
Nearly Sparse Linear Algebra
and application to

Discrete Logarithms Computations

Antoine Joux1,2,3 and Cécile Pierrot1,4

1Sorbonne Universités, UPMC Univ Paris 06, LIP6, 4 place Jussieu, 75005 PARIS, France
2Chaire de Cryptologie de la Fondation de l’UPMC

3 Antoine.Joux@m4x.org
4 Cecile.Pierrot@lip6.fr

Abstract. In this article1, we propose a method to perform linear algebra on
a matrix with nearly sparse properties. More precisely, although we require the
main part of the matrix to be sparse, we allow some dense columns with pos-
sibly large coefficients. This is achieved by modifying the Block Wiedemann
algorithm. Under some precisely stated conditions on the choices of initial
vectors in the algorithm, we show that our variation not only produces a ran-
dom solution of a linear system but gives a full basis of the set of solutions.
Moreover, when the number of heavy columns is small, the cost of dealing with
them becomes negligible. In particular, this eases the computation of discrete
logarithms in medium and high characteristic finite fields, where nearly sparse
matrices naturally occur.
Keywords. Sparse Linear Algebra. Block Wiedemann. Discrete Log. Finite Fields.

1 Introduction

Linear algebra is a widely used tool in both mathematics and computer sci-
ence. At the boundary of these two disciplines, cryptography is no exception
to this rule. Yet, one notable difference is that cryptographers mostly con-
sider linear algebra over finite fields, bringing both drawbacks – the notion
of convergence is no longer available – and advantages – no stability prob-
lems can occur. As in combinatory analysis or in the course of solving partial
differential equations, cryptography also presents the specificity of frequently
dealing with sparse matrices. For instance, sparse linear systems over finite
fields appeared in cryptography in the late 70s when the first sub-exponential

1Preprint of an article submitted for consideration in Review Volume « Contemporary
Developments in Finite Fields and Applications » c© 2016 copyright World Scientific Pub-
lishing Company] This work has been supported in part by the European Union’s H2020
Programme under grant agreement number ERC-669891. Cécile Pierrot has been funded by
Direction Générale de l’Armement and CNRS.

1

Antoine.Joux@m4x.org
Cecile.Pierrot@lip6.fr

algorithm to solve the discrete logarithm problem in finite fields with prime
order was designed [1]. Nowadays, every algorithm belonging to the Index
Calculus family deals with a sparse matrix [11, Section 3.4]. Hence, since both
Frobenius Representation Algorithms (for small characteristic finite fields) and
discrete logarithm variants of the Number Field Sieve (for medium and high
characteristics) belong to this Index Calculus family, all recent discrete log-
arithm records on finite fields need to find a solution of a sparse system of
linear equations modulo a large integer. Similarly, all recent record-breaking
factorizations of composite numbers, which are based on the Number Field
Sieve, need to perform a sparse linear algebra step modulo 2.

A sparse matrix is a matrix containing a relatively small number of co-
efficients that are not equal to zero. It often takes the form of a matrix in
which each row (or column) only has a small number of non-zero entries, com-
pared to the dimension of the matrix. With sparse matrices, it is possible to
represent in computer memory much larger matrices, by giving for each row
(or column) the list of positions containing a non-zero coefficient, together
with its value. When dealing with a sparse linear system of equations, using
plain Gaussian Elimination is often a bad idea, since it does not consider nor
preserve the sparsity of the input matrix. Indeed, each pivoting step during
Gaussian Elimination may increase the number of entries in the matrix and,
after a relatively small number of steps, it overflows the available memory.

Thus, in order to deal with sparse systems, a different approach is required.
Three main families of algorithms have been devised: the first one adapts the
ordinary Gaussian Elimination in order to choose pivots that minimize the
loss of sparsity and is generally used to reduce the initial problem to a smaller
and slightly less sparse problem. The two other algorithm families work in a
totally different way. Namely, they do not try to modify the input matrix but
directly aim at finding a solution of the sparse linear system by computing
only matrix-by-vector multiplications. One of these families consists of Krylov
Subspace methods, adapted from numerical analysis, and constructs sequences
of mutually orthogonal vectors. For instance, this family contains the Lanczos
and Conjugate Gradient algorithms, adapted for the first time to finite fields
in 1986 [7].

Throughout this article, we focus on the second family that contains Wiede-
mann algorithm and its generalizations. Instead of computing an orthogonal
family of vectors, D. Wiedemann proposed in 1986 [20] to reconstruct the mini-
mal polynomial of the considered matrix. This algorithm computes a sequence
of scalars of the form twAiv where v and w are two vectors and A is the sparse
matrix of the linear algebra problem. It then tries to extract a linear recurrence
relationship that holds for this sequence. In 1994, to achieve computations in
realistic time, D. Coppersmith [6] adapted the Wiedemann algorithm over the
finite field F2 for parallel and even distributed computations. One year later
E. Kaltofen [12] not only generalized this algorithm to arbitrary finite fields
but also gave a provable variant of Coppersmith’s heuristic method. The main
idea of Coppersmith’s Block Wiedemann algorithm is to compute a sequence

2

Sparse part

d
D
en

se
co
lu
m
ns

Figure 1: A nearly sparse matrix

of matrices of the form tWAiV where V and W are not vectors as previously
but blocks of vectors. This step is parallelized by distributing the vectors of
the block V to several processors or CPUs – let us say c of them. The asymp-
totic complexity of extracting the recursive relationships within the sequence
of small matrices is in Õ(cN2) where N is the largest dimension of the input
matrix. Another algorithm was presented by B. Beckerman and G. Labahn in
1994 [5] for performing the same task in subquadratic time and a further im-
provement was proposed by E. Thomé [19] in 2002: he reduced the complexity
of finding the recursive relationships to Õ(c2N). The current fastest method
is an application of the algorithm proposed by P. Giorgi, C-P. Jeannerod and
G. Villard in 2003 [9] which runs in time Õ(cω−1N), where ω is the exponent
of matrix multiplication. At the time of writing the best known2 asymptotic
value of this exponent is ω ≈ 2.37286. It comes from a slight improvement of
Coppersmith-Winograd algorithm [8] due to F. Le Gall [14] and published in
2014.

Note that both Krylov Subspace methods and Wiedemann algorithms cost
a number of matrix-by-vector multiplications equal to a small multiple of the
matrix dimension: for a matrix containing λ entries per row in average, the
cost of these matrix-by-vector multiplications is O(λN2). With Block Wiede-
mann, it is possible to distribute the cost of these products up to c machines.
In this case, the search for recursive relationships adds an extra cost of the
form Õ(cω−1N). For a nearly sparse matrix, which includes d dense columns
in addition to its sparse part, the cost of matrix-by-vector multiplications in-
creases. As a consequence, the total complexity becomes O((λ + d)N2) with
an extra cost of Õ(cω−1N) for Block Wiedemann. Figure 1 provides a quick
overview of the structure of such nearly sparse matrices.

In this article, we aim at adapting the Coppersmith’s Block Wiedemann
algorithm to improve the cost of linear algebra on matrices that have nearly
sparse properties and reduce it to O(λN2) + Õ(max(c, d)ω−1N). In particular,
when the number of dense columns is lower than the number of processors used
for the matrix-by-vector steps, we show that the presence of these unwelcome

2Yet, for practical purposes, asymptotically fast matrix multiplication is unusable and
working implementations of the algorithm of Giorgi, Jeannerod and Villard have complexity
Õ(c2N).

3

columns does not affect the complexity of solving linear systems associated to
these matrices. In practice, this result precisely applies to the discrete loga-
rithm problem. Indeed, nearly sparse matrices appear in both medium and
high characteristic finite fields discrete logarithm computations. To illustrate
this claim, we recall the latest record [4] announced in June 2014 for the com-
putation of discrete logarithms in a prime field Fp, where p is a 180 digit prime
number. It uses a matrix containing 7.28M rows and columns with an average
weight of 150 non-zero coefficients per row and also presents 4 dense Schi-
rokauer maps columns. These columns precisely give to the matrix the nearly
sparse structure we study in the sequel.

Outline. Section 2 makes a short recap on Coppersmith’s Block Wiedemann
algorithm, which is the currently best known algorithm to perform algebra on
sparse linear systems while tolerating some amount of distributed computa-
tion. We propose in Section 4 the definition of a nearly sparse matrix and
present then a rigorous algorithm to solve linear algebra problems associated
to these matrices. In Section 4.7 we give a comparison of our method with
preexisting linear algebra techniques and show that it is potentially competi-
tive even with a tremendous number of dense columns. Section 5 ends by a
practical application of this result: it explains how nearly sparse linear algebra
eases discrete logarithm computations in medium and high characteristic finite
fields.

2 A Reminder of Block Wiedemann Algorithm

This section first presents the classical problems of linear algebra that are
encountered when dealing with sparse matrices. We then explain how the
considered matrix is preconditioned into a square matrix. Section 2.2 draws
the outline of the algorithm proposed by Wiedemann to solve linear systems
given by a square matrix whereas Section 2.3 presents the parallelized variant
due to Coppersmith. More precisely, the goal is to solve:

Problem 1. Let K = Z/pZ be a prime finite field and S ∈ Mn×N (K) be a
(non necessarily square) sparse matrix with at most λ non-zero coefficients per
row. Let ~v be a vector with n coefficients. The problem is to find a vector ~x
with N coefficients such that S · ~x = ~v or, alternatively, a non-zero vector ~x
such that S · ~x = 0.

In practice, this problem is often generalized to rings Z/NZ for a mod-
ulus N of unknown factorization. However, for simplicity of exposition, and
due to the fact that the algorithm of [9] is only proved over fields, we prefer to
restrict ourselves to the prime field case.

2.1 Preconditioning: making a sparse matrix square

In order to be able to compute sequences of matrix-by-vector products of the
form (Ai~y)i>0, both Wiedemann and Block Wiedemann algorithms need to

4

work with a square matrix. Indeed, powers are only defined for square matrices.
Consequently, if N 6= n, there is a necessary preliminary step to transform the
given matrix into a square one. For example, it is possible to pad the matrix
with zeroes and then apply the analysis of [13] for solving linear systems which
do not have full rank using Wiedemann’s method. This is done by multiplying
on the left and right by random matrices and then by truncating the matrix
to a smaller invertible square matrix with the same rank as the original one.

In practice, heuristic methods are used instead. Typically, one creates a
random sparse matrix R ∈MN×n(K) with at most λ non-zero coefficients per
row, and transform afterwards the two problems into finding a vector ~x such
that (RS)~x = R~v or, alternatively, such that (RS)~x = 0. Setting A = RS and
~y = R~v, we can rewrite Problem 1 as finding a vector ~x such that:

A · ~x = ~y

or such that:
A · ~x = 0

depending on the initial problem. In addition, in order to avoid the trivial
solution when solving A~x = 0, one frequently computes ~y = A~r for a random
vector ~r, solves A~x = ~y and outputs ~x− ~r as a kernel element.

We do not go further into the details of how preconditioning is usually
performed. Indeed, we propose in Section 4.2 a simple alternative technique,
that provably works with our algorithm for nearly sparse matrices, under some
explicit technical conditions. Since sparse matrices are a special case of nearly
sparse matrices, this alternative would also work for usual sparse matrices.

2.2 Wiedemann algorithm

Let us now consider a square matrix A of size N × N and denote mA the
number of operations required to compute the product of a vector of KN by A.
Wiedemann algorithm works by finding a non-trivial sequence of coefficients
(ai)0≤i≤N such that:

N∑
i=0

aiA
i = 0. (1)

Solving A~x = ~y. If A is invertible, then we can assume a0 6= 0. Indeed,
if a0 = 0 we can rewrite 0 =

∑N
i=1 aiA

i = Aδ(
∑N

i=1 aiA
i−δ) where aδ is

the first non zero coefficient. Multiplying by (A−1)δ it yields the equality∑N−δ
i=0 ai+δA

i = 0. So, shifting the coefficients until we find the first non-zero
one allows to write a0 6= 0. Let us apply Equation (1) to the vector ~x we
are seeking. It yields −a0~x =

∑N
i=1 aiA

i~x =
∑N

i=1 aiA
i−1(A~x). Finally we

recover ~x = −(1/a0)
∑N

i=1 aiA
i−1~y. This last sum can be computed using N

sequential multiplications of the initial vector ~y by the matrix A. The total
cost to compute ~x as this sum is O(N ·mA) operations.

5

Algorithm 1 Wiedemann algorithm for A~x = ~y
Input: A matrix A of size N ×N , ~y 6= 0 a vector with N coefficients
Output: ~x such that A · ~x = ~y.

Computing a sequence of scalars
1: ~v0 ←∈ KN , ~w ←∈ KN two random vectors
2: for i = 0, · · · , 2N do
3: λi ← ~w · ~vi
4: ~vi+1 ← A~vi
5: end for

Berlekamp-Massey algorithm
6: From λ0, · · · , λ2N recover coefficients (ai)0≤i≤N s.t.

∑N
i=0 aiA

i = 0 and a0 6= 0.
Resolution

7: return −(1/a0)
∑N−1
i=1 ai+1A

i~y.

Solving A~x = 0. Assuming that there exists a non-trivial element of the
kernel of A, we deduce that a0 = 0. Let again δ be the first index such that
aδ 6= 0. Thus, for any vector ~r we have 0 =

∑N
i=δ aiA

i~r = Aδ(
∑N

i=δ aiA
i−δ~r).

We know that
∑N

i=δ aiA
i−δ 6= 0. Indeed, otherwise, aδId +

∑N
i=δ+1 aiA

i−δ =

aδId+A(
∑N

i=δ+1 aiA
i−δ−1) = 0 would lead to A(−(1/aδ)

∑N
i=δ+1 aiA

i−δ−1) =
Id, yet A is assumed non invertible. Thus, for a random vector ~r, the sum∑N

i=δ aiA
i−δ~r is non zero with high probability: this vector is the zero vector

if and only if ~r belongs to the kernel of the non null matrix
∑N

i=δ aiA
i−δ. Since

the kernel of a non null matrix has at most dimension N−1, the probability for
a random vector to be in its kernel is upper bounded by |K|N−1/|K|N = 1/|K|.

Now, computing iteratively the vectorsA(
∑N

i=δ aiA
i−δ~r), A2(

∑N
i=δ aiA

i−δ~r),
· · · , Aδ(

∑N
i=δ aiA

i−δ~r) yields an element of the kernel of A in O(N ·mA) opera-
tions as well. Indeed, the first index j in [[1, δ]] such that Aj(

∑N
i=δ aiA

i−δ~r) = 0

shows that Aj−1(
∑N

i=δ aiA
i−δ~r) 6= 0 belongs to the kernel of A. Thus, this

method finds a non trivial element of Ker(A) with probability higher than
(|K| − 1)/|K|, which quickly tends to 1 as the cardinality of the field grows.

How to find coefficients ai verifying Equation (1). Cayley-Hamilton
theorem testifies that the polynomial defined as P = det(A−X ·Id) annihilates
the matrix A, i.e. P (A) = 0. So we know that there exists a polynomial
of degree at most N whose coefficients satisfy Equation (1). Yet, directly
computing such a polynomial would be too costly. The idea of Wiedemann
algorithm is, in fact, to process by necessary conditions.

Let (ai)i∈[[0,N]] be such that
∑N

i=0 aiA
i = 0. Then, for any arbitrary vector

~v we obtain
∑N

i=0 aiA
i~v = 0. Again, for any arbitrary vector ~w and for any inte-

ger j we can write
∑N

i=0 ai
t ~wAi+j~v = 0. Conversely, if

∑N
i=0 ai

t ~wAi+j~v = 0 for
any random vectors ~v and ~w and for any j in [[0, N]] then the probability to ob-
tain coefficients verifying Equation (1) is high, assuming the cardinality of the
field is sufficiently large [12]. Thus, Wiedemann algorithm seeks coefficients ai
that annihilate the sequence of scalars t ~wAi~v. To do so, it can use the classical
Berlekamp-Massey algorithm [2, 16] that finds the minimal polynomial of a
recursive linear sequence in an arbitrary field. In a nutshell, the idea is to con-

6

sider the generating function f of the sequence t ~w~v, t ~wA~v, t ~wA2~v, · · · , t ~wA2N~v
and to find afterwards two polynomials g and h such that f = g/h mod X2N .
Alternatively, the Berlekamp-Massey algorithm can be replaced by a half ex-
tended Euclidean algorithm, yielding a quasi-linear algorithm in the size of the
matrix A.

2.3 Coppersmith’s Block Wiedemann algorithm

The Block Wiedemann algorithm is a parallelization of the previous Wiede-
mann algorithm introduced by Don Coppersmith. It targets the context where
sequences of matrix-vector products are computed on ` processors, instead of
one. In this case, rather than solving Equation (1), it searches, given ` vectors
~v1, · · · , ~v`, for coefficients aij such that:

∑̀
j=1

dN/`e∑
i=0

aijA
i~vj = 0 (2)

Note that the number of coefficients remains approximately the same as in the
previous algorithm.

Solving A~x = ~0. There, we choose ` random vectors ~r1, · · · , ~r` and set
~vi = A~ri. Let δ denote the first index in [[1, dN/`e]] such that there exists j
in [[1, `]] satisfying aδj 6= 0. Equation (2) gives

∑`
j=1

∑dN/`e
i=δ aijA

i+1~rj = ~0, i.e.

Aδ+1(
∑`

j=1

∑dN/`e
i=δ aijA

i−δ~rj) = ~0. Let~b denote the vector
∑`

j=1

∑dN/`e
i=δ aijA

i~rj .
According to [12], ~b is non zero with high probability. Hence, computing iter-
atively A~b, A2~b, · · · , Aδ~b yields an element of the kernel of A in O(N · mA)
operations again. Indeed, the first index k in [[1, δ]] such that Ak~b = 0 shows
that Ak−1~b is a non trivial element of the kernel of A.

Solving A~x = ~y. In order to solve A~x = ~y, several different approaches are
possible. For example, in [12] the size of A is increased by 1, adding ~y as an
new column and adding a new zero row. It is then explained that a random
kernel element, as produced by the above method, involves ~y and thus produces
a solution of A~x = ~y.

Another option is to set ~v1 = ~y and choose for i ∈ [[2, `]] the vectors
~vi = A~ri, where each ~ri is a random vector of the right size and to assume that
a01 6= 0. From Equation (2) we derive:

dN/`e∑
i=0

ai1A
i~y +

∑̀
j=2

dN/`e∑
i=0

aijA
i+1~rj = 0.

Multiplying by the inverse of A, we obtain:

a01~x+

dN/`e∑
i=1

ai1A
i~y +

∑̀
j=2

dN/`e∑
i=0

aijA
i~rj = 0.

7

Algorithm 2 Block Wiedemann algorithm for A~x = ~0
Input: A matrix A of size N ×N
Output: ~x such that A · ~x = ~0.

Computing a sequence of matrices
1: ~r1 ←∈ KN , · · · , ~r` ←∈ KN and ~w1 ←∈ KN , · · · , ~w` ←∈ KN
2: ~v1 ← A~r1, · · · , ~v` ← A~r`
3: for any of the ` processors indexed by j do
4: u0 ← vj
5: for i = 0, · · · , 2dN/`e do
6: for k = 1, · · · , ` do
7: λi,j,k ← ~wk · ~ui
8: ~ui+1 ← A~ui
9: end for

10: end for
11: end for
12: for i = 0, · · · , 2dN/`e do
13: Mi ← (λi,j,k) the `× ` matrix containing all the products of the form t ~wAi~v
14: end for

Thomé or Giorgi, Jeannerod, Villard’s algorithm
15: From M0, · · · ,M2dN/`e recover coefficients aij s.t.

∑`
j=1

∑dN/`e
i=0 aijA

i~vj = ~0.
Resolution

16: δ ← the first index in [[1, dN/`e]] such that there exists j in [[1, `]] satisfying aδj 6= 0.
17: ~b←

∑`
j=1

∑dN/`e
i=δ aijA

i~rj .
18: ~k ← Error: trivial kernel element
19: while ~b 6= 0 do
20: ~k ← ~b
21: ~b← A~k
22: end while
23: return ~k

Thus, we can recover ~x by computing:

(−1/a01) ·

dN/`e∑
i=1

ai1A
i−1~y +

∑̀
j=2

dN/`e∑
i=0

aijA
i~rj

 .

This can be done with a total cost of O(N ·mA) operations parallelized over the
` processors: each one is given one starting vector ~v and computes a sequence
of matrix-by-vector products of the form Ai~v. The cost for each sequence is
O(N ·mA/`) arithmetic operations. We do not deal here with the case where
a01 = 0 since Section 4 covers all cases for nearly sparse matrices, thus for
sparse matrices.

2.4 How to find coefficients ai verifying Equation (2).

Let ~v1, · · · , ~v` be ` vectors and let consider the `(dN/`e) elements obtained by
the matrix-by-vector products of the form Ai~vj that appear in the sum of Equa-
tion (2). Since `(dN/`e) > N , all these vectors cannot be independent, so there
exist coefficients satisfying (2). As for Wiedemann algorithm, we process by
necessary conditions. More precisely, let ~w1, . . . , ~w` be ` vectors. Assume that
for any κ in [[0, dN/`e]] and k in [[1, `]] we have

∑`
j=1

∑dN/`e
i=0 aij

t ~wkA
i+κ~vj = 0,

8

then the probability that the coefficients aij verify Equation (2) is close to 1
when K is large3 (again see [12]). So Block Wiedemann algorithm looks for
coefficients that annihilate the sequence of 2dN/`e small matrices of dimen-
sion `×` computed as

(
t ~wkA

ν~vj
)
. Here, ν ∈ [[0, 2dN/`e]] numbers the matrices,

while k and j respectively denote the column and row numbers within each
matrix. It is possible to compute the coefficients aij in subquadratic time (see
Section 3 for details). For instance, Giorgi, Jeannerod, Villard give an efficient
method with complexity Õ(`ω−1N). This is the final component needed to
write Block Wiedemann as Algorithm 2.

Moreover, putting together the matrix-by-vector products and the search
for coefficients, the overall complexity can be expressed asO(N ·mA)+Õ(`ω−1N).
Where the O(N ·mA) part can be distributed on up to ` processors and the
Õ(`ω−1N) part is computed sequentially.

Remark 1. In this section, we assumed that the number of sequences ` is
equal to the number of processors c. This is the most natural choice in the
classical application of Block Wiedemann, since increasing ` beyond the number
of processors can only degrades the overall performance. More precisely, the
change leaves the O(N ·mA) contribution unaffected but increases Õ(`ω−1N).
However, since values of ` larger than c are considered in Section 4, it is useful
to know that this can be achieved by sequentially computing several independent
sequences on each processor. In this case, it is a good idea in practice to make
the number of sequences a multiple of the number of processors, in order to
minimize the wall clock running time of the matrix-by-vector multiplications.

3 Minimal basis computations

In this section, we recall an important result of Giorgi, Jeannerod and Vil-
lard [9], used in Section 2 for presenting Block Wiedemann. This result is a
key ingredient for the algorithm we describe in Section 4. Let K be a finite
field and G a matrix of power series over K of dimension m × n with n < m,
i.e. an element of K[[X]]m×n. For an approximation order b, we consider
m-dimensional row vectors ~u(X) of polynomials that satisfy the equation:

~u ·G ≡ ~0 mod Xb. (3)

For a vector of polynomial, we define its degree deg(~u) as the maximum of the
degree of the coordinates of ~u.

Definition 1. A σ-basis of the set of solutions of Equation (3) is a square
m×m matrix M of polynomials of K[X] such that:

• Every row vector ~Mi of M satisfies (3).
3When K is small, it is easy to make the probability close to 1 by increasing the number

of vectors w beyond ` in the analysis as done in [6].

9

• For every solution ~u of (3), there exists a unique family of m polynomials
c1, . . . , cm such that for each i:

deg(ci ~Mi) ≤ deg(~u),

that, in addition, satisfies the relation:

~u =
m∑
i=1

ci ~Mi.

Giorgi, Jeannerod and Villard give an algorithm that computes a σ-basis for
Equation (3) using Õ(mωb) algebraic operations in K. Note that for practical
implementations, especially with small values of m, ω should be replaced by 3,
thus matching the complexity of the related algorithm given by Thomé [19].

4 Nearly Sparse Linear Algebra

In this section, our aim is twofold. We first aim at adapting the Block Wiede-
mann algorithm to improve the resolution of some linear algebra problems that
are not exactly sparse but close enough to be treated similarly. We also give
more precise conditions on the choices of the vectors ~vi and ~wi that are made
in Block Wiedemann algorithm. Rather than insisting on random choices as
in [12] we give explicit conditions on these choices. When the conditions are
satisfied, we show that our algorithm not only recovers a random solution of
the linear system of equations given as input but, in fact, gives an explicit
description of the full set of solutions.

The cornerstone of our method consists in working with the sparse part of
the matrix while forcing part of the initial vectors of the sequences computed
by Block Wiedemann algorithm to be derived from the dense columns of the
matrix in addition to random initial vectors. In the rest of this section, we
describe this idea in details.

4.1 Nearly sparse matrices

In the sequel we focus on linear algebra problems of the following form:

Problem 2. Let M be a matrix of size N × (s + d) with coefficients in a
field K. We assume that there exist two smaller matrices Ms ∈MN×s(K) and
Md ∈MN×d(K) such that :

1. M = Ms|Md, where | is the concatenation of matrices.4

2. Md is arbitrary.
4Our method would also work for matrices with d dense columns located at any position.

It would suffice to reorder the columns of the linear algebra problem. However, for simplicity
of exposition, we assume the dense columns are the d final columns of M .

10

3. Ms is sparse. Let us assume it has at most λ non-zero coefficients per
row.

If ~y is a given vector with N coefficients, the problem is to find all vectors ~x
with s+ d coefficients such that:

M · ~x = ~y

or, alternatively, such that:
M · ~x = ~0.

Such a matrix M is said to be d-nearly sparse, or as a shortcut, simply nearly
sparse when d is implied by context. Note that, in our definition, there is no a
priori restriction on the number of dense columns that appear in the matrix.

Ms Sparse part
M
d
D
en
se

co
lu
m
ns

s d

N

Figure 2: Parameters of the nearly spare linear algebra problem

An interesting consequence of the fact that we want to construct all the
solutions of these linear algebra problems is that we only need to deal with
the second (homogeneous) sub-problem of Problem 2. Indeed, it is easy to
transform the resolution of M · ~x = ~y into the resolution of M ′ · ~x′ = ~0 for
a nearly sparse matrix M ′ closely related to M . It suffices to set M ′ = M |~y
the matrix obtained by concatenating one additional dense column equal to ~y
to the right of M . Now we see that ~x is a solution of M · ~x = ~y if and only
if ~x′ = t(t~x| − 1) is a solution of M ′ · ~x′ = ~0. Keeping this transformation in
mind, in the sequel we only explain how to compute a basis of the kernel of
a nearly sparse matrix. When solving the first (affine) sub-problem, we just
need at the end to select in the kernel of M ′ the vectors with a −1 in the last
position.

Thus, the two variants that appear in Problem 2 are more directly related
in our context than their counterparts in Problem 1 are in the context of the
traditional (Block) Wiedemann algorithm.

With such a nearly sparse matrix M , it would of course be possible to di-
rectly apply the usual Block Wiedemann algorithm and find a random element
of its kernel. However, in this case, the cost of multiplying a vector by the

11

matrix M becomes larger, of the order of (λ + d)N operations. As a conse-
quence, the complete cost of the usual Block Wiedemann algorithm becomes
O((λ+ d) ·N2) + Õ(`ω−1N) when using ` processors.

Figure 3 gives a roadmap of the various steps we go through in order
to obtain an efficient bijection between the kernel of M and a subset of the
solutions resulting from a minimal basis computation using the algorithm of
Giorgi, Jeannerod and Villard.

4.2 Preconditioning for a nearly sparse matrix

If N = s, the matrix is already square and nothing needs to be done. Note the
case N < s does not usually appear in applications such as discrete logarithm
computations where extra equations can easily be added. In the rare event
where this case would appear, the simplest approach to deal with it is probably
to artificially move s−N columns from the sparse part to the dense part of the
matrix. After this, the dense part becomes square (N ×N) while the number
of columns in Md increases to d′ = d+ s−N .

So in the sequel we focus on the case where the sparse part of M has more
rows than columns, namely N > s. To turn the sparse part ofM into a square
matrix, a simple method consists in embedding the rectangular matrixMs into
a square one A by adding N − s zero columns5 at the right side of Ms.

Finding an element t(xs, xd) in the kernel of M is equivalent to finding
a longer vector t(xs, xtra, xd) in the kernel of (A|Md), where xs, xtra and xd
are respectively row vectors of Ks, KN−s and Kd (xtra denotes the extraneous
coordinates).

In the sequel, we focus on the matrix A regardless of how it has been
constructed.

4.3 Preliminary transformations with conditions

We set B an integer to be determined later (see Section 4.5), let ~δ1, . . . , ~δd
denote the column vectors of Md and choose `−d random vectors ~rd+1, · · · , ~r`
in KN . From these vectors, we construct the family:

F :=

{
~δ1, A~δ1, · · · , AB−1~δ1, · · · , ~δd, A~δd, · · · , AB−1~δd,

~rd+1, A~rd+1, · · · , AB−1~rd+1, · · · , ~r`, A~r`, · · · , AB−1~r`

}
.

Our first condition is the assumption that F generates the full vector
space KN . We discuss the validity of this assumption in Section 4.4.1.

Condition on V .

To initialize the ` sequences the main idea is to force the first d ones to start
from the d dense columns of Md. In other words, by setting ~vi = ~δi for i in

5Although this zero-padding method fits the theoretical analysis well, other randomized
preconditionning methods are also used in practice.

12

[[1, d]] and ~vi = ~ri for in [[d + 1, `]]. Then, we see that the assumption on F
can be rewritten as:

Vect
(
{Ai~vj | i = 0, · · · , B − 1

j = 1, · · · , ` }
)

= KN . (4)

Let t(t~x|x′1| · · · |x′d) be a vector in the kernel of (A|Md). If Equation (4) is
satisfied, there exist, in particular, coefficients λij ∈ K such that:

~x =
∑̀
j=1

B−1∑
i=0

λijA
i~vj

Thus we obtain:

(A|Md)
t(t~x|x′1| · · · |x′d) ⇔

A
∑̀
j=1

B−1∑
i=0

λijA
i~vj +Md

t(x′1| · · · |x′d) = ~0 ⇔

d∑
j=1

B∑
i=1

λ(i−1)jA
i~δj +

∑̀
j=d+1

B∑
i=1

λ(i−1)jA
i~rj +

d∑
j=1

x′j
~δj = ~0 ⇔

∑̀
j=1

B∑
i=0

aijA
i~vj = ~0

where the coefficients aij are defined through:

aij =

λ(i−1)j if i > 0.

x′j if i = 0 and j ≤ d.
0 if i = 0 and j > d.

To put it in a nutshell, as soon as the condition given by Equation (4) on the
matrix V = (~v1| · · · |~v`) is verified, every element of the kernel of (A|Md) gives
a solution of: ∑̀

j=1

B∑
i=0

aijA
i~vj = ~0, (5)

where the coefficients a0j are zeroes for j > d. Conversely (whether or not
condition (4) is satisfied) any solution of Equation (5) with zeroes on these
positions yields an element of the kernel of (A|Md). Thus, under condition (4),
determining the kernel of (A|Md) is equivalent to finding a basis of the solutions
of Equation (5) with the `− d aforementioned zeroes.

Condition on W .

Of course, Equation (5) can be seen as a system of N linear equations over K.
However, solving it directly would not be more efficient than directly computing
the kernel of M . Instead, we remark that for any matrix W = (~w1| · · · |~w`)

13

consisting in ` columns of vectors in KN , a solution (aij) of Equation (5) leads
to a solution of: ∑̀

j=1

B∑
i=0

aij
t ~wkA

i+κ~vj = 0 (6)

for any k ∈ [[1, `]] and any κ ∈ N.
In the reverse direction, assume that we are given a solution (aij)

j∈[[0,B]]
i∈[[1,`]]

that satisfies Equation (6) for all k ∈ [[1, `]] and for all κ ∈ [[0, B − 1]]. Now
assume that:

Vect
(
{t ~wjAi| i = 0, · · · , B − 1

j = 1, · · · , ` }
)

= KN . (7)

Under this condition, aij is also a solution of Equation (5). Indeed, by assump-
tion, the vector

∑`
j=1

∑B
i=0 aijA

i~vj is orthogonal to every vector in the basis
of KN listed in condition (7). Thus, it must be the zero vector.

Rewriting Equation (6) with matrix power series.

For a fixed value of κ, we can paste together the ` copies of Equation (6) for
k ∈ [[1, `]]. In order to do this, let ~ai denote the vector t(ai1, ai2, · · · , ail). With
this notation, the ` equations can be grouped as:

B∑
i=0

(tWAi+κV) · ~ai = ~0. (8)

Let us now define the matrix power series S(X) and the vector polynomial
P (X) as follows:

S(X) =
∑
i∈N

(tWAiV)Xi and P (X) =

B∑
i=0

~aiX
B−i.

Consider the product of S(X) by P (X). By definition of the multiplication for
power series, we see that the coefficient corresponding to the monomial XB+κ

in the product S(X)P (X) is
∑B

i=0(
tWAi+κV) · ~ai. According to Equation (8),

this is ~0 for all κ ∈ N.
As a consequence, the vector power series S(X)P (X) is in fact a vector

polynomial Q(X) of degree at most B − 1. Thus, given S(X) we search for
vector polynomials P (X) and Q(X) of respective degrees at most B and at
most B − 1 such that S(X)P (X) − Q(X) = ~0. To fit into the notations of
Section 3, define G(X) = (S(X)|− Id(X)) to be the `×2` matrix power series
formed by concatenating the opposite of the ` × ` identity matrix to S(X).
Denote ~u(X) the dimension 2` row vector obtained by concatenating tP (X)
and tQ(X). We now have G(X)t~u = ~0, transpose and obtain:

~u(X) · tG(X) = ~0. (9)

Note that ~u(X) has degree at most B on its first ` coordinates and degree at
mostB−1 on the other coordinates. Furthermore, knowing that the coefficients

14

a0j are zeroes for j > d leads to a zero constant coefficient for all polynomial
coordinates from d+ 1 to `.

In order to use the algorithm of Giorgi, Jeannerod and Villard, we prefer
to work modulo a large monomial instead of dealing with power series. Indeed,
we clearly have ~u(X) · tG(X) = ~0 modulo Xb for any integer b, with the same
three constraints on ~u(X). We analyze the value of b permitting to claim
that a solution of Equation (9) modulo Xb, and with the same constraints on
the vector ~u, can be transformed back into a solution of Equation (6) for any
integer κ in [[0, B − 1]].

Let us assume we have a vector ~u = t(u(1), · · · , u(2`)) solution of Equa-
tion (9) modulo Xb with:

• ∀i ∈ [[1, `]], deg u(i)(X) ≤ B,

• ∀i ∈ [[`+ 1, 2`]], deg u(i)(X) ≤ B − 1,

• ∀i ∈ [[d+ 1, `]], u(i)(0) = 0.

Since ~u consists of 2` polynomials we can cut it into two separate parts and
consider only its first ` polynomial terms, that are of degree at most B. There
exists a canonical correspondence between this vector of polynomials and a
polynomial P (X) of degree at most B where the coefficients are vectors in K`.
Writing P (X) =

∑B
i=0 ~ziX

i with ~zi ∈ K` we can define for all i in [[0, B]] and
all j in [[1, `]]:

aij = the j-th coordinate of the vector ~zB−i.

Since modulo Xb the product P (X)S(X) is a vector polynomial of degree at
most B − 1 we deduce that for any integer κ such that 0 ≤ κ ≤ b − B − 1
the coefficient in P (X)S(X) related to the monomial XB+κ is the zero vector.
Combining with P (X) =

∑B
i=0 ~aiX

B−i and S(X) =
∑

i∈N(tWAiV)Xi it leads
to
∑B

i=0(
tWAi+κV) · ~ai = ~0. Hence multiplying V by the vectors ~ai we get∑`

j=1

∑B
i=0

tWAi+κ(aij~vj) = ~0. Finally, if we consider each row t ~wk with k in
[[1, `]] and any κ in [[0, b−B − 1]] we obtain coefficients aij that are solutions
of Equation (6). Thus, to get Equation (6) for any κ in [[0, B − 1]] it suffices
to set b = 2B.

Summary of the transformations.

To sum it up, we have transformed the problem of finding the kernel of M
into the problem of finding all solutions of Equation (9) modulo X2B, with
degree at most B on the first ` coordinates, degree at most B− 1 on the other
coordinates and a zero constant coefficient for coordinates d + 1 to `. Under
the two conditions (4) and (7), the above analysis directly gives a bijection
between the set of solutions of the two problems, as illustrated in Figure 3.

15

M · ~x = 0 (A|Md) · ~x = 0

Equation (5)∑̀
j=1

B∑
i=0

aijA
i~vj = ~0

with a0j=0 for j>d

Equation (6)
∀κ ∈ N,∀k ∈ [[1, `]]∑̀

j=1

B∑
i=0

aij
t ~wkA

i+κ~vj = 0

with a0j=0 for j>d

Equation (6)
∀κ ≤ B − 1, ∀k ∈ [[1, `]]∑̀
j=1

B∑
i=0

aij
t ~wkA

i+κ~vj = 0

with a0j=0 for j>d

Equation (9)
~u(X) · tG(X) = ~0

with ~u(X)=(u(1)(X),··· ,u(2`)(X)) s.t.:

∀i∈[[1,`]], deg u(i)(X)≤B,
∀i∈[[`+1,2`]], deg u(i)(X)≤B−1,
∀i∈[[d+1,`]], X|u(i)(X).

Equation (9) mod X2B

~u(X) · tG(X) = ~0 mod X2B

with ~u(X)=(u(1)(X),··· ,u(2`)(X)) s.t.:

∀i∈[[1,`]], deg u(i)(X)≤B,
∀i∈[[`+1,2`]],deg u(i)(X)≤B−1,
∀i∈[[d+1,`]], X|u(i)(X).

Assuming
Condition (4) on V

Assuming
Condition (7) on W

Figure 3: How the computation of the kernel of a nearly sparse matrix M
reduces to the computation of the kernel of a power series matrix G. Equiva-
lences and implications between various problems have to be read as follows:
A ⇒ B means that a solution of Equation A can be transformed into a so-
lution of Equation B. The unknowns are denoted by x, aij or ~u whereas all
the other variables M,d,Md, A, `, B, V = {~v1, · · · , ~v`},W = {~w1, · · · , ~w`} and
G are assumed to be known. Note that, even if it is true, we don’t prove
Equation (9) ⇒ Equation (6) here since the others implications are already
sufficient to conclude. Same remark for Equation (6) with all κ ≤ B − 1 ⇒
Equation (9) mod X2B.

4.4 Applying Giorgi, Jeannerod and Villard algorithm.

Thanks to Giorgi, Jeannerod and Villard [9] we can compute a minimal σ-basis
of the solution vectors of Equation (9) modulo X2B in time Õ(`ωB). However,
we need to post-process this σ-basis to recover a basis of the kernel of M .

16

More precisely, we need to derive an explicit description of all solution vectors
of Equation (9) that have degree at most B on the first ` coordinates, degree
at most B − 1 on the last ` coordinates and a zero constant coefficient for
coordinates d + 1 to `. We first show how to obtain all solution vectors that
have degree at most B on the 2` coordinates. A final filtering is then used to
ensure that the stronger degree bound on the last ` coordinates holds and the
`− d constant coefficients are zeroes.

We first let ~b1, · · · , ~bt denote the t vectors6 in the σ-base with degree at
most B. Let ~u denote any solution vector of Equation (9) with degree at
most B. From the minimality of the σ-base, we know that ~u can be written as
linear combinations

∑t
i=1 ci

~bi where the ci are polynomials in K[X] such that
deg ci+deg bi ≤ deg ~u for any i = 1, · · · , t. Thus, the set of all solution vectors
of Equation (9) with degree at most B is generated by the family:

E :=

t⋃
i=1

{~bi, X~bi, X2~bi, · · · , XB−deg~bi~bi}.

Note that this family is free and thus a basis of the subspace of solutions
of Equation (9). Indeed, the t vectors ~bi belong to a σ-basis and, thus, are
linearly independent. Moreover, multiplication by X induces a block diagonal
structure on the matrix representing E . Due to this structure, all vectors in E
are also linearly independent.

To obtain a basis of the kernel of M , we now need a filtering step to ensure
that we only keep the vectors of E with degree at most B − 1 on the last `
coordinates and constant coefficients that are zeroes in positions d + 1 to `.
Interestingly, the first property already holds for all vectors of E but the final
multiple of each ~bi, i.e. XB−deg~bi~bi. Similarly, the second property already
holds for all multiples of Xj~bi with j 6= 0. Thus, for each vector ~bi all multi-
ples except (possibly) the first and last already satisfy all extra condition. In
addition, some linear combinations of these first and last multiples may sat-
isfy the extra conditions and some may not. However, it is easy to construct
the combinations that work. Indeed, the extra conditions are linear and only
involve coefficients in 2`−d positions. Thus, to find these combinations, it suf-
fices to extract the relevant coefficients from the polynomial multiples that do
not already satisfy the condition and assemble them in a matrix of dimension
2`−d by at most7 2t. The kernel of this matrix describes the desired combina-
tions and it can be computed it in O(`ω) operations asymptotically; in O(`3)

operations in practice, especially for small values of `. We let ~b′i denote the t′

combinations which are thus obtained.
We conclude that the basis of all solutions of Equation (9) that satisfy the

6At most, there are 2` such vectors. Note in practice, it is convenient to run the σ-basis
algorithm on power series with precision slightly higher than 2B in order to have fewer
vectors at this point (usually `).

7Indeed, vectors ~bi with exact degree B appear once in the matrix while others appear
twice.

17

three conditions is given by:

U := {~b′1, · · · , ~b′t′} ∪
t⋃
i=1

{X~bi, X2~bi, · · · , XB−1−deg~bi~bi}.

Note that this can be represented in a compact form, just by giving t + t′

vectors, with t′ ≤ 2t. This precisely gives a basis of the solutions of the
equation highlighted by a frame in Figure 3.

Algorithm 3 sums up in pseudo-code the main steps that occur to compute
the kernel of a nearly sparse matrix M that has been preconditioned into a
matrix composed of a square matrix A concatenated with the dense part Md

of M .

4.4.1 Checking condition (4).

A benefit of this process is that it also checks the validity of (4). Indeed,
looking back at the family F we see that is consists of `B vectors in KN .
The matrix corresponding to F has full rank if and only if the dimension of
its kernel is `B − N . Yet, an element of this kernel is exactly a family of
coefficients (aij) such that

∑`
j=1

∑B−1
i=0 aijA

ivj = 0. Note that it differs from
Equation (5) from the fact that the sum ends at B− 1 and not B and nothing
it said about the coefficients a0j . Following the paths given in Figure 3 we can
derive a bijection between the kernel of this matrix and the set of solutions of
Equation (9) with degree B − 1 on the first ` coordinates and B − 2 on the
last ` coordinates. Since we already have computed a larger set of solutions of
Equation (9), we can check if the dimension of the restricted set is `B −N . If
not, the elements of the kernel of M that are obtained are still valid, but the
basis of the kernel may be incomplete.

4.5 Requirements on the parameters

At this point, we need to choose the values of the parametersB and ` depending
on the input parameters N , s and d. By construction, we already know that
` ≥ d. However, for conditions (4) and (7) to be satisfiable, there are additional
restrictions. In particular, condition (7) requires a family of `B vectors to have
rank N , thus we need:

B ≥
⌈
N

`

⌉
.

There are other hidden implied requirements. Indeed, looking again at
condition (7), we see that all vectors of

{
t ~wjA

i| i = 1, · · · , B − 1
j = 1, · · · , `

}
belong to the

image of A. Thus, the dimension of the vector space in condition (7) is upper
bounded by Rank(A) + `. Moreover, due to the preconditioning of Section 4.2,
we know that the rank of A is at most s. This implies that the algorithm
requires:

` ≥ max(N − s, d).

18

Note that, over a large field K, the dimension of the vector space in condi-
tion (7) for randomly chosen vectors ~wi is Rank(A) + ` with probability close
to one.

The requirements associated to condition (4) do not give stronger arith-
metic conditions on ` and B. However, the family of vectors in condition (4)
also contains fixed vectors (derived from the dense columns ofM), thus we can-
not claim that the condition hold for random choices of V . However, since our
algorithm also checks the validity of Condition (4), this is a minor drawback.

4.6 Complexity analysis

The total cost of our method contains two parts. One part is the complexity of
the matrix-by-vector products whose sequential cost is O(λN2) including the
preparation of the sequence of `× ` matrices and the final computation of the
kernel basis. It can easily be distributed on several processors, especially when
the number of sequences ` is equal to the number of processors c or a multiple
of it. This minimizes the wall clock time of the matrix-by-vector phases at
O(λN2/c). Moreover, since B ≈ N/`, the phase that recovers the coefficients
aij has complexity Õ(`ω−1N) using Giorgi, Jeannerod and Villard algorithm.
The filtering step after this algorithm costs O(`w) and can thus be neglected
(since obviously ` ≤ N).

To minimize the cost of Giorgi, Jeannerod and Villard algorithm, we let `
be the smallest multiple of c larger than d. In that case, the total sequencial
cost of the algorithm becomes:

O(λN2) + Õ(max(c, d)ω−1N).

This has to be compared with the previous O((λ+d)N2)+Õ(cω−1N) obtained
when combining Block Wiedemann algorithm with Giorgi, Jeannerod and Vil-
lard variant to solve the same problem. Note that the wall clock time also
decreases from O((λ+d)N2/c)+Õ(cω−1N) to O(λN2/c)+Õ(max(c, d)ω−1N).

If d ≤ c then the complexity of the variant we propose is clearly inO(λN2)+
Õ(cω−1N), which is exactly the complexity obtained when combining Block
Wiedeman algorithm with Giorgi, Jeannerod and Villard variant to solve a
linear algebra problem on a (truly) sparse matrix of the same size. In a nutshell,
when parallelizing on c processors, it is possible to tackle up to c dense
columns for free.

4.7 How dense can nearly sparse matrices be ?

We already know that our nearly sparse algorithm behaves better than the
direct adaptation of sparse methods. However, when the number d of dense
columns becomes much larger, it makes more sense to compare to the com-
plexity of dense methods, i.e. to compare our complexity with O(Nω). In this
case, we expect the number of processors to be smaller that the number of
dense columns and thus replace max(c, d) by d in the complexity formulas.

19

Assume that d ≤ N1−ε with ε > 0 then our complexity becomes Õ(dω−1N) =
O(Nω−ε(ω−1)(logN)α) for some α > 0, which is asymptotically lower than
O(Nω). However, when the matrix is almost fully dense, i.e. for d = Ω(N),
our technique becomes slower, by a logarithm factor, than the dense linear
algebra methods.

5 Application to Discrete Logarithm Computations

In this section, we discuss the application of our adaptation of Block Wiede-
mann to discrete logarithm computations using the Number Field Sieve (NFS)
algorithm [15, 10, 17], which applies to medium and high characteristic finite
fields Fq.

NFS contains several phases. First, a preparation phase constructs a com-
mutative diagram of the form:

Z[X]

Q[X]/(f(X)) Z

Fq

when using a rational side. Even if there also exists a generalization with
a number field on each side of the diagram, for the sake of simplicity, we only
sketch the description of the rational-side case.

The second phase builds multiplicative relations between the images in Fq
of products of ideals of small prime norms in the number field Q[X]/(f(X))
and products of small primes. These relations are then transformed into linear
relations between virtual logarithms of ideals and logarithms of primes modulo
the multiplicative order of F∗q . Writing down these linear relations requires to
get rid of a number of technical obstructions. In practice, this means that
each relation is completed using a few extra unknowns in the linear system
whose coefficients are computed from the so-called Schirokauer’s maps [18].
Essentially, these maps represent the contribution of units from the number
field in the equations. Due to the way they are computed, each of these maps
introduces a dense column in the linear system of equations. The total number
of such columns is upper-bounded by the degree of f (or the sum of the degrees
when there are two number fields in the diagram).

The third phase is simply the resolution of the above linear system. In a
final phase which we do not describe, NFS computes individual logarithms of
field elements. An optimal candidate to apply our adaptation of Coppersmith’s
Block Wiedemann algorithm precisely lies in this third sparse linear algebra
phase. Indeed, the number of dense columns is small enough to be smaller than
the number of processors that one would expect to use in such a computation.

20

Typically, in [4], the degree of the number field was 5, whereas the number of
maps (so the number of dense columns) was 4, and the number of processors 12.
Asymptotically, we know that in the range of application of NFS, the degree of
the polynomials defining the number fields are at most O((log q/ log log q)2/3).
This is negligible compared to the size of the linear system, which is about
Lq(1/3) = exp(O((log q)1/3(log log q)2/3)).

Thus, our new adaptation of Coppersmith’s Block Wiedemann algorithm
completely removes the difficulty of taking care of the dense columns that
appear in this context. It is worth noting that these dense columns were a
real practical worry and that other, less efficient, approaches have been tried
to lighten the associated cost. For instance, in [3], the construction of the
commutative diagram was replaced by a sophisticated method based on auto-
morphisms to reduce the number of maps required in the computation. In this
extend, this approach is no longer useful.

Moreover, since we generally have some extra processors in practice, it is
even possible to consider the columns corresponding to very small primes or to
ideals of very small norms as part of the dense part of the matrix and further
reduce the cost of the linear algebra.

References

[1] Leonard Adleman, A subexponential algorithm for the discrete logarithm
problem with applications to cryptography. 20th Annual Symposium on
Foundations of Computer Science, 1979.

[2] Elwyn R. Berlekamp, Nonbinary BCH decoding (Abstr.). IEEE Transac-
tions on Information Theory, 1968.

[3] Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic and François
Morain, Improvements to the number field sieve for non-prime finite fields.
INRIA Hal Archive, Report 01052449, 2014.

[4] Cyril Bouvier, Pierrick Gaudry, Laurent Imbert, Hamza Jeljeli and Em-
manuel Thomé, Discrete logarithms in GF(p) – 180 digits. Announcement
to the NMBRTHRY list, item 003161, June 2014.

[5] Bernhard Beckermann and George Labahn A Uniform Approach for the
Fast Computation of Matrix-Type Padé Approximants. SIAM Journal on
Matrix Analysis and Applications, 1994.

[6] Don Coppersmith, Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Mathematics of Computation, 1994.

[7] Don Coppersmith, Andrew Odlyzko and Richard Schroeppel, Discrete
Logarithms in GF(p). Algorithmica, 1986.

[8] Don Coppersmith, and Shmuel Winograd,Matrix Multiplication via Arith-
metic Progressions. Journal of Symbolic Computation, 1990.

21

[9] Pascal Giorgi and Claude-Pierre Jeannerod and Gilles Villard On the com-
plexity of polynomial matrix computations. Symbolic and Algebraic Com-
putation, International Symposium ISSAC, 2003.

[10] Antoine Joux, Reynald Lercier, Nigel Smart and Frederik Vercauteren,
The number field sieve in the medium prime case. Advances in Cryptology-
CRYPTO 2006.

[11] Antoine Joux and Andrew Odlyzko and Cécile Pierrot, The past, evolving
present and future of discrete logarithm. Open Problems in Mathematics
and Computational Sciences, C. K. Koc, ed. Springer, 2014.

[12] Erich Kaltofen, Analysis of Coppersmith’s Block Wiedemann Algorithm
for the Parallel Solution of Sparse Linear Systems. Mathematics of Com-
putation, 1995.

[13] Erich Kaltofen and David Saunders, On Wiedemann’s Method of Solving
Sparse Linear Systems. Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, New Orleans, USA, October 7-11, 1991.

[14] François Le Gall, Powers of tensors and fast matrix multiplication. In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC
’14, Kobe, Japan, July 23-25, 2014.

[15] Arjen K. Lenstra and Hendrik W. Lenstra, Jr., The development of the
number field sieve. Springer-Verlag, Lecture Notes in Mathematics, 1993.

[16] James L. Massey, Shift-register synthesis and BCH decoding. IEEE Trans-
actions on Information Theory. 1969.

[17] Cécile Pierrot, The Multiple Number Field Sieve with Conjugation and
Generalized Joux-Lercier Methods. Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015.

[18] Oliver Schirokauer, Discrete logarithm and local units. Philosophical
Transactions of the Royal Society of London, 1993.

[19] Emmanuel Thomé, Subquadratic Computation of Vector Generating Poly-
nomials and Improvement of the Block Wiedemann Algorithm. J. Symb.
Comput., 2002.

[20] Douglas H. Wiedemann Solving sparse linear equations over finite fields.
IEEE Transactions on Information Theory, 1986.

22

Algorithm 3 Nearly sparse algorithm for (A|Md)~x = ~0

Input: A matrix A of size N ×N and a matrix Md = (~δ1| · · · |~δd) of size N × d
Output: A basis of Ker(A|Md).

Compute a sequence of matrices
1: ~rd+1 ←∈ KN , · · · , ~r` ←∈ KN and ~w1 ←∈ KN , · · · , ~w` ←∈ KN
2: ~v1 ← ~δ1, · · · , ~vd ← ~δd
3: ~vd+1 ← ~rd+1, · · · , ~v` ← ~r`
4: B ← dN/`e
5: for any of the ` processors indexed by j do
6: u0 ← vj
7: for i = 0, · · · , 2B do
8: for k = 1, · · · , ` do
9: λi,j,k ← ~wk · ~ui

10: ~ui+1 ← A~ui
11: end for
12: end for
13: end for
14: for i = 0, · · · , 2B do
15: Mi ← (λi,j,k) the `× ` matrix containing all the products of the form t ~wAi~v
16: end for

Apply Giorgi, Jeannerod, Villard’s algorithm
17: S ←

∑2B−1
i=0 MiX

i.
18: Recover a σ−basis of the matrix t(S| − Id) modulo X2B .
19: ~b1, · · · , ~bt ← the vectors in this σ−basis of degree lower than B.
20: ~b′1, · · · , ~b′t′ ← a basis of the linear combinations of ~b1, · · · , ~bt, XB−deg b1 ~b1, · · · ,

XB−deg b1 ~bt s.t. the ` last coordinates have degree lower than B − 1 and coordinates
between d+ 1 and ` are divisible by X.

21: U ← [~b′1, · · · , ~b′t′ , X ~b1, · · · , XB−1−deg b1 ~b1, · · · , X~bt, · · · , XB−1−deg bt ~bt]
Resolution

22: Sol ← []
23: for ~u ∈ U do
24: for i = 0, · · · , B do
25: for j = 1, · · · , ` do
26: aij ← the coefficient associated to the monomial XB−i in the polynomial that

is the j-th coefficient of ~u.
27: end for
28: end for
29: ~x← t(t(

∑`
j=1

∑B−1
i=0 a(i+1)jA

i~vj)|a01| · · · |a0d)
30: Add ~x to Sol
31: end for
32: return Sol

23

	Introduction
	A Reminder of Block Wiedemann Algorithm
	Preconditioning: making a sparse matrix square
	Wiedemann algorithm
	Coppersmith's Block Wiedemann algorithm
	How to find coefficients ai verifying Equation (2).

	Minimal basis computations
	Nearly Sparse Linear Algebra
	Nearly sparse matrices
	Preconditioning for a nearly sparse matrix
	Preliminary transformations with conditions
	Applying Giorgi, Jeannerod and Villard algorithm.
	Checking condition (4).

	Requirements on the parameters
	Complexity analysis
	How dense can nearly sparse matrices be ?

	Application to Discrete Logarithm Computations

