas 4, 5, and 6 follow in a directly analogous manner to those of Lemmas 2,
3, and 1 respectively. ut

Theorem 2 (Ciphertext Unforgeability of FSC). Under the assumption that SIG is ex-
istentially unforgeable against CMA and SSS-NIZKPoK is a proof of knowledge, the FSC con-
struction of §4.1 is selectively ciphertext unforgeable against CMA as per the definition given in
§3.

Proof. Here also we will organize the proof in two hybrid experiments. The first hybrid corre-
sponds to the real execution of the selective ciphertext unforgeability game of §3. In the second
hybrid, we generate the common reference string included in the public parameters provided to
the adversary using the extraction-enabling setup procedure and run the extraction process on
the forgery provided by the adversary. Note that by the rules of the game, all the signing key
queries of the adversary are restricted to functions f ∈ F for which there does not exist any
z ∈ Df with f(z) = m∗ and all the signcryption queries of the adversary is constrained to pairs
(f, z) such that f(z) 6= m∗, where m∗ ∈ M is the message committed by the adversary in the
initialization phase. We prove that the advantage of any PPT adversary in the first hybrid, i.e.,
in the real selective ciphertext unforgeability game is negligibly different from that in the second
hybrid, and moreover, the advantage of any PPT adversary in the second hybrid experiment
itself is negligible. The theorem will then follow immediately.

Sequence of Hybrids:

– Hyb0: This hybrid corresponds to the honest execution of the selective CMA-ciphertext un-
forgeability game defined in §3. Let Forge0 denotes the advantage of any PPT adversary in
this experiment. Thus, in other words, the advantage of any PPT adversary in the selective
CMA-ciphertext unforgeability game is equal to Forge0.

– Hyb1: This hybrid is the same as the previous one with the exception that the common
reference string crs included in mpk provided to the adversary is generated as (crs, t̂r)←
SSS-NIZKPoK.ExtSetup(1λ). The remainder of the experiment continues as before with re-
spect to crs. At the end of the experiment, the extraction algorithm is executed on the adver-
sary’s alleged forgery ct∗ = (e∗1, e∗2, π∗) to extract the witness W ∗, i.e., to be precise, W ∗ ←
SSS-NIZKPoK.Extr(crs, t̂r, X∗, π∗) is performed, where X∗ = (pk(1)

PKE,pk(2)
PKE,vkSIG, e

∗
1, e
∗
2).

Let Forge1 denotes the advantage of any PPT adversary in this hybrid.
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Proofs of Hybrid Arguments:

Lemma 7. Assuming that the common reference string generated by SSS-NIZKPoK.Setup and
that produced by SSS-NIZKPoK.ExtSetup are statistically close, the difference between Forge0 and
Forge1 is negligible for all PPT adversaries.

Proof. Consider a PPT adversary A for which the difference between Forge0 and Forge1 is non-
negligible. We construct a probabilistic (not necessarily polynomial-time) algorithm C that dis-
tinguishes between common reference string generated by SSS-NIZKPoK.Setup and that obtained
from SSS-NIZKPoK.ExtSetup using A as a subroutine. C interacts with A as follows:

• C starts by initializing A and receiving m∗ from A.

• In order to setup the public parameters, C proceeds as follows:

– C generates (pk(1)
PKE, sk(1)

PKE), (pk(2)
PKE, sk(2)

PKE) ← PKE.KeyGen(1λ) and (vkSIG, skSIG) ←
SIG.KeyGen(1λ).

– C also receives a common reference string crs′ from its common reference string chal-
lenger B and sets crs = crs′.

– C hands the public parameters mpk = (pk(1)
PKE,pk(2)

PKE,vkSIG,crs) to A while keeps
m̃sk = (sk(1)

PKE, sk(2)
PKE, skSIG).

• The signing key, decryption key, signcryption, and unsigncryption queries of A are answered
by C as described below:

– Signing key query: Note that C knows skSIG and hence it can answer a signing key query
of A for a signing function f ∈ F by generating σ ← SIG.Sign(skSIG, f) as is done honestly
and returning sk(f) = (f, σ) to A.

– Decryption key query: Using sk(1)
PKE, C answers a decryption key query of A corresponding

to a decryption function g ∈ G by returning dk(g) =
(
g,O(P (g,sk(1)

PKE,mpk))
)

to A.

– Signcryption query: When A queries a signcryption for f ∈ F along with z ∈ Df , C first
generates σ ← SIG.Sign(skSIG, f) and e` = PKE.Encryt(pk(`)

PKE, f(z); r`) using randomness
r` for ` = 1, 2. Then C generates a proof π ← SSS-NIZKPoK.Prove(crs, X,W ) where
X = (pk(1)

PKE,pk(2)
PKE,vkSIG, e1, e2) and W = (f(z), r1, r2, f, σ, z). C gives ct = (e1, e2, π)

to A.

– Unsigncryption query: Since C can generate the decryption key corresponding to any de-
cryption function g ∈ G, it replies to an unsigncryption query of A for a ciphertext ct
under some g ∈ G, by preparing the decryption key dk(g) and returning the result of
unsigncrypting ct using dk(g).

• A eventually outputs a forged ciphertext ct∗ = (e∗1, e∗2, π∗). C verifies whether ct∗ is in-
deed a valid forgery on m∗. In order to perform this verification, C has to check whether
SSS-NIZKPoK.Verify

(
crs, (pk(1)

PKE,pk(2)
PKE,vkSIG, e

∗
1, e
∗
2), π∗

)
= 1, PKE.Decrypt(sk(1)

PKE, e
∗
1) =

m∗ = PKE.Decrypt(sk(2)
PKE, e

∗
2), and m∗ is actually not in the range of any function f ∈ F

that A requested signing-keys for, as well as, f(z) 6= m∗ for all signcryption queries (f, z)
made by A. Observe that this verification process may not be efficient as verifying whether a
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particular message is in the range of some function may not be possible in polynomial time.
If the forgery verifies, then C outputs 1. Otherwise, it outputs 0.

Clearly, if B used SSS-NIZKPoK.Setup to generate crs′, then we are exactly in Hyb0. On the
other hand, if B used SSS-NIZKPoK.ExtSetup instead, then we are exactly in Hyb1. Hence,∣∣Forge0 − Forge1

∣∣
=
∣∣Pr
[
crs′ ← SSS-NIZKPoK.Setup(1λ) : C(crs′) = 1

]
− Pr

[
(crs′, t̂r)← SSS-NIZKPoK.ExtSetup(1λ) : C(crs′) = 1

]∣∣ = AdvSSS-NIZKPoK,CRS
C (λ).

Thus we can see that if Forge0 and Forge1 are non-negligibly different, then C distinguishes
between the common reference string generated by SSS-NIZKPoK.Setup and that formed by
SSS-NIZKPoK.ExtSetup with non-negligible advantage. ut

Lemma 8. Assuming existential unforgeability against CMA of the signature scheme SIG and
the extraction property of the SSS-NIZKPoK system, no PPT adversary has non-negligible ad-
vantage in Hyb1.

Proof. Consider a PPT adversary A for which Forge1 is non-negligible. We construct an PPT
algorithm C that breaks the existential unforgeability property of the signature scheme SIG using
A as a subroutine. C interacts with A as follows:

• C begins by initializing A and receiving m∗ from A.

• In order to setup the public parameters, C performs the following steps:

– C generates (pk(1)
PKE, sk(1)

PKE), (pk(2)
PKE, sk(2)

PKE)← PKE.KeyGen(1λ).

– C obtains a verification key vk′SIG for the signature scheme SIG from its unforgeability
challenger B and designates it as vkSIG.

– Next C generates (crs, t̂r)← SSS-NIZKPoK.ExtSetup(1λ).

– C hands the public parameters mpk = (pk(1)
PKE,pk(2)

PKE,vkSIG,crs) to A while keeps
m̃sk = (sk(1)

PKE, t̂r).

• The signing key, decryption key, signcryption, and unsigncryption queries of A are answered
by C as follows:

– Signing key query: When Amakes a signing key query corresponding to a signing function
f ∈ F, C forwards f to B and gets back a signature σ′ on f . C returns sk(f) = (f, σ = σ′)
to A.

– Decryption key query: Using sk(1)
PKE, C answers the decryption key queries of A in an

identical manner as in the proof of Lemma 7.

– Signcryption query: Note that the constant functions fm (such that fm(z) = m for
all z ∈ Df ), for all m ∈ M, are obviously contained in P/poly. Therefore, when A
makes a signcryption query corresponding to signing function f ∈ F and z ∈ Df , C
queries B with the function fm, where f(z) = m ∈ M, and receives back a signature
σ′′ on fm. Then it computes e` = PKE.Encrypt(pk(`)

PKE,m; r`) using randomness r`, for
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` = 1, 2. After that, it generates a proof π ← SSS-NIZKPoK.Prove(crs, X,W ) where X =
(pk(1)

PKE,pk(2)
PKE,vkSIG, e1, e2) and W = (m, r1, r2, fm, σ

′′, z). C provides ct = (e1, e2, π) to
A. Note that ct is indeed a valid signcryption of f(z) = m.

– Unsigncryption query: The unsigncryption queries of A are answered by C in the same
fashion as in the proof of Lemma 7.

• A eventually outputs a forgery ct∗ = (e∗1, e∗2, π∗). Clearly, if ct∗ is a valid signcryption of
some message, then SSS-NIZKPoK.Verify(crs, X∗, π∗) = 1 must hold, where X∗ = (pk(1)

PKE,

pk(2)
PKE,vkSIG, e

∗
1, e
∗
2). C performs W ∗ ← SSS-NIZKPoK.Extr

(
crs, t̂r, X∗, π∗

)
. Note that by

the extraction property of SSS-NIZKPoK, (X∗,W ∗) must be a valid statement-witness pair
of the relation R defined in equation (2) with all but negligible probability. Let W ∗ =
(m′∗, r∗1, r∗2, f∗, σ∗, z∗). C outputs (f∗, σ∗) as a forgery in its unforgeability game.

Observe that, if A indeed wins in the above experiment, i.e., ct∗ is actually a valid sign-
cryption of m∗, then we must have m′∗ = m∗ and f∗(z∗) = m′∗ = m∗. Now, by the rules of
the game, for all f ∈ F on which A made a signing key query there does not exist any z ∈ Df
such that f(z) = m∗ and for any (f, z) pair on which a signcryption query was made by A,
it must hold that f(z) 6= m∗. Hence, it must be the case that f∗ 6= f for all f ∈ F on which
a signing key query was made by A. Further, recall that according to our simulation, for all
the signcryption queries of A corresponding to a (f, z) pair, C used the constant function fm,
where f(z) = m, to provide a signcryption of m. But as m must be different from m∗ by the
rules of the game, f∗ 6= fm either. Now, only the f ’s corresponding to A’s signing key queries
and fm’s with m = f(z) corresponding to A’s signcryption queries (f, z) are submitted by C to
B for obtaining a signature. Therefore, (f∗, σ∗) is indeed a valid forgery produced by C in its
unforgeability game. Thus, we have

Forge1 ≤ Pr
[
(X∗, π∗)← A(crs); W ∗ ← SSS-NIZKPoK.Extr(crs, t̂r, X∗, π∗) :
SSS-NIZKPoK.Verify(crs, X∗, π∗) = 1

∧
(X∗,W ∗) /∈ R

]
+

Pr
[
(vk′SIG, sk′SIG)← SIG.KeyGen(1λ); (f∗, σ∗)← COS(·)(vk′SIG) :
SIG.Verify(vk′SIG, f

∗, σ∗) = 1
∧

f∗ /∈ Q
]

= AdvSSS-NIZKPoK,EXT
A (λ) + AdvSIG,UF-CMA

C (λ),

where OS(f) = SIG.Sign(sk′SIG, f),Q represents the list of queries of C to OS, and AdvSIG,UF-CMA
C (λ)

denotes the advantage of C in forging a signature for SIG. The lemma follows. ut
ut

5 Attribute-Based Signcryption for General Circuits from FSC
5.1 The Notion of Attribute-Based Signcryption for General Circuits

The formal notion of attribute-based signcryption (ABSC) [GNSN10], [RD14b], [RD14a], [WH11],
when supporting general polynomial-size circuits, can be described as follows: As for other
attribute-based primitives such as attribute-based encryption or signature, ABSC also has two
flavors, namely, key-policy and ciphertext-policy. For definiteness of exposure, lets consider the
key-policy version where the access structures, represented as circuits, are embedded in signing
and decryption keys, while signing and decryption attribute sets, expressed as bit strings, are
associated with signcrypted message.

Let FABSC ⊂ P/poly and GABSC ⊂ P/poly respectively denote the class of Boolean circuits
representing the signing and decryption policies with the input strings to these circuits repre-
senting the signing and decryption attribute sets. Let MABSC ⊂ {0, 1}∗ be the message space
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and λ be the underlying security parameter. A key-policy ABSC scheme consists of the following
PPT algorithms:

ABSC.Setup(1λ): The trusted authority publishes the public parameters mpkABSC, while keeps
the master secret key mskABSC to itself.

ABSC.SKeyGen(mpkABSC,mskABSC, C
(SIG)): The authority hands a signing key skABSC(C(SIG))

for a signing circuit C(SIG) ∈ FABSC with input length µ(λ), for some polynomial µ, to a
signcrypter.

ABSC.DKeyGen(mpkABSC,mskABSC, C
(DEC)): A decryption key dkABSC(C(DEC)) corresponding

to a decryption circuit C(DEC) ∈ GABSC having input length ν(λ) is given to a decrypter by
the trusted authority, where ν is some polynomial.

ABSC.Signcrypt
(
mpkABSC, skABSC(C(SIG)), y, y,M

)
: A signcrypter outputs a signcryption ct(y,y)

ABSC
of a message M ∈MABSC under decryption input string y ∈ {0, 1}ν and signature input string
y ∈ {0, 1}µ.

ABSC.Unsigncrypt
(
mpkABSC,dkABSC(C(DEC)),ct(y,y)

ABSC
)
: A decrypter ends up either retrieving

the signcrypted message or ⊥ if unsuccessful.

A key-policy ABSC scheme is correct if for all C(SIG) ∈ FABSC with input length µ representing
signing access structures, y ∈ {0, 1}µ representing signing attribute sets with C(SIG)(y) = 1,
C(DEC) ∈ GABSC with input length ν expressing decryption access policies, y ∈ {0, 1}ν expressing
decryption attribute sets such that C(DEC)(y) = 1, and M ∈MABSC,

Pr
[
(mpkABSC,mskABSC)← ABSC.Setup(1λ) :
ABSC.Unsigncrypt

(
mpkABSC,ABSC.DKeyGen(mpkABSC,mskABSC, C

(DEC)),
ABSC.Signcrypt(mpkABSC,ABSC.SKeyGen(mpkABSC,mskABSC, C

(SIG)), y, y,M)
)

= M
]

> 1− ε(λ)

for some negligible function ε. Here C(SIG)(y) = 1 indicates that the signing access structure
represented by C(SIG) is satisfied by the signing attribute set expressed by y. C(DEC)(y) = 1 has
the similar meaning.

A key-policy ABSC scheme has two security requirements: (I) message confidentiality against
CPA and (II) ciphertext unforgeability against CMA. The selective versions of these security no-
tions are defined as follows:

(I) Message Confidentiality: An ABSC scheme is said to be selectively message confiden-
tial against CPA if for all PPT adversaries A = (A1,A2) there exists a negligible function ε such
that for any security parameter λ,

∣∣Pr
[
(y∗, y∗,M∗0 ,M∗1 )← A1(1λ); (mpkABSC,mskABSC)← ABSC.Setup(1λ); b← {0, 1};

ct∗ABSC ← ABSC.Signcrypt
(
mpkABSC,ABSC.SKeyGen(mpkABSC,mskABSC, C

(SIG)∗), y∗, y∗,M∗b
)
;

b′ ← AOSK(·),ODK(·),OSC(·,·,·)
2 (mpkABSC,ct∗ABSC) : C(SIG)∗(y∗) = 1

∧
C(DEC)(y∗) = 0 ∀ C(DEC) ∈ Q

∧
b′ = b

]
− 1/2

∣∣ < ε(λ),
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where
OSK(C(SIG)) = ABSC.SKeyGen(mpkABSC,mskABSC, C

(SIG)),
ODK(C(DEC)) = ABSC.DKeyGen(mpkABSC,mskABSC, C

(DEC)),
OSC(y, y,M) = ABSC.Signcrypt

(
mpkABSC,ABSC.SKeyGen(mpkABSC,mskABSC, C

(SIG)), y, y,M
)

with C(SIG)(y) = 1,

and Q represents the list of queries made by A2 to ODK. Note that here we only consider post-
challenge queries. However, as noted in [GGH+13b], this does not weaken the selective security
notion.

(II) Ciphertext Unforgeability: An ABSC scheme is said to be selectively ciphertext un-
forgeable against CMA if for all PPT adversaries A = (A1,A2) there exists a negligible function
ε such that for any security parameter λ,

Pr
[
(y∗, y∗,M∗)← A1(1λ); (mpkABSC,mskABSC)← ABSC.Setup(1λ);

ct∗ABSC ← A
OSK(·),ODK(·),OSC(·,·,·),OUS(·,·)
2 (mpkABSC) :

M∗ ← ABSC.Unsigncrypt
(
mpkABSC,ABSC.DKeyGen(mpkABSC,mskABSC, C

(DEC)),ct∗ABSC
)

∀ C(DEC) with C(DEC)(y∗) = 1
∧

M∗ 6= ⊥
∧

C(SIG)(y∗) = 0 ∀ C(SIG) ∈ Q1
∧

(y,M) 6= (y∗,M∗) ∀ (y,M) ∈ Q2
]
< ε(λ),

where
OSK(C(SIG)) = ABSC.SKeyGen(mpkABSC,mskABSC, C

(SIG)),
ODK(C(DEC)) = ABSC.DKeyGen(mpkABSC,mskABSC, C

(DEC)),
OSC(y, y,M) = ABSC.Signcrypt

(
mpkABSC,ABSC.SKeyGen(mpkABSC,mskABSC, C

(SIG)), y, y,M
)

with C(SIG)(y) = 1,

OUS(C(DEC),ct(y,y)
ABSC) = ABSC.Unsigncrypt

(
mpkABSC,ABSC.DKeyGen(mpkABSC,mskABSC, C

(DEC)),

ct(y,y)
ABSC

)
with C(DEC)(y) = 1,

Q1 is the set of queries of A2 to OSK, and Q2 is the collection of pairs of signature input string
and messages that are submitted along with some decryption input string to OSC by A2.

5.2 Our Key-Policy ABSC Scheme

Let λ be the underlying security parameter. We consider the family of signing circuits FABSC ⊂
P/poly whose members have input length µ(λ) and the class of decryption circuits GABSC ⊂
P/poly containing circuits of input length ν(λ) for polynomials µ and ν. The message space
for our ABSC scheme is MABSC = {0, 1}γ(λ) for some polynomial γ. Consider a FSC scheme
FSC=(FSC.Setup, FSC.SKeyGen, FSC.Signcrypt, FSC.DKeyGen,FSC.Unsigncrypt) supporting any
polynomial-size signing function family F ⊆ P/poly, decryption function class G ⊆ P/poly, and
the message space M = {0, 1}n ∪ {⊥} where n = ν + µ + γ. Let us now define signing and
decryption functions for the FSC scheme that would instantiate ABSC. We associate a signing
function fC(SIG) ∈ F, where fC(SIG) : Df = {0, 1}n →M to each signing circuit C(SIG) ∈ FABSC and
a decryption function gC(DEC) ∈ G, where gC(DEC) : M → M, corresponding to each decryption
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circuit C(DEC) ∈ GABSC, defined as follows:

fC(SIG)(y‖y‖M) =
{
y‖y‖M, if C(SIG)(y) = 1
⊥, otherwise

gC(DEC)(y‖y‖M) =
{
y‖y‖M, if C(DEC)(y) = 1
⊥, otherwise

(3)

Our ABSC works as follows:

ABSC.Setup(1λ): The trusted authority takes as input the security parameter λ and generates
(mpk,msk) ← FSC.Setup(1λ). It publishes the public parameters mpkABSC = mpk, while
keeps the master secret key mskABSC = msk to itself.

ABSC.SKeyGen(mpkABSC = mpk,mskABSC = msk, C(SIG)): The authority creates the signing
key sk(fC(SIG))← FSC.SKeyGen(mpk,msk, fC(SIG)) for the signing function fC(SIG) ∈ F defined
in equation (3) and provides skABSC(C(SIG)) = sk(fC(SIG)) to the signcrypter.

FSC.DKeyGen(mpkABSC = mpk,mskABSC = msk, C(DEC)): The trusted authority prepares the
decryption key dk(gC(DEC)) ← FSC.DKeyGen(mpk,msk, gC(DEC)) for the decryption function
gC(DEC) ∈ G described in equation (3) and gives dkABSC(C(DEC)) = dk(gC(DEC)) to the de-
crypter.

ABSC.Signcrypt(mpkABSC = mpk, skABSC(C(SIG)) = sk(fC(SIG)), y, y,M): Provided C(SIG)(y) =
1, a signcrypter computes ct ← FSC.Signcrypt(mpk, sk(fC(SIG)), z = y‖y‖M). It outputs
ct(y,y)

ABSC = (y, y,ct).

ABSC.Unsigncrypt(mpkABSC = mpk,dkABSC(C(DEC)) = dk(gC(DEC)),ct(y,y)
ABSC = (y, y,CT)): A

decrypter runs FSC.Unsigncrypt(mpk, dk(gC(DEC)),ct) and obtains y′‖y′‖M ′ or ⊥. If the
decrypter gets y′‖y′‖M ′ and it holds that y′ = y

∧
y′ = y, then the decrypter outputs M ′.

Otherwise, it outputs ⊥.

Note that the correctness of the above ABSC scheme is immediate from the correctness of
the FSC scheme. The security follows from the following two theorems:

Theorem 3 (Message Confidentiality of ABSC). If FSC is selectively message confidential
against CPA as per the definition of §3, then the ABSC described above is also selectively message
confidential against CPA as per the notion given in §5.1.

Proof. Assume that there is a PPT adversary A that breaks the selective CPA-message confi-
dentiality of the above ABSC scheme. We construct a PPT adversary C that breaks the selective
CPA-message confidentiality of FSC using A as a subroutine. C interacts with A as follows:

• C begins by initializing A and receiving (y∗, y∗,M∗0 ,M∗1 ) from A. C determines a signing
circuit C(SIG)∗ ∈ FABSC such that C(SIG)∗(y∗) = 1 and constructs the signing function
f∗ = fC(SIG)∗ ∈ F. C submits the two challenge pairs (f∗0 , z∗0) = (f∗, y∗‖y∗‖M∗0 ), (f∗1 , z∗1) =
(f∗, y∗‖y∗‖M∗1 ) to its message confidentiality challenger B for FSC.

• C gets the public parameters mpk from B and provides mpkABSC = mpk to A.

• Upon receiving a challenge ciphertext ct∗ from B, C hands to A the challenge ciphertext
ct∗ABSC = (y∗, y∗,ct∗).

• The signing key, decryption key, and signcryption queries of A are answered by C as follows:
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– Signing key query: WhenAmakes a signing key query for a signing circuit C(SIG) ∈ FABSC,
C queries B with the function fC(SIG) ∈ F constructed from C(SIG) and obtains sk(fC(SIG)).
C hands skABSC(C(SIG)) = sk(fC(SIG)) to A.

– Decryption key query: When A queries C with a decryption circuit C(DEC) ∈ GABSC,
subject to the constraint C(DEC)(y∗) = 0, C queries B with the function gC(DEC) ∈ G
constructed from C(DEC). Note that since C(DEC)(y∗) = 0, we have gC(DEC)(f∗0 (z∗0)) = ⊥ =
gC(DEC)(f∗1 (z∗1)), thereby, the restriction on the decryption key query in the selective CPA-
message confidentiality game for FSC is satisfied. B returns a decryption key dk(gC(DEC))
to C and C gives dkABSC(C(DEC)) = dk(gC(DEC)) to A.

– Signcryption query: Upon receiving a signcryption query from A for a tuple (y, y,M),
C identifies a circuit C(SIG) ∈ FABSC with C(SIG)(y) = 1 and queries B with the pair
(f, z), where f = fC(SIG) ∈ F is constructed from C(SIG) and z = y‖y‖M . B returns the
ciphertext ct to C and C gives ct(y,y)

ABSC = (y, y,ct) to A.

• Eventually A outputs a bit b′. C also outputs b′.

Clearly the simulation is perfect. Thus, the advantage of A in the selective CPA-message confi-
dentiality game for ABSC is equal to that of C in the selective CPA-message confidentiality game
for FSC. Hence the theorem. ut

Theorem 4 (Ciphertext Unforgeability of ABSC). If the FSC scheme is selectively cipher-
text unforgeable against CMA as per the definition of §3, then the ABSC scheme described above
is also selectively ciphertext unforgeable against CMA according to the notion given in §5.1.

Proof. Suppose there is a PPT adversary A that breaks the selective CMA-ciphertext unforge-
ability of the ABSC scheme described above. We construct a PPT adversary C that breaks the
selective CMA-ciphertext unforgeability of the FSC scheme using A as a subroutine. C interacts
with A as follows:

• C starts by initializing A and receiving (y∗, y∗,M∗) from A. C submits m∗ = y∗‖y∗‖M∗ to
its unforgeability challenger B for the FSC scheme.

• The different types of queries of A are answered by C as described below:

– Signing key query: When A queries a signing key for a circuit C(SIG) ∈ FABSC subject to
the restriction that C(SIG)(y∗) = 0, C queries B with the function fC(SIG) ∈ F constructed
from C(SIG). Note that since C(SIG)(y∗) = 0, fC(SIG)(y‖y∗‖M) = ⊥ for any y and M ,
and hence, in particular y∗‖y∗‖M∗ is not in the range of fC(SIG) . Thus, the restriction on
the signing key queries in the selective CMA-ciphertext unforgeability game for FSC is
satisfied. B returns sk(fC(SIG)) to C and C passes it to A as skABSC(C(SIG)).

– Decryption key query: Upon receiving a decryption key query from A corresponding to
a decryption circuit C(DEC) ∈ GABSC, C constructs the function gC(DEC) ∈ G from C(DEC)

and queries B with gC(DEC) . The decryption key dk(gC(DEC)) returned by B is handed over
to A as dkABSC(C(DEC)) by C.

– Signcryption query: Upon receiving a signcryption query from A for a tuple (y, y,M) such
that (y,M) 6= (y∗,M∗), C identifies a signing circuit C(SIG) ∈ FABSC with C(SIG)(y) = 1.
Then C constructs the signing function fC(SIG) ∈ F from C(SIG) and queries B with
(fC(SIG) , y‖y‖M). Note that since (y,M) 6= (y∗,M∗), we have y‖y‖M 6= y∗‖y∗‖M∗ and so
fC(SIG)(y‖y‖M) 6= y∗‖y∗‖M∗. Thus, the restriction on the signcryption query in selective
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CMA-ciphertext unforgeability game for FSC is satisfied. B returns back a ciphertext ct
to C and C gives A the ciphertext ct(y,y)

ABSC = (y, y,ct).

– Unsigncryption query: In response to an unsigncryption query of A for a decryption
circuit C(DEC) ∈ GABSC and ciphertext ct(y,y)

ABSC = (y, y,ct), C constructs the decryp-
tion function gC(DEC) ∈ G from C(DEC) and queries B with (ct, gC(DEC)). If B returns
y′‖y′‖M and it holds that y′ = y

∧
y′ = y, then C gives M to A. On the other hand, if

y′ 6= y
∨
y′ 6= y or B returns ⊥, then C provides ⊥ to A.

• Eventually, A outputs a forgery ct∗ABSC = (y∗, y∗,ct∗) on M∗ under y∗ and y∗. C outputs
ct∗ as a forgery in its unforgeability game.

Observe that if ct∗ABSC is a valid forgery on (y∗, y∗,M∗), then it must hold that M∗(6=
⊥) ← ABSC.Unsigncrypt

(
mpkABSC,ABSC.DKeyGen(mpkABSC,mskABSC, C

(DEC)),ct∗ABSC
)

for all
C(DEC) ∈ GABSC with C(DEC)(y∗) = 1, i.e., in other words, y∗‖y∗‖M∗ ← FSC.Unsigncrypt

(
mpk,

FSC.DKeyGen(mpk,msk, gC(DEC)),ct∗
)

for all gC(DEC) ∈ G such that C(DEC)(y∗) = 1. Since any
gC(DEC) with C(DEC)(y∗) = 1, outputs y∗‖y∗‖M∗ if and only if the input is y∗‖y∗‖M∗, ct∗ must
be a valid functional signcryption of y∗‖y∗‖M∗. Thus, if A wins the selective CMA-ciphertext
unforgeability game for ABSC, then C wins in the selective CMA-ciphertext unforgeability game
for FSC. Hence the theorem. ut

Remark 2 (Ciphertext-Policy ABSC from FSC). Note that we can also instantiate ciphertext-
policy ABSC using FSC. In ciphertext-policy ABSC, signing and decryption keys are associated
with strings and ciphertexts are attached to pairs of circuits expressing signature and decryption
policies. Consider the class of signature policy circuits FABSC ⊂ P/poly, the canonical string
representation of members of which have length at most µ(λ), the class of decryption policy
circuits GABSC ⊂ P/poly with members having canonical string representation of length ν(λ),
and the message space MABSC = {0, 1}γ(λ), for polynomials µ, ν, and γ, where λ is the underlying
security parameter. Consider a FSC scheme FSC with message space M = {0, 1}n ∪ {⊥}, where
n = µ+ ν + γ, and class of signing, decryption functions F,G ⊆ P/poly respectively. We define
signing function fy ∈ F, where fy : {0, 1}n →M, for each signature input string y and decryption
function gy ∈ G, where gy : M→M, corresponding to each decryption input string y that would
instantiate the ciphertext-policy ABSC as follows:

fy(C(DEC)‖C(SIG)‖M) =
{
C(DEC)‖C(SIG)‖M, if C(SIG)(y) = 1
⊥, otherwise

gy(C(DEC)‖C(SIG)‖M) =
{
C(DEC)‖C(SIG)‖M, if C(DEC)(y) = 1
⊥, otherwise

(4)

where C(SIG) ∈ FABSC, C(DEC) ∈ GABSC, and M ∈ MABSC. When consider in the arguments of
fy and gy, C(DEC) and C(SIG) are taken in their canonical string representation form. With this
setting, we can construct ciphertext-policy ABSC from FSC in an analogous fashion as has been
done for the key-policy variant earlier in this section.

6 Other Cryptographic Primitives from FSC

§4.1 showed which cryptographic primitives are sufficient for FSC. We now seek the answer for
the converse question: Which primitives are necessary for FSC? We show in this section that
FSC implies statistically simulation-sound non-interactive zero-knowledge proof of knowledge
(SSS-NIZKPoK) for any NP relation and indistinguishability obfuscation (IO) for P/poly.
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6.1 SSS-NIZKPoK from FSC
Let R be an NP relation and L be the associated language. Recall that for (X,W ) ∈ R, we call X
the statement that is contained in L and W an witness for X. Let κ and ρ be the upper bounds
on the lengths of the statements and witnesses of R. Consider a FSC scheme FSC=(FSC.Setup,
FSC.SKeyGen, FSC.Signcrypt, FSC.DKeyGen, FSC.Unsigncrypt) supporting signing function fam-
ily F ⊆ P/poly and class of decryption functions G ⊆ P/poly. Let M = {0, 1}n ∪ {⊥} be the
message space of FSC where n = κ+ ρ+ 1. The SSS-NIZKPoK system is described as follows:

SSS-NIZKPoK.Setup(1λ): The trusted authority runs (mpk,msk) ← FSC.Setup(1λ). Next, it
identifies some statement X∗ ∈ L. Then, it generates a signing key for FSC, sk(f) ←
FSC.SKeyGen(mpk,msk, f) for the signing function f ∈ F, where f : {0, 1}n → M, and
a decryption key for FSC, dk(g) ← FSC.DKeyGen(mpk,msk, g) for the decryption function
g ∈ G, where g : M→ {0, 1}κ ∪ {⊥}, defined as follows:

f(X‖W‖β) =
{
X‖W‖β, if (X,W ) ∈ R

∧
β = 1

⊥, otherwise

g(X‖W‖β) =
{
X, if [(X,W ) ∈ R

∧
β = 1]

∨
[X = X∗

∧
W = 0ρ

∧
β = 0]

⊥, otherwise

(5)

The trusted authority publishes the common reference string crs = (mpk, sk(f),dk(g)).

SSS-NIZKPoK.Prove(crs, X,W ): A prover executes ct← FSC.Signcrypt(mpk, sk(f), X‖W‖1)
and outputs π = ct.

SSS-NIZKPoK.Verify(crs, X, π = ct): A verifier runs X ′ ← FSC.Unsigncrypt(mpk,dk(g),ct)
and outputs 1 if X ′ = X. Otherwise, it outputs 0.

SSS-NIZKPoK.SimSetup(1λ, X̃∗): The simulator performs (mpk,msk) ← FSC.Setup(1λ). Next
it computes a signing key sk(f)← FSC.SKeyGen(mpk,msk, f) for the signing function f ∈ F
and a decryption key dk(g)← FSC.DKeyGen(mpk,msk, g) for the decryption function g ∈ G
defined in equation (5) where X̃∗ will play the role of X∗. It also computes a signing key
sk(f̃)← FSC.SKeyGen(mpk,msk, f̃) for the following signing function f̃ ∈ F.

f̃(X‖W‖β) =
{
X‖W‖β, if [(X,W ) ∈ R

∧
β = 1]

∨
[X = X̃∗

∧
W = 0ρ

∧
β = 0]

⊥, otheriwse (6)

It outputs the simulated common reference string as crs = (mpk, sk(f),dk(g)) and its sim-
ulation trapdoor is tr = sk(f̃).

SSS-NIZKPoK.SimProve(crs,tr, X̃∗): The simulator computes the ciphertext for FSC, c̃t ←
FSC.Signcrypt(mpk, sk(f̃), X̃∗‖0ρ‖0) and outputs the simulated proof as π̃ = c̃t.

SSS-NIZKPoK.ExtSetup(1λ): The extractor generates (mpk,msk)← FSC.Setup(1λ). It identifies
some fixed statement X∗ ∈ L and computes the signing key sk(f) and decryption key
dk(g) respectively for functions f ∈ F and g ∈ G defined in equation (5). It additionally
computes a decryption key dk(g′) ← FSC.DKeyGen(mpk,msk, g′) for the function g′ ∈ G
where g′ : {0, 1}n → {0, 1}ρ+1 is defined by

g′(X‖W‖β) = W‖β, for X‖W‖β ∈ {0, 1}n. (7)

It outputs the common reference string crs = (mpk, sk(f),dk(g)) and its extraction trap-
door is t̂r = dk(g′).
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SSS-NIZKPoK.Extr(crs, t̂r, X, π = ct): The extractor runs FSC.Unsigncrypt(mpk,dk(g′),ct).
If it obtains W‖1 ∈ {0, 1}ρ+1, then it outputs W . Otherwise, it outputs ⊥ indicating failure.

We now exhibit that the above construction satisfies all the requirements of an SSS-NIZKPoK
system if FSC is a selectively secure functional signcryption scheme.

Theorem 5 (Security of SSS-NIZKPoK). Assuming that FSC is selective message confiden-
tial against CPA and selective ciphertext unforgeable against CMA as per the definition of §3,
the SSS-NIZKPoK system described above satisfies all the criteria of SSS-NIZKPoK defined in
§2.2.

Proof. The proofs of the different properties satisfied by the above SSS-NIZKPoK scheme based
on different features of FSC is provided below:

• Perfect Completeness: The perfect completeness of SSS-NIZKPoK is immediate from the
correctness of FSC.

• Statistical Soundness: Statistical soundness of SSS–NIZKPoK follows from the fact that
the only input X‖W‖β with (X,W ) not necessarily in R for which g outputs X is the string
X∗‖0ρ‖0 and in SSS-NIZKPoK.Setup X∗ is taken to be a member of L.

• Computational Zero-Knowledge: We argue that if there is an adversary A that breaks
the computational zero-knowledge property of SSS-NIZKPoK, then there is an adversary C
that breaks the selective CPA-message confidentiality of FSC using A as a subroutine. C
interacts with A as follows:

– C begins by initializing A and receiving (X̃∗,W ∗) ∈ R from A. C submits (f∗0 , z∗0), (f∗1 , z∗1)
to its message confidentiality challenger B for FSC where f∗0 = f, f∗1 = f̃ constructed from
X̃∗ as defined in equations (5), (6) respectively, and z∗0 = X̃∗‖W ∗‖1, z∗1 = X̃∗‖0ρ‖0.

– C gets the public parameters mpk for FSC from B.

– C also queries B with the signing function f ∈ F and the decryption function g ∈ G
constructed using X̃∗ as in equation (5). Note that g(f∗0 (z∗0)) = X̃∗ = g(f∗1 (z∗1)) as
(X̃∗,W ∗) ∈ R. Thus g satisfies the restriction on the decryption key query in the
selective CPA-message confidentiality game for FSC. B returns the signing key sk(f)
and the decryption key dk(g) to C. C sets the common reference string as crs =
(mpk, sk(f),dk(g)).

– C also receives a challenge ciphertext ct∗ from B and designates it as the proof π∗ on X̃∗.

– C hands (crs, π∗) to A.

– Finally, A outputs a bit b̃ ∈ {0, 1}. C also outputs b̃.

Clearly, if B gave ct∗ ← FSC.Signcrypt(mpk,FSC.SKeyGen(mpk,msk, f∗0 ), z∗0), then (crs, π∗)
corresponds to the “real” scenario. On the other hand, if B gave ct∗ ← FSC.Signcrypt(mpk,
FSC.SKeyGen(mpk,msk, f∗1 ), z∗1), then (crs, π∗) corresponds to the “simulation” scenario.
Hence, if A breaks the computational zero-knowledge property of SSS-NIZKPoK, then C
breaks the selective CPA-message confidentiality of FSC.

• Knowledge Extraction: Obviously, the crs values generated by SSS-NIZKPoK.Setup and
SSS-NIZKPoK.ExtSetup are identically distributed. Now we will argue that the probability
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that the extraction will fail is the same as the probability of forging a signcryption in FSC.
Consider a PPT adversary A that wins the extraction game with non-negligible advantage.
We construct a PPT adversary C that forges a signcryption of FSC with non-negligible ad-
vantage using A as a sub-routine. C interacts with A as follows:

– C identifies some statement X∗ ∈ L and submits the message X∗‖0ρ‖0 to its unforgeability
challenger B for FSC as the challenge message on which it wants to forge a signcryption.

– C receives the public parameters mpk for FSC from B.

– C constructs the function f ∈ F defined in equation (5) and queries a signing key for f to
B. Note that X∗‖0ρ‖0 is outside the range of f . Thus, f satisfies the restriction on the
signing key query in the selective CMA-ciphertext unforgeability game for FSC. B returns
the signing key sk(f) to C.

– C also queries B with the decryption functions g ∈ G constructed using X∗ as in equation
(5) and receives back the decryption key dk(g).

– C gives the common reference string crs = (mpk, sk(f),dk(g)) to A.

– A outputs a statement-proof pair (X̃∗, π∗ = ct∗). C outputs ct∗ as a forgery on X∗‖0ρ‖0.

Clearly, the simulation is perfect. Note that if (X̃∗, π∗) is a valid statement-proof pair, then
it must hold that X̃∗ ← FSC.Unsigncrypt(mpk,dk(g),ct∗). Then, from the definition of g,
it follows that either (I) the message that has been signcrypted within ct∗ is X̃∗‖W̃ ∗‖1 for
some W̃ ∗ such that (X̃∗, W̃ ∗) ∈ R or (II) X̃∗ = X∗ and the message signcrypted within
ct∗ is X∗‖0ρ‖0. Now recall that the extraction trapdoor used in the extraction process is
t̂r = dk(g′) for the function g′ ∈ G defined in equation (7). From the definition of g′, it is
clear that, in case (I), FSC.Unsigncrypt(mpk,dk(g′),ct∗) gives W̃ ∗‖1, so that in that case
the extraction process succeeds and A cannot win the above game. Thus if A wins the above
game, then case(II) must hold, i.e., the signcrypted message in ct∗ must be X∗‖0ρ‖0, so
that FSC.Unsigncrypt(mpk,dk(g′),ct∗) outputs 0ρ‖0 and the extraction process fails. Thus
if A wins in the above game, then ct∗ must be a valid forgery on X∗‖0ρ‖0 and hence, C
wins in its unforgeability game.

• Statistical Simulation Soundness: Note that according to the description of the algo-
rithms SSS-NIZKPoK.SimSetup and SSS-NIZKPoK.SimProve, for any statement X̃∗, if the
simulated common reference string and proof are given to the adversary, the only statement
for which the adversary can output a false proof that passes the verification is X̃∗. This is
because, the simulated common reference string would contain the decryption key dk(g) for
the function g ∈ G constructed using X̃∗ as in equation (5). Therefore, the unsigncryption
algorithm executed during the verification process would output the statement only if either
the proof is computed using a valid statement-witness pair or the statement on which the
proof is computed is X̃∗ itself. Thus, even after seeing simulated proofs of arbitrary statement
the adversary cannot produce a convincing proof on a false statement.

ut

6.2 IO from FSC
Note that from any selectively secure FSC scheme we can obtain a selectively secure functional
encryption (FE) scheme (for background on FE see [GGH+13b]) with the same message space
and decryption function family as the underlying FSC scheme by including a signing key in
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the public parameters of FE for the signing function which is simply the identity function on
the message space of FSC. Recently, Ananth et al. [AJS15] has shown how to construct IO for
P/poly from selectively secure FE. Following these, we can design an IO for P/poly from FSC.
The details are omitted.

7 Conclusion

In this paper, we described a new cryptographic primitive called functional signcryption (FSC)
which is a blend of FE and FS and provides a more efficient solution for controlling the signing
and decryption rights in a multi-user confidential and authenticated digital communication or
storage system. We also presented a generic construction of FSC supporting signing and decryp-
tion functions representable as polynomial-size circuits utilizing existing cryptographic building
blocks, namely, IO for polynomial-size circuits and SSS-NIZKPoK system for NP relations. As
application of this ambitious primitive, we constructed the first ABSC scheme that supports gen-
eral polynomial-size circuits and showed that FSC can also be employed to build SSS-NIZKPoK
for NP relations and IO for polynomial-size circuits.

There are a number of open research directions pertaining to FSC. Firstly, in view of mak-
ing FSC more practicable one may attempt to construct FSC, possibly for restricted classes of
functions, from weaker and more efficient primitives rather than using IO or SSS-NIZKPoK. Sec-
ondly, it would be quite interesting to develop an FSC scheme that provides adaptive security
as opposed to our selectively secure construction. Thirdly, in this work, we did not consider the
simulation paradigm to define security for FSC. Formulating a simulation-based security notion
for FSC and identifying the possibilities and impossibilities of that simulation-based security
definition have important theoretical significance. A fourth fascinating line of research would
be to develop a meaningful notion of function privacy in the context of FSC and find out its
importance in practical scenarios. Also, it is instructive to investigate whether our non-function-
private FSC construction can be extended to achieve that new definition of function privacy for
FSC applying a similar transformation technique as has been employed in [BS15] in case of FE.
Finally, we believe that FSC can be utilized as a tool for constructing many more fundamental
cryptographic primitives and discovering those new applications of FSC is another interesting
area of research.
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