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Abstract—Signatures with partially message recovery
in which some parts of messages are not transmitted
with signatures to make them shorter are useful where
bandwidth is one of the crucial concern and especially
in case of signing short messages in applications such
as time stamping, certified email services and identity-
based cryptosystems. In this paper, to have quantum-attack-
resistant short signatures, a signature scheme with partially
message recovery from coding theory is proposed. The
security of the proposed scheme is proved under Goppa
Parametrized Bounded Decoding and the Goppa Code
Distinguishing assumptions in the random oracle model.
Relying on the partially message recovery property, the
proposal is shorter than the Dallot signature scheme, the
only provably secure and practical code-based signature
scheme. We should highlight that our scheme can be used
as a building block of code-based signature schemes with
additional properties since it compared to Dallot signature
scheme not only improves its communication overhead but
also it preserves its signature efficiency.

Keywords: code-based signatures, signatures with mes-
sage recovery, provable security, random oracle model.

I. INTRODUCTION

Digital signatures based on number theory are the
most important achievements of modern cryptography,
and widely deployed around the world. The progress
in the quantum computing field leads serious threats to
security of most widely used public key cryptosystems.
In 1994, Shor has presented results to show that quantum
computers can break security of cryptographic algorithms
based on number theory [1]. To tackle this problem, it
is necessary to have alternative constructions [2–4]. One
of the few alternatives we have focus on is code-based
cryptography.

CODE-BASED CRYPTOGRAPHY. McEliece [2] in 1978
introduced the concept of code-based cryptography, and
also presented the first code-based public key encryption
scheme from the general decoding problem.

McEliece [2] scheme cannot be used as a signature
scheme since it is not invertible. In 1986, Niederreiter [5]
modified McEliece code-based cryptosystem. Although
Niederreiter security is as equivalent as that of McEliece
scheme [6], its encryption is ten times faster than that

of McEliece scheme, and it can be used for constructing
of digital signature schemes. In 2001, Courtois, Finiasz
and Sendrier [7] proposed the first practical code-based
signature scheme called CFS scheme. They adapt the
full domain hash approach of Bellare and Rogaway
[8] to Niederreither encryption scheme [5] in a way
that a message is concatenated with a counter before
hashing to make hash values decodable. Although au-
thors presented some security arguments, it does not
support provable security. In 2008, Dallot [9] gave a
slight modification to their signature scheme in a way the
counter is replaced with a random value, this modified
scheme is named modified CFS or Dallot scheme, and
proved its security under Goppa Parameterized Bounded
Decoding [10] and Goppa Code Distinguishing [11]
assumptions in the random oracle model [8]. A few code-
based signature schemes with special properties such
as identity-based [12], one-time signatures [13], ring
signatures [14], threshold ring [15–17], blind signatures
[18], signcryption scheme [19] and undeniable signature
[20] have been proposed, where the main core of most
of these constructions is Dallot signature scheme [9].

SIGNATURES WITH MESSAGE RECOVERY. In signa-
ture schemes with message recovery, the signed message
is not transmitted with the signature and can be retrieved
from the signature by anyone. The main feature of this
primitive is to shorten the signature size. Applications of
this primitive are signing short messages, (e.g., including
time, date and identifiers in certified email and time
stamping services) and transmissions on small band-
width.

There are two types of signature schemes with mes-
sage recovery in the literature: RSA based and discrete
logarithm (elliptic curve) based. PSS-R [21] and ISO/IEC
9796-1,9796-2 [22–24] are schemes of the first type, and
the Nyberg-Rueppel signature schemes [25–27], Miyaji
scheme [28] and Abe and Okamoto scheme [29] are
instances of the second type. In 1991, ISO/IEC 9796-
1 standard [22] was presented as the first international
standard for digital signatures, and was believed to be
secure till some attacks were proposed by Coron et al.
[30] and by Coppersmith et al. [31]. Next this standard
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was withdrawn, and standards ISO/IEC 9796-2-2002 and
ISO/IEC 9796-2-2010 were proposed [23, 24], where
all of them support message recovery feature. In 1993,
the first discrete-logarithm based signature scheme giving
message recovery was proposed by Nyberg and Rueppel
[25], and in 1995 and 1996, Nyberg and Rueppel [26, 27]
showed that all ElGamal-type signature schemes can be
modified to support message recovery features, and this
primitive is useful in various scenario such as identity-
based cryptosystems and key agreement protocols. In
1998 and 1999, some security flaws of heuristically
designed schemes [22] have been found [30, 32]. As a
result, provable security even in the random oracle model
[8] is necessary to assure the security of a scheme.

PSS-R scheme [21] and Abe and Okamoto scheme
[29] are provably secure under RSA and discrete loga-
rithm assumptions in the random oracle model, respec-
tively. In fact, they are existentially unforgeable against
adaptively chosen message attacks under number theory
assumptions (the RSA and discrete logarithm assump-
tion).

CONTRIBUTION. In one hand, in many applications
such as identity-based cryptosystems where short mes-
sages need to be signed, message-recovery based signa-
tures or short signatures are essential since they prevent
message expansion; and on the other hand, code-based
short signature schemes which are resistant against quan-
tum attacks are important alternatives for number-theory
based ones. As result, to have code-based signatures
which are quantum-attack-resistant, to minimize signa-
ture size and avoiding presenting heuristically designed
signature schemes, a provably secure code-based signa-
ture scheme with partially message recovery is proposed.
To the best of our knowledge, this is the first provably
secure signature scheme with partially message recovery
from coding theory. To do so, the (partially) message
recovery technique proposed in [29] is inserted to Dallot
signature scheme [9], and it is possible due to the
existence of a random number in the signature that makes
hash values decodable. Then, we show that the proposal
is secure under Goppa Parametrized Bounded Decoding
and the Goppa Code Distinguishing assumptions in the
random oracle model [8]. It should be emphasized that
our scheme can be used as the base signature scheme on
behalf of Dallot scheme [9] to construct code-based sig-
natures with additional properties such as [12, 14, 17, 18]
since it is as efficient as Dallot scheme, and also its
signature size is improved.

A. Organization of the paper

The rest of this paper is organized as follows. Sec-
tion II presents background and complexity assumptions
employed as the signature foundation, the outline of
signature schemes with message recovery and its security

security model. Our proposed scheme and its formal
security proof are presented in Section III. Section IV and
V present the comparison and conclusion, respectively.

II. BACKGROUND

In this section, first the used notations in the paper
are introduced, then, we review several fundamental
backgrounds employed in this research, including Goppa
Parametreized Bounded Decoding and Goppa Code Dis-
tinguishing assumptions.

A. Notations

In this subsection, the notations used in the paper are
defined.
• y||x: a concatenation of two strings y and x such

that from y||x, y and x are effectively recoverable.
• ⊕ : X-OR operation.
• l2 |y|: the first left l2 bits of the string y.
• |y|l1 : the first right l1 bits of the string y.
• |y|: the number of bits of the string y.
• wH(y): the Hamming weight of a word y or the

number of non-zero positions of y.
• yT : transpose of a vector y.
• ⊥: an empty string.
• θ ← B(y1, ...): the operation of assigning the output

of algorithm B on inputs y1, ... to θ.
• y

$← Y : the operation of assigning a uniformly
random element of Y to y.

B. Coding Theory

Let F2 be the field with two elements and a binary
code C(n, k) be a linear subspace of dimension k of Fn2 ,
where k and n ∈ mathbbN . Elements of Fn2 and C are
named words and codewords, respectively. Code C(n, k)
is presented by a (n− k)×n binary parity check matrix
H such that for a codeword x ∈ Fn2 belonged to C(n, k),
we have HxT = 0 and the syndrome of a word x ∈ Fn2
is defined as s = HxT , where s ∈ Fn−k2 . A syndrome s
is said to be t-decodable if there exists a word x ∈ Fn2
such that HxT = s and wH(x) ≤ t, where t = n−k

logn
2

is
the error correcting capability of the code C(n, k).

Goppa codes are a subclass of alternant codes [33], and
widely used in code-based cryptography. Goppa codes
G(n, k) of t error correcting capability are of length n =
2m and dimension k = n − mt, where m and t ∈ N.
It is assumed that DECH be the decoding algorithm of
Goppa code G(n, k) with the parity check matrix H .

C. Complexity assumptions

Hard problems and security assumptions are used in
the paper are defined as follows [9, 11, 34].
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Definition 1. Goppa Parameterized Bounded Decoding
(GPBD) problem. Given a random (n − k) × n binary
matrix H and a syndrome s ∈ Fn−k2 , output a word
x ∈ Fn2 such that wH(x) ≤ n−k

logn
2

and HxT = s.

Definition 2. Goppa Parametreized Bounded Decoding
(GPBD) assumption. The GPBD problem is (τ, ε)-hard
if there is no algorithm C which runs in time at most τ
and with probability at least ε breaks the GPBD problem.

Definition 3. Goppa Code Distinguishing (GD) problem.
Given a (n−k)×n binary parity check matrix H , output
a bit b ∈ {0, 1} indicating if H is a random binary parity
check matrix or a Goppa code random binary parity
check matrix.

The advantage of the distinguisher C is defined as
follows.

AdvGDC (n, k) = Pr[1← C(H) | H $← G(n, k)]−
Pr[1← C(H) | H $← B(n, k)]

(1)

Definition 4. Goppa Code Distinguishing (GD)
assumption. The GD problem is (τ, ε)-hard if there is
no algorithm C which runs in time at most τ breaks the
GD problem with probability AdvGDC (n, k) ≥ ε.

D. Dallot signature scheme

In this subsection, we review the modified CFS sig-
nature proposed by Dallot [9], Dallot scheme, whose
security is based on the GD and GPBD assumptions in
the random oracle model.

1) Setup: The system parameters are as follows. Let
n, k, m and t ∈ N be parameters for a Goppa
code of length n = 2m, dimension k and error
correcting capability t = n−k

logn
2

such that t-decoding
has complexity at least 2λ for a security parameter
λ. Let g : {0, 1}∗ → {0, 1}n−k be a random oracle.
It is assumed that H̃ be a (n − k) × n parity
check matrix of a random binary Goppa code
and DECH̃ be its t-decoding algorithm. The
public key is pk = H = UH̃P , and the secret
key is sk = (DECH̃ , U, P ), where U is a
random binary non-singular (n − k) × (n − k)
matrix and P is a random n × n binary
permutation matrix. Therefore, public parameters
are Para = {n, k,m, t, g}.

2) Sign: To create a signature θ on the message M ,
the signer picks a number r randomly chosen
from {1, ..., 2n−k}, computes β = g(r,M) and

x = DECH̃(U−1β)P . If x = ⊥, it chooses
another r, and repeats the signing procedure. The
signature θ on the message M is (r, x,M).

3) Ver: Given H , Para and a signature θ = (r, x,M),
if HxT = g(r,M) and wH(x) ≤ t, the signature
θ on the message M is valid and outputs 1;
otherwise, it outputs 0 and the signature is invalid.

E. Outline of signature schemes with message recovery

A signer with the public key pk and a verifier are
participants of a signature with message recovery, and the
scheme consists of Setup, Sign and Ver/MR algorithms
as follows [29].
• Setup: Given the system security parameter
λ, it outputs system’s parameters Para
and the users’ key pair (sk, pk), i.e.
(Para, (sk, pk))← Setup(λ).

• Sign: Given the system’s parameter Para,
signer’s secret key sk and the message M
to be signed, it outputs the signature θ, i.e.
θ ← Sign(Para, sk,M).

• Ver/MR: Given the system’s parameter Para,
the signer’s public key pk and the signature
θ, it first recovers the message M , and
outputs 1 if θ is a valid signature of the
message M and outputs 0 otherwise, i.e.
(M, {0, 1})← Ver/MR(Para, pk, θ).

F. Security model of signatures with message recovery

A signature scheme with message recovery should
be secure against existential forgery under an adaptive-
chosen-message attack [29].

To have a formal definition for existential
unforgeability, the adversary A and a challenger C
should interact through the following game[29].

1) Setup: Algorithm C runs the Setup algorithm
with a security parameter λ to obtain system’s
parameter Para and user’s key pair (pk, sk), then
it sends (pk, Para) to A.

2) The adversary A in addition to making quires to
random oracles adaptively issues a polynomially
bounded number of questions to the Sign oracle as
follows.
Sign: Adversary A can request a signature on
the message M of its choice. Then, C returns
θ ← Sign(Para, sk,M) to A.
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3) Eventually, A returns a valid signature θ∗ on the
message M∗ for the signer’s public key pk, and
wins the game if the message M∗ has not been
requested to the Sign algorithm.

The formal definition of existential unforgeability is
expressed in Definition 5.

Definition 5. A signature is (τ, qg, qs, ε)-existentially
unforgeable against adaptive chosen message attack if
there is no adversary which runs in time at most τ ,
makes at most qg random oracle queries, makes at most
qs Sign queries, and can win the aforementioned game
with probability at least ε.

III. OUR PROPOSED SIGNATURE SCHEME WITH
MESSAGE RECOVERY

In this section, a short code-based signature scheme
based on partially message recovery technique presented
in [29] is proposed. Next, its security is proved under
GPBD and GD assumptions in the random oracle model
[8].

A. Details of the proposed signature scheme

In this section, we present the details of our signature
scheme. There are two participants in the system, a signer
with public key pk and a verifier. Our scheme consists
of three algorithms as follows.

1) Setup: The system parameters are as follows. Let
n, k, m and t ∈ N be parameters for a Goppa code
of length n = 2m, dimension k and error correcting
capability t = n−k

logn
2

such that t-decoding has
complexity at least 2λ for a security parameter λ.
Let g0 : {0, 1}n−k → {0, 1}n−k, g1 : {0, 1}n−k ×
{0, 1}∗ → {0, 1}n−k, F1 : {0, 1}l2 → {0, 1}l1 ,
F2 : {0, 1}l1 → {0, 1}l2 be random oracles, where
l1 and l2 ∈ N and l1 + l2 = n− k.
It is assumed that H̃ be a (n − k) × n parity
check matrix of a random binary Goppa code
and DECH̃ be its t-decoding algorithm. The
public key is pk = H = UH̃P , and the secret
key is sk = (DECH̃ , U, P ), where U is a
random binary non-singular (n − k) × (n − k)
matrix and P is a random n × n binary
permutation matrix. Therefore, public parameters
are Para = {n, k,m, t, g0, g1, F1, F2, l1, l2}.

2) Sign: To generate a signature θ on the message
M , the signer chooses a random number
r from {1, ..., 2n−k}, parses the message
M as M1||M2 such that |M2| = l2, and
computes M ′2 = F1(M2)||F2(F1(M2)) ⊕ M2,
α = M ′2 ⊕ g0(r), β = g1(α,M1) ⊕ g0(r) and
x = DECH̃(U−1β)P . If x = ⊥, it chooses

another r, and repeats the signing procedure. The
signature θ on the message M is (α, x,M1).

3) Ver/MR: Given H , Para and a signature
θ = (α, x,M1), a verifier computes
HxT ⊕ g1(α,M1) ⊕ α to attain M̂ ′2. Then, it
obtains M̂2 = |M̂ ′2|l2 ⊕ F2(l1 |M̂ ′2|), and recovers
the message M as M1||M̂2. The signature θ on
the message M is valid and outputs 1 if and only
if l1 |M̂ ′2| = F1(M̂2) and wH(x) ≤ t; otherwise, it
outputs 0 and the signature is invalid.

Remark 1. However, it is possible to convert the pro-
posed scheme to the one with full message recovery if the
length of the message is considered to be constant; i.e.
|M | = l2 in the proposed scheme, we consider partial
message recovery to make our construction flexible.

B. Analysis of the proposed scheme

In this subsection, the correctness of the new scheme
is verified and its existential unforgeability is proved in
the random oracle model (see [8] for the background).
In order to prove unforgeability of the proposed scheme,
we need to show that it is unforgeable against adversary
A (as defined in Section II-F).

To prove the security of our proposed scheme, and by
contradiction, assuming an adversary A, we show that
there is an algorithm C that can solve a random instance
of the GPBD problem with a non-negligible probability.
Our main result on the security of the proposed scheme
is summarized in Theorem 1.

To start let us verify the correctness of the proposed
scheme, and we use α = M ′2 ⊕ g0(r) and β =
g1(α,M1)⊕ g0(r) in what follows.

HxT ⊕ g1(α,M1)⊕ α
= (UH̃P )(DECH̃(U−1β)P )T ⊕ g1(α,M1)⊕ α
= (UH̃P )PT (DECH̃U−1β)T ⊕ g1(α,M1)⊕ α
= UU−1β ⊕ g1(α,M1)⊕ α
= g1(α,M1)⊕ g0(r)⊕ g1(α,M1)⊕M ′2 ⊕ g0(r)
=M ′2 = F1(M2)||F2(F1(M2))⊕M2.

(2)
If θ is a valid signature on the message M ,

HxT ⊕ g1(α,M1) ⊕ α = M ′2, and the message M2 is
recovered as M2 = |M ′2|l2 ⊕ F2(l1 |M ′2|) and integrity
of the message M2 is checked by F1(M2) = l1 |M ′2|.

Theorem 1. If the GPBD problem is (τGPBD, εGPBD)-
hard and GD problem is (τGD, εGD)-hard, then the
proposed scheme is (τ, qg0 , qg1 , qs, ε)-secure against the
adversary A such that
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εGPBD ≥ ε−εGD−2−(n−k+1)

qg1qg0
,

τGPBD ≤ τ + qs(mt
2),

(3)

where n, k, t and m are systems’s constants. In addition,
qg0 , qg1 and qs are the number of queries to oracles g0(.),
g1(., .) and Sign, respectively.

Proof:
It is supposed that there is an adversary A against un-

forgeability of the scheme with success probability ε. We
construct another algorithm C to solve GPBD problem
with success probability εGPBD. Given a random binary
matrix H∗ and a random vector s∗, algorithm C outputs
x∗ such that H∗(x∗)T = s∗ and w(x∗) ≤ t. Note that
substituting the public key of the signer with a random
binary matrix H∗ changes the success probability of the
simulator C with advantage at most εBD to solve the
permuted Goppa code distinguishing.

The algorithm C runs Setup on a security parameter
λ, and gets a random instance of the GPBD prob-
lem, (n, k,m, t,H∗, s∗), to set signer’s public key, H ,
to H∗ and generate the public parameters Para =
{n, k,m, t, F1, F2, l1, l2} and invokes the adversary A
on Para and H = H∗. The adversary A runs in time at
most τ , makes qg0 queries to the random oracle g0(.), qg1
queries to the random oracle g1(., .) and qs queries to the
Sign oracle, and can win the unforgeability game with
probability at least ε1 = ε−εBD. Algorithm C maintains
initially empty associative tables T0[.] and T1[., .] to
simulate random oracles g0(.) and g1(., .), and answers
A’s oracle queries as described below (refer to Figure 1).
• g0(.) queries: If T0[.] is defined for the query r,

then, C returns its value; otherwise, C chooses
T0[r]

$← {0, 1}n−k, and returns g0(r) to A (see
Lines 4-11, Fig. 1).

• g1(., .) queries: If T1[., .] is defined for the query
(M1, α), then, C returns its value; otherwise, C
chooses T1[M1, α]

$← {0, 1}n−k , and returns
g1(M1, α) to A (see Lines 12-19, Fig. 1).

• Sign queries: For a query M , C parses the message
M as M1||M2 such that |M2| = l2, and computes
M ′2 = F1(M2)||F2(F1(M2)) ⊕ M2, chooses a
random r from {1, ..., 2n−k}, makes g0(r) query
to attain its value, computes α = M ′2 ⊕ g0(r),
and selects x $← {0, 1}n−k such that wH(x) ≤ t
and computes HxT = β. If T1[α,M1] has
already been defined, then, C halts, returns
⊥ and sets bad ← true; otherwise, it sets
T1[α,M1] ← β ⊕ g0(r), and returns the signature
θ = (α, x,M1) on the message M to A (see Lines
20-39, Fig. 1).

1: Done = 0.
2: (Done, ξ1 = (Question,Oracle), ξ2)← A(H,Para)
3: while ¬Done do
4: if ξ1 = (r, g0) and ξ2 = ⊥ then
5: if T0[r] is defined then
6: return g0(r)
7: else
8: Set T0[r]

$← {0, 1}n−k and
9: return g0(r)
10: end if
11: end if
12: if ξ1 = ((α,M1), g1) and ξ2 = ⊥ then
13: if T1[α,M1] is defined then
14: return g1(α,M1)
15: else
16: Set T1[α,M1]

$← {0, 1}n−k and
17: return g1(α,M1)
18: end if
19: end if
20: if ξ1 = (M,Sign) and ξ2 = ⊥ then
21: Parse the message M as M1||M2, where |M2| = l2
22: Compute M ′2 = F1(M2)||F2(F1(M2))⊕M2

23: Choose r $← {1, ..., 2n−k}
24: if T0[r] is defined then
25: return g0(r)
26: else
27: Set T0[r]

$← {0, 1}n−k and
28: return g0(r)
29: end if
30: Compute α = M ′2 ⊕ g0(r)
31: Select x $← {0, 1}n−k such that wH(x) ≤ t and compute

HxT = β
32: if T1[α,M1] has already been defined then
33: Set bad← true and
34: return ⊥
35: else
36: Set T1[α,M1]← β ⊕ g0(r)

and
37: return the signature θ = (α, x,M1) on the message M
38: end if
39: end if
40: end while
41: if Done then
42: A returns (ξ1 = ⊥, ξ2 = (g0, g1, θ = (α∗, x∗,M∗1 ))
43: end if

Fig. 1. Algorithm C(H, s∗, Para)

• Finally, A outputs a forged signature
θ∗ = (α∗, x∗,M∗1 ). The forgery is non-trivial
if A has not made a Sign query on input M∗ (see
Lines 41-43, Fig. 1).

The probability of A in returning a forged signature θ∗

is ε2 = Pr[E1] Pr[E2|E1] which is computed as follows.
First of all, we define events E1 and E2.
• E1 : Algorithm C does not abort as a result of

signature simulation.
• E2: Adversary A returns a non-trivial forgery.
To lower-bound the probability Pr[E1], we need to

compute the probability Pr[¬bad], where event bad in-
dicate that C aborts in signature simulation as a result
of any of A’s Sign queries. This probability is computed
as follows.

Claim 1. Pr[E1] = Pr[¬bad] ≥ 1 − qs((qs +
qg1)2

−(n−k))− qs22−(n−k).

Proof. The probability of the event E1,
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Pr[¬bad], is multiplication of the following
probabilities.
• Case 1. If the pair (α,M1) generated

in a Sign simulation has been occurred
by chance in a previous query to the
oracle g1(., .), we have bad ← true.
Since there are at most qg1 + qs entries
in the table T1[., .] and the number of α,
uniformly distributed in Fn−k2 , is 2n−k,
the probability of this event for one Sign
query is at most (qg1 +qs)2

−(n−k). Hence,
the probability of this event for qs queries
is at most qs(qg1 + qs)2

−(n−k).

• Case 2. If C previously used the same
randomness r, uniformly distributed in
Fn−k2 , in one Sign simulation, we have
bad ← true. Since there are at most qs
Sign simulations, this probability is at
most qs2−(n−k). Therefore, for qs Sign
queries the probability of this event is at
most qs22−(n−k).

Claim 2. Pr[E2|E1] ≥ ε1.

Proof. The value of Pr[E2|E1] is the
probability that A returns a valid forgery
provided that C does not abort as a result
of A’s Sign queries. If C did not abort as a
result of A’s queries, all its responses to those
queries are valid. Therefore, by hypothesis
A will produce a non-trivial forgery with
probability at least ε1.

Therefore, the probability that A returns a tuple
(θ∗, g0, g1) is at least

ε1 − qs(2qs + qg1)2
−(n−k).

Since g0(.) and g1(., .) are random oracles, the proba-
bility of the event that g0 = g0(r) and g1 = g1(α

∗,M∗1 )
is less than 2−(n−k+1), unless they are asked during the
attack. Hence, in what follows it is likely that queries r∗

and (α∗,M∗1 ) are asked during a successful attack. The
lower bound of probability of producing a non-trivial
forgery after making queries to g0(.) and g1(., .) oracles
is at least

ε1 − qs(2qs + qg1)2
−(n−k) − 2−(n−k+1).

Algorithm C employs A, guesses fixed indices 1 ≤
i ≤ qg1 and 1 ≤ j ≤ qg0 and hopes that i be the index
of the query (α∗,M∗1 ) to oracle g1(., .) and j be the
index of the query r∗ to oracle g0(.) for which A forges
a signature. Algorithm C chooses s̃ $← {0, 1}n−k, and

Schemes Public key Sign Ver Signature
Size Cost Cost Size

Our mt2m t!t2m3 mt2 log2
(
2m

t

)
Scheme +mt+

|M | − l2
Dallot mt2m t!t2m3 mt2 log2

(
2m

t

)
Scheme [9] +mt

+|M |
TABLE I

COMPARISON BETWEEN OUR SCHEME AND DALLOT SCHEME

responses with M ′2 ⊕ s̃⊕ s∗ for ith query and responses
with s̃ for jth query. The probability of the former is 1

qg1
and the probability of the latter is 1

qg0
. Since the tuple

(α∗, x∗,M∗1 , g0, g1) is a valid signature, the weight of
x∗ is less than t and we have

Hx∗T ⊕ g1(α∗,M∗1 )⊕ α∗ =M ′
∗
2

.
With substituting the values of g1(α∗,M∗1 ) and g0(r∗),

we have

Hx∗T = g1(α
∗,M∗1 )⊕ α∗ ⊕M ′

∗
2 =

s̃⊕M ′∗2 ⊕ s̃⊕ s∗ ⊕M ′
∗
2 = s∗

with probability at least

ε1 − qs(2qs + qg1)2
−(n−k) − 2−(n−k+1)

qg1qg0
,

where ε1 = ε − εGD. As a consequence, x∗ is a t-
decodable of s∗.

Algorithm C’s run-time τGPBD is A’s run-time, τ ,
plus the time required to respond to hash queries and qs
Sign queries. Each Sign simulation takes one syndrome
computation whose cost is mt2. Therefore, C’s run-time
is τGPBD ≤ τ + qs(mt

2). This completes the proof.

IV. COMPARISON

The comparison of our scheme and Dallot scheme
[9] is summarized in Table I. The comparison is in
terms of Public key size, Sign-Cost, Ver-Cost and Signa-
ture Size which Sign-Cost and Ver-Cost are dominating
computational cost in signature generation and signature
verification, respectively.

As shown in Table I, the proposed scheme is as
efficient as Dallot scheme since the public key of the
signer is a n × (n − k)-parity check matrix H , where
n = 2m and n − k = mt, so the size of public key
is mt2m. In addition, the signature generation in our
scheme needs one decoding whose cost is about t! and
each of them requires t2m3 operations, so the signature
generation takes t!t2m3 operations, and the signature



7

Scheme Actual Signature Size
Our Scheme 479
Dallot Scheme [9] 578

TABLE II
SIGNATURE-SIZE COMPARISON (IN BITS)

verification requires one syndrome computing whose cost
is mt2, so the verification cost is about mt2 binary
operations.

As shown in Table I, the signature size of ours is
reduced by a l2-bit factor compared to the Dallot scheme
since the signature in our scheme is (α, x,M1), where x
is a n = 2m-bit vector such that wH(x) ≤ t, log2

(
2m

t

)
bits are required to present it, |M1| = |M | − l2 and
|α| = mt. Therefore, the signature length of the proposed
scheme is log2

(
2m

t

)
+mt+ |M |− l2, while the signature

size in Dallot scheme [9] is log2
(
2m

t

)
+mt+ |M |.

To make it clearer, we write signature size of the
schemes in terms of bits in Table II. In what follows,
it is assumed that (m, t) be (22, 9) for the security level
of 281.4, |M | = 200 for short messages and l2 = 99.
With these parameters, the schemes are resistant against
generalized birthday attack [35].
As shown in Tables I and II, our scheme is shorter
than Dallot scheme, the only provably secure code-based
signature scheme, while it has the same efficiency.

V. CONCLUSION

In this paper, we proposed a short code-based signature
scheme with employing message recovery feature. It
is shown that it is secure under Goppa Parametrized
Bounded Decoding and the Goppa Code Distinguishing
assumptions in the random oracle model. As shown in
the comparison, the size of our signature is reduced
compared to Dallot signature scheme since some parts
of the original message are not transmitted with the
signature. In addition, it has the same efficiency as
the only provably secure code-based signature scheme
(Dallot scheme). We should emphasize that this post-
quantum primitive is useful where bandwidth is one of
the crucial concern and also in case of signing short
messages, and can be used as the building block of code-
based signatures with additional properties such as ring
or threshold ring signature schemes.
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