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Abstract. Policies are the corner stones of today’s computer systems. They define secure states and
safe operations. A common problem with policies is that their enforcement is often in conflict with
user privacy. In order to check the satisfiability of a policy, a server usually needs to collect from a
client some information which may be private. In this work we introduce the notion of secure set-based
policy checking (SPC) that allows the server to verify policies while preserving the client’s privacy.
SPC is a generic protocol that can be applied in many policy-based systems. As an example, we show
how to use SPC to build a password registration protocol so that a server can check whether a client’s
password is compliant with its password policy without seeing the password. We also analyse SPC and
the password registration protocol and provide security proofs. To demonstrate the practicality of the
proposed primitives, we report performance evaluation results based on a prototype implementation of
the password registration protocol.

1 Introduction

Policies are widely used in the context of computer systems and security. A policy defines a set
of rules, over elements such as resources and participants in a system. It governs the system’s
behaviour with the goal of keeping the system safe. This allows organisations to ensure that the
system is always in a well defined and secure state. Policies can be used in, for example, access
control, authentication, trust management, firewalls and many other places.

While policies offer security protection, they sometimes raise privacy concerns [9]. This is es-
pecially true in large distributed systems such as the Internet where there is no pre-established
trust relationship between parties interacting with each other. One typical scenario is that a server
wants to restrict access to certain resources and defines a policy so that only those who satisfy
this policy can access those resources. Often to evaluate this policy, the server needs to collect
some information from a client and check the information against the policy. This information can
be sensitive, e.g. credentials that should be kept private or other personal information, thus the
client may not want to release it to the server. This privacy problem motivates the notion of secure
set-based policy checks (SPC) we are exploring in this work.

In an SPC protocol, a server holds a public policy based on some set-theoretical semantics and
the client holds a set that represents required information. After running the protocol, the server
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gets only a single bit information, i.e. whether the client’s set satisfies the policy, but nothing else
about the client’s set. Thus SPC allows the server to securely check the policy while protecting the
client’s privacy. SPC is a general building block that can be applied in many scenarios to allow
privacy preserving policy checking. One particular example we will show in this paper is how to
enforce password policies using SPC in password registration. We will discuss more applications
such as policy checks for access control, friendship analysis and genome testing in section 7.

Contributions and Organisation In this paper, we propose secure set-based policy checking (SPC),
a new privacy preserving protocol. SPC uses a generic and expressive representation of policies
based on the notion of sets, thus can be applied in many policy based systems. We then show
an efficient instantiation of SPC based on linear secret sharing schemes and the Oblivious Bloom
Intersection protocol. These two building blocks rely mostly on arithmetic operations in small
fields and symmetric cryptography. As a consequence, our SPC construction is very efficient. We
believe the high efficiency will make SPC an attractive choice for applications that require privacy
preserving policy checking. While SPC is interesting on its own, we further show how it can be used
to solve real world problems. We develop a new password registration protocol that uses SPC so that
the server can verify that a password chosen by a client is compliant with a password policy without
seeing the password. We analyse the security and provide proofs of both the SPC protocol and the
password registration protocol. We have implemented a prototype of the password registration
protocol and evaluated the performance based on the implementation. The performance figure
shows that our protocol is much more efficient than the password registration protocol (ZKPPC)
from [16]. Furthermore, we sketch a few other application scenarios in which SPC can be used.

The paper is organised as follows: in Section 2, we briefly review related work; in Section 3,
we introduce necessary preliminaries and cryptographic building blocks; in Section 4, we show the
SPC protocol; in Section 5, we show the password registration protocol; performance evaluation
results are given in Section 6; in Section 7, further applications of SPC are discussed; in Section 8,
we conclude the paper and discuss possible future work. In the appendix we sketch security proofs
for the protocols.

2 Related Work

Policy evaluation involving sensitive information has been a long established problem. Duma et al.
[9] argued that uncontrolled exposure of private information is a major risk for Internet users and
showed that policy evaluation can lead to undesirable information leakage. To counter the risk, one
way is to define additional policies on the client side [25]. Those policies allow the release of sensitive
information only if the server can convince the client that it is trustworthy. This approach does not
prevent information from flowing out of the client’s control, but rather provides some assurance that
only trusted servers can see the information. Another approach is to use cryptographic protocols
to allow privacy preserving policy checking. In this approach, information is not revealed and the
server learns only the evaluation result. It is always possible to implement a protocol for policy
checking using generic two party secure computation techniques such as garbled circuits [26] but
the cost would be prohibitive. Some custom protocols have been built but they either work only
for a certain policy language (e.g. [17]), or they are based on cryptographic primitives such as
Ciphertext Policy Attribute-based Encryption (CP-ABE) that must have a trusted third party to
generate keys for users based on their private information (e.g. [19]). In contrast, SPC can support
a large class of policy languages and can work without a trusted party.
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Password Registration To ensure high password entropy, servers often have policies on password
complexity, e.g. a valid passwords must be a mixture of lower case, upper case, numeric characters
and at least of a certain minimum length. Usually the server has to see the client’s password in
plaintext in order to check whether the password is compliant with the policy. However, revealing
its password to the server may not be a desirable option for the client (see Section 5 for a further
discussion). Recent work by Kiefer and Manulis [16] proposed the first protocol that allows blind
registration of client passwords at remote servers. In the protocol the client sends only a cryp-
tographic password verifier during the registration procedure. Although the server never sees the
actual password, it can still enforce password policies. This protocol provides a feasible solution
that solves the aforementioned problems. However, password policy checking in [16] relies heavily
on zero-knowledge proofs, which is a costly cryptographic primitive and thus renders the protocol
impractical.

3 Preliminaries

3.1 Policies and Linear Secret Sharing

In this paper, we consider a set-theoretical representation of policies, i.e. monotone access structures
[14]. A policy P defines a pair (S, ΓS) where S is a set and ΓS is an access structure over S. The
access structure is a subset of the powerset 2S , i.e. the access structure contains zero to many
subsets of S. We say an access structure ΓS is monotonic if for each element in ΓS , all its supersets
are also in ΓS . We say a set C satisfies a policy P , written as P (C) = true, if C ∈ ΓS . A set C
that satisfies P is called an authorised set. Access structures capture many complex access control
and authorisation policies. For example, S can be a set of credentials and ΓS defines a monotone
boolean formula of subsets of credentials that are required for authorisation.

It has long been known that an access structure can be mapped to a linear secret sharing scheme
(LSSS) [14,2] by choosing a secret and split it into a set of shares according to a given access
structure ΓS defined over S. Each share is then associated with an element in S. For convenience,

we will use si
∼
∈ S to denote that si is a share associated with some element si in a set S. The

following holds for a LSSS: (1) any set of shares can reconstruct the secret if the elements associated
with the shares form an authorised set, and (2) any set of shares does not reveal any information
about the secret if the elements associated with the shares do not form an authorised set. There are
generic mechanisms to generate shares from access structures and reconstruct secrets from shares,
e.g. see [14,2]. Using a LSSS, checking whether a set satisfies a policy is equivalent to checking
whether a set of shares can reconstruct the secret.

3.2 Oblivious Bloom Intersection

The Oblivious Bloom Intersection (OBI) protocol by Dong et al. [8] is executed between a client and
a server on the respective sets C and S. Originally, the OBI protocol was designed for Private Set
Intersection (PSI) such that at the end of the protocol, the client learns the intersection C ∩ S and
the server learns nothing. As observed in [24], OBI can be extended to a Private Set Intersection
with Data Transfer protocol. In this case, the server can associate each element si ∈ S with a data
item di. At the end of the protocol, for each element in the intersection the client also receives the
corresponding data item from the server. The protocol can be described at a high level as follows:
let the server hold a set S = {si} and a data set Sd = {di}. The two sets are of equal cardinality
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and each (si, di) can be viewed as a key-value pair. The server generates a garbled Bloom filter GS
on S and Sd using [24, Algorithm 1]. The garbled Bloom filter encodes both S and Sd in a way
such that querying the key si ∈ S against GS returns the data item di and querying sj 6∈ S returns
a random string. Let the client hold a set C. The client encodes the set into a conventional Bloom
filter [5] BC . The client and the server run an oblivious transfer protocol using the Bloom filter and
the garbled Bloom filter as inputs. As the result, the client receives a garbled Bloom filter GC∩S
that encodes the intersection C ∩S and the data items associated with the elements in C ∩S. Then
the client can query GC∩S with each element ci ∈ C. If ci is in the intersection then there must
be some sj ∈ S such that ci = sj and the query result is dj , the data item associated with sj ,
otherwise the client gets a random string.

In this paper we use OBI so that the server can send a set of secret shares to the client based on
the client’s set C without knowing anything about C. Although in general we can use any PSI with
Data Transfer protocol (e.g. [12]), we choose OBI here because of its efficiency. OBI is very efficient
due to the fact that it relies mostly on hash operations. The performance can be further improved
by the modifications proposed by Pinkas et al. [21]. Note that although Pinkas et al. also proposed
a new PSI protocol based on hashtable + oblivious transfer in [21] that is more efficient than OBI,
the new PSI protocol cannot be used in our case because it does not support data transfer.

4 Secure Set-based Policy Checking (SPC)

In this section we introduce a new protocol called secure set-based policy checking (SPC). In SPC,
a server holds a public policy P as defined in Section 3 and a client holds a private set C. The goal
is to allow the server to check whether C satisfies P without learning anything else about C.

Definition 1 (Secure Set-based Policy Checking, SPC). Set-based policy checking is executed
between client C with a private set C and server S with a public policy P = (S, ΓS). Server and
client retrieve P (C) as result. We call a set-based policy checking protocol secure iff it fulfils the
following three notions.

1. Correctness: Honest execution of the protocol with P (C) = true is accepted by the server with
overwhelming probability.

2. Client Privacy: Server S learns nothing about the client set C other than P (C).
3. Soundness: A client C holding C with P (C) 6= true has negligible probability in getting S to

accept the SPC execution.

Definition 1 says in particular that an SPC protocol provides both participants with the result of
P (C) while the server learns nothing about C more than it can infer from the result and public
information.

4.1 SPC Instantiation

An overview of the proposed protocol is depicted in Fig. 1, using LSSS and OBI. Let P = (S, ΓS)
be the server’s policy defined over its set S and C be the client’s set. The two parties want to check
P (C), i.e. whether C satisfies P . In the protocol, the server first chooses a random secret and splits
it according to the policy. Then the server builds a garbled Bloom filter and runs the OBI protocol

with the client. At the end of the protocol, the client receives a set of shares {si|si
∼
∈ S ∩ C}, i.e.

each si received is associated with an element in C ∩ S. If P (C) = true, then the client can recover
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C (C) S (P = (S, ΓS))

choose a random secret s

P split s into a set of shares S according to P

get shares from GC∩S : {si|si
∼
∈ S ∩ C} OBI build a garbled Bloom filter using S and S.

P (C) = true: recover s from the shares

else: abort and output ⊥

ms ← H(s, C, S, trans) ms accept iff ms
?
= H(s, C, S, trans)

Fig. 1: Secure Set-based Policy Checking

the secret from the shares it has received, because C ∩S must be an authorised set. If P (C) 6= true

then the client will not receive enough shares that enable it to reconstruct the secret, and it learns
nothing about the secret from the shares received. Therefore by checking whether the client can
recover the secret, the server learns whether the client’s set satisfies the policy. The protocol is
defined as follows:

Public input: Both parties get a collision resistant hash function H, a LSSS scheme description,
server policy P = (S, ΓS), and security parameter λ.

1. The server first chooses a secret s which is a random λ-bit string where λ is the security
parameter. Then the server splits the secret into a set of shares S according to its policy P
using the LSSS scheme. Each share si ∈ S is associated with an element in S.

2. The server builds a garbled Bloom filter using S and S as input such that each si ∈ S is a key
and its associated secret share si is the data value that is encoded in the garbled Bloom filter.
The two parties then run the OBI protocol and the client using C as its input.

3. At the end of the OBI protocol the client gets a set of shares {si|si
∼
∈ S ∩C}. If C satisfies policy

P , then the shares obtained from the OBI protocol will allow the client to reconstruct the secret
s, otherwise the client learns nothing about s and aborts.

4. The client proves to the server that it knows s by sending ms ← H(s, C, S, trans) where s is
the secret, C and S are the identities of the two parties, and trans is the transcript of this
execution. The sever checks whether ms is the same as it computed from its own state, if so
then the client convinced the server that its set is compliant with policy P .

4.2 Security

Due to space limitations we only give lemmata and refer to the full version of this work for their
proofs.

Lemma 1 (Correctness). Let C and S denote sets from some universe and P = (S, ΓS). Assum-
ing the used OBI and LSSS algorithms are correct, then the SPC protocol from Figure 1 is correct,
i.e. honest execution of the protocol with P (C) = true is accepted by the server with overwhelming
probability.

Lemma 2 (Privacy). Let C and S denote sets from some universe, P = (S, ΓS) a policy and
fSPC(C,S) = (P (C), P (C)). If the OBI protocol is secure and the LSSS is correct, the SPC protocol
from Figure 1 securely realises fSPC in the presence of a malicious server or client.
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Lemma 2 proves that our SPC protocol ensures client privacy, i.e. does not leak any information
about the client’s set. We now give a lemma to show soundness of our SPC protocol that concludes
the security analysis of the proposed SPC protocol.

Lemma 3 (Soundness). Let C and S denote sets from some universe and P = (S, ΓS) a policy.
Assuming the used OBI and LSSS algorithms are secure and H is collision resistant, then the SPC
protocol from Figure 1 is sound in the presence of a malicious client, i.e. the server accepts the
protocol with negligible probability if P (C) 6= true.

5 A New Password Registration Protocol

Password-based authentication is the most common authentication mechanism for humans. Despite
increasing attempts of replacing it from https://fidoalliance.org/ and others, something has
yet to be proposed to fully replace password-based authentication. There are many reasons why it
is so difficult to transition away from passwords, e.g., low-cost, user-experience and scalability. For
those reasons, passwords are likely to remain as a major authentication method in the foreseeable
future. The current approach for remote registration of client passwords requires the client to send
its password in plaintext to the server, which stores a value derived from the password (e.g., a
hash value or a verifier) in a password database. The problem with this approach is that the server
sees the plaintext password and the client has no control over what the server will do with it. At
first glance, revealing the password to the server seems to be harmless, but a closer look shows the
opposite. Research shows that people tend to reuse the same password across different websites
[11,13,7]. In this case, a compromised or malicious server can easily break into other accounts
belonging to the same client after seeing the plaintext password. Even if the server is honest, the
client still has to worry about whether its password is protected properly by the server. Ideally
passwords should be stored in a secure form that is hard to invert such that an attacker gaining
access to the password database still has difficulties to recover the passwords. Currently, password-
based authentication mechanisms in literature assume the server does this, i.e. the server is trusted
to store and protect the password properly and securely. However, increasing number of successful
password leaks [6,20,22] suggests that many servers fail to do so. It is desirable if the server does
not see the plaintext password during registration. However, this will make it difficult for the server
to check whether the password chosen by the client is complex enough or long enough.

In this section, we present a new password registration protocol as an application of SPC. The
protocol allows a client to register its password blindly on a server while still allowing the server
to check whether the password is compliant with a password policy. In the protocol, rather than
sending the password in plaintext to the server, the client sends blinded characters of the password.
The blinded characters enable the server to check policy compliance using an SPC protocol. If a
password is valid, the blinded characters are aggregated into a verifier that is stored on the server
and used in future authentication protocols. Since the blinded characters are generated with proper
randomness, the client can be assured that the password is secure even if the password database is
compromised (modulo unavoidable offline dictionary attacks).

5.1 Passwords and Password Policies

In this paper, we consider a password to be in the basic format of a finite length string of printable
characters (ASCII, UTF-8, etc.). We do not consider other forms of passwords such as graphical
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passwords [23]. It is a common practice to partition the password alphabet into character classes,
e.g., upper case, lower case, symbols and digits. These character classes can be seen as disjoint
subsets of the alphabet. A password policy is then defined to impose requirements for password
complexity in terms of the minimum number of characters, minimal number of classes, and minimal
number of characters in each class. For example, every valid password must have at least one
character from each class and eight characters overall.

The connection between set-based policies from Section 3 and password policies is easy to see.
Since password policies are defined in terms of thresholds and subsets over an alphabet that is a
set of characters, they can be easily captured as access structures. It is also not difficult to see how
SPC can be applied in the password policy checking setting, since a password can be seen as a set of
characters. There is only a small gap: passwords are arbitrary strings and as such can have repeated
characters. So the collection of characters in a password forms a multiset, not a set. The problem is
that some policies might not be evaluated correctly using a multiset. For example, if a policy says
“a valid password must have at least two symbols” and the client chooses “pa$$w0rd”, using SPC
directly the password will be considered invalid, even though it does contain two symbols. This can
be solved by pre-processing the characters in the alphabet and passwords.

The idea of password pre-processing is to convert each character in the password into a unique
symbol by appending an “index” to the character. So if the character ‘$’ appears twice in a password,
the first one becomes “$1” and the second one becomes “$2”. Since $1 and $2 are two different
strings, they are different elements when putting into a set. Therefore we can always convert a
password into a set rather than into a multiset. The password pre-processing is performed by the
client in the protocol. We define a function ψ for the client to convert a password (character string)
into a set as follows. Let pwd = c1, . . . , cx denote a password of x characters. Function ψ repeats
the following procedure for i = 1 to x: first create a substring of the password from the first
character to the ith character (inclusive), then count how many times the ith character appears
in this substring, then append the counter to the ith character and put the result into a set. For
example, “pa$$w0rd” will be converted by ψ into {p1, a1, $1, $2, w1, 01, r1, d1}.

The alphabet pre-processing step is necessary because we use SPC to check whether a password
satisfies a policy. The SPC protocol in section 4.1 is based on set intersection. So we need to intersect
the password set and the alphabet set in order to check the password policy. The password set
now contains indexed characters like “p1”,“$2” rather than the original characters. The alphabet
needs to be converted into a set with indexed characters as well, otherwise the intersection of the
password set and alphabet set will always be empty. This step is done by the server as follows. Let
A = A1∪· · ·∪Am be the alphabet where Ai is a character class (digits, lower case, etc.). The server
transforms it into S based on the password policy P . For each Ai, in the policy there is a threshold
ti that says at least ti characters from Ai need to appear in the password. If ti = 0, then the server
just skips all characters in this class Ai because they do not have to be checked. Otherwise, the
server creates an empty set Si and appends an index (from 1 to ti) to each character in Ai, and
puts the ti copies of indexed characters into Si. For example, if Ai contains lower case characters
and ti = 2, then Si = {a1, a2, b1, b2, . . . , z1, z2}. The server only needs to put ti copies of indexed
characters to the set, regardless how many times the character may appears in clients’ passwords.
The union of Si is the set S to be used later in password registration. This step only needs to be
done once as long as the policy does not change.
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5.2 The Password Registration Protocol

An overview of the proposed password registration protocol is given in Fig. 2. To simplify the
presentation, we assume the protocol is run over a secure channel, e.g., implemented as a server
authenticated TLS channel. The secure channel will address common network-based attacks such
as replay, eavesdropping and man-in-the-middle. We also assume there is a session mechanism
to prevent the server from learning more information about the client’s password by aborting the
protocol in the last step and reruning the protocol using other policies. The protocol has two phases,
a setup phase and a policy checking phase. In the setup phase the client commits to its password,
and each party blinds its set. The blinded sets are later used in the policy checking phase where the
server checks the password policy with a secure SPC protocol (cf. Section 4) using the blinded sets.
If the password satisfies the policy, the server stores a password verifier for future authentication
purposes.

Public input The server publishes a password policy P = (S, ΓS) where S is a set of size w
transformed from alphabet A according to Section 5.1 and ΓS is a threshold access structure
defined over S. Other public parameters consist of a security parameter λ, a pseudorandom
function family fk, and three hash functions H1, H2, and H3.

– Setup Phase
1. The server runs KeyGen(λ): pick two large equal length prime numbers p and q according to
λ, compute N = p · q, choose at uniformly random e ∈ ZN such that there is an integer d
that satisfies e · d = 1 mod φ(N), and output (e, d,N). Then the server sends (e,N) to the
client.

2. The client computes a key k = H1(pwd) where pwd is its password. The client uses the
password pre-processing function ψ to generate C ← ψ(pwd). The client computes ri = fk(i)
using the pseudorandom function f on key k as well as ui = H2(ci) · rei for each ci ∈ C. The
result (u1, . . . , uv) is sent to the server, where v is the cardinality of C.

3. For each i ∈ [1, v] the server computes u′i = udi and returns (u′1, . . . , u
′
v) back to the client.

4. Upon receiving (u′1, . . . , u
′
v), the client creates an empty set Ĉ and for i ∈ [1, v] puts u′i ·r

−1
i =

(H2(ci))
d into Ĉ. The server creates an empty set Ŝ and for i ∈ [1, w] puts (H2(si))

d into Ŝ,
where si ∈ S and w is the cardinality of S. The set Ŝ is partitioned into m subsets according
to the character classes. The server also generates P̂ from P by replacing S with Ŝ.

– Policy Checking Phase This phase is essentially an execution of the SPC protocol using
Ĉ and P̂ as inputs. At the end of the SPC protocol the server learns whether the client’s
password satisfies the policy or not. If the SPC execution is successful, the server computes
the hash of the product of the client’s ui values h ← H3(

∏v
i=1 ui), and stores the password

verifier ver = (h, e,N, d,u), where (e,N, d) is generated in the first step of the setup phase and
u = {u1, . . . , uv} is the vector of client “commitments”.

Note that in the first step of the setup phase, KeyGen is essentially the RSA key generation algorithm
with e chosen randomly rather than being a fixed small integer. In the protocol we use e as a salt so
the verifiers will be different even if two users chooses the same password. Salting is also necessary
in order to avoid rainbow table attacks where the attacker uses pre-computed values to speed up
dictionary attacks.
Password Length Hiding (Enhanced Protocol) The protocol in Figure 2 leaks the password length to
the server. By counting the number of blinded characters ui, the server learns the password length
v. This is intentional because this peripheral information leakage allows the server to efficiently
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C (pwd) Setup Phase S (P,S = {s1, . . . , sw})

k ← H1(pwd) (e,N) (e, d,N) ←$ KeyGen(λ)

C = {c1, c2, . . . , cv} ← ψ(pwd)

∀i ∈ [1, v] : ri ← fk(i), ui ← H2(ci) · rei (u1, · · · , uv) abort if v < min

Ĉ = ∅ (u′1, · · · , u′v) ∀i ∈ [1, v]: u′i = udi ; Ŝ = ∅

∀i ∈ [1, v] : Ĉ ∪ u′i · r
−1
i ∀i ∈ [1, w]: Ŝ ∪ (H2(si))

d

P̂ ← P, Ŝ

Policy Checking Phase

Ĉ → Run SPC← P̂ If SPC execution is successful

store ver ← (H3(
∏v
i=1 ui), e,N, d,u)

Fig. 2: Password Registration using secure SPC

enforce the minimal password length in the policy. However, in cases where the password length is
considered sensitive, it can be hidden from the server at small additional cost.

The client generates a set C′ ⊆ C and uses it in the setup phase to generate Ĉ. C′ contains
only necessary characters to fulfil P . That is, the client first takes characters from C according to
character class Ai and threshold ti, and puts them in C′. If the size of C′ is smaller than the minimal
password length min, the client pads it with other characters in C that are not in C′ yet. In the
setup phase, the client only uses characters in C′ and obtains the corresponding Ĉ. In this process,
the server learns the size of C′ and can check whether this is equal to the minimal password length
required by the policy. The client then uses this Ĉ in the policy checking phase to convince the
server about the password complexity. If the server accepts, all characters in C \ C′ that have not
been sent to the server are put into an additional u∗ = rev+1 ·

∏
ui with ri ← fk(i), ui ← H2(ci) · rei

for ci ∈ C \ C′. This value u∗ is then sent to the server and is multiplied with the other ui values
the server received in the setup phase. This product is then used to generate the verifier ver, i.e.
ver← (H3(r

e
v+1

∏v
i=1 ui), e,N, d,u). Note that we require rev+1 as a multiplicand when computing

u∗. Without this, the server could learn the client’s password length when C \ C′ = ∅ because the
client would have nothing to send in this case.

5.3 Security Analysis

We now analyse the security of the password registration protocol. Note that in the password
registration protocol, the two parties have different security requirements. For the server, privacy
is not a concern since its input, the policy, is public. On the other hand, the server cares about the
soundness of the protocol because an unsound protocol would allow a user to register an invalid
password. For the client, privacy is the main concern. Soundness is trivial from the client’s point
of view. Since the policy is public, the client can check the policy by itself and can detect if the
server cheats. We therefore refrain from using an over-complicated security definition and use the
following comprehensible security model that is simpler. Let ver ← φ(pwd, r) denote a password
verifier, computed from a password pwd and some randomness r, and ψ(pwd) a function to generate
set C from password pwd.

1. Privacy: A malicious server must not be able to retrieve more information from the protocol
than the password verifier and the result of the policy verification. Furthermore, the verifier
must not give a malicious server advantage in terms of password guessing.
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2. Soundness: The server accepts a password verifier ver← φ(pwd, r) if and only if (i) the password
is compliant with the server’s policy, i.e. P (C) = true for C ← ψ(pwd), and (ii) the verifier
is uniquely defined by the password and some server known randomness, i.e. there exists no
password pwd′ 6= pwd such that φ(pwd′, r) = ver and it is not possible to find randomness r′ 6= r
in polynomial time such that φ(pwd, r′) = ver.

Note that the strength of the privacy definition is in terms of dictionary attack resistance. This is
an inherent problem of password-based protocols. All password-based protocols are susceptible to
dictionary attacks if the server is considered as a potential adversary [18]. The reason is simple: for
authentication purpose, the server holds a verifier derived from the client’s password. An authenti-
cation protocol essentially takes the user’s password as an input and compares it securely with the
verifier. A malicious server can always run the protocol locally with itself playing the client’s role
using passwords enumerated from a dictionary. Since it is not realistic to assume any particular dis-
tribution of passwords, e.g. uniformly at random chosen passwords, the worst case security always
depends on the hardness of dictionary attack and this is the strongest privacy notion possible. We
will discuss what can be used to counter dictionary attack later in Section 5.4.

In the following we show that the enhanced version of the previously defined protocol satisfies
those properties. Note that the simple version satisfies the same properties but in a weaker version,
i.e. we would have to replace dictionary DP in Lemma 4 with DP,|pwd|, where DP,|pwd| denotes the
dictionary that contains all passwords of size |pwd| that are policy compliant with respect to P . Note
that H2 has to be modelled as random oracle here in order to use the one-more RSA assumption
[3]. For the other two hash functions H1 and H3 it is sufficient to assume collision resistance. Due
to space limitations we refer to the full version for proofs.

Lemma 4 (Privacy). If fk is a secure pseudorandom function family, H1 is collision resistant,
and H2 a random oracle, the enhanced password registration protocol offers privacy with respect to
a malicious server and dictionary DP , which contains all valid passwords with regard to the server
policy.

Lemma 5 (Soundness). The enhanced password registration protocol is sound with respect to a
malicious client under the one-more RSA assumption if H1 and H3 are collision resistant hash
functions, and H2 a random oracle.

5.4 Password-authenticated Key Exchange for our Protocol

In order to use a password registered with our protocol for authentication, we require an appropriate
password-based authentication or authenticated key exchange (PAKE) protocol. In this section we
show how to use the verifier ver in a common PAKE protocol. The approach we describe here is
general and can be used with any PAKE protocol.

At the beginning of the authentication process, for a given client identifier the server retrieves
the corresponding verifier ver = (h, e,N) from the database and returns (e,N) to the client. Using
(e,N) and the password pwd, the client can recompute all ui values and thus h′ ← H3(u

e
v+1 ·

∏v
i=1 ui)

as described earlier. Note that depending on the used PAKE protocol we have to ensure that H3

maps into an algebraic structure, suitable for use with the PAKE protocol. Now client and server
run any PAKE protocol on password hash h. The password hash h retains information about
individual characters as well as the order of characters in the password. The first is easy to see
since h is computed from the product of blinded characters in the password. To see the second,
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(P1, 20) (P2, 20) (P3, 20) (P2, 10) (P2, 40)
Total Pol-ck Total Pol-ck Total Pol-ck Total Pol-ck Total Pol-ck

ZKPPC [16] 81,287 81,268 66,944 66,925 38,496 38,477 7,710 7,699 453,574 453,529

Our Protocol 140 4 243 8 454 17 223 7 275 8

Improvement 580× 275× 80× 35× 1649×
Table 1: Protocol Performance (Running Time in Milliseconds)

recall that each ui = H2(ci) · rei where ri = fk(i), which is a pseudorandom number generated
under a key k. The key k is derived from the password string k ← H1(pwd). To counter offline
dictionary attack, we can use a standard key derivation functions such as PBKDF2 [15] to compute
H1 such that the key k is derived by repeatedly applying a pseudorandom function with a salt.
The verifier generation algorithm also provides additional protection to offline dictionary attack.
The computation involves a large random e as a salt and requires slow public key operations. The
additional salt and work load make offline dictionary attack even more difficult.

Because of the way the verifier is structured, in the authentication the server needs to send an
additional message, the RSA public key (e,N), to the client. Often we can piggyback the messages
in the PAKE protocol to avoid increasing communication round. For example, if we use the UC-
secure PAKE protocol from Benhamouda et al. [4], the RSA public key (e,N) can be piggybacked
on the server’s message sent in the PAKE protocol. Thus we do not increase the round complexity
and the protocol remains a one-round protocol.

6 Implementation and Evaluation

We implemented a prototype of our password registration protocol and measured the performance.
To compare, we also implemented the password registration protocol (ZKPPC) proposed in [16].
Both implementations are in C and use OpenSSL 1.0.0 (https://www.openssl.org) for the un-
derlying cryptographic operations. In the experiments, we set the security parameter to 80-bit. We
used 1024-bit RSA keys and the SHA-1 hash function in our protocol. In the ZKPPC protocol we
use the NIST P-192 elliptic curve. All experiments were run on a MacPro desktop with 2 Intel
E5645 2.4GHz CPUs and 32 GB RAM. Note in the experiments our implemenation only uses one
CPU core and less than 1 GB RAM.

The running time of the protocols are shown in Table 1. We measured the running time with
different policies and password lengths. The passwords are printable ASCII strings. The alphabet is
partitioned into 4 classes: digits, lower case, upper case and symbols. We used three policies P1, P2
and P3 in the experiments, which require at least one, two and four characters in all character
classes respectively. In the first row of the table, the pairs indicate the policy and the password
length that were used in the experiment, e.g. (P1, 20) means policy P1 is used and the password
was 20 characters long. The table shows the total running time as well as the time spent on checking
the policies (Pol-ck) in the protocol. As we can see, the performance of our protocol is much better
than the ZKPPC protocol. The main difference comes from policy checking time. Policy checking
in ZKPPC is done by using a zero-knowledge proof of set membership protocol. The cost of the
zero-knowledge proof protocol is 6 · n ·

∑n
i=1 ωi exponentiations, where n is the password length in

the experiments, and ωi is the size of character class to which the ith character in the password
belongs. In our protocol, policy checking is done by using the SPC protocol and the cost is mainly
the OBI protocol which is based on symmetric cryptography. The cost of the OBI protocol is
4.32 · |Ŝ| ·λ hash operations, where λ is the security parameter. More concretely, in setting (P1, 20),
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Fig. 3: Time Breakdown
– (P1, 20) means policy P1 is used and the password was 20 characters long

– Policies P1, P2, and P3 require at least one, two and four characters in all classes

the zero-knowledge proof based policy checking requires around 200,000 exponentiations while our
OBI based SPC requires only less than 33,000 hash operations.

We also show the running time for each step in our protocol (see Fig. 3). As we can see in
the figure, the time for computing ui and u′i is linear in the password length, and the time for
computing Ŝ and executing SPC is linear in the size of Ŝ. The most costly step is in the setup
phase when the server computes the encrypted version of the alphabet Ŝ. A possible optimisation
is to take this step offline. Since the computation of Ŝ does not depends on the client’s password,
the server can generate a random RSA key pair and pre-compute Ŝ before engaging with the client.
The keys and pre-computed values can be stored together. Later when a client sends a registration
request, the server can retrieve them and run the protocol. If this step is taken offline, then the
online computation cost is small, usually no more than 100 milliseconds in a typical setting.

7 SPC Applications

SPC can be used in many different scenarios. In the previous section we gave a detailed example of
using SPC for password-policy checking on password registration. In this section we describe other
use-cases of the primitive.

Policy checks for Access Control In a role-based access control scenario [10] a user has to have a
certain role in order to access a resource. In complex organisational structures it may be necessary
to have a certain combination of roles in order to access a resource rather than just a single role.
SPC can be used in this case to verify whether a client has necessary roles that allow it to access
the resource. The server set S in this case contains secrets associated with each role Si and the
user’s set C contains the client’s secrets ci. Access should be granted if and only if the SPC protocol
is successful, i.e. the user can convince the server that he has all necessary roles.

Policies for Friendship Analysis One popular application of set based protocols is friendship analy-
sis. This test should determine whether two parties become friends or not depending on the number
of mutual friends. SPC can be used in this scenario as a very efficient alternative while increasing
privacy. Using SPC further allows to build subsets in friend sets, such as colleagues, family etc.,
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which in turn makes the friendship-test more “accurate” while leaking as little information about
the friendship relations as possible.

Genome Testing Baldi et al. [1] propose protocols to perform privacy preserving genome testing,
such as paternity tests. The tests can often be reduced to check a set of SNPs (Single Nucleotide
Polymorphism) that are present in a patient’s genome against some predefined sets of SNPs. Al-
though it is not exactly policy checking, our SPC protocol can be used in this setting too.

8 Conclusion and Future Work

In this work we introduced a new notion called set-based policy checking (SPC), a new privacy
preserving protocol. SPC allows a server to check whether a set held by a client is compliant with
its policy, which is defined as a monotone access structure. At the end of the protocol, the server
learns only a single bit of information, i.e. whether the client’s set complies with the policy or
not, and nothing else. We showcase the use of SPC in a new, highly efficient protocol for password
registration that allows the server to impose a password policy on the client’s password. To underline
practicality and facilitate adoption we gave an efficient implementation of the password registration
protocol together with an analysis. We further sketched other application scenarios of SPC.

Currently SPC is designed for public policies where the server makes its policy public to the
client. Although in most real world policy-based systems, the policies are not considered private
information, there are some scenarios in which the server may want to keep its policy private. As
future work, we will investigate policy checking with hidden policies.
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A Definitions

One-more RSA assumption The one-more RSA assumption [3] indicates that the RSA problem is
hard even if the adversary is given access to an RSA oracle. Formally, let (N, e, d) ←$ KeyGen(λ)
denote the RSA key-generation algorithm, and rj ←$ Z∗N be uniformly random integers in Z∗N for
j ∈ [1, t+ 1]. We say the one-more RSA problem is (λ, t)-hard on security parameter λ if for every
probabilistic polynomial time adversary A we have

Pr[{xi}i∈[1,t+1] ← A(·)d mod N
(N, e, λ, r1, . . . , rt+1)] ≤ ε(λ),

where xei = ri mod N , A made at most t queries to the RSA oracle (·)d mod N and ε(·) is a negligible
function.

Collision resistant hash functions Cryptographic hash functions are collision resistant if an attacker,
given access to hash function H, has negligible probability of generating two inputs m1 and m2

(m1 6= m2) such that H(m1) = H(m2).

B Security Proofs

B.1 Security Proofs of the SPC Protocol

Proof of Lemma 1 Assuming correct LSSS and OBI, correctness can be proved by the following
argument. LSSS guarantees correct sharing of secret s, i.e. for any authorised set Si ∈ ΓS there
is a set of shares associated with the elements in Si that can reconstruct s and for any other set
the secret cannot be reconstructed. OBI guarantees that for each element in the intersection of
S ∩C, the client is able to obtain the share associated with it. All elements in C that are not in the
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intersection are irrelevant as by definition they are not in S thus not in any authorised sets. Then
the client can reconstruct s iff there exists a subset of S ∩ C that is an authorised set. If there is
such an authorised set then P (C) = true. Eventually, the hash value ms is the same on the client
and server if the same key s, transcript trans, and participants identifiers C and S are used. ut

Proof of Lemma 2 For the security proof we consider an ideal OBI function fOBI, i.e. show compu-
tational indistinguishability between the world hybridfOBIΠ,A(z) (x, y) and ideal world idealfSPC,B(z)(x, y)

to prove security. First, since we are in the hybridfOBI world, every OBI operation and message is
forwarded to the OBI functionality. Since we only require LSSS correctness here, we do not use the
ideal functionality. In the following we show that the hybrid world hybridfOBIΠ,A(z) is computation-
ally indistinguishable from idealfSPC,B(z) and hence the real world realΠ,A(z). We give a simulator
SIMS(z) that simulates a malicious server in the ideal world. Note that we omit auxiliary input z
if not needed. We build SIMS that on input of the server’s policy P , and access to the real world
adversary AS that plays server S, generates viewS that is indistinguishable from viewAS of AS .

SIMS starts by invoking server AS with P and z to receive share-generating matrix M and
ρ from adversary AS in the first protocol message. Then as input to the OBI functionality SIMS
receives the server’s OBI input from AS , i.e. a set S ′ and shares Sd = {si}. SIMS then sends S ′ to
the trusted party. If the trusted party replies with ⊥, the simulation terminates and SIMS outputs
whatever AS outputs. If the trusted party replies with true, simulator SIMS generates a set C with
P (C) = true based on P and S ′. If the trusted party replies with false, simulator SIMS generates
a set C with P (C) = false based on P and S ′. Building C from S ′ and P is straightforward. SIMS
sends client and server input to the OBI functionality to retrieve the server’s and client’s view on
the OBI execution. Further, SIMS tries to recover s from the output of fOBI using the combination
algorithm of LSSS. If the client can reconstruct s, SIMS generates ms using M,ρ, P and S ′, the
(simulated) OBI transcript, s, C, and S and sends it to AS . Otherwise, if SIMS cannot recover s
from the fOBI output, it terminates the session with ⊥. Eventually SIMS outputs the transcript and
whatever AS returns on terminating as viewS .

We claim that the output of an honest client in the ideal execution is indistinguishable from
the client’s output in the real world. This is easy to see as the client always receives P and the
possibility to compute P (C) using either the public server set S, or the output of the OBI/fOBI
execution. Note that the evaluation of P depends on the set used by AS in the OBI execution (S ′).
Since this strategy is the same in the real and the ideal world, the claim follows. Indistinguishability
of viewS and viewAS follows from the following observations. If the server’s input to OBI is not
correct, the protocol terminates. It is easy to see that the transcript containing P,M, ρ, and S,
and the OBI execution in viewS and viewAS is identical. Since the input to the hash function H
is equivalent in both worlds, viewS and viewAS are indistinguishable. ut

Proof sketch of Lemma 3 We prove security of Lemma 3 by showing that convincing S to
accept the protocol despite the fact that P (C) 6= true implies a collision in H. First, it is clear that
the attacker is not able to recover the correct secret s from the OBI interaction with S since this
would break either OBI or LSSS security. Now it follows directly that any attacker that is able to
generate a message ms such that ms = H(s, C, S, trans) found a collision in H as it does not know
the correct secret s. ut
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B.2 Security Proofs of the Password Registration Protocol

Proof of Lemma 4 We first show that the server is simulatable and, i.e. the protocol realises the
functionality fΠ , and then show that the verifier ver is of no help when performing a dictionary
attack.

We start with the simulation by building a simulator SIMS , simulating a malicious server. SIMS
starts by invoking adversary AS with (P,S) that is playing the role of server S in the protocol,
and is provided with (e,N) as a result. Using (e,N), SIMS generates (u1, . . . , ul) as ui = αir

e
i

for αi ←$ Z∗N , ri ← fH1(pwd)(i), and some l = min where pwd ∈ DP , and returns it to AS . The

random oracle H2 is honestly simulated by SIMS . After receiving (u′1, . . . , u
′
l) the simulator builds Ĉ

according to protocol specification and uses it together with P̂ , which is provided by AS , to simulate
the SPC execution. Eventually, SIMS gives the result of the SPC execution as well as u∗ ←$ Z∗N to
AS and outputs whatever AS returns on termination. It is easy to see that the client’s view after
the protocol is identical in the real and ideal world as the protocol execution is correct and all server
values despite d are public. Further, the adversary’s view is computationally indistinguishable from
the simulator’s output since all client messages have the same distribution in both worlds.

To see that a malicious server is not able to use the values retrieved in the protocol to perform a
dictionary attack over DP more efficient than without executing the protocol, i.e. we show that the
adversary is not able to perform an attack on the retrieved elements ui, i ∈ [1, l] and u∗ that contain
information about the password, which is faster than a dictionary attack over DP . Since the client
is essentially creating blind RSA signatures on H2(ci) in ui, those values are indistinguishable from
random elements. While this would be true in the statistical sense if ri would be chosen uniformly
at random, this is not the case here. However, it is easy to see that in order to verify an element ui,
the server has to compute ri, which either requires an offline dictionary attack on DP to compute
k ← H1(pwd), or yields either a collision in H1 or breaks pseudorandomness in fk. Therefore, the
fastest way for a server to retrieve the password is to perform an offline dictionary attack on DP . ut

Proof of Lemma 5 First note that the used SPC protocol is secure and therefore guarantees
that the server accepts iff the elements in Ĉ are compliant with policy P with respect to Ŝ. We
therefore only have to show that (i) the client is not able to use different elements in C than in Ĉ,
i.e. the password pwd actually satisfies P , and (ii) the password verifier ver is uniquely defined by
(pwd, e,N, d,u), i.e. there exists no password pwd′ 6= pwd that generates the same verifier as pwd

and it is not possible to find randomness (e′, N ′, d′) 6= (e,N, d) in polynomial time that generates
the same verifier as (e,N, d).

(i) We claim that the mapping from C to Ĉ is an injective function such that the client is not
able to build Ĉ from a password pwd′ 6= pwd. The elements in Ĉ have the form ĉi = (H2(ci))

d where
d is the server’s secret RSA key. If the attacker is able to generate ĉi = (H2(ci))

d from ci 6∈ C, we
can use it to build a successful attacker on the one-more RSA assumption.

(ii) We claim that the password verifier ver = (H3(r
e
v+1

∏v
i=1 ui), e,N, d,u) is uniquely identified

by (pwd, e,N, d,u). In this case we assume the client chose a policy compliant password pwd and
performed the protocol honestly. The claim is easy to see since H3(r

e
v+1

∏v
i=1 ui) = H3(fH1(pwd)(v+

1)e ·
∏v
i=1(H2(ci) · fH1(pwd)(i))). We can in particular either find collisions in H1 or H3, or distinguish

between fk and a random function. ut
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