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Abstract

We provide a framework for constructing leakage-resilient identification (ID) protocols in
the bounded retrieval model (BRM) from proofs of storage (PoS) that hide partial information
about the file. More precisely, we describe a generic transformation from any zero-knowledge
PoS to a leakage-resilient ID protocol in the BRM. We then describe a ZK-PoS based on RSA
which, under our transformation, yields the first ID protocol in the BRM based on RSA (in
the ROM). The resulting protocol relies on a different computational assumption and is more
efficient than previously-known constructions.

Keywords: Leakage Resilience, Bounded Retrieval Model, Proof of Storage, Identification Scheme, Generic

Transformation, RSA security.

1 Introduction

Cryptographic schemes are traditionally designed under the assumption that the adversary cannot
learn any information about the secret key. In practice, however, this assumption does not always
hold as the adversary could recover information about the key through various means such as side-
channel attacks [19, 20, 26, 5, 23], memory leakage attacks [16] or by compromising the system on
which the keys are stored. These attacks, commonly referred to as leakage attacks, have motivated
the design of leakage-resilient cryptosystems which remain secure even against adversaries that may
obtain partial information about the secret state (clearly, under some limitations on the kind of
leakage allowed). Several models of leakage-resilience have been proposed and many cryptographic
primitives have been realized under gradually stronger models [22, 12, 24, 1, 18, 14, 10]. In what
follows we discuss only the most relevant to our work, specifically, we focus on the bounded retrieval
model (BRM). In this model, there is an absolute upper bound λ on the total amount of information
the adversary can recover about the secret key. In the BRM this bound is independent of k, the
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security parameter, thus security can only be achieved if the key is larger than λ. Since the latter
can be very large, we require that the efficiency of the scheme be related only to the security
parameter. The BRM model was introduced by Di Crescenzo et al. [8] and by Dziembowski
[11]. The former showed how to construct password-based key agreement protocols while the latter
proposed a symmetric-key authenticated key agreement (AKA) protocol. In this work, we consider
the problem of identification in the BRM. More precisely, we are interested in practical identification
schemes that support large secret keys and whose efficiency is independent of the key length. The
problem was first considered by Alwen et al. [1], our contribution provides a new and different
perspective, which results in a practical scheme based on RSA.

1.1 Our Contributions

We provide a framework for constructing leakage-resilient ID protocols in the BRM from publicly-
verifiable proofs of storage (PoS) that are computationally zero-knowledge (ZK). PoS are interactive
protocols allowing a client to verify that a server faithfully stores its file. A PoS is publicly verifiable
if anyone with access to the client’s public-key can verify the server’s storage and it is computa-
tionally ZK if, roughly speaking, its verification phase leaks no useful information about the file to
a bounded adversary. We show how to construct such a scheme based on the RSA assumption.

PoS were introduced independently by Ateniese et al. [2] and Juels and Kaliski [17]. Publicly
verifiable PoS were first considered in [2] with extensions and improvements given in [27, 3]. We
summarize the contributions of this work as follows:

1. (generality) We provide a transformation from any zero-knowledge (ZK) PoS to a BRM
identification scheme.

2. (efficiency) Our ZK-PoS-to-BRM-ID transformation is very efficient, leading to BRM-ID
schemes that are practical and more efficient than prior work.

3. (security) We show how to build ZK-PoS under standard cryptographic assumptions. In
particular, we propose a novel BRM-ID scheme based on the standard RSA assumption in
the random oracle model (ROM).

1.2 Related Work

Leakage-resilient identification schemes in the BRM were first considered in [1] which proposed a
scheme based on the generalized Okamoto scheme (see Okamoto [25]) and the pairing-based public-
key homomorphic linear authenticator of Shacham and Waters [27]. In [1], a transformations is also
given from absolute leakage-resilient ID schemes to leakage-resilient signature schemes and AKA
protocols. The transformation relies on parallel-repetition and consists in taking n independent
copies of the basic relative-leakage scheme. Since n is large, this yields complex and relatively
inefficient schemes, thus a more efficient transformation is described by the authors that employs
subset selection and reduces both communication and time complexity.

For a detailed comparison between the constructions of [1] and our own, we refer the reader to
Section 4.1. Here, we just mention that the framework of [1] works only for an extension of the
Okamoto ID scheme [25] and is not generalizable. Also, the BRM-ID scheme based on the Okamoto
ID scheme relies on BLS signatures [6] and thus on the Gap Diffie-Hellman assumption. For the
same level of security, we provide schemes that rely on weaker computational assumptions and that
are more efficient in terms of computation.
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While zero-knowledge PoS can be designed from general-purpose zero-knowledge proofs by
having the server prove knowledge of the file, such an approach would not be efficient. The first
practical ZK-PoS scheme was proposed by Wang et al. [28] who extended the pairing-based PoS
construction of Shacham and Waters [27] to be zero-knowledge. In comparison, our RSA-based ZK-
PoS relies on a weaker computational assumption and, as far as we know, is the first construction
to have a full proof of security.

1.3 Overview of Our Technique

At a high level, our framework works as follows. The secret key of the identification protocol is
the encoding of a randomly-generated file and the public key is the state information generated by
encoding the file together with the public key for the PoS. To identify itself, the prover executes the
verification phase of the PoS with the verifier to prove that it indeed holds the file. Note that while
(in the context of a BRM leakage attack) the verifier can learn λ bits about the key/file, the prop-
erties of the PoS allow us to increase the file size beyond λ without increasing the communication
complexity of the verification phase.

One problem with the above approach is that standard PoS do not necessarily hide information
about the file from the verifier and, therefore, the ID scheme verifier above could learn the remaining
n − λ bits of the key from the verification phase. To address this, we need a zero-knowledge PoS;
that is, a PoS with a verification phase that hides all partial information about the file.

More formally, for the identification scheme we consider the security notion of pre-impersonation
leakage-resistance, in which an attacker, in a test stage of the experiment, can interact with an
honest prover and leak arbitrary functions of the secret key. We model the latter with a leakage
oracle that on input an efficiently computable (and adaptively chosen) function fi outputs the
value fi(sk). The restriction is that the total length of the leaked information is bounded by some
a-priori fixed value λ.

For the PoS, we phrase the soundness definition using the paradigm of “witness-extended em-
ulation” (see Lindell [21]). Intuitively, this guarantees that there exists an expected polynomial
time extractor that, for any adversary that convinces the verifier with some probability, outputs
the original file with approximately the same probability.

The main intuition is that even after the test stage, an adversary cannot have full knowledge
of the secret key/file. It follows then by the (knowledge) soundness of the PoS that the adversary
cannot convince the verifier. In the intuition above we have not defined the meaning of knowledge
of the adversary after the test stage. At first glance, one might consider the average conditional
min-entropy of the secret key/file after the test stage. This measure, however, is insufficient for
two reasons:

1. The PoS is only computationally zero knowledge so, in principle, all the min-entropy of the
file could be lost after the test stage.

2. The conditional average min-entropy is not “smooth” with respect to statistically-close distri-
butions. Specifically, given a random variable X and two statistically-close random variables
Y and Y ′, there could be an arbitrary gap between H̃∞(X | Y ) and H̃∞(X | Y ′). Therefore,
even if we considered the stronger notion of statistical zero-knowledge PoS, we might run into
the same problem.

We overcome the above problems by considering a slightly different experiment. In the new exper-
iment the prover oracle is substituted by the simulator guaranteed to exist by the zero knowledge
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property of the PoS. The crux is that a polynomially-bounded adversary cannot distinguish the two
experiments and, therefore, it can convince the verifier with approximately the same probability.
Now we can give a meaningful lower bound on the average conditional min-entropy of the secret
key/file after the test stage. The adversary cannot guess the original secret with probability roughly
more than 2−|sk|+λ ≤ 2−ω(log k) so, by soundness of the PoS, it cannot convince the verifier with
noticeable probability.

Concretely, the proof proceeds in two steps. First, we establish a lower bound on the conditional
average min-entropy of an encoding ~f ′ of a uniformly random file ~f when the adversary is given
access to a leakage oracle parameterized with ~f ′, and the randomness necessary to encode ~f . We
then show that if there exists a probabilistic polynomial time (ppt) adversary A that succeeds in
the pre-impersonation leakage experiment with a noticeable probability, then, by the soundness of
the PoS, the lower bound on the average conditional min-entropy mentioned above is violated. This
follows because we can simulate the pre-impersonation leakage experiment and then successfully
extract from the adversary the file ~f during the impersonation stage. Furthermore, the experiment
provides the information necessary to reconstruct ~f ′ from ~f . This leads to a predictor that guesses
the encoded file ~f ′ with noticeable probability.

A comparison. Consider the proof of security of the identification schemes presented in [1].
Briefly, their proof technique relies on a collision resistant hash (CRH) function and the identifica-
tion scheme is a proof of knowledge of a preimage x (the secret key) for an element y (the public
key) in the co-domain of the hash function. The reduction samples a secret key x in the domain
of the CRH function h and given the secret key, the reduction can easily reply to all the leakage
queries. If the adversary succeeds in the pre-impersonation experiment then the reduction can
extract a pre-image x′. Their analysis shows that the uncertainty of x is high even after the test
stage and therefore with high probability x′ 6= x and y = h(x′) = h(x). In comparison with our
work, they present a direct reduction to the computational problem of breaking a CRH function.

Our proof has a similar interpretation. Given a successful adversary for the pre-impersonation
leakage experiment we define a new adversary for the PoS security experiment. This new adversary
“forgets” part of the file (namely it has only λ bits of information about it) and convinces the verifier
of the PoS scheme, therefore breaking the knowledge soundness of the proof of storage. However,
since we cannot directly argue that a forgetful adversary that convinces the verifier breaks the
security of PoS, we formalize it providing the two bounds mentioned before. A similar technique,
although based on a different measure of min-entropy, was recently used in the context of fully
leakage-resilient signature (see Faonio et al. [13]).

2 Definitions

2.1 Preliminaries

If x is a string, we denote its length by |x|; if X is a set, |X| represents the number of elements in X.
When x is chosen randomly in X, we write x ← X. When A is an algorithm, we write y ← A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a random variable and
A(x; r) denotes a run of A on input x and randomness r; sometimes, when A is deterministic we
write y := A(x). An algorithm A is probabilistic polynomial-time (ppt) if it is randomized and for
any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most poly(|x|) steps.
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Throughout the paper we let k denote the security parameter. We say that a function ν : N→ R
is negligible in the security parameter k if ν(k) = k−ω(1). A positive function f is noticeable if
there exist a positive polynomial p and a number n0 such that f(n) ≥ 1/p(n) for all n ≥ n0.

We start by recalling the notion of conditional min-entropy. We adopt the definition given in [1],
where the authors generalize the notion of conditional min-entropy to interactive predictors that
participate in some randomized experiment E. The (average) conditional min-entropy of random
variable X given any randomized experiment E is defined as follows:

H̃∞ (X | E) = max
B

(
− log Pr

[
B()E = X

])
,

where the maximum is taken over all predictors without any requirement on efficiency. Note that
w.l.o.g. the predictor B is deterministic, in fact, we can derandomize B by hardwiring the random
coins that maximize his outcome. Sometimes we write H̃∞(X|Y ) for a random variable Y , in this
case we mean the average conditional min-entropy of X given the random experiment that gives Y
as input to the predictor.

We recall the definition of δ-indistinguishability for ensembles of distribution, both in the com-
putational and statistical flavors.

Definition 1 (Indistinguishability). Given a function δ : N → R and two distribution ensembles
{Xk}k≥0 and {Yk}k≥0 such that |Xk| ≤ p(k) and |Yk| ≤ p(k) for a polynomial p(k), we say that
the ensemble {Xk}k≥0 is δ-indistinguishable from {Yk}k≥0 if for any non-uniform polynomial time
distinguisher D the following holds:

|Pr
[
D(1k, Xk) = 1

]
− Pr

[
D(1k, Yk) = 1

]
≤ δ(k).

When we refer to statistical δ-indistinguishability, the equation above holds for all distinguishers
without any bound on the running time.

2.2 Proofs of Storage

Publicly-verifiable PoS consist of two phases: a setup phase where the client encodes the file and
sends it to the server; and a verification phase where a verifier (which may or may not be the
original client) engages in an interactive protocol with the server to determine if it indeed possesses
the file. The encoding algorithm also outputs a “state information” which represents a pointer to
the encoded file and has size independent of the file size. Moreover, we require that knowledge of
the state information doesn’t help a malicious server to violate the soundness property. Later, we
formalize this notion by giving to the adversary oracle access to the encoding algorithm.

We consider PoS in which the verification phase requires three moves (as opposed to two as
in previous work [2, 27, 3]): the server generates the first message a using the public key pk and
randomness r; the verifier sends a random challenge c; and the server returns a proof π using pk,
the encoded file, the challenge and the randomness used to generate the first message a.

Definition 2 (Proof of storage). A publicly-verifiable proof of storage (PoS) is a tuple of six ppt
algorithms Π = (Gen,Enc,Comm,Chall,Prove,Vrfy) such that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm that is run by the client to set up the scheme. It
takes as input a security parameter, and outputs a public and private key pair (pk, sk).
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(~f ′, st)← Encsk(~f) is a probabilistic algorithm that is run by the client in order to encode the file.
It takes as input the secret key sk, and a file ~f viewed as an n-dimensional vector over a block
space B = {0, 1}p(k) for some polynomial p(k) (let p be the block size of Π). It outputs an
encoded file ~f ′ and public state information st in {0, 1}`st(k) (let `st be the state information
size of Π).

a← Comm(pk) is a probabilistic algorithm run by the server to generate the first message. It takes
as input the public key and outputs an initial message a.

c← Chall(pk) is a probabilistic algorithm that takes as input the public key and outputs a challenge
c.

π ← Prove(pk, ~f ′, r, c) is a probabilistic algorithm that takes as input the public key pk, an encoded
file ~f ′, a string r, and a challenge c. It outputs a proof π.

b := Vrfy(pk, st, a, c, π) is a deterministic algorithm that takes as input the public key pk, the state
information st, the first message a, a challenge c, and a proof π. It outputs a bit, where ‘1’
indicates acceptance and ‘0’ indicates rejection.

We say that Π is correct if for all k ∈ N , all (pk, sk) output by Gen(1k), all n ∈ N and ~f ∈ Bn,
all (~f ′, st) output by Encsk(~f), and all c output by Chall(pk), it holds that

Pr
rc,rp

[
Vrfy

(
pk, st,Comm(pk; rc), c,Prove(pk, ~f ′, rc, c; rp)

)
= 1
]

= 1.

An important characteristic of a PoS is locality which requires that the running time of the
Prove algorithm be polynomial in the security parameter (independent of the parameter n).

Locality effectively captures the server-side efficiency guarantee provided by a PoS and, as we
will show in Section 3, is what allows us to meet the efficiency requirements of the BRM.

Informally, soundness of a PoS guarantees that if the verifier accepts the proof then the prover
indeed has sufficient information to recover the entire original file ~f . As noted in [2, 17, 27, 9],
soundness can be formalized using the notion of a knowledge extractor [15, 4]. As in [3], we phrase
our definition using the paradigm of “witness-extended emulation” [21].

Definition 3 (Soundness for a publicly-verifiable PoS). Let Π = (Gen,Enc,Comm,Chall,Prove,Vrfy)
be a publicly-verifiable PoS. We say that Π is sound with knowledge error ε(k) if there exists an
expected polynomial-time knowledge extractor K such that for all adversaries A = (A0,A1) where
A0 is an oracle ppt algorithm and A1 is an interactive ppt algorithm involved in the following
probabilistic experiment:

1. Key Stage: The challenger computes (pk, sk)← Gen(1k). The adversary A0 takes as input pk
and gets oracle access to Encsk(·). Eventually, A0 outputs a tuple (~f, stA) and the challenger
computes (~f ′, st)← Encsk(~f).

2. Extraction Stage: The extractor K takes as input pk and st and gets access to the oracle
A1(stA, ~f

′, st, · ; · ) modeled as an interactive oracle. Finally K outputs the tuple ((a, c, π), ~f∗).

3. The output of the experiment is the tuple (pk, st, (a, c, π), ~f∗, ~f).

The properties listed below hold:
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i) The following probability is at most ε(k):

Pr
[
Vrfy(pk, st, a, c, π) = 1

∧
~f∗ 6= ~f

]
, (1)

where the probability is over the outputs of the experiment above.

ii) For any pk and st, the distribution (a′, c′, π′) induced by an execution of A1(stA, ~f
′, st) with

an honest verifier and the distribution (a, c, π) as output by the extractor K in the experiment
above are identically distributed.

We say that Π is sound if ε(k) is negligible.

For simplicity, we consider only PoS Π where the function Enc is injective for any sk and for
any assignment of the internal randomness. This assumption is made without loss of generality, in
fact any PoS scheme can be converted into one with this property by “appending the missing data”
in the encoded file. By the soundness property, the procedure is efficient and the average size of
the encoded file increases only by a negligible factor 1.

We now turn to our definition of zero-knowledge. Namely, we consider the notion of black-box
zero-knowledge which guarantees that there exists a simulator for any adversary and the simulator
has only black-box oracle access to the adversary’s algorithm.

Definition 4 (zero-knowledge). Let Π = (Gen,Enc,Comm,Chall,Prove,Vrfy) be a publicly-verifiable
PoS. Π is δ-zero-knowledge (δ-ZK) if there is an expected polynomial time transcript simulator S
such that for all non-uniform polynomial time adversaries A, for any n ≥ 0, for any ~f ∈ Bn and
for any infinite sequence L = {(pk, sk, ~f ′, st)}k≥0 indexed by the security parameter k and where

(pk, sk) is output by Gen(1k) and (~f ′, st) is output by Encsk(~f), the distribution ensemble{
(a′, c′, π′)← SA(st, pk, sk)

}
(pk,sk, ~f ′,st)∈L

is δ(k)-indistinguishable from the following distribution ensemble:(a, c, π) :

r ← {0, 1}∗; a := Comm(pk; r);
c← A(pk, st, a);

π ← Prove(pk, ~f ′, r, c)


(pk,sk, ~f ′,st)∈L

.

In the definition above, the secret key for the PoS is given as input to the simulator. We could
consider a stronger definition where the secret key is given to the distinguisher, but we dismissed
this option since a weaker zero-knowledge requirement makes our final compiler more general.

2.3 Identification Protocols

An identification protocol allows a prover P in possession of a secret key sk to prove its identity to
a verifier V that holds the corresponding public key pk.

1To see this, consider the procedure that first encodes using Enc, then runs internally the extractor with oracle
access to the honest prover and, if the extractor fails, appends the original file to the encoding. Since the extractor
fails only with negligible probability the average size of the encoded file increases only by a negligible factor.
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We consider 3-move identification protocols where the prover generates the first message α using
the public key pk and randomness r; the verifier sends a random challenge β; and the prover then
computes a response γ using (pk, sk), the randomness r and the verifier’s challenge β. Given the
transcript of the protocol, the verifier decides whether to accept or not. The prover algorithm of
any identification scheme in the BRM must have efficiency essentially independent of the size of
the secret key. This is captured by the following definition.

Definition 5 (Identification protocol in BRM). A 3-move identification protocol is a protocol
between a ppt prover P and a ppt verifier V that consists of five polynomial-time algorithms
Σ = (Setup,Comm,Chall,Resp,Vrfy) such that:

(pk, sk)← Setup(1k, 1s) is a probabilistic algorithm that takes as input the security parameter and
the key-size parameter and outputs a public and private key pair (pk, sk) such that |pk| =
poly(k) and |sk| = poly(k, s).

α ← Comm(pk) is a probabilistic algorithm run by the prover P to generate the first message. It
takes as input the public key and outputs an initial message α.

β ← Chall(pk) is a probabilistic algorithm run by the verifier V that takes as input the public key
and outputs a challenge β.

γ ← Resp(pk, sk, r, β) is a probabilistic algorithm that is run by the prover P to generate the
second message. It takes as input the public key pk, the secret key sk, the randomness r, and
a challenge β (from some associated challenge space), and outputs a response γ.

b := Vrfy(pk, α, β, γ) is a deterministic algorithm run by the verifier V to decide whether to accept
the interaction. It takes as input the first message α, the public key pk, a challenge β, and a
response γ. It outputs a bit b, where ‘1’ indicates acceptance and ‘0’ indicates rejection.

The following properties hold:

Correctness. For all k ∈ N , all s ∈ N , all (pk, sk) output by Setup(1k, 1s), and β output by
Chall(pk), it holds that

Pr
r,r′

[
Vrfy

(
pk,Comm(pk; r), β,Resp(pk, sk, r, β; r′)

)
= 1
]

= 1.

Efficiency. The prover P has running time poly(k, log s). We call the locality of the protocol the
number of bits of the secret key read as a function of the security parameter k.

By saying “run the protocol Σ” we refer to the execution of the protocol between P and V.

As in previous work [1, 18], we model leakage attacks by providing the adversary with access
to a leakage oracle that returns arbitrary bits of information related to the secret key. Since we are
working in the BRM, we require that the oracle returns at most λ bits.

Definition 6 (Leakage oracle). A leakage oracle Leakλ,ksk (·) is parameterized by a secret key sk,
a security parameter k and a leakage parameter λ. It takes as input a function f (specified as a
circuit) and returns f(sk) subject to the restriction that the total output length of all its replies is
at most λ, otherwise it outputs ⊥.
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Roughly speaking, security for identification schemes requires that an adversary should not
convince an honest verifier to accept an interaction unless it knows the secret key corresponding to a
given public key. In the case of security against impersonation under active attacks, this should hold
even if the adversary is previously allowed to interact with the honest prover a polynomial number of
times. In [1], Alwen et al. extend this notion to capture leakage attacks by providing the adversary

with a Leakλ,ksk (·) oracle. This leads to two definitions: security against pre-impersonation leakage,
where the adversary can only access the oracle before interacting with the verifier; and security
against anytime leakage, where the adversary can access the oracle even during the interaction
with the verifier.

Definition 7 (Security against pre-impersonation leakage [1]). Let Σ be an identification protocol
and A = (A0,A1) be an adversary. Consider the following experiment:

1. Key Stage: The challenger computes (pk, sk)← Setup(1k, 1s).

2. Test Stage: The adversary A0 takes as input pk and gets oracle access to Leakλ,ksk (·) and to
an honest prover P(sk, pk), modeled as an oracle that runs (arbitrarily many) proofs upon
request; access to proofs is sequential. Finally A0 outputs stA.

3. Impersonation Stage: A1(stA) executes Σ as a prover with an honest verifier (running
with pk).

4. The adversary succeeds if the honest verifier accepts the interaction.

Σ is ε(k)-secure against pre-impersonation leakage λ(k, s) if the success probability of every ppt
adversary A and for infinitely many positive integer s in the above experiment is at most ε(k). We
say that Σ is secure against pre-impersonation leakage λ(k, s) if ε(k) is negligible.

3 From Proofs of Storage to Leakage-Resilient ID Protocols

In this section we show how to transform any computationally ZK publicly-verifiable proof of
storage into a leakage-resilient identification protocol in the BRM. The basic idea is to use the file
as the secret key of the identification protocol and the state information as its public key. A basic
version of this approach would work as follows. The honest prover generates a public and private
key pair for the PoS. A file is chosen at random and encoded. The encoded file ~f ′ serves as the
identification secret key, and the state information st together with the public key of the PoS serves
as the public key. To identify itself, the prover executes the verification phase of the PoS with the
verifier.

One problem with the above approach is that, in the context of a pre-impersonation leakage
attack, the adversary receives access to a Leakλ,k~f ′

(·) oracle and to an honest prover. The effect of

the leakage oracle can be mitigated somewhat by increasing the size of the file to be larger than
λ. Since the communication complexity of the PoS is effectively constant, this will not degrade the
efficiency of the protocol. However, to prevent the adversary’s interaction with the honest prover
from revealing too much information about the file, we will require the verification phase of the
PoS to be zero-knowledge.

The compiler is shown in Figure 1. If the Prove algorithm of Π is local then the resulting scheme
is an identification scheme in the BRM. We recall here a lemma from [1] that we make use of.
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Let Π = (Gen,Enc,Comm,Prove,Vrfy) be a PoS with block size p(k). Construct a leakage-
resilient ID protocol Σ = (Setup,Comm,Resp,Vrfy) as follows:

• Setup(1k, 1s):
Set n = s/p(k);

Compute (pk′, sk′)← Π.Gen(1k) and sample a file ~f ← Bn;

Compute (~f ′, st)← Π.Encsk(~f) and

set sk = ~f ′ and pk = (pk′, st); Delete sk′ and ~f .

• Comm(pk; r): Output α := Π.Comm(pk; r).

• Chall(pk): Output β ← Π.Chall(pk).

• Resp(pk, sk, r, β): Output γ := Π.Prove(pk′, ~f ′, r, β).

• Vrfy(pk, α, β, γ): Output b := Π.Vrfy(pk′, st, α, β, γ).

Figure 1: Transforming a ZK PoS with block size p(k) into a leakage-resilient ID protocol.

Lemma 1. For any random variable X and for any experiment E with oracle access to LeakλX(·),
consider the experiment E′ which is the same as E except that the predictor does not have oracle
access to LeakλX(·), then H̃∞ (X | E) ≥ H̃∞ (X | E′)− λ.

Let E be the following randomized experiment:

1. It generates a key pair (pk′, sk′) for Π, samples a file ~f uniformly at random, samples random
coins ωenc and computes (~f ′, st) := Encsk′(~f ;ωenc).

2. The predictor takes as input pk = (pk′, st), sk′ and ωenc and gets oracle access to Leakλ,k~f ′
(·).

Lemma 2. Let `st be the size of the state of Π. Then, H̃∞(~f ′ | E) ≥ |~f | − λ− `st.

Proof. Consider the experiment E′ which is the same as E except that B’s oracle access to Leakλ,k~f ′
is removed. We apply Lemma 1:

H̃∞

(
~f ′ | E

)
≥ H̃∞

(
~f ′ | E′

)
− λ,

Consider the experiment E′′ which is the same as E′ but where the predictor does not get the state
information st as input. We apply Lemma 1:

H̃∞

(
~f ′ | E′

)
≥ H̃∞

(
~f ′ | E′′

)
− `st.

Notice that in the experiment E′′ the information about ~f ′ is limited to sk and ωenc and recall that

Encsk(·;ωenc) is injective, thus any predictor guesses ~f ′ with probability 2−|
~f |.

In the next lemma we give an upper bound on the average conditional min entropy of ~f ′ given the
experiment E that depends on the winning probability of a ppt adversary in the pre-impersonation
leakage experiment.
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Lemma 3. Let Π be a δ-ZK PoS with knowledge error εΠ and let εA be the probability with which
an adversary A succeeds in the pre-impersonation leakage experiment. If δ is negligible then

H̃∞(~f ′ | E) ≤ log(1/εA) + 2
εΠ

εA
+ 1.

Proof. Consider the predictor B that, given the public key pk = (pk′, st) and sk′, ωenc works as
follows during the experiment E:

1. Setup Stage: It chooses a string ω for A0 that maximizes the winning probability of A in
the pre-identification leakage experiment. Let Aω be the algorithm A0 with the randomness
fixed to ω.

2. Test Stage: It executes Aω(pk) and answers its leakage queries using its own leakage oracle.
At the i-th oracle call of Aω to the prover oracle, it executes the simulator (a′i, c

′
i, π
′
i) ←

SAωi (sk), where Aωi is a copy of the adversary Aω where the machine state is set as the
machine state of Aω just before the i-th call. The messages a′i and π′i are sequentially fed to
the adversary Aω. Eventually, Aω outputs stA.

3. Extraction Stage: It uses the extractor K(pk′, st), guaranteed to exist by the soundness of
Π, with A1(stA) to recover a file ~f∗. It returns as its output Encsk(~f

∗;ωenc).

Aω is deterministic thus, for all i at the i-th interaction with the prover, Aω will reply with the
challenge message ci equal to the one in the simulated transcript. To bound the probability that
the extractor K outputs the correct file, we first argue that the probability with which A1 succeeds
in the impersonation stage is roughly the same whether it receives its state from a Aω that was
executed with oracle access to an honest prover or to a simulator.

Proposition 1. Let q(k) (resp. q′(k)) be an upper bound on the number of queries made by Aω to
the prover oracle (resp. leakage oracle). The view of Aω in the Test Stage of the predictor B, as
described below, {

pk,
(
a′i, c

′
i, π
′
i

)
i∈[q(k)]

,
(
fi(~f

′)
)
i∈[q′(k)]

}
,

and the view of Aω in the Test Stage of the pre-impersonation leakage experiment{
pk,
(
ai, ci, πi

)
i∈[q(k)]

,
(
fi(~f

′)
)
i∈[q′(k)]

}
,

where, for all i ∈ [q(k)], the tuple (ai, ci, πi) is a transcript of the interaction between Aωi and the
honest prover, are (q(k)δ(k))-indistinguishable.

The proposition can be proved with a hybrid argument based on the zero-knowledge property of
the PoS. Indeed, the zero-knowledge property holds for any non-uniform polynomial-time adversary
A.

Recall that Aω at the end of the test stage outputs the state information stA. The probability
that A1(stA) succeeds in the impersonation stage is at least εA − qδ ≥ εA

2 . This holds because δ
is negligible in k and by Proposition 1. In fact, if this were not the case, the concatenation of Aω
and A1(stA) executing Π as prover with an honest verifier would distinguish the two distributions
with noticeable probability.
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Now, we can bound the probability that the extractor K outputs the correct file. From the
soundness of Π, the extractor K outputs a tuple ((a, c, π), ~f∗) such that Vrfy(pk, a, c, π) = 1 and
~f∗ 6= ~f with probability at most εΠ(k). But note that

Pr[Vrfy(pk, a, c, π) = 1 ∧ ~f∗ 6= ~f ]

≥ Pr[Vrfy(pk, a, c, π) = 1]− Pr[~f∗ = ~f ] ≥ εA
2 − Pr[~f∗ = ~f ].

Hence, it follows that

Pr[~f∗ = ~f ] ≥ εA
2 − εΠ = εA

2

(
1− 2εΠ

εA

)
> εA

2 · 2
−2

εΠ
εA = εA · 2

−2
εΠ
εA
−1
,

where we used (1 − x) ≥ e−x > 2−2x. The lemma follows because of Eq.(2) below and by taking
the log:

2−H̃∞(~f ′|E) ≥ Pr
[
BE = ~f ′

]
≥ Pr

[
Encsk(~f

∗;ωenc) = ~f ′
]

= Pr
[
~f∗ = ~f

]
. (2)

We are now ready to prove our main theorem which establishes the security of our transforma-
tion.

Theorem 1. Let Π be a proof of storage that is sound with knowledge error εΠ(k), computational
δ(k)-zero-knowledge and with state information size `st(k). If δ(k) and εΠ(k) are negligible in k
and if |f | > λ + `st + ω(log k), then Σ as in Figure 1 is secure against pre-impersonation leakage
λ.

Proof. Let εA be the pre-impersonation leakage winning probability of an adversary A, since εΠ

and δ are negligible in k, by Lemma 3:

H̃∞(~f ′|E) ≤ − log (1/εA) + negl(k) + 1.

It follows then that if εA is noticeable in k, there exists a constant c such that

H̃∞(~f ′|E) ≤ c · log(k) (3)

for infinitely many k. Thus, if |~f | > λ+ `st + ω(log k), Equation 3 contradicts Lemma 2.

4 A ZK-PoS based on RSA

We now describe a (statistical) zero-knowledge proof of storage. The scheme, described in Figure
2, is an extension of the RSA-based construction of Ateniese et al. [2]. It relies on a modulus
generator GenQ that takes as input a security parameter 1k and outputs a tuple (N, p′, q′) such that
N = (2p′ + 1) · (2q′ + 1) = p · q, where p′ and q′ are random primes such that p′q′ ∈ [2k−1, 2k − 1]
and p and q are primes.

Abstractly, the scheme can be seen as a witness-indistinguishable Sigma protocol (see Cramer [7])
for the relation:

R =

{(
(pk, st,~c), (t̃, f̃)

) ∣∣∣∣ t̃e∏
iH(st, i)ci

≡ gf̃1 mod N

}
,
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Gen(1k): Set k̄ = ω(log k) and generate (N, p′, q′)← GenQ(1k+5k̄).

Choose a prime e such that e > 2k+5k̄ and d such that ed = 1 (mod p′q′). Let g1 and g2

be generators of the unique cyclic subgroup QN of order p′q′ (i.e., the set of quadratic
residues modulo N). Let H : {0, 1}∗ → QN be a RO. Set pk = (N, g1, g2, e,H) and
sk = (N, d,H).
The block space B is Z2k and the challenge space C for n-block long file is Zn

2k̄ × Z2k̄ .

Encsk(~f):

1. sample st← {0, 1}k.

2. for 1 ≤ i ≤ n:

(a) set ri := H(st, i).

(b) compute ti :=
(
ri · gfi1

)d
mod N .

3. let ~t := (t1, . . . , tn)

4. output the encoded file ~f ′ := (~f,~t) and state information st.

Comm(pk):
sample z1 ← Z2k+4k̄ and z2 ← Z2k+8k̄ and
output a := gz11 · g

e·z2
2 mod N

Chall(pk):
sample ~c← Sparse(Z2k̄ , n,m) and v ← Z2k̄ and
output c := (~c, v).

Prove(pk, ~f ′, a, c):

1. parse c as ~c ∈ Zn
2k̄ and v ∈ Z2k̄

2. sample ρ← Z2k+6k̄

3. compute τ := gρ2 ·Πit
ci
i mod N

4. compute µ := z1 + v ·
∑
i ci · fi

5. compute σ := z2 + v · ρ
6. output π := (τ, µ, σ)

Vrfy(pk, st,~c, π):

1. for 1 ≤ i ≤ n, set ri := H(st, i)

2. output 1 iff µ < 2k+5k̄ and a · (τe/Πir
ci
i )v

?≡ gµ1 · ge·σ2 (mod N)

Figure 2: A statistical ZK PoS based on RSA with locality parameter m.

where pk = (N, g1, g2, e,H) as defined in Figure 2, and where the equation that defines the relation
R is essentially the verification procedure of the PoS presented in [2]. We note that for any file
~f ∈ Bn and any challenge ~c ∈ Zn

2k̄
, let ~f ′, st← Encsk(~f) where ~f ′ = (~f,~t), a witness for the instance

(pk, st,~c) can be derived as

t̃ =
∏
i

tcii and f̃ =
∑
i

ci · fi. (4)
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The witness indistinguishability property of the Sigma protocol is enough to derive the zero-
knowledge property of the PoS. Witness indistinguishability means that the distributions of the
transcript for two distinct witnesses are indistinguishable, even when the verifier is malicious. Re-
call that the simulator of ZK-PoS takes as input the secret key sk = (N, d,H), and thus it can
efficiently derive a valid witness (t′, f ′) for the instance (pk, st,~c) for any challenge ~c chosen by the
adversary. Specifically, it can encode an uniformly random file (or even a fixed one) using the same
state information and compute an honest proof of storage for the challenge ~c and the encoded file2.
Notice that we are assuming that the first message of the Sigma protocol is independent from the
witness, which is usually true for Sigma protocols.

The locality of the scheme depends on how the challenges are generated. In fact, to make the
scheme local it is enough to use “probabilistic checking” and make the server generate a proof for a
random subset of the blocks. More concretely, we define a distribution Sparse(Z2k̄ , n,m) by sampling
a vector ~c such that for all i ∈ [n]: (1) with probability m/n the element ~ci is chosen uniformly
at random from Z2k̄ ; otherwise (2) ~ci is set to 0. For locality m the challenge is sampled from the
distribution Sparse(Z2k̄ , n,m). This ensures that Prove and Vrfy have locality m on average. If the
scheme needs to be always local, the honest-prover can just discard the challenge if the number
of non-zero locations in ~c is not in the range {(1± ε)m}, for a constant ε. The behavior will be
indistinguishable from the original scheme with all but negligible probability in k.

Theorem 2. The scheme described in Figure 2 is statistical zero-knowledge.

Proof. For any adversary A, consider the simulator SA that on input the key pair (N, g1, g2, e, d,H)
samples a← Comm(pk), then executes (~c, v)← A(pk, st, a). If A aborts then the simulator returns
the special symbol ⊥. Otherwise, with the knowledge of the secret key, the simulator computes
v′ := v−1 mod p′q′ and samples an element µ in Z2k+4k̄ , an element σ in Z2k+8k̄ and sets

τ :=
((
gµ1 · g

σ
2 · a−1

)v′ ·Πir
ci
i

)d
mod N

where ri := H(st, i), and outputs the tuple (st, a, (~c, v), (τ, µ, σ)).
The output of SA is statistically close to a real transcript since a, v and ~c are distributed exactly

as they would be in a real transcript, and since τ , µ, and σ are statistically close to elements from
a real transcript. Moreover by definition v < p′ and v < q′, thus the element v−1 mod p′q′ is well
defined.

Theorem 3. For locality parameter m = ω(log k), the scheme described in Figure 2 is sound if the
RSA assumption holds with respect to GenQ.

Proof. We describe a knowledge extractor K that runs in expected polynomial-time and satisfies
Definition 3. Recall that K is given (pk, st) as input and has oracle access to A1(stA, ~f

′, st, · ; · )
which we abbreviate as A(·). K works as follows:

1. It chooses a random challenge c := (~c, v) and runs A on c, obtaining a first message a and
a proof π. If Vrfy(pk, st, a, c, π) = 0, K outputs (τ,⊥) and halts. Otherwise, its first output
will still be τ but it attempts to recover the original file as described next. From now on, we
assume that A will be rewound to right after it outputs its first message a so that it can be
challenged on distinct challenge pairs. We sometimes denote the adversary that outputs A

2The actual simulator does it implicitly, without sampling the entire file.
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as its first message as Aa and write π ← Aa(~c, v) to refer to the proof it outputs when given
challenge (~c, v).

2. It initializes a set Basis = ∅, keeps track of the total number of calls to A and halts with
output fail if 2k calls are made.

3. A challenge pair (~c, v) is valid if Aa(~c, v) outputs π such that Vrfy(pk, st, a, (~c, v), π) = 1. K
estimates the probability ε̃ with which a pair (~c, v) is valid by running Aa with a random
challenge until some fixed polynomial number t = t(k) of successful verifications occur. By
appropriate choice of t it is possible to ensure that ε̃ is within a factor of 2 of the true
probability with all but negligible probability 2−k

2
.

4. For j = 1 to n do:

• Repeatedly sample the pair (~cj , vj)← Chall(pk) until:

(a) ~cj does not lie in span(Basis);

(b) The pair (~cj , vj) is valid;

(c) Sample 4k/ε̃ random values v
(1)
j , . . . , v

(4k/ε̃)
j , there exists a value v∗j ∈

{
v

(1)
j , . . . , v

(4k/ε̃)
j

}
such that v∗j 6= vj and that (~cj , v

∗
j ) is valid.

• If no such tuple (~cj , vj , v
∗
j ) is found within 16k/ε̃ tries then output fail and halt. If found,

add ~c to Basis.

5. Let Basis = {~c1, . . . ,~cn}. Let πj = (τj , µj) and π∗j = (τ∗j , µ
∗
j ) be the outputs of Aa(~cj , vj) and

Aa(~cj , v∗j ), respectively. Setup the system of linear equations{∑
i

cj,i · fi = (µj − µ∗j )/(vj − v∗j )

}
1≤j≤n

in the unknowns ~f = (f1, . . . , fn). Solve for ~f (over the integers) and output it.

Fixing stA, ~f ′ and st, we let ε denote the probability that a random challenge (~c, v) is valid. We
assume stA includes A’s coins thus this corresponds to the probability with which A(stA, ~f

′, st, ·)
responds correctly to the verifier’s challenge.

We note that the first point of Definition 3 is satisfied. Indeed, distribution of transcripts
generated by an honest verifier interacting with A is identical to the distribution of the first output
of K. In fact, K produces its first output by emulating an interaction between A and the honest
verifier.

Claim 1. K runs in expected polynomial time for any adversary A.

If ε = 0 then K halts in Step 1, thus assume ε > 0. Steps 1 and 5 run in strict polynomial time.
The expected running time of Step 3 is exactly some polynomial times t(k)/ε. As for Step 4, there
are two cases. If ε̃ ≤ ε/2 then the running time is bounded by some polynomial times 2k due to
the counter being maintained in Step 2. But the probability that ε̃ ≤ ε/2 is at most 2−k

2
.

On the other hand, if ε̃ > ε/2, then the expected running time of Step 4 is at most some
polynomial times n · 16k · 4k/ε̃ < n · 128k2/ε. Since K only reaches Step 4 with probability ε, the
overall expected running time of K is upper bounded by

ε ·
(

poly(k) + poly(k) · t(k)/p + poly(k) · 2k · 2−k2
+ poly(k) · n · 128k2/ε

)
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which is polynomial.

�

Claim 2. If ε > 4 · (2−k̄ + e−m) then the probability (conditioned on K reaching Step 4) that K
outputs fail is negligible. Observe that this implies that

Pr
pk,st,a,π, ~f∗

[
Vrfy(pk, st, a, c, π) = 1

∧
~f∗ = fail

]
,

where the probability is over the output of ExpPoS
A , is negligible in the security parameter.

First, observe that the probability that K times out by virtue of running for 2k steps is negligible
(this follows from the fact that the expected running time of K is polynomial). Next, fix any j and
consider Step 4.

We say that a vector ~c is good if there are at least a ε/2 fraction of v’s for which (~c, v) is valid.
Let E1 be the event that a pair (~c, v) is such that

~c 6∈ span(Basis)
∧

(~c, v) is valid
∧
~c is good

We claim that the probability that ~c lies in span(Basis) is at most 2−k̄ + e−m.
The probability that ~c is bad and does not lie in span(Basis) is at most (1− 2−k)ε/2 . We therefore
have that

Pr [E1] ≥ ε− (2−k̄ + e−m)− (1− 2−k)ε/2 ≥ ε/4 (5)

where the last inequality holds since ε > 4(2−k̄ + e−m).
Now let E2 be the event that v∗ 6= v and that (~c, v∗) is valid. Note that if ~c is good, there is at

least a 2k · ε/2 − 1 total number of v∗’s that are different from v and such that (~c, v∗) is valid. It
follows then that

Pr [E2 | ~c is good] ≥ 2k · ε/2− 1

2k
≥ ε/4

where the last inequality follows from the assumption that ε > 2−k+2. The probability that
(conditioned on ~c being good) K finds a v∗ 6= v such that (~c, v∗) is valid within 4k/ε̃ samples is at
least (1− e−k/2) since ε̃ ≤ 2ε with all but negligible probability in k.

Combined with Equation 5 we have that the probability that K succeeds in finding a tuple
(~c, v, v∗) such that ~c 6∈ span(Basis) and that both (~c, v) and (~c, v∗) are valid is at least

(1− 2−k
2
) · (1− e−k) · ε/4 ≥ ε/16

since k ≥ 1. It follows then that, in Step 4, K will not find such a tuple within 16k/ε̃ iterations
(and therefore output fail) with probability at most e−k, which is negligible. This end the proof of
the claim.

For completeness, we show that ~c lies in span(Basis) with probability 2−k̄ + e−m.
Note that the bigger |Basis| is, the most likely ~c ∈ span(Basis), therefore the worst case is |Basis| =
n− 1. If ~c ∈ span(Basis) then there exist α1, . . . , αn ∈ Z with at least one coordinate i with αi 6= 0
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and such that ~c ∈ V if and only if En := (
∑n

i=0 αi · ~ci = 0). W.l.o.g. let n be such a coordinate:

Pr [En′ ] ≤
∑
x∈F
·Pr [~cn′ = x] Pr

[
Σn′−1
i αi~ci = −α′nx

]
≤ Pr

[
~c′n = 0

]
Pr [En′−1] +

∑
x∈F\{0}

Pr
[
~c′n = x

]
· Pr

[
Σn′−1
i αi~ci = −α′nx

]

≤

(
m · 2−k̄

n
+ 1− m

n

)
Pr [En′−1] +

m · 2−k̄

n
·
∑

x∈F\{0}

Pr
[
Σn′−1
i αi~ci = −α′nx

]

≤

(
m · 2−k̄

n
+ 1− m

n

)
Pr [En′−1] +

m · 2−k̄

n
· (1− Pr [En′−1])

≤
(

1− m

n

)
Pr [En′−1] +

m · 2−k̄

n

From the last inequality, by setting n′ := n, it follows that

Pr [En′ ] ≤
(

1− m

n

)n′
Pr [E0] +

m · 2−k̄

n

(
n′−1∑
i=0

(
1− m

n

)i)

≤ e−m Pr [E0] +
m · 2−k̄

n

(
1− (1− m

n )n
′

m/n

)
≤ e−m +

1

r
.

�

Claim 3. If RSA assumption holds then, for any ppt adversary A,

Pr
[
Vrfy(pk, st, a, c, π) = 1

∧
~f∗ 6∈ {fail, ~f}

]
,

where the probability is over the output of ExpPoS
A , is negligible in the security parameter.

As a sanity check, we show that if we run the extractor K on an honest prover then the procedure
correctly outputs the original file ~f . Given two honestly generated (therefore valid) proofs (τ, µ, σ)
and (τ∗, µ∗, σ∗), for (~c, v) and (~c, v∗) respectively, we obtain:

τ ev = (Πir
ci
i )v · a−1 · gµ1 · g

e·σ
2 (mod N)

(τ∗)ev
∗

= (Πir
ci
i )v

∗
· a−1 · gµ

∗

1 · g
e·σ∗
2 (mod N)

By dividing the two equations and using the definition of τ and τ∗ we get

gµ−µ
∗

= g(v−v∗)·
∑
i cifi (mod N)

from which it follows that

(µ− µ∗) = (v − v∗) ·
∑
i

cifi (mod p′q′).
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The equation above, however, also holds over the integers since |µ − µ∗| ≤ 2k+5k̄ < p′q′ and
|(v − v∗) ·

∑
i cifi| ≤ 2k+log(n)+2k̄ < p′q′. And since v 6= v∗ we have

(µ− µ∗)/(v − v∗) =
∑
i

cifi.

This ends the sanity check.

Note that if ~f∗ 6= fail then K reached Step 5 and therefore (~c, v) and (~c, v∗) are valid. Therefore
~f∗ 6= ~f occurs only if, at Step 5, there exists some ~c ∈ Basis for which the challenges (~c, v) and
(~c, v∗) and corresponding proofs π = (τ, µ, σ) and π∗ = (τ∗, µ∗, σ∗) are such that

Vrfy(pk, st, a, (~c, v), π) = Vrfy(pk, st, a, (~c, v∗), π∗) = 1

yet ∑
i

ci · f∗i = (µ− µ∗)/(v − v∗) 6=
∑
i

ci · fi. (6)

We now argue that if this occurs with noticeable probability, then there exists a ppt adversary B that
violates the RSA assumption with respect to GenQ. Let N and e be a modulus and exponent output
by GenQ and let y be a random element of QN . The adversary B works as follows:

1. It chooses a generator u of QN uniformly at random and set g1 := ue · y and g2 := y and
pk := (N, g1, g2, e,H).

2. It simulates the experiment in the claim answering Enc and random oracle queries as follows:

(Enc queries): given a file ~f compute a set of tags ~t such that ti = uwi where wi ← ZN2 ,
choose a random st← {0, 1}k and keep track of (~f, st). If st was already chosen in a previous
query or B has already queried the Random Oracle on a value (st, i), abort the simulation.
Otherwise, return (~f,~t).

(RO queries): if query x has the form (st, i) for some st such that there already exists a

record (~f, st) and i ∈ [n], return uewi · g−fi1 . Otherwise, return a random value in QN and
save the query/answer pairs to answer queries consistently.

3. It runs the extractor K and finds a vector ~c ∈ Basis such that the Equation 6 holds. Finally,
it computes and returns(

τv/(τ∗)v
∗
· u∆v(

∑
i ci(fi−wi))−∆µ

)α
yβ (mod N)

Where ∆v := (v − v∗), ∆µ := (µ− µ∗), ∆σ := (σ − σ∗) and set

Φ := −∆v

(∑
i

cifi

)
+ ∆µ+ ∆σ · e

and α,β are such that:
α · Φ + β · e = 1 (7)
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First note that the ri values are statistical close to the uniform distribution over QN because
wi values are picked from ZN2 , so the simulation is statistical close to the real game, also there are
a polynomial number of queries so the aborting probability is negligible in k.

From the verification equations we get that(
τv/(τ∗)v

∗
)e
≡ (Πir

ci
i )∆v · g∆µ

1 · ge·∆σ2 (mod N)

Applying the definitions from the simulation we get:(
τv/(τ∗)v

∗
· u∆v(

∑
i ci(fi−wi))−∆µ

)e
≡ yΦ (mod N)

Equation (7) holds, in fact e is prime and divides Φ if onfy if e divides Φ−∆σ · e < e, which is true
because the verification procedure assures |∆µ| < 2k+5k̄ < e and |∆v

∑
i cifi| < 2k+logn+2k̄ < e, so

we can apply Shamir’s trick in order to find yd (mod N).

Remark 1. In order to simulate an RO from {0, 1}∗ to J +
N (the subspace of elements with Jacobi

Symbol +1), we follow the same simulation and set h := ue · y, g1 := h2, ri := (−1)b · uewi · h−fi
for a random bit b and ti := u2wi,

4.1 Efficiency Comparison with Previous Work

We compare the identification scheme derived by applying our transformation to the RSA-based
ZK PoS from Section 4 with the third (and most efficient) construction of Alwen et al. [1].

In the following, we denote our construction by RSA-ID and that of Alwen et al. by GDH-ID.
We consider multiplications and additions as constant-time operations and denote by te the

time for an exponentiation, by ts the time for an exponentiation with a small (i.e., o(k)) exponent,
and by tp the time for a pairing operation. For the same security level, modular exponentiations in
RSA groups are more expensive than modular exponentiations in groups for which GDH seems to
hold, therefore we distinguish them by using the upper scripts RSA and GDH to indicate in which
group the operations are carried out. We can assume that tGDH

e < tRSAe � tp.
In GDH-ID, the prover needs Ω(` · m · tGDH

e ) work to generate each of its two messages (the
first and third) while the verifier needs Ω(m · tGDH

e + tp) time to verify the interaction3 . For our
construction, on the other hand, the prover needs only O(tRSAe ) (i.e., two exponentiations and one
multiplication) and O(tRSAe +m · tRSAs ) work for the first and third messages, respectively, and the
verifier requires only O(tRSAe +m · tRSAs ) time to verify the interaction. We also note that while the
locality m in RSA-ID can be any function that is ω(log k), in GDH-ID m must be at least Ω(k). In
particular, to get approximately 1/2 tolerance of relative leakage, m must be 12 times larger than
k.

With respect to communication complexity, the third message of GDH-ID requires roughly `
times the number of group element as the third message of RSA-ID—though GDH-ID works in
smaller groups than RSA-ID for the same security parameter.

There are two negative aspects of RSA-ID compared with GDH-ID: The first is that, for the
same security level, RSA groups are bigger than groups for which GDH seems to hold; The second
is the ratio between the secret-key size and the leakage tolerated. However, the difference is relevant

3 The integer parameter ` ≥ 2 in their construction can be arbitrarily set.
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only when ` is ω(1) and m is ω(k) in which case the time complexity of GDH-ID becomes much
worse than that of RSA-ID.

5 Conclusions

We showed that zero-knowledge proof-of-storage schemes can be used to build leakage-resilient iden-
tification protocols in the bounded retrieval model (BRM). Our framework provides new insights
into the BRM and unfolds new ways to build leakage-resilient identification protocols in this model.
For instance, we described a ZK-PoS based on RSA which yields the first ID protocol in the BRM
based on RSA. When combined with the compiler in [3], our framework establishes a compelling
connection between homomorphic ID and leakage-resilient ID schemes. However, the missing step
toward an efficient compiler between homomorphic ID and leakage-resilient ID schemes is to find
an efficient compiler between PoS and ZK-PoS. We do not explore any approach in this paper and
leave it as an open problem.

Acknowledgments.

We are grateful to Jonathan Katz for his insightful comments, suggestions, and contributions to
this work.

References

[1] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the bounded-
retrieval model. In CRYPTO, pages 36–54, 2009.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. In CCS, 2007.

[3] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification
protocols. In ASIACRYPT, pages 319–333, 2009.

[4] M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO, pages 390–420,
1992.

[5] D. Boneh and D. Brumley. Remote timing attacks are practical. In 12th Usenix Security
Symposium, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. In ASIACRYPT, pages 514–32, 2001.

[7] Ronald Cramer. PhD thesis.

[8] G. Di Crescenzo, R. Lipton, and S. Walfish. Perfectly secure password protocols in the bounded
retrieval model. In TCC, pages 225–244, 2006.

[9] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. In
TCC, pages 109–127, 2009.

[10] A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks to
noisy leakage. In EUROCRYPT, pages 423–440, 2014.

20



[11] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages 207–224,
2006.

[12] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302,
2008.

[13] A. Faonio, J.B. Nielsen, and D. Venturi. Mind your coins: Fully leakage-resilient signatures
with graceful degradation. In ICALP, Part I, pages 456–468, 2015.

[14] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from
leakage: the computationally-bounded and noisy cases. In EUROCRYPT, pages 135–156,
2010.

[15] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology,
1(2):77–94, 1988.

[16] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J.
Feldman, J. Appelbaum, and E.W. Felten. Lest we remember: cold boot attacks on encryption
keys. In USENIX, pages 45–60, 2008.

[17] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In CCS, 2007.

[18] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In ASI-
ACRYPT, pages 703–720, 2009.

[19] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other sys-
tems. In CRYPTO, pages 104–113, 1996.

[20] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages 388–397,
1999.

[21] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. In
CRYPTO, pages 171–189, 2001.

[22] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In TCC,
pages 278–296, 2004.

[23] E. Miles and E. Viola. Shielding circuits with groups. In STOC, pages 251–260, 2013.

[24] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pages
18–35, 2009.

[25] T. Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In CRYPTO, pages 31–53, 1992.

[26] J.J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and counter-
measures for smart cards. In E-Smart, pages 200–210, 2001.

[27] H. Shacham and B. Waters. Compact proofs of retrievability. In ASIACRYPT, 2008.

[28] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for data storage
security in cloud computing. In INFOCOM, pages 525–533, 2010.

21


	Introduction
	Our Contributions
	Related Work
	Overview of Our Technique

	Definitions
	Preliminaries
	Proofs of Storage
	Identification Protocols

	From Proofs of Storage to Leakage-Resilient ID Protocols
	A ZK-PoS based on RSA
	Efficiency Comparison with Previous Work

	Conclusions

