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ABSTRACT
With organizations increasingly willing to outsource their network
functions (e.g., firewalls, traffic shapers and intrusion detection sys-
tems) to the cloud, aiming to reduce the cost and complexity of
maintaining networking infrastructures, the industry including Cisco,
Arista, Alcatel-Lucent and alike are offering network function vir-
tualization (NFV)-based solutions. However, outsourcing network
functions in its current setting implies that sensitive network poli-
cies, such as firewall rules, are revealed to the cloud provider. In
this paper, we investigate the use of cryptographic primitives for
processing outsourced network functions, so that the provider does
not learn any sensitive information. We present a cryptographic
treatment of privacy-preserving outsourcing of network functions,
introducing security definitions as well as an abstract model of
generic network functions, and then propose a few instantiations
using partial homomorphic encryption and public-key encryption
with keyword search. We show a proof-of-concept implementa-
tion of our constructions and show that network functions can be
privately processed by an untrusted cloud provider in a few mil-
liseconds.

1. INTRODUCTION
In recent years, network functions – such as network address

translation, firewalls and intrusion detection systems, load balanc-
ing, etc. – have been increasingly implemented via software pro-
cesses running on inexpensive commodity servers that can be eas-
ily spawned when needed. On the contrary, relying on specialized
hardware (such as middleboxes, switches, and routers [13]) implies
that new devices need to be deployed to add new functionalities
and, as it is not always easy to dynamically adapt to fluctuating
demands, hardware must be configured for the worst-case [20].

Using virtualization, network functions can be emulated in soft-
ware in a cost-effective manner, and outsourced to the cloud reap-
ing the benefits of reduced management and infrastructure costs,
pay-per-use, etc [26]. Specifically, Network Function Virtualiza-
tion (NFV) is a service offered by providers like Cisco, Arista,
Alcatel-Lucent to multiple clients [25]. In such a multi-tenancy
setting, network functions are run on virtual machines (VMs) be-
longing to different clients hosted on the same hardware (server).
Naturally, this raises a number of security concerns for clients, in-
cluding confidentiality and integrity. While such issues are com-
mon to IT infrastructure outsourcing in general [31], more specific
to NFV is the sensitivity of an organization’s proprietary network
policies, which instruct how network functions are to be performed.

These are potentially vulnerable to compromise from competing
organizations as well as the cloud service provider itself. For in-
stance, firewall rules do not only reveal IP addresses of hosts, net-
work topology, etc., but also defense strategies and sensitivity of
different services and resources, which, in the traditional setting,
are only known to a few network administrators [17, 28]. While
virtual machine isolation [31] could potentially address some of
these issues, they are inadequate to provide privacy against the op-
erator, i.e., the cloud service provider.

Problem Statement. These challenges motivate the need to protect
the privacy of network policies against an untrusted cloud provider,
as well as other tenants and third parties. In the rest of the paper,
we call this the private NFV problem, which, as we discuss in Sec-
tion 2, has been largely overlooked by prior work on NFV security.
We define a generic model to define privacy in NFV and propose
several solutions based on different cryptographic primitives such
as fully homomorphic encryption, partial homomorphic encryption
and public-key encryption with keyword search. The solutions re-
sult from tradeoffs between privacy and performance, and can be
instantiated depending on the adversarial model, showing that pri-
vate processing of outsource network functions is already feasible
today by adapting a few existing cryptographic primitives.

Contributions. We construct an abstract model of network func-
tions which seeks to generalize most of the network functions used
in practice as well as relevant adversarial models (Sections 3 and 4).
Then, based on this abstraction, we propose three different solu-
tions: an ideal, yet not very efficient, one based on fully homomor-
phic encryption, and two more practical solutions based on partial
homomorphic encryption and public-key encryption with keyword
search (PEKS), secure in two different adversarial models, which
we define as strong and weak (Section 5). Our solution against the
weak adversary is also the first to include stateful network func-
tions, e.g., a stateful firewall that keeps track of open TCP/IP con-
nections. Finally, we present a proof-of-concept implementation
of our schemes and evaluate their performance overhead using an
outsourced firewall as a use-case (Section 6). Using a typical 5-
tuple based firewall rule, we show that a packet can be processed
within 109 ms and 180 ms, respectively, using our solutions se-
cure against the weak and the strong adversary, and demonstrate
that our schemes scale quite well, as processing times reach 250
ms and 1,208 ms, respectively, using 10 rules. Bearing in mind
that our proof-of-concept implementation is not optimised for effi-
ciency (e.g., lack of multi-threading), our results indicate that pri-
vate NFV is feasible using existing cryptographic primitives.
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2. RELATED WORK
To the best of our knowledge, the only prior works focusing on

the problem of private processing of outsourced network functions
are by Khakpour and Liu [17] and Shi, Zhang, and Zhong [28],
who focus on private firewall outsourcing. More specifically, [17]
introduces a data structure called Bloom Filter Firewall Decision
Diagrams (BFFDD) in order to anonymize firewall policies built
from Firewall Decision Diagrams (FDD), which are used to rep-
resent firewalls [14]. However, as acknowledged by the authors,
Bloom filters [3] introduce false positives, thus, packets that do not
match any policy are (mistakenly) dropped by the firewall. Further-
more, security/privacy of their solution is argued against a black-
box assumption of Bloom filters, which does not analyze the secu-
rity properties of Bloom filters themselves (such as one-wayness)
and are not resilient to testing attacks.

Then, [28] uses a multilinear maps from Coron, Lepoint and Ti-
bouchi (CLT) based on graded encoding systems [10] to encode
each bit of a firewall rule (a policy in this paper’s terminology) as a
pair of level-1 encodings and a level-(n+1) encoding for the whole
rule, where n is the length of a possible packet. Following the se-
curity properties of the multilinear map, it is not possible to obtain
level-i or lower encodings given a level-(i + 1) encoding for each
i. Upon receiving a packet, the encodings corresponding to the bits
of the packet are multiplied and the result is then matched with the
level-(n + 1) encoding for the whole policy through a procedure
called isZero. Unfortunately, the CLT construction has been re-
cently shown to be insecure, due to an attack on the isZero rou-
tine [8] – a key ingredient to check if a packet matches a policy.

Also, although both these constructions focus specifically on out-
sourcing firewalls, they exclude details of how state tables can be
maintained in their framework by a stateful firewall. Furthermore,
due to being specific to firewalls, their solutions are only relevant
to policies that result in a binary action (allow or deny), and as
such they do not consider network functions that modify packet
contents or perform more complex actions. Compared to these two
solutions, our solutions for private network function virtualization
cover a much broader range of network functions, including fire-
walls while also considering state tables.

Private NFV also resembles real-time processing over encrypted
packets. The work of Sherry et al. [27] discusses deep packet in-
spection over encrypted data, however, it requires the sender (third
party) to be a participant in the protocol, which makes it impossible
to use this solution on existing infrastructures (a requirement that
we describe as compatibility in Section 3.3).

Somewhat related is work on outsourcing frameworks in Soft-
ware Defined Networks. Specifically, Sherry et al. [26] provide
a prototype of the APLOMB architecture, where the middlebox
functionalities (e.g. firewall) are outsourced to the cloud by the
enterprises without greatly damaging throughput. Gibb et al.[13]
then present an architecture in which enterprise networks only for-
ward data and additional processing is performed by external fea-
ture providers without any limitation on location. However, [26,
13] do not consider private processing.

Security issues in outsourcing network functions are also studied
in, e.g., [11], which provide a roadmap on the construction of a ver-
ifiable network function architecture that can verify the correctness
of the outsourced service w.r.t. functionality, performance, and ac-
tual workload in the cloud.

In general, concerns raised from the the lack of control with
cloud outsourcing have been investigated in [9], while, [7] addresses
the problem of auditing outsourced computation by providing a
monitor system that efficiently and verifiably tracks memory use
and CPU-cycle consumption in the cloud. Remote attestation and

verification are also studied by Haeberlen et al. [29], who propose
an efficient method for verifying specific types of computation,
while [15] introduces accountable virtual machines without trusted
hardware. Finally, Zhang et al. [32] and Argyraki et al. [2] pro-
vide mechanisms to ensure accountable networking by discovering
entities that drop packets in a malicious way.

3. PRELIMINARIES
This section introduces the problem of private processing of out-

sourced network functions.

3.1 Examples of Network Functions
In the rest of the paper, we consider outsourcing of simple net-

work functions, such as those presented below, along with the re-
lated (simplified) policies.

Firewall. The simplest example of a firewall policy is to drop a
packet if the source IP address belongs to a given IP range.

Load Balancer. A load balancer distributes incoming packets across
different servers to minimize load on one or more servers. A typical
load distributing algorithm is round-robin. For instance, if the IP
address of the server currently at the top of the list is 192.168.0.1,
then the destination IP address of the packet should be changed to
this IP address.

Carrier-grade NAT. A carrier-grade network address translator
maps private IP addresses (and ports) within a private network to
one or more public IP addresses (and ports), to reduce the number
of public IP addresses required. An example of a NAT policy is that
if the destination IP of an incoming packet is 213.145.163.231
and the destination port is 5000, the destination IP and port should
be changed to 196.168.0.1 and 22, respectively.

IDS. An intrusion detection system scans packets to detect any ma-
licious traffic. An example policy could be that if the destination IP
address of an incoming packet is 192.168.0.1 and the payload
contains a POST request then an alert message should be sent.

DPI. Deep packet inspection filters packets by inspecting it for
viruses or other content such as pornography. An example policy
could be that if an incoming packet contains the word adult in its
contents, then the packet should be dropped.

3.2 System Model
In the rest of the paper, we consider a scenario where an orga-

nization, the client, outsources one or more of its network func-
tions to the cloud, as illustrated in Figure 1. The outsourced net-
work functions run within virtual machines (VMs) on commodity
servers provided by the cloud. We call this the NFV setting – as
opposed to the traditional setting in which dedicated network mid-
dleboxes perform network functions within the client’s private net-
work. Analogous to other cloud platforms, such VMs are managed
through hypervisors [20].

Cloud and Client Middleboxes. To ease presentation, we denote
the set of all VMs executing virtual network functions as the cloud
middlebox, or cloud MB for short. Not all network functionalities
need to be outsourced to the cloud, and as such the client still re-
quires its own middlebox to carry out the remaining network func-
tions or to communicate with the cloud MB. We call this the client
middlebox, or client MB for short. The cloud MB receives inbound
traffic destined for the client, processes the network functions as-
signed to it, and forwards the result to the client MB. Outbound
traffic is the one originating from within the client’s private network
which is forwarded by the client MB to the cloud MB to process
the outsourced network functions and subsequently relay it to its
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Figure 1: Network Function Virtualization.

intended destination. The network policies which describe how the
network functions are to be processed are installed in the cloud MB
by the client.
Trust Assumptions. We assume the cloud MB to be honest-but-
curious, i.e., it performs network functions dutifully yet wishes to
infer the policies. Later on in this paper, for some of the proposed
solutions, we will assume that the cloud MB has a semi-trusted
component, which we call the entry MB. The entry MB receives
the packet and performs some preliminary processing before hand-
ing the results over to the cloud MB. Ideally there should be no
entry MB, i.e., no part of the cloud MB should be assumed to be
part of black-box processing. However, inclusion of an entry MB
remarkably improves performance, and its presence is reasonable
assuming that the cloud is honest-but-curious. Also, remark that
the entry MB does not share any private keys with the client MB,
and all the processing is done using public-key operations.

3.3 Desired Properties
In the traditional setting, most network functions are run on ded-

icated middleboxes located at the edge of the client’s private net-
work. As a result, the network policies are hidden from outsiders
as long as the hardware is secure. Once a network function is out-
sourced to the cloud, obviously, it is no longer the case. Ideally,
the client would want its network policies to remain private while
maintaining the standards of service set by the traditional setting.
Privacy. The client expects its network policies to remain hid-
den not only from third parties, but also from other tenants and
the cloud. We argue that the cloud should not be trusted to keep
the policies secret, even though it processes the network functions
for the client. At best, the client can only assume that the cloud
is honest-but-curious, i.e., it performs all the network functions as
required due to service obligations and does not deviate from proto-
col specification, but it might still be interested in inferring network
policies, possibly by colluding with another party. Also, due to vir-
tualization, it is likely that two VMs computing network functions
of two (possibly competing) tenants might be residing in the same
physical server, thus, a client’s network policies should be kept se-
cret from another client.
Performance. The client expects the outsourced network functions
to maintain the quality of service of the traditional setting. This
introduces the following constraints.

– Real-time Processing: The cloud MB should be able to pro-
cess network functions in real-time.

– Minimal Client-side Processing: The client MB should be
processing as little of the policies as possible in order to
maintain the benefits of network function outsourcing.

Compatibility. Third parties should be able to send/receive traffic
to/from the client as if the network functions are implemented in
the traditional setting, i.e., third parties should not be required to
undergo additional setup (e.g., implementation of customized net-
work and cryptographic protocols) to communicate with the client.

Naturally, any solution for a private NFV will likely introduce a
tradeoff between privacy and compatibility/performance: our goal
is to explore the balance between security and performance, while
satisfying the compatibility constraint.

3.4 Limitations and Scope
Before introducing our solutions, we discuss a few limitations of

our model and make some important remarks.
Traffic Analysis. An adversary may intercept and analyze traffic
between the cloud MB and a third party and try to infer network
policies based on the pattern of inbound and outbound packets.
Likewise, the adversary may generate its own traffic destined for
the client (through the cloud MB) and analyze the packets it re-
ceives in response. For instance, if a request has been sent from
a certain IP address for a TCP/IP connection, and a response has
not been received, then the adversary may infer that it is a policy
to drop packets from this particular IP address. However, note this
can also be done in the traditional setting, and we require that solu-
tions for private NFV do not need to provide privacy beyond what
can be achieved in the traditional setting.
Virtual Machine Isolation. One way to achieve private NFV is
through VM isolation, e.g., isolation of memory and disk stor-
age, together with the assumption that the hypervisor belongs to
a trusted base [16, 18, 31]. A crucial aspect for secure isolation
is to ensure that the hypervisor, i.e., trusted computing base, is
small in terms of lines of codes (LoC) [30, 31], which ensures
that security vulnerabilities are minimized or, if identified, can be
easily patched [18]. There are, however, several issues with this
approach. (1) Small hypervisors are needed to formally verify cor-
rectness and security properties, and some simplifying assumptions
are required, e.g., w.r.t. the correctness of the compiler and the
hardware, the presence of a uniprocessor instead of multiproces-
sors, etc., as in the case of the formal verification of the operating
system kernel “sel4” [18]. Also, it may be possible to iteratively
verify a hypervisor by shedding each layer of simplifying assump-
tions. (2) Unfortunately, commodity hypervisors are not optimized
in terms of lines of codes [31], thus it is a strong assumption to as-
sume they are trusted. (3) Cross-VM side-channel attacks can also
enable a malicious VM to be co-located at the physical host of the
target VM and exploit various side channels (e.g., cache), to obtain
information such as cryptographic keys [24, 33].
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Coverage of Network Functions. Our goal is to provide solutions
to private NFV that are applicable to most network functions, ide-
ally, encompassing all possible network functions. However, one
cannot make such claim without checking the implementation de-
tails of each and every network function in practice. Rather, we
give a broad definition of network functions and provide solutions
to private NFV that cover network functions satisfying this defini-
tion, which can be incrementally modified to cover more functions.
For instance, we do not consider traffic shaping, where delivery
of certain packets is delayed (at the cloud’s side) to satisfy perfor-
mance guarantees.
Inbound vs Outbound Traffic. In this work, we focus on inbound
traffic, i.e., traffic coming from third parties toward the client. Al-
though our private NFV solutions (presented next) are applicable to
outbound traffic as well, this would require redirecting traffic from
the cloud MB (after private processing of network functions) to the
client MB, which in turn forwards it to the third party receiver.

4. MATHEMATICAL FORMULATION
Let n be a positive integer and x and y be n-element vectors:

then 〈x,y〉 denotes their dot product. The dot product of a vector
x with itself, i.e., 〈x,x〉 is denoted by x2. The Hadamard product
or the entry-wise product of the vectors x and y is x ◦ y, i.e., the
n-element vector whose i-th element is xiyi. The vector ei denotes
the n-element vector with all 0s except a 1 in the i-th position.

Given two positive integers a and b, the bitwise AND operation,
denoted a � b, outputs 1 if the binary representation of a and b
agrees in all bit positions. More specifically, if we assume a and b
to be n-bit binary numbers and let ai and bi denote their i-th bits
with the most significant bit at position n, then

a� b = cncn−1 · · · c1,

where ci = aibi + āib̄i. The bitwise greater than or equal to
operation, denoted a� b, is defined as

a� b = anb̄n + cnan−1b̄n−1 + cncn−1an−2b̄n−2 + · · ·
+ cn · · · c2a1b̄1 + cncn−1 · · · c1,

which is 1 if a ≥ b and 0 otherwise. The bitwise less than or equal
to operation, denoted a� b, is defined similarly with the roles of a
and b interchanged.

The encryption function E on a vector x is defined as the vector

E(x) =
(
E(x1) E(x2) · · · E(xn)

)
.

For positive integers a < b, the notation [a, b] denotes all in-
tegers between a and b inclusive. The notation [n], for a positive
integer n, defines the set {1, 2, . . . , n}.

4.1 Network Functions
Let n ≥ 1 and q ≥ 2 be positive integers. We define a packet

x as a vector in Zn
q , where n represents the different fields of the

packet (source IP address, protocol type, etc.) and q is an upper
bound on the length of packet fields. Although it is much natural to
define a packet as a bit string of bounded length (216 in case of IPv4
packets), we prefer our definition as it facilitates the description of
private NFV solutions later on. A network function ψ from Zn

q onto
Zn

q is the pair (m,a) defined as

ψ(x) = m(x)a(x) + (1−m(x))x, (1)

where m : Zn
q → {0, 1} is called the matching function, and

a : Zn
q → Zn

q is the action function, or simply the action. The
intuitive meaning of the above is that when a network function re-
ceives a packet x the matching function decides whether the current

network function applies to this packet. If yes, the relevant action
is performed by the action function altering the packet to x′. If the
result of the match is negative, the packet is left unchanged.

In some cases, a network policy will be composed of several
network functions as defined above – in this case, we iteratively
define the resulting network function as:

ψi(x) = ψi(· · ·ψ2(ψ1(x)) · · · ) (2)

for i ≥ 1.
The definition of ψ as a match-action pair is motivated by the

OpenFlow communications protocol between the control and for-
warding planes in Software Defined Networks (SDN) [21], which
use flow tables containing match fields and the corresponding ac-
tions to be carried out. Note that different fields of a packet are
not necessarily of the same length, e.g., if we consider IP packets
then the version field (i.e., IPv4 or IPv6) is 4 bits long while the
source IP field is 32 or 128 bits long (IPv4 or IPv6 packets). There-
fore, we consider a value q that is large enough to incorporate the
largest header field. This is for theoretical convenience, and any su-
perfluous bits for smaller fields can be duly discarded. The packet
payload, which can be much larger, is divided into chunks of length
log2 q bits.

Virtual Fields. Besides the standard fields, we assume the pres-
ence of additional ones, which we call virtual fields. These origi-
nate from the implementation of our private NFV instantiations and
are inserted in the payload of the packet. For instance, a tag field
will be used to model a common functionality of network func-
tions such as the firewall and rate limiter, to drop packets match-
ing certain criteria. To indicate that a packet is to be dropped, the
cloud MB can assign the value drop to this tag (contained in the
IP packet’s payload) and send it to the client MB. How this value
is added in a private way is described in Section 5 and how these
virtual fields can be added to the packet is described in Section 6.

Example. We assume a simple network address translation (NAT)
policy as a running example. For instance, upon receiving a packet
x with destination IP in the range 128.*.*.*, the NAT changes
the destination IP and port to 196.*.*.* and 22, respectively.
Without loss of generality, we assume that the destination IP and
destination port belong to the first two elements of x, i.e., x1 and
x2. Thus, the matching function is:

m(x) =

{
1 if x1 ∈ [128.0.0.0,128.255.255.255]

0 otherwise
,

and the action is:

a(x) =


x1
x2
x3
...
xn

+


x1 + 68.0.0.0
−x2 + 22

0
...
0

 .

(Note that the IP addresses are mapped in Zq .)

4.2 Stateful Network Functions
Some network functions such as (stateful) firewalls maintain dy-

namically generated states. When a packet arrives, it is first checked
against the state table to see if any entry in the state table matches
the fields of the packet. If a matching entry is found, the prescribed
action is performed on the packet and it does not need to be further
processed by other (static) policies. An example is the state of TCP
connection maintained by a firewall, as depicted in Table 1. The
firewall notes a new connection when the SYN flag in a packet is
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ID src IP src port dst IP dst port prot state timeout
1 192.168.1.1 120 192.168.1.2 121 6 new 59
2 192.168.1.129 45 192.168.1.140 8080 6 est 3600

Table 1: An example of a firewall state table.

set, and creates an entry in the state table containing, for instance,
the source/destination IPs and ports and protocol type (6 for TCP)
along with the current state. Upon receiving a SYN-ACK from the
destination and a subsequent ACK flag from the source, the firewall
changes the state of this connection to established (shown as est
in the table). Any subsequent packets that satisfy the headers con-
tained in the state table entry are then allowed to go through without
further processing of the network policies. The state table entry is
deleted once the FIN-ACK part of the TCP protocol is carried out,
or when the connection times out.

We note that in our model, state tables can be abstracted as dy-
namic match-action pairs, where the state and time-out columns in
the state table can be thought of as virtual fields of the IP packet
and the action as the addition of the tag field with value “allow”.
However, one key difference is that once a match has been found,
further processing is discontinued.1 Therefore, any private solution
to a stateful middlebox should have the property that execution is
allowed to stop once a match in the state table is found—otherwise
there would be no performance gain from maintaining state.

4.3 Private Processing of Outsourced Network
Functions

Our goal is to provide privacy of an outsourced network func-
tion ψ given a set of packets x1,x2, . . . ,xt. From an adversarial
perspective, the network function ψ can be learned either directly
through the description of (m,a) or indirectly by deducing from
the outputs ψ(x1), ψ(x2), . . . , ψ(xt). In order to achieve privacy,
we therefore need a scheme that protects both the network func-
tion ψ and its output. We call this PNFV (Private NFV). Let x be
a packet as defined before and ψ be a network function such that
ψ(x) = x′.

4.3.1 PNFV

DEFINITION 1 (PNFV). A public-key PNFV scheme is a tu-
ple (kg, enc, dec, tr, proc) of probabilistic polynomial time algo-
rithms defined as follows:

– Key generation: The algorithm s, p ← kg(1k) returns the
secret key s and public key p, where k is the security param-
eter.

– Packet encryption: The algorithm E(x) ← enc(p,x) takes
as input the public key p and the packet x and outputs the
encrypted version E(x). Note that this is element-wise en-
cryption, which results in n ciphertexts.

– Network function transformation: The algorithm φ← tr(ψ)
takes as input the network function ψ and outputs a trans-
formed network function φ.

– Packet processing: The algorithm E(x′) ← proc(φ,E(x))
takes as input the transformed network function φ and the
encrypted packet E(x) and outputs the encryption of x′.

– Packet decryption: The algorithm x′ ← dec(s, E(x′)) takes
as input the secret key s and the encryption of x′ and outputs
x′. We may write D(E(x)) to represent dec(s, E(x)).

1There are network functions for which this is not true, e.g., traffic moni-
toring in which aggregate statistics of packets, such as number of packets
received, are maintained.

Concisely, we can define the output of PNFV given x and ψ as
PNFV(x, ψ). Thus,

PNFV(x, ψ) = dec(s, proc(tr(ψ), enc(p,x))).

Key generation, network function transformation, and packet de-
cryption algorithms are computed by the client MB, while the re-
maining two algorithms are processed by the cloud MB. We have
the following definition for correctness.

DEFINITION 2 (CORRECTNESS). A public-key PNFV scheme
is correct if for all x ∈ Zn

q it holds that

Pr[PNFV(x, ψ) 6= ψ(x)] ≤ negl(k),

where s, p ← kg(1k), negl is a negligible function and k is the
security parameter.

4.3.2 PNFV Security
As mentioned before, we consider an honest-but-curious adver-

sary, i.e., a passive adversary that correctly computes PNFV but
would like to infer ψ. More precisely, we conduct the follow-
ing experiment involving an adversary A to model PNFV security.
First, A is given the public key p, the description of algorithms
(kg, enc, dec, tr, proc) and the transformed network function φ.
While A is in the test state, it can sample any packet x and obtain
its output E(x′) such that ψ(x) = x′ through the packet process-
ing algorithm. Finally, in the guess state A outputs its guess of the
network function ψ as ψ′. If ψ′ = ψ, A wins.

The above experiment abstracts what we call the strong adver-
sary, denoted Astrong, to distinguish it from a weaker adversary, de-
noted Aweak. The weak adversary differs from the strong one in
that it is only given oracle (black box) access to part of the packet
processing algorithm proc, and is not shown the incoming packet
x. Instead a packet is chosen randomly from a publicly known
distribution D, whenever Aweak requests for outputs of the above
functions on a fresh input x. Naturally, this yields a weaker secu-
rity definition. In practice, this model is realized by introducing
an entry MB, which is assumed to be running within a black box.
The entry MB receives the packet and performs part of the packet
processing algorithm proc, which is hidden from Aweak.

We model PNFV security using the following experiment involv-
ing, as discussed in Section 3.3, an honest-but-curious adversary.

DEFINITION 3. A public-key PNFV scheme is (τ, ε)-private if
for any adversary A that runs in time τ = poly(k), it holds that

Pr[APNFV = ψ] ≤ ε = ε(k),

where x′ = ψ(x), A can be either Astrong or Aweak and k is the
security parameter.

4.4 Notation
In Table 2, we summarize the notation used throughout the rest

of the paper.

5. THREE PNFV INSTANTIATIONS
This section presents three PNFV instantiations. First, we briefly

review a few different cryptographic primitives used in our schemes.
Then, we describe solutions for a generic network functionψ, which,
given a packet x implements the policy:

if xi == y then xj ← z, (P1)

where i, j ∈ [n]. We call this the equality matching policy, a spe-
cial case of the more general range matching policy defined as:

if xi ∈ [a, b] then xj ← z. (P2)

Note that policy P2 equals policy P1 if a = b = y.
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Symbol Description
n Number of packet fields
N Number of policies
xi i-th packet field
ψ() Network function
m() Matching function
a() Action function
〈x,y〉 Dot product of vectors x and y
x ◦ y Entry-wise product of vectors x and y
x� y Bitwise AND operation
ei Vector with all 0’s and a 1 at the i-th position
E() Encryption function
D() Decryption function
σ() Pseudorandom Permutation
I Index vector whose i-th element is i itself
|| Concatenation operator
E() Searchable encryption function
T () Trapdoor generation function
test() Test equality function
{new,est} Set of states
{allow,drop} Set of tags
id Identifier of a table entry
delete Command to delete a table entry

Table 2: Notation

5.1 Cryptographic Primitives
Fully Homomorphic Encryption (FHE). A FHE scheme involves
the following algorithms:

– Key generation: Given the security parameter k, generates
public and private key pair (pk, sk).

– Encryption: Given plaintextm ∈ {0, 1}∗, outputs ciphertext
c = E(m) encrypted under public key pk.

– Decryption: Given a ciphertext c, outputs the plaintext m =
D(c) using the secret key sk.

– Homomorphic Addition (Add): Given two ciphertexts c1 =
E(m1), c2 = E(m2), and the public key pk, produces a
ciphertext c = Add(c1, c2) = c1 + c2 such that D(c) =
m1 +m2.

– Homomorphic Multiplication (Mult): Given two ciphertexts
c1 = E(m1), c2 = E(m2), and the public key pk, produces
a ciphertext c as c = Mult(c1, c2) = c1 ·c2 such thatD(c) =
m1 ·m2.

The BGN Cryptosystem [6]. Boneh, Goh, and Nissim (BGN)
cryptosystem [6], besides provide additive homomorphism, also al-
lows for one multiplication of ciphertexts. The scheme is based on
a bilinear map and involves the following algorithms:

– Key Generation: Generate the tuple (q1, q2, G1, G2, e), where
G1 andG2 are two multiplicative cyclic groups of order n =
q1q2 and e is the bilinear map e : G1 × G1 → G2. Further
pick two random generators g and u of G1 and set h = uq2 .
It follows that h is a random generator of the subgroup ofG1

of order q1. The public key is p = (n,G1, G2, e, g, h) and
the private key is s = q1.

– Encryption: Assume the message space to be {0, 1, 2, . . . ,M}
where M < q2. Encryption of a message m using public
key p is c = gmhr , where r is randomly chosen from the
set {0, 1, . . . , n − 1}. c is the resulting ciphertext and is an
element of G1.

– Decryption: Given the secret key s = q1, compute cq1 and
then find its discrete log base gq1 using, for instance, Pol-
lard’s lambda method which takes expected timeO(

√
M) [22,

§3, p. 128][6].

The BGN cryptosystem is semantically secure under the subgroup
decision assumption, i.e., given an element x ∈ G1, it is hard to
decide if x is in a subgroup ofG1 without knowing the factorization
of the group order n (which is q1q2). Since decryption involves
computing discrete logarithms, BGN is only suitable for a small
message space.

PEKS [4]. Public-key Encryption with Keyword Search (PEKS) [4]
involves the following algorithms:

– Key generation: Given a security parameter, generates the
public key p and private key s.

– PEKS generation: Given a keyword w and the public key p,
produces the searchable encryption E of w as E(w).

– Trapdoor generation: Given the private key s and a keyword
w, generates the trapdoor for w as T (w).

– Test: Given public key p, searchable encryption E(w) and
trapdoor T (w′), test(E(w), T (w′)) outputs 1 if w′ = w and
0 otherwise.

We consider the instantiation by Boneh et al. [4], based on Iden-
tity Based Encryption (IBE) [5], which itself is based on a bilinear
map e : G1 × G1 → G2, where both G1 and G2 are of prime
order p. The resulting scheme is semantically secure against a
chosen-keyword attack in the random oracle model under the Bi-
linear Diffie-Hellman (BDH) assumption [4, 5], i.e., that given g,
ga, gb, gc ∈ G1, where g is a generator ofG1, it is hard to compute
e(g, g)abc ∈ G2. Apart from this assumption, we also use the as-
sumption that the trapdoor T (w) is not invertible, i.e., is one-way.
In the specific construction discussed, the trapdoor T is computed
as T (w) = H(w)s, where H is a hash function. The one-wayness
of the trapdoor follows from the one-wayness of H .

Pseudorandom Permutation. We also assume the existence of a
secure pseudorandom permutation σ, mapping from [n] to itself. In
practice, this can be implemented using a block cipher [19], such
as AES. In our constructions, the inverse permutation σ−1 is not
required and as such the private key does not need to be shared.

5.2 Privacy against the Strong Adversary

5.2.1 Scheme based on Fully Homomorphic Encryp-
tion

We now introduce our fist solution based on FHE that is secure
against the strong adversary. Consider a network function ψ imple-
menting policy P1. Its matching function can be written as:

m(x) = 〈x, ei〉 � y

which returns 1 if y = xi and 0 otherwise. The action function can
be written as:

a(x) = x− x ◦ ej + zej ,

replacing xj with z. Thus, ψ becomes:

ψ(x) = m(x)a(x) + (1−m(x))x

= m(x)(a(x)− x) + x

= (〈x, ei〉 � y)(zej − x ◦ ej) + x. (3)

We can construct a public-key PNFV scheme from any Fully
Homomorphic Encryption (FHE) scheme, as described in Figure 2.

For policy P2, the action function is the same, but the matching
function is now given as:

m(x) = (〈x, ei〉� a)(〈x, ei〉� b),
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Key generation. The client MB creates a public-private key pair (pk, sk) of the FHE scheme. It keeps sk, and sends the public key pk to the cloud MB.

Network function transformation. The client MB computes the encrypted tuple (E(ei), E(ej), E(y), E(z)) using the public key pk and sends them
to the cloud MB.

Packet encryption. Upon receiving a packet x, the cloud MB computes E(x), using the public key pk.

Packet processing. Using E(x) and the encrypted tuple, the cloud MB computes E(x′) = E(ψ(x)) as defined in Eq. 3.

Packet decryption. Upon receiving the encrypted packet E(x′), the client MB decrypts it using its private key sk to obtain the transformed packet x′.

Figure 2: PNFV scheme based on Fully Homomorphic Encryption (FHE). E() denotes the encryption function of an FHE cryptosystem.

which is 1 if xi ∈ [a, b] and 0 otherwise. This can be substituted for
m(x) in Eq. 3 to get an expression for ψ. The client MB needs to
send the encryptions E(a) and E(b) (instead of E(y)) to the cloud
MB, while the rest is the same. Since policy P1 equals policy P2
with a = b = y, we can replace the matching function of the
former with the latter for a more general description, even though
incurring more homomorphic computations. Also note that one can
sequentially process N network functions ψ1, . . . , ψN using this
scheme, with the client MB sending encryptions for each network
function at setup, and the cloud MB sending the encryption of

ψN (x) = ψN (· · ·ψ2(ψ1(x)) · · · ),

to the client MB upon receiving the packet x.

Correctness. It is straightforward to see that, if the underlying FHE
scheme is correct, the construction in Figure 2 correctly performs
the network function defined by policies P1 and P2.

Privacy. Intuitively, privacy of the scheme stems from the fact that,
as matching and action functions, together with their results, are en-
crypted, the adversary cannot infer the network function. More for-
mally, in Appendix A, we prove that this scheme is private against
Astrong if the FHE scheme is semantically secure.

FHE Practicality. Although research in FHE has made tremen-
dous progress in improving efficiency [23], we do not have a truly
efficient FHE instantiation providing acceptable performance in the
context of network function virtualization. However, efficient par-
tial homomorphic encryption schemes, like BGN [6], could be used,
as discussed next, if we modify the matching function.

5.2.2 Scheme based on BGN Cryptosystem
As for the FHE based scheme, we start with the function ψ de-

scribed by policy P1, but describe the matching function as:

m(x) = 1− 〈x, ei〉+ y.

If we denote m(x) = c, note that c = 1 if y = xi, whereas,
if xi 6= y, then c 6= 1. Since we only get c as a function of x,
the matching function will output 1 only if the packet matches the
policy and give any value other than 1 otherwise.

The action function a is the same as before:

a(x) = x− x ◦ ej + zej .

Matching and Action. We need an encryption algorithm E that
can homomorphically compute bothm and a. More specifically, E
should give the encryption of m() as:

E(m(x)) = E(1− 〈x, ei〉+ y)

= E(1)− E(〈x, ei〉) + E(y)

= E(1)− 〈E(x), E(ei)〉+ E(y) (4)

and, for the action function:

E(a(x)) = E(x− x ◦ ej + zej)

= E(x)− E(x ◦ ej) + E(zej)

= E(x)− E(x) ◦ E(ej) + E(zej). (5)

The BGN cryptosystem allows to homomorphically compute one
multiplication and any number of additions. Therefore, we can use
it to construct a PNFV scheme secure against the strong adversary:
the scheme is presented in Figure 3. We omit the description of the
key generation algorithm (which should be obvious from the un-
derlying cryptosystem), and further include the packet encryption
routine within the packet processing algorithm.

Range matching. Next, we consider range matching, i.e., the net-
work function ψ defined by policy P2. Observe that:

(b− xi)(xi − a) ≥ 0 if xi ∈ [a, b]

(b− xi)(xi − a) < 0 otherwise.

The product above can be written as

(b− xi)(xi − a) = bxi − ab− x2i + axi

= −x2i + (a+ b)xi − ab.

Let x2 = 〈x,x〉. If we define the matching function as:

m(x) = −〈x2, ei〉+ 〈x, (a+ b)ei〉 − ab

then m(x) ≥ 0 if there is a match, and negative otherwise. Homo-
morphically, we obtain:

E(m(x)) = E(−〈x2, ei〉+ 〈x, (a+ b)ei〉 − ab)
= −E(〈x2, ei〉) + E(〈x, (a+ b)ei〉)− E(ab)

= −〈E(x2), E(ei)〉+ 〈E(x), E((a+ b)ei)〉 − E(ab).

Here, E(ab), E((a + b)ei) and E(ei) are computed by the client
MB during the setup phase as part of the network function trans-
formation routine. Since the cloud MB already knows x, it can
compute x2 = 〈x,x〉 in the clear, and then compute E(x2). The
action function is the same as before. The client MB receivesE(x),
E(a(x)) and E(m(x)) = E(c), and decrypts E(c) to obtain c. If
c is a non-negative integer then it decrypts the result of the action
function as the transformed packet, otherwise, it decrypts the orig-
inal packet as the packet to be retained.

Correctness. As mentioned, BGN can successfully decrypt homo-
morphic encryptions of unlimited additions and one multiplication
(per ciphertext). The above construction of match and action func-
tions satisfy this constraint, thus implying correctness of the PNFV
scheme in Figure 3.

Privacy. Intuitively, the scheme can be shown to be private as the
adversary only sees randomized encryptions of matching and action
functions and, as such, cannot infer whether the matching function
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Network function transformation. The client MB computes the tuple (E(1), E(ei), E(y), E(ej), E(zej)) and sends it to the cloud MB.

Packet processing. Upon receiving a packet x the cloud MB:
1. Encrypts the packet as E(x).
2. Computes E(a(x)) according to Eq. 5 as E(a(x)) = E(x)− E(x) ◦ E(ej) + E(zej)

and E(m(x)) = E(c) according to Eq. 4 as E(c) = E(1)− 〈E(x), E(ei)〉+ E(y)
3. Sends E(x), E(a(x)) and E(c) to the client MB.

Packet decryption. Upon receiving E(x), E(a(x)) and E(c) the client MB:
1. Decrypts E(c) to obtain c.
2. If c = 1, decrypts E(a(x)) to obtain the transformed packet.
3. Else if c 6= 1, decrypts E(x) to obtain the unchanged packet.

Figure 3: PNFV scheme based on the BGN cryptosystem [6].

resulted in 1 or some other value. More formally, we prove, in Ap-
pendix A, that, if BGN is semantically secure, our PNFV scheme
is private against Astrong.
Discussion. Ideally, the client MB would receive the encryption of
the whole network function, i.e., E(ψ(x)) and simply decrypt it
to get the final packet. In our protocol, it actually has to perform
two decryption operations instead of one (one to check the output
of the matching function and another to decrypt the result), and, for
each packet, three encryptions need to be sent. This is due to the
fact that the output of the matching function is a variable (i.e., not
a constant value) when there is no match, thus, we cannot perform
iterations of N network functions.
Asymptotic Complexity. The network function transformation
phase (which is done only once, during the setup) requires the client
MB to compute, and send to the cloud MB, O(N · n) encryptions.
The packet processing at the cloud MB requires the computation
of O(N · n) encryptions, which are then sent to the client MB.
Finally, the packet decryption at the client MB requires O(N · n)
decryptions.

5.3 Privacy against the Weak Adversary
We now present a more efficient solution that is secure against

the weak adversary, based on Public-key Encryption with Key-
word Search (PEKS) [4], a probabilistic encryption scheme (E,D)
and a pseudorandom permutation σ.

Figure 4 presents our solution, in the context of policy P1. Ob-
serve that I denotes the n-element index vector whose i-th element
is i itself, and x||I the n-element vector whose i-th element is xi||i.
In this model, the weak adversaryAweak does not have access to the
entry MB packet processing. Thus, we have a somewhat stronger
assumption of security in this scheme with respect to the strong
adversary schemes presented in Section 5.2. The advantage, com-
pared to the BGN based scheme presented in Section 5.2.2, is that
we only send one encrypted packet, and the client MB only needs
to decrypt the packet. Also note that the entry MB runs σ only once
per packet arrival to obtain a shuffled set of indexes, and permutes
the encryptions according to this set. That is, steps 1, 2 and 3 in
Figure 4 performed by the entry MB use the same permutation.
Correctness. The client MB decrypts E(x′||I), permuted by σ,
to obtain x′||I and reconstructs x′ according to I . Note that, if
the original packet matches policy P1, then x′j = z. Likewise, it
the packet does not match the policy, decrypted packet x′ is the
original packet x. Therefore, our PNFV scheme is correct.
Privacy. Intuitively, sinceAweak does not know which packet index
yields a match and which index the action applies to (due to ran-
dom shuffle by σ), and since the matching value y and the action
value z are encrypted, it cannot infer the policy. In Appendix A,
we show that if the probabilistic encryption scheme E is semanti-

cally secure and the PEKS scheme is semantically secure against
a chosen keyword attack, its trapdoor function T is not invertible,
and the pseudorandom permutation σ is indistinguishable from a
random permutation, then the PNFV scheme described in Figure 4
is private against Aweak.

Discussion. The obvious limitation of this scheme is that it is only
private against a weaker notion of adversary. In particular, we con-
sider a cloud MB that does not try to analyze incoming packet x
with the output of the scheme. More precisely, the cloud MB does
not retain the packet x to match its randomly permuted encryptions,
neither does it attempt to find j in T (j) by checking all possible en-
cryptions under E of all possible elements in [n]. If the cloud MB
tries to do either of these (unwarranted) actions, it will at best learn
the index j (and not index i, y or z). To find (i, y), the cloud MB
needs to do a brute force search whose complexity is O(2qn). On
the other hand, we only need to send a number of encryptions per
packet independent of the number of network functions N , how-
ever, it is only applicable to policy P1.

Asymptotic Complexity. The network function transformation,
similarly to the BGN based scheme, is done only once, during the
setup, by the client MB, computing O(N) PEKS trapdoors and
encryptions to be sent to the cloud MB. The packet processing re-
quires the entry MB to perform and send to the cloud MB O(N)
encryptions, while the cloud MB performs O(N · n) equality tests
(using the PEKS scheme), for each packet, and sends O(n) cipher-
texts to the client MB. Finally, the client MB needs to decryptO(n)
ciphertexts.

5.4 Handling State Tables
We now discuss PNFV solutions in the context of stateful net-

work functions. Recall that a stateful network function maintains a
state table, which among others contains a field (column) labelled
state. We model a state table as comprising of one or more packet
field headers followed by a state field and an action tag.

The private state table solution is built from the PEKS based
PNFV scheme discussed above. Note that FHE based solutions are
not applicable to state tables, as the cloud MB should discontinue
processing once a match is found in the state table. If processing
needs to be continued for the packet, and the current state table
only maintains statistics (such as counters), then this can be imple-
mented in the same way as a normal network function. We denote
the state and tag fields by s and t respectively.

Our proposed solution is shown in Figure 5. In case no entry
in the state table is found, the cloud MB continues processing the
static network policies via the underlying PNFV scheme. In Fig-
ure 5, we assume that this is the BGN based PNFV scheme from
Section 5.2.2. If relying on the PEKS-based scheme, the entry MB
needs to send σ(E(x||I)) and σ(E(I)) to the cloud MB instead of
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Network function transformation. Using PEKS, the client MB computes the trapdoors T (y||i) and T (j). UsingE, the client MB creates the encryption
E(z||j). The client MB sends T (y||i), T (j) and E(z||j) to the cloud MB.

Packet processing. This is divided into entry MB and cloud MB.

Entry MB: Upon receiving a packet x:
1. Encrypts x||I using E and shuffles the result as σ(E(x||I)).
2. Encrypts x||I using PEKS and shuffles the result as σ(E(x||I)).
3. Encrypts I using PEKS and shuffles it as σ(E(I)).
4. Deletes the original packet x.

Cloud MB: Upon receiving σ(E(x||I)), σ(E(x||I)) and σ(E(I)):
1. Checks if there exists an l ∈ [n] such that test(E(xl||l), T (y||i)) = 1.

1.1. If yes, finds an l′ ∈ [n] such that test(E(l′), T (j)) = 1 (which should exist).
1.2. Replaces E(xl′ ||l′) with E(z||j) in σ(E(x||I)) and sends it to the client MB.

2. Else, sends σ(E(x||I)) to the client MB.

Packet decryption. The client MB upon receiving σ(E(x||I)), decrypts to obtain σ(x||I) and then reconstructs x according to I .

Figure 4: Scheme based on PEKS, private against the weak adversary.

Client MB: Upon receiving a packet x from the cloud MB decides that a state table entry is to be created.
1. Identifies a subset I′ of I corresponding to packet fields to be placed in the state table.
2. Produces trapdoors T (xI′ ||I′) and shuffles them using σ as T = σ(T (xI′ ||I′)).
3. Creates encryptions of the state and the tag as E(s) and E(t), respectively.
4. Sends T = σ(T (xI′ ||I′)), E(s) and E(t) to the cloud MB.

Cloud MB: Creates a state table entry with T = σ(T (xI′ ||I′)), E(s) and E(t), and sends the id of this entry to the client MB.

Entry MB: Upon receiving a packet x, encrypts x||I using PEKS and shuffles the result as σ(E(x||I)).

Cloud MB: Upon receiving x and σ(E(x||I)), for l′ ∈ |T | checks whether there exists an l ∈ [n] such that test(E(xl||l), T (xl′ ||l′)) = 1.
1. If there is a match for all l′, computes E(x), appends E(id), E(s) and E(t) to it and sends it to the client MB.
2. Otherwise, continues processing the static network functions (using the PNFV scheme).

Client MB: Upon receiving an encrypted packet E(x)
1. Decrypts it to obtain x.
2. Strips the id, state s and tag t, and carries out the action according to t.
3. Update: Sends the tuple (id, E(s′)) to the cloud MB, where s′ is the new state.
4. Deletion: Sends the tuple (id,delete) to the cloud MB.

Figure 5: State table solution private against the weak adversary. The PNFV scheme used in case of a state table miss is based on BGN.

x.
Example. We illustrate the state table solution using a firewall state
table as an example. The client MB identifies the index set

I ′ = {s_ip,d_ip,s_port,d_port,prot}, (6)

which correspond to the source IP address, destination IP address,
source port, destination port and protocol fields, respectively, of
an IPv4 packet. The client MB creates trapdoors for the values of
these fields and randomly shuffles the trapdoors creating the set T .
Let s ∈ {new,est} be the possible states, where the second state
is the abbreviation of “established.” Let t ∈ {allow,drop} be
the possible tags. Suppose the client MB first receives a packet x
whose SYN flag is set. The client MB then sends the set T and
E(s) = E(new) and E(t) = E(allow) to the cloud MB. The
cloud MB creates an entry for this state table. Suppose the identi-
fier of this state table entry is id, which is sent to the client MB.
The cloud MB subsequently checks each incoming encrypted and
shuffled packet x (done by the entry MB) to see if it matches this
state table entry. If it does, it simply appends E(id), E(new) and
E(allow) as the state and tag respectively, to the encrypted packet
E(x) and sends it to the client MB. The client MB, after decrypt-
ing the packet, checks the state and the ACK flag in x. If the ACK
flag is set, the client MB sets s← est and sends (id, E(est)) to
the cloud MB. Since the tag is set to allow, it forwards the packet
to its intended destination within the internal network. After the

current TCP connection is over (through FIN-ACK exchange), the
client MB sends the pair (id,delete) to the cloud MB, which in
turn deletes the corresponding entry.

Privacy. The privacy argument of the proposed state table solution
is similar to the one for the PEKS based PNFV scheme, and hence
we omit it here. However, two important differences are that (i) the
adversary Aweak knows the number of fields being checked (due to
|I ′|), and (ii) learns whether or not the current packet matches a
state table entry.

6. PROOF-OF-CONCEPT IMPLEMENTATION
AND PERFORMANCE EVALUATION

In the following, we provide a proof-of-concept of the feasibility
of our PNFV schemes.

6.1 Implementing PNFV
We assume that private network function processing operates at

the network layer in the OSI model, i.e., it processes IP packets,
although it can be extended to the processing of Ethernet frames
as well (MAC headers). Note that not all packet fields are needed
for private processing of a given network function, e.g., the “header
checksum” field of an IPv4 packet is used for integrity check and
does not have to be encrypted. Thus, we only use a subset I ′ of
the set of indexes I corresponding to different fields of a packet.
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Figure 6: Encapsulation of packet x within packet x′ by the cloud MB.
Fields shaded have identical content.

For instance, if the network function performs firewall actions, we
assume that I ′ is the 5-tuple defined in Eq. 6. The packet encryption
algorithm of the cloud MB, upon receiving the packet x, computes
encryptions of the above fields only. Recall that, in the PEKS based
scheme, the entry MB deletes the original packet x: for this tuple,
this implemented by the entry MB resetting the corresponding field
values to 0 before sending x to the cloud MB.

Whenever a packet x arrives at the cloud MB, after private pro-
cessing, this is transformed into a new packet x′ (as shown in
Figure 6) which is then sent to the client MB. For instance, as-
sume a network function implementing the policy: if xs_ip =
127.0.0.1 then block the packet, otherwise allow it, and assume
we are using the PNFV scheme based on BGN (Section 5.2.2). The
client MB constructs the transformed packet x′ as follows. It first
constructs a new IP header containing its IP address as the source IP
and the IP address of the client MB as the destination IP (similarly
for the ports). The payload of x′ contains the original IP packet
x, as shown in the figure, followed by PNFV related payload. The
PNFV payload specific to the BGN based scheme and the above
mentioned policy is:

PNFV ID state/policy ID xj ||j z||j c
BGN id E(allow||tag) E(deny||tag) E(c)

The first field contains the ID of the PNFV scheme being used
(in this case, the BGN based scheme). The second field reports
the policy ID of the particular policy being processed (in case of
state tables this is the state table entry ID). The next two items are
the two possible actions that are to be applied on packet field j
depending on whether there was a policy match. In our example,
this is E(allow||tag) which is the action when there is no match
and E(deny||tag) is the action when there is a match. Here tag
is an index for the virtual field tag, since IP packets do not have
a tag field. In case of other policies, this could be a real packet
field, for instance the prot (protocol) field. The last item is the
encryption of the result of the matching function, i.e., E(c).

When the client MB receives the packet x′, it first extracts x in
a straightforward manner. The client MB then checks the PNFV
ID to learn which scheme is to be applied (in this case, the BGN
based scheme) and decrypts the last itemE(c). If c = 1, it decrypts
E(deny||tag) and then drops the packets x, whereas, if c 6= 1,
it decrypts E(allow||tag), and forwards the packet x to its in-
tended destination. The policy ID can be used for bookkeeping.

If the original packet x has size |x|, then the size of x′ is given
by

|x′| = |x|+ New IP header + PNFV payload

As an example, consider the smallest sized packet x of 34 bytes (14
bytes for the MAC header, 20 bytes for the IP header and 0 bytes
for the payload). If PNFV ID requires 4 bits and the state/policy

ID requires another 20 bits, and the BGN ciphertexts have a block-
size of 256 bits, then the PNFV payload has 99 bytes, thus yielding
34 + 20 + 99 = 153 bytes for x′. In the case of the PEKS based
scheme, the overhead is actually higher since encryptions corre-
sponding to the 5-tuples and the virtual tag field needs to be added,
thus yielding a tradeoff between packet processing efficiency and
bandwidth/storage overhead.

6.2 Empirical Evaluation
We implemented the PEKS based and BGN based schemes in

C, using the RELIC cryptographic library [1]. As discussed ear-
lier, the PEKS based scheme relies on the Boneh and Franklin
cryptosystem [5], whereas, for the BGN based scheme, we mod-
ified the Freeman’s prime-order version [12] provided by RELIC
in order to fix some bugs in the decryption phase and to imple-
ment lookup tables of pre-computed discrete logarithms in order to
achieve constant-time decryption. For the two schemes, we chose a
Barreto-Naehrig pairing-friendly elliptic curve defined on a 256-bit
prime order group, achieving a 128-bit security level. For pairing
computations, we used the optimal ate pairing implementation pro-
vided by RELIC.

In the following, we present empirical results on PNFV simula-
tions using the generic policy P1, setting the size of each packet
attribute xi to 4 bytes, which is the largest size of an IP header
field in IPv4 packets (corresponding to IP addresses). Simulations
were performed on a machine running Ubuntu Trusty Tahr (Ubuntu
14.04.2 LTS), equipped with a 2.4 GHz CPU i5-520M and 4GB
RAM.
BGN based Scheme. Figures 7(a) and 7(d) report execution times
of packet encryption, processing and decryption of the BGN based
scheme w.r.t., respectively, the number of packet fields (and 10
policies) and the number of policies (and 5 packet fields). Experi-
ments in Figure 7(d) are intended to simulate a typical firewall rule
that uses the 5-tuple given by Eq. 6.

Note that the execution time of all three algorithms is linear in
the number of packet fields (Figure 7(a)). Whereas, as shown in
Figure 7(d), execution times of packet processing and decryption
are linear in the number of policies, but constant for packet encryp-
tion. For a network function with 10 policies, private processing of
5 packet fields takes 62 ms for encryption, 1,027 ms for processing,
and 118 ms for decryption.

Then, Figures 7(c) and 7(f) plot the execution time for the net-
work function transformation algorithm: for the BGN based scheme,
this is linear both as a function of the number of packet fields and
policies, reaching a maximum of 7,669 ms (30 fields and 10 poli-
cies) and 3,831 ms (5 fields and 30 policies). However, note that
these times are acceptable since this does not have to be executed
in real-time but only once, during the setup.
PEKS based Scheme. In Figures 7(b) and 7(e), we report the exe-
cution times of the packet processing and decryption algorithms for
the PEKS based scheme as a function of packet fields and number
of policies. As the entry MB performs packet encryption and some
preliminary packet processing, we divide the corresponding times
between entry MB and cloud MB.

Note from Figure 7(b) that packet processing (both at entry MB
and cloud MB) as well as decryption are linear w.r.t. increasing
number of packet fields, while packet processing at entry MB and
decryption are constant w.r.t. increasing number of policies (Fig-
ure 7(e)). For a network function with 10 policies, private process-
ing of 5 packet fields takes 77 ms at the entry MB, 157 ms at the
cloud MB and 16 ms for decryption.

Finally, Figures 7(c) and 7(f) show that the network function
transformation algorithm for this scheme is linear both in the num-
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Figure 7: Execution times of different algorithms of the BGN and PEKS based schemes as functions of packet fields and number of policies.

ber of packet fields and policies, reaching a maximum of 341 ms
and 184 ms, respectively.
Comparison of the two schemes. Figures 7(c) and 7(f) show the
aggregate times of the two schemes (by adding up the times of
packet encryption, processing and decryption) against increasing
number of fields (with 10 policies) and increasing number of poli-
cies (with 5 packet fields used for private processing). The PEKS
based scheme clearly outperforms the BGN based scheme. For in-
stance, for a network function with 10 policies, private processing
of 5 packet fields takes 250 ms in the PEKS based scheme and
1,208 ms in the BGN based scheme.
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Figure 8: Aggregate execution times (packet encryption, processing and
decryption) for the two schemes.

Translated into packets per second (pps), the above two numbers
translate to a modest 4 pps and 0.82 pps, respectively. However,
we remark that our implementation merely stands as a proof-of-
concept, and as such we did not go for further implementation effi-
ciency by using a more powerful machine or multi-threading in C.
For instance, the time taken by the entry MB, the cloud MB and the
client MB for a packet with a single encrypted field and a network
function with a single policy was 13.32 ms, 5.41 ms and 2.69 ms,
respectively, giving a total of 21.42 ms. Using multi-threading we
can process a larger number of packet fields (in the case of the en-
try and client MB) and the policies (in the case of the cloud MB) in

parallel, thus increasing the number of packets processed per sec-
ond. With a modestly more powerful machine that can process say
50 threads concurrently, we can achieve a rate of more than 2,300
pps (using 21.42 ms as the baseline).

Notice also that, even without optimisations such as multi-threading,
our performance is comparable to that of the schemes proposed
by Shi, Zhang and Zhong [28]. The three different modes in [28]
yield 60 ms, 1,000 ms and 3,000 ms for private processing of a 5-
tuple with 10 firewall rules. The Bloom filter based scheme from
Khakpour and Liu [17] does much better, achieving 0.1 ms for a 10
rule firewall.2 However, as described in Section 2, both these works
are narrower in scope and their security, at best, is questionable.

7. CONCLUSION
This paper addressed the problem of private processing of out-

sourced network functions, where network function policies need
to be kept private from the cloud, other tenants and third parties. We
presented a cryptographic treatment of the problem, introducing se-
curity definitions as well as an abstract model of generic network
functions, and proposed a few instantiations using homomorphic
encryption and public-key encryption with keyword search. The
performance of our proposed solutions is reasonable considering
that we rely on public key operations and provide provable security
in the presence of an honest-but-curious cloud, while guaranteeing
that third party users sending/receiving traffic are oblivious to net-
work function outsourcing. In future work, we plan to investigate
mechanisms to further speed up computation, e.g., assuming that
part of the cloud runs on a trusted computing base. We are also
working on integrating our solutions for private NFV to existing
NFV frameworks such as OPNFV3 and ClickOS [20].

2These approximate numbers are deduced from ACL index 16 from Fig-
ure 8 in [17].

3https://www.opnfv.org/.
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APPENDIX
A. SECURITY REDUCTIONS

The following reductionist arguments will use policy P1 as the
base. It is straightforward to extend the arguments to policy P2.

CLAIM 1. If the FHE scheme (E,D) is semantically secure
(indistinguishable under chosen plaintext attack), then the PNFV
scheme based on it is private against Astrong.

ARGUMENT. We assume an FHE oracle which when given a
plaintext x returns the encryption E(x), and when given two ci-
phertexts E(x) and E(y) returns E(x + y). We use Astrong as a
subroutine to an adversary B that tries to subvert the FHE scheme.
B announces m0 = z0 and m1 = z1 as its chosen plaintexts. B is
given E(mb) such that b = 0 with probability 1

2
, and is asked to

guess b.
B begins by choosing a y 6= m0,m1 and requesting the encryp-

tions of E(e1), E(e2) and E(y) from the FHE oracle.4 B gives
E(e1), E(e2), E(y) and E(mb) toAstrong as the description of the
transformed network function φ. Note that this is essentially the
policy

if x1 == y then x2 ← mb.

During the test state, whenever Astrong asks for the result (encryp-
tions from packet processing) of a packet x under PNFV, B does
4To be precise, asking the oracle for the encryption of an n-element vector
actually means asking the oracle for n encryptions, once per element. For
succinctness, we omit this detail.
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as follows. If x1 = y, B asks the FHE oracle for the encryp-
tions of x1, x3, . . . , xn. It further requests the oracle for the en-
cryption of 0, and upon receiving E(0), asks for the encryption of
E(mb) + E(0) = E(mb)

′. B constructs the vector

E(x′) =
(
E(x1) E(mb)

′ E(x3) · · · E(xn)
)
.

Otherwise if x1 6= y, B asks for the encryption of x2 from the FHE
oracle andE(mb)

′ is replaced withE(x2) in the above vector. This
vector is then given to Astrong. When Astrong submits its guess for
ψ as the tuple (y′, z′) (as a match-action pair), B does as follows.
If y′ = y and z′ = z0, then B outputs b = 0 as its guess, i.e., B
guesses that E(mb) is the encryption of m0 = z0. Otherwise, if
y′ = y and z′ = z1, then B outputs b = 1, i.e., B guesses that
E(mb) is the encryption of m1 = z1. To see that this strategy
works, notice that if mb = m0 = z0, the above policy is

if x1 == y then x2 ← z0,

and if mb = m1 = z1, the above policy is

if x1 == y then x2 ← z1,

as required.

CLAIM 2. If the BGN cryptosystem (E,D) is semantically se-
cure (indistinguishable under chosen plaintext attack), then the PNFV
scheme based on the BGN scheme is private against Astrong.

ARGUMENT. The proof is similar to above with minor differ-
ences, which we highlight here. For network function transforma-
tion, B asks the BGN oracle the encryption of n − 1 zeros and
constructs the vector

E(mbe2) =
(
E(0)′ E(mb) E(0)′′ · · · E(0)(n−1)

)
.

It then asks the oracle for encryptions of E(1), E(e1), E(y) and
E(e2), and sends the tuple

(E(1), E(e1), E(y), E(e2), E(mbe2))

to Astrong as the description of the transformed network function.
During the guess state of Astrong, whenever a packet x is presented
to B, it asks the BGN oracle for the encryption of 1 − x1 + y
and labels the resulting encryption as E(m(x)) (note that if x1 =
y then the matching function is simply the encryption of 1). For
the action function, B asks the FHE oracle for the encryptions of
x1, x3, . . . , xn. It further requests the oracle for the encryption of
0, and upon receiving E(0), asks for the encryption of E(mb) +
E(0) = E(mb)

′. B constructs the vector

E(a(x)) =
(
E(x1) E(mb)

′ E(x3) · · · E(xn)
)
.

Finally B asks the BGN oracle for the encryption of E(x). It sends
E(x), E(m(x)) and E(a(x)) to Astrong.

CLAIM 3. If the probabilistic encryption scheme E is semanti-
cally secure, the PEKS scheme is semantically secure against the
chosen keyword (plaintext) attack, its trapdoor function T is not in-
vertible, and the pseudorandom permutation σ is indistinguishable
from a random permutation, then the PNFV scheme described in
Section 5.3 is private against Aweak.

ARGUMENT. We define the following statements:

– D: the PNFV scheme described in Section 5.3 is private against
Aweak.

– A1: the probabilistic encryption scheme E is semantically
secure.

– A2: the PEKS scheme is semantically secure against the cho-
sen keyword (plaintext) attack and the trapdoor function T is
not invertible.

– A3: the pseudorandom permutation σ is indistinguishable from
a random permutation.

We further refine D as follows:

– D1: Aweak does not know the tuple (j, z).

– D2: Aweak does not know the tuple (i, j, y).

– D3: Aweak does not know the tuple (i, j).

Then it follows that:

D ⇔ D1 ∧D2 ∧D3.

That is, the PNFV scheme is not private if Aweak knows any of the
aforementioned tuples. The claim states that

A1 ∧A2 ∧A3 ⇒ D

or equivalently

¬D ⇒ ¬A1 ∨ ¬A2 ∨ ¬A3. (7)

In the following, in a series of “games” we show that for i, j, k ∈
{1, 2, 3} and i 6= j 6= k,

¬Di ∧Aj ∧Ak ⇒ ¬Ai.

The conjunction of the above propositions is equivalent to proposi-
tion 7, since∧

i

(¬Di ∧Aj ∧Ak ⇒ ¬Ai)

⇔
∧
i

(Di ∨ ¬Aj ∨ ¬Ak ∨ ¬Ai)

⇔
∧
i

(Di ∨ ¬A1 ∨ ¬A2 ∨ ¬A3)

⇔ (D1 ∧D2 ∧D3) ∨ (¬A1 ∨ ¬A2 ∨ ¬A3)

⇔ D ∨ (¬A1 ∨ ¬A2 ∨ ¬A3)

⇔ ¬D ⇒ ¬A1 ∨ ¬A2 ∨ ¬A3,

where we have implicitly used the tautology P ⇒ Q ⇔ ¬P ∨
Q. For notational convenience, we shall use σ(x) to denote the
permuted vector after the application of the permutation σ. On
the other hand, σ(x) shall denote the permutation of single ele-
ment x ∈ x under σ. We shall denote by I the vector of indexes
{1, 2, . . . , n}. The notation x||I denotes the vector whose lth ele-
ment is xl||l.

Game 1. Suppose A2 and A3 hold. Then if Aweak learns the tu-
ple (j, z) in the PNFV scheme, then the probabilistic encryption
scheme E is not semantically secure, i.e., ¬D1 ⇒ ¬A1.

We construct an adversary B that uses Aweak as a subroutine. B
issues the challenger with z0||2 and z1||2 as the two plaintexts it
wants to be challenged on. Let m0 = z0||2 and m1 = z1||2. The
challenger returns E(mb) to B such that b = 0 with probability 1

2
.

B samples two uniform random bit strings with length equal to the
range of the trapdoor function T , and labels these values T (y||1)
and T (2). Note that these are not actual trapdoors, but random val-
ues (dummy trapdoors) simulating the behaviour of a non-invertible
trapdoor. B gives E(mb), T (y||1) and T (2) to Aweak. Whenever
Aweak asks for new packet encryptions, B samples a packet x from
the public distribution D. If x1 = y for a predetermined and fixed
value of y, B asks the E oracle for n− 1 encryptions of xl||l such
that l 6= 1, and an encryption of 0 followed by the encryption of
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E(mb)
′ = E(0) + E(mb), and constructs E(x||I), such that

E(x1||1) = E(mb)
′. B then randomly generates a permutation

σ and permutes E(x||I) obtaining σ(E(x||I)). Note that this per-
mutation σ is generated by B itself. B also generates 2n random bit
strings of size equal to the range of E . n of these values are used to
simulate σ(E(x||I)), and the other n to simulate σ(E(I)). B gives
these permuted encryptions to Aweak. To simulate the test routine,
if x1 = y, B gives σ(1) and σ(2) to Aweak, i.e., the permuted in-
dexes corresponding to the match and action. B further replaces
σ(E(x2||2)) with σ(E(mb)) in σ(E(x||I)), and gives the resul-
tant σ(E(x||I)) to Aweak. Otherwise it simply gives σ(E(x||I))
to Aweak (without replacing σ(E(x2||2))). When Aweak outputs
(j′, z′) as its guess for the policy, B outputs 0 if z′ = z0; otherwise
if z′ = z1, B outputs 1.

Game 2. Suppose A1 and A3 hold. Then if Aweak learns the tuple
(i, j, y) in the PNFV scheme, then the PEKS scheme is not seman-
tically secure against the chosen keyword (plaintext) attack or the
trapdoor function T is invertible, i.e., ¬D2 ⇒ ¬A2.

We show this in two sub-games.

Game 2.1. Suppose T is not invertible, then ifAweak learns the tuple
(y, i, j) in the PNFV scheme, the PEKS scheme is not semantically
secure against the chosen keyword (plaintext) attack.

We consider an adversary B who chooses m0 and m1 as two
chosen keywords (plaintexts) and is given E(mb) such that b = 0
with probability 1

2
. B has to guess b. It can ask the challenger

for further encryptions of any plaintext. B is also given access to
two instances of test oracle; one, labelled test0, instantiated with
the trapdoor T (mb) and the other, labelled test1, with the trapdoor
T (j), where j is chosen by B. Note that B is not given the trapdoor
values themselves. We assume an oracle P which when invoked,
generates a random x according to the distribution D, and outputs
σ(E(x||I)), σ(E(x||I)) and σ(E(I)), where σ(E(x||I)) is a vec-
tor of n random bit strings each of length equal to the range of
E and σ is a (truly) random permutation. More specifically, P is
also given oracle access to E . Our adversary B again uses Aweak

for the rescue. It chooses m0 = y0||1 and m1 = y1||1 as its two
chosen plaintexts. Upon receiving E(mb), it generates two random
bit strings of length equal to the range of T . One of these simu-
lates T (mb) and the other T (j) = T (2). B initializes the test1
oracle with j = 2. B also samples a bit string uniformly at ran-
dom to simulate E(z||j) (with length equal to the range of E). It
gives these simulations of T (mb), T (3) and E(z||j) to Aweak. In
the testing phase, B queries the P oracle and obtains σ(E(x)||I),

σ(E(x||I)) and σ(E(I)) as a result, and duly sends them to Aweak.
It also runs the test0 oracle to determine if there is a match, and if
yes replaces the value in σ(E(x||I)) corresponding to the output
of the oracle test1 with E(z||j). WhenAweak outputs (i′, j′, y′), B
outputs b = 0 if y′ = y0. Else if y′ = y1, B outputs b = 1.

Game 2.2. Suppose the PEKS scheme is semantically secure against
the chosen keyword (plaintext) attack, then ifAweak learns the tuple
(i, j, y) in the PNFV scheme, the trapdoor function T is invertible.

This is similar to above. This time, instead of E(mb), B is given
T (mb). Note that if T is invertible, then finding b is straightfor-
ward. B chooses m0 = y0||1 and m1 = y1||1 as before, and
further asks for the trapdoor of 2 and gets T (2) as a result (where
j = 2 is the instantiation of j). B can ask for any further trapdoors
pertaining to the condition that the keyword should not equal m0

or m1. We now also have an oracle E which upon asked for the
encryption of some plaintext x returns a uniform random value in
the range of E . The oracle keeps the record of the value of E(x)
against x in a table. This oracle can also be accessed by the P ora-
cle and the test oracle (we have only one test oracle this time). At
the end, B checks the output of Aweak obtained as (i′, j′, y′), and
returns the bit b as before.

Game 3. Suppose A1 and A2 hold. Then if Aweak learns the tuple
(i, j) in the PNFV scheme, then the pseudorandom permutation σ
is distinguishable from a random permutation, i.e., ¬D3 ⇒ ¬A3.

We assume the following challenge game between B and σ. B
can invoke σ as many times as it wants by making a call with
the query ‘next’. Each such call will be called an iteration of
σ. Note that before the first call, it is presumed that σ is in the
identity configuration, i.e., (1, 2, . . . , n). B can choose an integer
u ∈ {1, 2, . . . , n} and give it to the challenger. The challenger
chooses another integer m ∈ {1, 2, . . . , n} such that m 6= u,
which B has to guess. For each oracle call to σ, B can ask for
the permutation of the fixed integer u as well as σ(m) (i.e., the
permuted value of the unknown integer m). B has to determine
m. Note that if σ is indistinguishable from a random permuta-
tion then the guess of B should be no better than 1

n−1
. Suppose

B chooses u = 1. B gives random values to the adversary Aweak

to substitute T (y||i), T (j), E(z||j), σ(E(x||I)), σ(E(x||I)) and
σ(E(I)), where the packet x is generated by B according to the
public distribution D. Whenever x1 = y, B invokes σ, and asks
for σ(1) and σ(m). B then replaces σ(E(xm||m)) with E(z||j).
Whenever Aweak outputs (i′, j′), B outputs m = j′.
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