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Abstract

In this paper, we consider the following question: Does composing protocols having game-
theoretic security result in a secure protocol in the sense of game-theoretic security? In order
to discuss the composability of game-theoretic properties, we study security of cryptographic
protocols in terms of the universal composability (UC) and game theory simultaneously. The
contribution of this paper is the following: (i) We propose a compiler of two-party protocols in the
local universal composability (LUC) framework such that it transforms any two-party protocol
secure against semi-honest adversaries into a protocol secure against malicious adversaries in
the LUC framework; (ii) We consider the application of our compiler to oblivious transfer (OT)
protocols, by which we obtain a construction of OT meeting both UC security and game-theoretic-
security.

Keywords: game-theoretic security, universal composability, local universal composability, oblivi-
ous transfer.

1 Introduction

1.1 Background

In recent years, game-theoretic security of cryptographic protocols has been studied. Generally,
cryptographic security is defined so as to guarantee some basic concrete properties when participants
follow the designed algorithms, even if facing an adversarial behavior. In contrast, game-theoretic
security is defined such that, by considering behaviors of rational participants in a protocol whose
goal is to achieve their best satisfactions, following the specifications of the protocol honestly is the
most reasonable for the rational participants. This security notion enables us to design protocols
more realistically. In this way, these concepts capture situations from different perspectives and it
seems that there is great difference between the cryptographic security and game-theoretic security.
Up to date, there are several works aiming at bridging the gaps between the two kinds of security [9,
17, 18, 19, 13]. Recently, Asharov et al. [4] studied two-party protocols in the fail-stop model in terms
of game-theoretic security and showed how the notion of game theory can capture cryptographic
properties. Furthermore, the game-theoretic security for oblivious transfer [14] and bit commitment
[15] has been studied in the malicious model.

In addition to cryptographic security and game-theoretic security, composable security has also
been studied in order to guarantee security of protocols even if they are composed with other ones.

∗This is a full version of the paper which appears in IMACC 2015.
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The previous frameworks of this line of research are based on the ideal-world/real-world paradigm,
and the paradigm underlies universal composability (UC) by Canetti [6] and reactive simulatability
by Backes, Pfitzmann and Waidner [5]. In addition, a simple paradigm for composable security
was given by Maurer [21], and this approach is called constructive cryptography. In this paper, we
utilize the UC framework [6] to consider composable security of cryptographic protocols, since this
approach has been utilized in discussing composability of protocols in many papers.

In this paper, we consider the following question: Does composing protocols having game-
theoretic security result in a secure protocol in the sense of game-theoretic security? In order to
discuss the composability of game-theoretic properties, we need to consider protocols having both
universally composable (UC) and game-theoretic security. Although the UC framework achieves
guarantee of composability of protocols, the framework models the attacker as a centralized entity
so that it can capture only the situation that the attacker is like a dictator and corrupted parties are
all cooperative. For this reason, some other formalisms have been proposed in [20, 3, 1, 16, 22, 2, 8].
In these formalizations, the centralized adversary is shattered to plural adversaries and each of them
is limited to obtain only local information. This modeling seems to be more realistic than existing
ones and can capture many settings that are not captured by centralized adversary approach. In
particular, we focus on the local universal composability (LUC) framework in [8] in this paper, and
we try to answer the question mentioned above.

1.2 Our Approach

In this paper, we study security of cryptographic protocols in terms of composability and game
theory simultaneously. In particular, we consider realizing a compiling mechanism which transforms
a protocol that is not game-theoretically secure into a protocol that achieves the composable and
game-theoretic security. Although the UC framework is a powerful theory to consider composability
of protocols, it cannot cover game-theoretic security since the UC framework considers a centralized
adversary and cannot deal with protocols as games among plural rational participants. However, if
we switch the framework to the local universal composability (LUC) framework [8], we can analyze
protocols in terms of game-theoretic security by clarifying which strategy is in Nash equilibrium.

Besides the LUC framework, there is also a well-established framework with a composition
theorem and an application to game theory, called collusion-preserving (CP) framework [2]. The
reason for our choice of the LUC framework over the CP framework is that, the compiler of two-
party protocols which we focus on in this paper was originally proposed on the basis of the UC
framework [7]. On that point, choosing the LUC framework whose modeling is a direct extension
of the UC framework enables us to discuss the whole aspect of the compiler simply and similarly to
the case of UC.

Furthermore, we refer to a connection between the LUC framework and game-theoretic secu-
rity. At first sight, one may think that these two notions are not well connected, since there is a
difference in the requirement for security definitions: game-theoretic security requires that all par-
ticipants can get the highest utility when each of them acts honestly, while LUC security requires
the indistinguishability between the real-world and the ideal-world. However, there is an important
point common to these two notions, namely, all participants are allowed to behave in a malicious
(or rational) way. Considering this point, if we define an ideal functionality in the LUC framework
accurately so that it captures the correct actions which each participant should essentially take,
LUC security will satisfy the desirable property that following the protocol specifications honestly
is the most reasonable for rational participants. However, in general, defining an ideal functionality
in such a reasonable way may be a hard work, if we target complicated protocols where partici-
pants communicate intricately. If we can do it in such a way, we can say that LUC security implies
game-theoretic security. As an illustration, in this paper we target oblivious transfer (OT), since its
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functionality is traditional and relatively simple. Specifically, we explicitly formalize the function-
ality of OT in the LUC framework in a way mentioned above, and our resulting OT protocol will
be proven to be secure even in terms of game-theoretic security.

1.3 Our Results

(i) A compiler for both UC security and game-theoretic security. First, we propose a
compiler of two-party protocols in the LUC framework such that it transforms any two-party protocol
secure against semi-honest adversaries into a protocol secure against malicious adversaries in the
LUC framework. Our compiler is constructed based on the compiler of [7] in the UC framework.
In other words, we try to adapt the compiler of [7] to the LUC framework. For doing it, we define
a commit-and-prove functionality, denoted by F̂CP , which is a slight modification of the commit-
and-prove functionality FCP in the UC framework. And, we show that the compiled protocol is
secure against malicious adversaries in the F̂CP -hybrid model in the LUC framework (in Theorem
2 in Section 3.2).
(ii) Application of the compiler to oblivious transfer. Second, we consider the application
of our compiler to oblivious transfer (OT) protocols. Since, OT is an important primitive for secure
multi-party computation, it is worth exploring a practical construction. In particular, we consider
the construction of the OT protocol, denoted by SOT, in [7, 11, 12] which UC-realizes the OT
functionality in static and semi-honest adversarial model. For the protocol SOT, we show that:

(1) SOT LUC-realizes F̂OT in the presence of semi-honest and static adversaries, where F̂OT is
the OT functionality in the LUC framework (in Theorem 3 in Section 4.2);

(2) SOT is not game-theoretically secure in the presence of rational parties (in Theorem 4 in
Section 4.3); and

(3) The compiled protocol of SOT by our compiler is game-theoretically secure in the presence of
rational parties (in Theorem 4 in Section 4.3).

Since the functionality of OT is relatively simple, we will be able to define it in the LUC framework
so that (3) follows from (i) and (1). However, we directly prove (3) in terms of the game theory
in order to confirm that the compiled protocol of SOT actually meets game-theoretic security, and
the analysis of the compiled protocol from the viewpoint of the game theory enables us to see how
Nash equilibrium is achieved in it.

2 Preliminaries

2.1 Framework of Universally Composable Security

In this section, we provide an overview of the universal composability framework (UC framework
for short) in [6]. This framework allows us to define the security properties of given tasks, as
follows. First, the process of executing a protocol with a realistic adversary is formalized. Next, an
ideal process is formalized. In this process, the parties hand their inputs to a trusted party that
is programmed to capture the appropriate functionality and obtain their outputs from it with no
interaction. A protocol is said to securely realize an ideal functionality if the process of executing
the protocol amounts to emulating the ideal process. The models for protocol execution and ideal
process are as follows.
Protocol execution. The model of protocol execution includes the parties running the given
protocol π and an adversary A, and an environment Z. The actions of all parties may depend on
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a security parameter k ∈ N and are polynomial in k. In each activation, only a single participant
whose tape is written is activated and the activations are sequential.

First, Z is activated with a message z ∈ {0, 1}∗ on its input tape. In each activation, it may
write information on the input tape of one of the parties or of the adversary and may read the
output tapes of all parties. In addition, it may invoke a new party that runs the protocol. When the
adversary is activated, it may read its own tapes or the outgoing communication tapes of all parties.
Furthermore, it may either deliver a message to some party or send information to Z, or corrupt a
party. When a party is activated, it follows its code and may write an output on its output tape or
a message on its outgoing communication tape. Once the environment halts, the protocol execution
ends. Let REALπ,A,Z(k, z) be the random variable taking output of Z when interacting with an
adversary A and parties P1, . . . , Pn running protocol π on a security parameter k and an input z.
Let REALπ,A,Z be the ensemble {REALπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .
Ideal process. The model of ideal process includes a simulator S and an environment Z, an ideal
functionality F and dummy parties. As in the protocol execution, the ideal process consists of a
sequence of activations. Specifically, the activation of the environment is performed in the same way
as described above.

When the simulator S is activated, it may read its own input tape and the messages sent from
F , and may send a message to F . In addition, it may corrupt a party. When the ideal functionality
F is activated, it reads its incoming communication tape and may send messages to the simulator
S. Eventually, it provides parties with an output. When a dummy party is activated with an input,
it sends its input to the ideal functionality F , and then receives an output. Finally, it outputs the
received value automatically as its own output. As in the protocol execution, the ideal process ends
when the environment halts. Let IDEALF ,S,Z(k, z) be the random variable taking the output of Z
when interacting in the ideal process with the simulator S and the ideal functionality F on a security
parameter k and an input z. Let IDEALF ,S,Z be the ensemble {IDEALF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Definition 1. Two binary distribution ensembles X and Y are computationally indistinguishable
(written as X

c≈ Y ), if for any c ∈ N there exists k0 ∈ N such that for all k > k0 and for all a we
have |Pr(X(k, a) = 1) − Pr(Y (k, a) = 1)| < k−c.

Definition 2. Let n ∈ N. Let F be an ideal functionality and let π be an n-party protocol. We say
that π UC-realizes F , if for any adversary A there exists an ideal-process simulator S such that for
any environment Z, IDEALF ,S,Z

c
≈ REALπ,A,Z

The hybrid model and the composition theorem. The hybrid model is identical to the model
of protocol execution except the following difference: The parties running the protocol come to have
an access to multiple copies of an ideal functionality F (the F-hybrid model) and the communication
between the parties and each one of the copies of F is done in the same way as in the ideal process.
Let EXECF

π,A,Z(k, z) be the random variable taking the output of Z when interacting in the F-hybrid
model with an adversary A and parties P1, . . . , Pn running protocol π on a security parameter k
and an input z. EXECF

π,A,Z denotes the ensemble as well.
In general, the composition theorem says that, if p is a protocol which UC-realizes an ideal

functionality F in the G-hybrid model for an ideal functionality G, the composed protocol πp running
in the G-hybrid model emulates the protocol π in the F-hybrid model.

Theorem 1 (Composition Theorem [6]). Let F ,G, I be ideal functionalities. Let π be an n-party
protocol in the F-hybrid model, and let p be an n-party protocol that UC-realizes F in the G-hybrid
model. Then for any adversary A in the G-hybrid model there exists an simulator S in the F-hybrid
model such that for any environment Z, EXECG

πp ,A,Z
c≈ EXECF

π,S,Z .
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The model of adversaries. In general, a protocol is designed by considering a model of adversaries,
which depends on to what extent the designer wants to achieve security against the adversaries. We
outline the model of corruptions and adversarial behaviors as follows.

1. The model of corruptions.

(a) Static corruption model. The set of parties who are to be corrupted by an adversary
is fixed at the beginning of the computation and no more corruptions will be happen
after that.

(b) Adaptive corruption model. In contrast to the static corruption model, an adversary
is allowed to corrupt parties at any time throughout the computation.

2. The model of adversarial behaviors.

(a) Semi-honest adversarial model. Even if parties are corrupted, they follow the speci-
fication of the protocol. Therefore, the adversary is restricted only to get read access to
the states of corrupted parties.

(b) Malicious adversarial model. Once the adversary corrupts parties, they follow all the
instruction of the adversary. In particular, the adversary can make the corrupted parties
deviate from the specification of the protocol.

2.2 Framework of Local Universally Composable Security

The notion of the local universal composability (LUC for short) was proposed by Canetti and Vald
[8]. Roughly speaking, instead of setting a single adversary as in the UC framework, there can be
plural local adversaries who can corrupt only a single party according to their party IDs. In the
ideal process, the simulator is also shattered to plural local simulators, therefore, the simulation is
done by relying only on each entity’s local information. We describe the LUC model of protocol
execution as follows, and aside from some modifications, the underlying computational model is
identical to the UC model.
Protocol execution in the LUC framework. At first, a set P of party IDs and session ID,
denoted by pid and sid respectively, are chosen by the environment. This is different from the UC
model where the party IDs can be chosen arbitrarily during protocol execution. Next, the adversaries
are invoked with identity id = ((i, j),⊥) and denoted by A(i,j) for ordered pairs (i, j) ∈ P2. The
purpose of this modeling is to capture locality properly. Each local adversary comes to take charge
of a different side of the communication line, and can interfere with the parties’ communication only
via this line. This means that the centralized adversary no longer exists and many situations, in
real-life, where an adversary can only rely on restricted information are capturable.

Once an adversary A(i,j) is activated, it can send information to Z or deliver a message to a
party with pid = i where the sender’s pid must be j. The adversary is also allowed to corrupt
parties with pid = i throughout the computation. An important point is that adversaries cannot
communicate each other directly and their communications must be done through the environment
Z (or an ideal functionality if any). This formalization enables us to represent different subsets
of adversaries, if there exists a trusted party (an ideal functionality in the hybrid model) and it
provides a specific communication interface.

Once a party is activated, it basically follows its code and may write an output on its output
tape or send a message to the adversary where the pid of the adversary must be sender’s pid = i and
receiver’s pid = j. As in the UC model, the protocol execution ends when the environment halts. Let
LREALπ,A,Z(k, z) be a random variable taking the output of Z and LREALπ,A,Z be the ensemble
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as in the UC model. The random variable LIDEALF ,S,Z(k, z) and the ensemble LIDEALF ,S,Z in
the ideal process are defined as well.
Delayed output. A delayed output is an output which is scheduled by the adversaries. Let P0, P1

be the party-identities, and A(0,1), A(1,0) denote the appropriate adversaries. A functionality F is
said to send a delayed output m to Pi by sending (Output, Pi, p) first to A(1−i,i), where p denotes
optional parameters and after receiving (Approve, Pi, p), then F sends (Output, Pi, p) to A(i,1−i).
If A(i,1−i) approves of the delivery, F writes m to the subroutine output tape of Pi. A public delayed
output reveals the message to the adversaries, while a private delayed output does not.

Then, we have the following definition in the LUC model as well as that of the UC model.

Definition 3 ([8]). Let n ∈ N. Let F be an ideal functionality and let π be an n-party protocol.
We say that π LUC-realizes F , if for every adversary A there exists an ideal-process simulator S
such that for any environment Z, LIDEALF ,S,Z

c≈ LREALπ,A,Z

In addition, we can have the results about the hybrid model and the composition theorem in the
LUC model which are very similar to those in the UC model (i.e., Theorem 1). For details, see [8].

3 A Compiler in the LUC Framework

In this section, we analyze the protocol-compiler of [7] (i.e., the compiler in the UC model) in the
LUC framework. At the beginning, we describe it, and then we point out that it does not work well
in the LUC framework in general, and show a condition that it works well even in LUC framework.

3.1 Previous Compiler in the UC Framework

In order to transform a protocol into one that is secure against malicious adversaries, it is nec-
essary to enforce malicious corrupted parties to follow the prescribed protocol in a semi-honest
way. Canetti et al. [7] proposed a universally composable compiler based on the work of [12].
The compiler uses the commit-and-prove functionality FCP which is defined so that only correct
statements are received by a receiver and incorrect statements are rejected. In a nutshell, the
committer commits its input value w as a witness and forwards a statement x to the verifier by
using FCP . The statement x is received by the verifier only when R(x,w) holds, where R is a
predetermined relation. In the compiled protocol, there are two copies of the functionality, one
for the case where P1 is the committer and the other one for the case where P2 is the committer,
denoted by F1

CP and F2
CP respectively, and these are identified by session-identifiers sid1 and sid2.

The definition of the ideal functionality FCP and the protocol-compiler Comp() are given as follows.

Functionality FCP

FCP , which is running with a committer C, a receiver V and an adversary S, and is parameterized
by a value k and a relation R, proceeds as follows:

• Commit phase. Upon receiving a message (commit, sid, w) from C where w ∈ {0, 1}k,
append the value w to the list w, and send the message (receipt, sid) to V and S. (Initially, the
list w is empty.)

• Prove phase. Upon receiving a message (CP-prover, sid, x) from C where x ∈ {0, 1}poly(k),
compute R(x,w): If R(x, w) = 1, then send V and S the message (CP-proof, sid, x). Otherwise,
ignore the message.
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Figure 1: The commit-and-prove functionality in the UC model.

Description of Comp(·): A party P1 proceeds as follows (the code for a party P2 is analogous).

1. Random tape generation. When activating Comp(π) for a protocol π for the first time
with a session-identifier sid, the party P1 (and P2) proceeds as follows.

(a) Choosing a random tape for P1.

i. P1 chooses r1
1 ∈R {0, 1}k and sends (commit,sid1,r1

1) to F1
CP . Then, P2 receives a

(receipt, sid1), and P2 chooses r2
1 ∈R {0, 1}k and sends (sid, r2

1) to P1.
ii. When P1 receives a message (sid, r2

1) from P2, it sets r1 := r1
1 ⊕ r2

1 (r1 serves as P1’s
random tape for execution of π).

(b) Choosing a random tape for P2.

i. P1 waits to receive a message (receipt,sid2) from F2
CP (this occurs after P2 sends a

commit message (commit,sid2,r2
2) to F2

CP ). It then chooses r1
2 ∈R {0, 1}k and sends

(sid,r1
2) to P2.

2. Activation due to a new input. When activated with an input (sid, x), the party P1

proceeds as follows.

(a) Input commitment. P1 sends (commit,sid1,x) to F1
CP and adds x to the list of inputs x

(this list is initially empty and contains P1’s inputs from all the previous activations of
π).

(b) Protocol computation. Let m1 be the series of π-messages that P1 received from P2 in all
the activations of π until now (m1 is initially empty). P1 runs the code of π on its input
list x, messages m1, and the random tape r1 (as generated above).

(c) Outgoing message transmission. For any outgoing message m that π instructs P1 to send
to P2, P1 sends (CP-prover,sid1,(m, r2

1, m1)) to F1
CP where the relation Rπ for F1

CP is
defined as follows:

Rπ = {((m, r2
1, m1), (x, r1

1)) | m = π(x, r1
1 ⊕ r2

1, m1)}.

In this step, P1 proves that m is truely the correct message generated by π with the input
list x, the random tape r1 = r1

1 ⊕ r2
1, and the series of incoming π-messages m1.

3. Activation due to incoming message. When activated with an incoming message (CP-
proof, sid2, (m, r1

2, m2)) from F2
CP , P1 first verifies that the following conditions hold (F2

CP

is parameterized by the same relation Rπ as F1
CP ):

(a) r1
2 is the string that P1 sent to P2 in the step of 1-(b)-i above.

(b) m2 equals the series of π-messages received by P2 from P1 in all the activations until now.

If the conditions do not hold, then P1 ignores the message. Otherwise, P1 appends m to its
list of incoming π-messages m1 and proceeds as in the steps 2-(b) and 2-(c).

4. Output. Whenever π generates an output, Comp(π) generates the same output.
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In the UC framework, if a protocol π has UC security against semi-honest adversaries, the
compiled protocol Comp(π)-FCP is proved to be secure against malicious adversaries. The proof
can be shown by the following steps: First, let A be a malicious adversary against the compiled
protocol Comp(π) in the FCP -hybrid model and let A′ be a semi-honest adversary against the plain
protocol π, then A′ runs a simulated copy of A internally and interacts with π. Recall that A′

follows the specification of the protocol π, on the other hand, A is allowed to behave arbitrarily.
However, the malicious adversary A cannot cheat since each message sent throughout the protocol
is verified by FCP so that it has no choice but to behave in a semi-honest manner. For this reason,
the semi-honest adversary A′ can simulate the behavior of A by delivering a message only when A
sends a correct message. In other words, from the view of the environment Z, it is impossible to
distinguish whether it is interacting with Comp(π) and A in the FCP -hybrid model, or with the
plain protocol π and A′. In the circumstances, it is shown that the compiled protocol UC-realizes
the target functionality in the malicious model.

3.2 A Compiler in the LUC framework

To utilize the compiler Comp(·) in the LUC framework, we need to similarly complete the simu-
lation mentioned in the previous subsection even in the LUC framework. However, we cannot do
that without any modification on the existing process. The reason of this impossibility lies in the
difference between the models of UC and LUC. In the UC model, communications between parties
are mediated by the centralized adversary and it directly delivers a message to recipients. In con-
trast, in the LUC model, plural adversaries mediate communications and messages are supposed
to go through the environment in the process. That means the environment Z can tell whether
parties communicate each other through the ideal functionality, since if messages were delivered by
the ideal functionality, they would not go through the environment. Therefore, by focusing on this
point, the simulation will be distinguishable.

Based on the above point, we consider switching the interacting process of an original protocol
π from the one totally controlled by the environment to the one which uses a subroutine so that
the problem does not occur. Specifically, we consider a message transmission functionality, denoted
by F̂MT , below. Note that this functionality can be realized in the LUC framework, though the
functionality is originally considered in the UC framework [6].

Functionality F̂MT

F̂MT , which is running with parties P1, . . . , Pn and adversaries S(i,j), where (i, j) ∈ P2 (i ̸= j)
and P is the set of identities, proceeds as follows:

• Upon receiving a message (Send, sid, m, Pj) from a party Pi, send a public delayed output
(Send, sid, m, Pi) to the party Pj .

• Upon receiving a message (Deliver, m, (l, k)) from an adversary S(i,j), where l, k, i, j ∈ P, send
the message (Delivered, m, (i, j)) to the adversary S(l,k).

Figure 2: The message transmission functionality in the LUC model.

Subsequently, we show an adjusting point in regards to the commit-and-prove functionality
required for constructing the protocol compiler. In the UC model, we can use the ideal functionality
FCP since it has been proved that there exists a protocol which UC-realizes it. However, to use
such a functionality in the LUC model, we first need to show an existence of a protocol which
LUC-realizes it. In this paper, we adopt the notion of the merger functionality in [8]. In short, we
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modify the functionality of [7] (in the UC model) artificially so that the protocol will LUC-realize the
resulting functionality. Unfortunately, this modification allows adversaries to communicate freely
when the modified ideal functionality, denoted by F̂CP , is used as a subroutine of other protocols
(hybrid model). Concerning this point, if we demand collusion-freeness for designing protocols, we
cannot adopt this method. However, such a property is not needed in this work. Generally, in
two-party protocols, if both parties are corrupted by the corresponding adversaries respectively and
they coordinate their actions, the mechanism of protocol compiler seems to be totally unnecessary.
Considering that, we should focus on the case where both adversaries are not cooperative. (The
situation either P1 or P2 is corrupted by the corresponding adversary can be covered by the protocol
compiler in the UC model, however, the situation both parties are corrupted by different adversaries
cannot be covered except if we consider it in the LUC framework.) Therefore, the most important
point is whether the simulation can be completed in this framework. First, we propose an ideal
functionality F̂CP as follows.

Functionality F̂CP

F̂CP , which is running with a committer C, a receiver V and adversaries S(C,V ) and S(V,C), and
being parameterized by a value k and a relation R, proceeds as follows:

• Commit phase. Upon receiving a message (commit, sid,w) from C, where w ∈ {0, 1}k,
append the value w to the list w, and send a public delayed output (receipt, sid) to V . (Initially,
the list w is empty.)

• Prove phase. Upon receiving a message (CP-prover, sid,x) from C where x ∈ {0, 1}poly(k),
compute R(x, w); If R(x,w) = 1, then send a public delayed output (CP-proof, sid,x) to V ;
Otherwise, ignore the message.

• Upon receiving a message (Deliver, m, (j, i)) from the adversary S(i,j), if S(i,j),S(j,i) ∈
{S(C,V ),S(V,C)}, send the message (Delivered, m, (i, j)) to the adversary S(j,i).

Figure 3: The commit-and-prove functionality in the LUC model.

Then, we can show the following results.

Theorem 2. Let π be a two-party protocol and let Comp(π-F̂MT ) be the protocol obtained by applying
the compiler to π in the F̂MT -hybrid model. Then, for every malicious adversary A that interacts
with Comp(π-F̂MT ) in the F̂CP -hybrid model there exists a semi-honest adversary A′ that interacts
with π-F̂MT , such that for every environment Z,

LREALπ-F̂MT,A′,Z ≡ LEXECF̂CP

Comp(π-F̂MT),A,Z
.

Proof. Let A′
(1,2) be an adversary for P1’s side and A′

(2,1) be an adversary for P2’s side. As in the UC
case, A′

(1,2) and A′
(2,1) run a simulated copy of A(1,2) and A(2,1) respectively, and their actions are

utilized as a guide for the interaction with π-F̂MT and Z. We regard the communications of A′
(1,2)

and A′
(2,1) with Z and π-F̂MT as an external communication, and the communications of A′

(1,2) and
A′

(2,1) with the corresponding simulated A′
(1,2) or A′

(2,1) as an internal communication. A′
(1,2) and

A′
(2,1) proceed as follows.

– Simulating the communication with Z. Every input coming from Z is sent to the corre-
sponding simulated adversary A(1,2) or A(2,1) as if coming from their own environment. In the same
way, every output from internal adversaries is treated as an output of corresponding simulator.
– Simulating the random tape generation phase. We consider the following cases below.
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1. Both parties are honest: We describe the simulation for the P1’s random tape generation
(the simulation for P2 is analogous). A′

(1,2) begins by passing the message (receipt, sid1) to

A(1,2) as if coming from F̂1
CP , and after A(1,2) approved, A′

(1,2) delivers this message to A′
(2,1)

using F̂MT . Similarly, A′
(2,1) passes the message (receipt, sid1) to A(2,1) and if it approves,

then chooses a random r2
1 and passes the value to A(2,1) as if coming from P2. Furthermore,

confirming that A(2,1) delivers this value to P1 using F̂MT , A′
(2,1) actually delivers it to A′

(1,2)

using F̂MT . Finally, A′
(1,2) receives an approval from A(1,2).

2. P1 is honest and P2 is corrupted: At first, we consider the generation of P1’s random
tape. The simulation proceeds as in the case 1. A′

(2,1) receives the message (receipt, sid1),

then passes it to A(2,1). If A(2,1) delivers r2
1 to P2 using F̂MT , A′

(2,1) actually delivers it to

A′
(1,2) using F̂MT . The rest of the process is the same as in the case 1. Next, we consider the

generation of P2’s random tape. A′
(2,1) obtains the message (commit, sid2, r2

2) from A(2,1)

which sends it to F̂2
CP on behalf of P2 in execution of Comp(π-F̂MT ). Now, as the direction

of this simulation, we must let the random tape of internal P2 equal the random tape of P2 in
external execution of π-F̂MT so that A(2,1) is forced to use the same randomness throughout
the computation. For that reason, A′

(2,1) delivers the random tape of external P2, denoted by

r2, to A′
(1,2) using F̂MT . Then A′

(1,2) simulates A(1,2)’s behavior as in the case 1, and then
delivers r1

2 = r2 to A′
(2,1). Finally, A′

(2,1) sets r1
2 = r2 ⊕ r2

2 and passes it to A(2,1).

3. P1 is corrupted and P2 is honest: This case can be simulated analogously to the previous
one. That is, the random tape of internal P1 corrupted by A(1,2) becomes to be equal to that
of external P1 corrupted by A′

(1,2).

4. Both parties are corrupted: Similarly, this case can be simulated by applying simultane-
ously the simulators of the cases 2 and 3 above.

– Simulating an activation due to a new input. We describe the simulation from P1’s side
(the simulation for P2 is analogous).

1. P1 is not corrupted: A′
(1,2) learns the fact that external P1 is given a new input when it

receives an approval request from F̂MT . Then, A′
(1,2) passes the message (receipt, sid1) to

A(1,2) as if coming from F̂1
CP and after receiving an approval from A(1,2), A′

(1,2) delivers the

same message to A′
(2,1) using F̂MT . Subsequently, A′

(2,1) proceeds the rest process by checking
whether A′

(2,1) approves or not.

2. P1 is corrupted: A′
(1,2) receives the message (commit, sid1, x) from A(1,2). Then, A′

(1,2)

adds x to its list x and passes (receipt, sid1) to A(1,2), as if coming from F̂1
CP . After receiving

an approval from A(1,2), A′
(1,2) sets the input tape of external P1 being equal to x (Note that

a semi-honest adversary is allowed to modify the input values of corrupted parties, which is
mentioned in [7] and this definition is due to the fact that there is no difference in terms of
security between the case where the semi-honest adversary can modify a corrupted party’s
input value and the case where it cannot). Furthermore, A′

(1,2) delivers (receipt, sid1) to

A′
(2,1) using F̂MT and A′

(2,1) proceeds the rest process as in the case 1.

– Dealing with π-F̂MT messages sent externally by uncorrupted parties. When external P1

who is not corrupted sends a message m to P2 using F̂MT , A′
(1,2) internally passes A(1,2) the message
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(CP-proof, sid1, (m, r2
1, m1)) as A(1,2) expects to receive from F̂1

CP ), where r2
1 is the value used

in the P1’s random tape generation phase, and m1 is the series of all messages P1 received in the
execution of π-F̂MT so far. Similarly, if P2 sends a message m to P1, A′

(2,1) would pass the message
(CP-proof, sid2, (m, r1

2, m2)) to A(2,1). Each simulator delivers a message to the recipients only
when the internal adversary approves of the message delivery.
– Dealing with Comp(π-F̂MT ) messages sent internally by corrupted parties. Consider
the case where P1 is corrupted. When A(1,2) sends the message (CP-prover, sid1, (m, r′21, m′

1))
to F̂1

CP , A′
(1,2) can verify that m′

1 = m1 and r2
1 = r′21, besides, m = π-F̂MT (x, r1

1 ⊕ r2
1, m1), since P1

is corrupted so that A′
(1,2) can obtain all the information needed for these checking. If no error is

found, A′
(1,2) passes (CP-proof, sid1, (m, r′21, m′

1)) to A(1,2) as if coming from F̂1
CP . Then, when

A(1,2) approves of delivering this message, A′
(1,2) delivers m to A′

(2,1) using F̂MT . After that, A′
(2,1)

passes (CP-proof,. . .) message to A(2,1), and regardless of whether P2 is corrupted or not, A′
(2,1)

approves of message delivering only when A(2,1) approves. With this, the simulation is completed
and the simulation for P2 is analogous.

Corollary 1. Let F be a two-party functionality and let π be a non-trivial protocol that LUC-realizes
F in the presence of semi-honest adversaries. Then, Comp(π-F̂MT ) is a non-trivial protocol that
LUC-realizes F in the F̂CP -hybrid model and in the presence of malicious adversaries.

4 Oblivious Transfer with UC and Game-Theoretic Security

4.1 Oblivious Transfer in the UC Framework

The oblivious transfer [10, 23] is a two-party cryptographic functionality implemented by a sender
T who has input x1, x2, . . . , xl and a receiver R who has input i ∈ {1, 2, . . . , l}. When they follow
the given specifications correctly, R receives the message xi such that R cannot obtain any more
information, while T obtains no information about the selection of R. We describe the ideal func-
tionality FOT in [7], and the protocol SOT (1-out-of-l) for the static and semi-honest adversarial
model in [7, 11, 12] as follows.

Functionality FOT

FOT , which is parameterized with an integer l, and running with an sender T , a receiver R and
an adversary S, proceeds as follows:

• Upon receiving a message (sender, sid, x1, . . . , xl) from T , where xi ∈ {0, 1}m, record the tuple
(x1, . . . , xl).

• Upon receiving a message (receiver, sid, i) from R, where i ∈ {1, . . . , l}, send (sid, xi) to R
and (sid) to S, and halt.

Figure 4: Functionality of oblivious transfer in the UC model.
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Protocol SOT

Proceed with a security parameter k as follows.

• Given input (sender, sid, x1, . . . , xl), the party T chooses a trapdoor permutation f over
{0, 1}k, together with its inverse f−1, and sends (sid, f) to the receiver R. (The permutation f
is chosen uniformly from a given family of trapdoor permutations.)

• Given input (receiver, sid, i), and having received (sid, f) from T , the receiver R chooses
y1, . . . , yi−1, r, yi+1, . . . , yl ∈R {0, 1}k, computes yi = f(r), and sends (sid, y1, . . . , yl) to T .

• Having received (sid, y1, . . . , yl) from R, the sender T sends (sid, x1 ⊕ B(f−1(y1)), . . . , xl ⊕
B(f−1(yl))) to R, where B(·) is a hard-core predicate for f .

• Having received (sid, b1, . . . , bl) from T , the receiver R outputs (sid, bi ⊕ B(r)).

Figure 5: A static and semi-honest oblivious transfer protocol.

4.2 Oblivious Transfer in the LUC Framework

For game-theoretic analysis, we consider realizing functionality of oblivious transfer in the LUC
framework. To do so, we first investigate whether some modification will be needed in changing
the framework from UC to LUC as follows: We consider the case that we use the previous ideal
functionality FOT for the protocol simulation in the LUC framework. If sender T is not corrupted, in
the ideal process, the corresponding dummy party T passes its own input value to FOT automatically
at the first step. Then, after receiving the value from T , FOT records it and enters a waiting state.
Following that, the environment Z is activated next and it is supposed to activate the receiver R with
an input value. On the other hand, in the real life protocol execution, the process of the first message
delivery is as follows. At first, the sender T passes its input value to the corresponding adversary,
denoted by A(T,R), and then A(T,R) delivers the value to the opponent adversary, denoted by A(R,T ),
through the environment Z. Finally, the receiver R receives the value from A(R,T ). Therefore, the
environment Z can obviously tell whether it is facing the ideal process or the real life protocol
execution, since there is great difference between the two situations.

For this reason, we need to modify the definition of the previous ideal functionality of OT by
changing the framework so that the difference mentioned above does not arise. We describe the
modified ideal functionality F̂OT as follows.

Functionality F̂OT

F̂OT , which is parameterized with an integer l and running with a sender T , a receiver R and
adversaries S(T,R) and S(R,T ), proceeds as follows:

• Upon receiving a message (sender, sid, x1, . . . , xl) from T , where xi ∈ {0, 1}m, record the
tuple (x1, . . . , xl). If the message from R has already been recorded, then send a private delayed
output (sid, xi) to R, and halt. Otherwise, send a public delayed output (receipt, sid) to R.

• Upon receiving a message (receiver, sid, i) from R, where i ∈ {1, . . . , l}, record the value i. If
the message from T has already been recorded, then send a private delayed output (sid, xi) to
R, and halt. Otherwise, send a public delayed output (receipt, sid) to T .

• Upon receiving a message (Deliver, m, (j, i)) from the adversary S(i,j), if S(i,j),S(j,i) ∈
{S(T,R),S(R,T )}, send the message (Delivered, m, (i, j)) to the adversary S(j,i).

Figure 6: Functionality of oblivious transfer in the LUC model.
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Then, we show that the protocol SOT meets the following security.

Theorem 3. Suppose that f in the protocol SOT is an enhanced trapdoor permutation1. Then,
SOT LUC-realizes F̂OT in the presence of semi-honest and static adversaries.

Proof. As in the UC case, S(T,R) and S(R,T ) run a simulated copy of A(T,R) and A(R,T ) respectively,
and their actions are utilized as a guide for the interaction with F̂OT and Z. S(T,R) and S(R,T )

proceed as follows.
– Simulating the communication with Z. Every input coming from Z is sent to the corre-
sponding simulated adversary A(T,R) or A(R,T ) as if coming from their own environment. In the
same way, every output from internal adversaries is treated as an output of corresponding simulator.
– Simulating the case where no party is corrupted. At first, the simulator S(T,R) is activated
by receiving the message (receipt, sid) from F̂OT (S(T,R) is demanded for approving of the message
delivery). Then, S(T,R) randomly chooses a trapdoor permutation f over {0, 1}k with its inverse
f−1 and passes (sid, f) to the simulated adversary A(T,R). When A(T,R) delivers the message to the
environment Z, S(T,R) actually delivers it to the opponent simulator S(R,T ) through Z. Following
that, S(R,T ) activates S(T,R) by using F̂OT , and S(T,R) approves of F̂OT ’s message delivery at this
timing. Then, S(R,T ) is activated again with a request for an approval from F̂OT . S(R,T ) approves
after confirming that A(R,T ) delivers (sid, f) to R. Next, the dummy party R receives (receiver,
sid, i) from Z as an input and sends it to F̂OT . Then, S(T,R) is activated with a request for an
approval from F̂OT . At this timing, S(T,R) approves of F̂OT ’s message delivery. After that, S(R,T )

is activated with a request for an approval similar to the process of S(T,R). Then, S(R,T ) chooses
y1, . . . , yl ∈ {0, 1}k and passes these values to A(R,T ). After confirming that A(R,T ) delivers the
message (sid, y1, . . . , yl) to Z, S(R,T ) actually delivers it to S(T,R) through Z. Similarly, S(T,R)

simulates A(T,R) delivering the message to T internally. Following that, S(T,R) chooses b1, . . . , bl

uniformly, and passes the message (sid, b1, . . . , bl) to A(T,R). If A(T,R) delivers the message correctly,
then S(T,R) actually delivers it to S(R,T ) through Z. Finally, S(R,T ) concludes the simulation by
confirming that A(R,T ) delivers the message to R and approving of F̂OT ’s message delivery.
– Simulating the case where only the sender T is corrupted. S(T,R) begins by sending
the message (sender, sid, x1, . . . , xl) to F̂OT and receives a request for an approval of message
delivery. Before approving, S(T,R) activates A(T,R) with an input value and receives (sid, f) that
A(T,R) is supposed to deliver R in a real life protocol execution. Furthermore, S(T,R) delivers the
message to S(R,T ) through Z as in the above case, and once activated next, it approves the message
delivery of F̂OT . The following process is analogous to the above case. Next, after R sends its input
to F̂OT , S(T,R) is activated with a request for approving of F̂OT ’s message delivery. At the time
when S(T,R) receives (sid, y1, . . . , yl), it passes the message to A(T,R). Subsequently, after receiving
(sid, b1, . . . , bl) from A(T,R), S(T,R) delivers it to S(R,T ) through Z. Finally, S(R,T ) concludes the
simulation in the same way as in the above case.
– Simulating the case where only the receiver R is corrupted. The simulation proceeds
similar to the case where no party is corrupted until S(R,T ), controlling R, is activated with an
input (receiver, sid, i). Following that, S(R,T ) passes it to A(R,T ) and receives (sid, y1, . . . , yl).
Furthermore, S(R,T ) delivers the message to S(T,R) through Z. After receiving that message, S(T,R)

delivers (sid, b1, . . . , bl) to S(R,T ) through Z, and S(R,T ) obtains f−1 by using F̂OT . Then, S(R,T )

1The enhanced trapdoor permutation has the property that a random element generated by the domain sampler
is hard to invert, even given the random coins used by the sampler. Note that any trapdoor permutation over {0, 1}k

is clearly enhanced, since this domain can be easily and directly sampled.
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sends (receiver, sid, i) to F̂OT and subsequently both simulators approve of the message delivery
(S(R,T ) receives xi). Next, S(R,T ) sets bi = xi ⊕ B(f−1(yi)) and passes (sid, b1, . . . , bl) to A(R,T ).
Finally, S(R,T ) concludes the simulation by outputting xi when A(R,T ) does so.
– Simulating the case where both parties are corrupted. This case can be simulated by
applying simultaneously the simulators of each case where only one of the parties is corrupted.

4.3 Analysis of Game-Theoretic Security

Next, we consider the case where rational parties implement the protocol SOT in the case l = 2
as in [14], since 1-out-of-2 OT is simple and fundamental. As already mentioned, SOT is designed
for the semi-honest adversarial model so that its security does not concern the behaviors of rational
parties. We investigate whether SOT is game-theoretically secure, before and after being compiled,
respectively.

First, we define utility functions for two-message OT protocols similar to the work of [14]. In
[14], Higo et al. studied the game-theoretic concepts of two-message OT protocols with reasonable
utility functions, so it seems to be appropriate to follow the previous definitions. For doing it, we
consider sender’s (i.e., T ’s) and receiver’s (i.e., R’s) preferences as follows:

• T does not prefer the receiver R to know the input bit x1−i, where the index of the receiver’s
selection is i ∈ {0, 1} (This explains the case where R obtains x0 and x1 simultaneously),

• T prefers to complete the protocol execution,

• T prefers to know the input index of the receiver’s selection i ∈ {0, 1}; and

• R does not prefer the sender S to know its input index of the selection,

• R prefers to complete the protocol execution,

• R prefers to know the other sender’s input bit x1−i.

Then, a formal definition of utility functions is given as follows.

Definition 4 (Utility functions). Let π be an OT protocol having a sender T with inputs x0, x1 ∈
{0, 1} and a receiver R with an input i ∈ {0, 1}. Let αT , βT , γT , αR, βR, γR be positive constants.
The utility functions UT for T and UR for R are defined by

UT := −αT ·
(
Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2

)
+βT · (Pr{fin(T (x0.x1), R(i)) = 1} − 1)
+γT ·

(
Pr{i′ = i | guessT (T (x0, x1), R(i)) = i′} − 1/2

)
,

UR := −αR ·
(
Pr{i′ = i | guessT (T (x0, x1), R(i)) = i′} − 1/2

)
+βR · (Pr{fin(T (x0.x1), R(i)) = 1} − 1)
+γR ·

(
Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2

)
,

where guessT (·) and guessR(·) mean guessing by T and R, respectively, for the opponent’s private
value, and fin(·) represents the completion of the protocol execution: fin(·) = 1 if the protocol
satisfies the specifications correctly; otherwise fin(·) = 0.

In addition, as in the work of [4, 14, 15], we consider Nash equilibrium as the solution concept
in terms of the game theory.

14



Definition 5 (Nash equilibrium). For a pair of utility functions (UT , UR), we say that a pair
of strategies (σT , σR) is in Nash equilibrium, if for every pair of strategies (σ∗

T , σ∗
R), it holds that

UT (σT , σR) ≥ UT (σ∗
T , σR) − negl(n) and UR(σT , σR) ≥ UR(σT , σ∗

R) − negl(n).

Definition 6 (Game-theoretic security for OT). Let π be an OT protocol having a sender T and
a receiver R. Let σT and σR be strategies planned to follow all the specifications of π, respectively.
We say that π is game-theoretically secure, if the pair of strategies (σT , σR) is in Nash equilibrium
with respect to the pair of utility functions (UT ,UR).

Then, we can show the game-theoretic security of SOT before/after application of the compiler
in the LUC model below.

Theorem 4. The protocol SOT is not game-theoretically secure in the presence of rational parties,
however, the compiled protocol Comp(SOT-F̂MT ) in the F̂CP -hybrid model is game-theoretically
secure in the presence of rational parties.

Proof. First, we show that the plain protocol SOT is not secure. Once both parties are allowed to
behave rationally, this protocol becomes quite imbalanced. If the receiver R attempts to enhance its
own utility more than that of the case where it acts honestly, it takes action such as the following.
In the step where R is supposed to choose y1−i, r ∈R {0, 1}k and computes yi = f(r), it also applies
f for generating y1−i. For this, R can obviously obtain the T ’s private value x1−i in addition to
xi unless the sender T aborts the protocol execution. (Note that we take no account of the case
where each party changes its own input value, since it seems reasonable to assume so. Furthermore
even if that occurs, the result is not affected essentially.) In addition, since y1−i and r are randomly
chosen, R’s dishonest behavior is not detectable. Thus, this results in increasing the value γR ·
(Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2).

On the sender T ’s side, he/she would think that R does wrong absolutely. However, T has
only two choices, either following the specifications of the protocol or aborting, since T obtains no
information from the received values y0, y1 and there is no way to benefit in the subsequent process.
The selection depends on to which T gives much weight the completion of the protocol or protecting
the secret. If T prefers the completion of the protocol, it results in decreasing the value −αT ·(Pr{x′ =
x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2) and increasing the value βT · (Pr{fin(T (x0.x1), R(i)) =
1}−1) in comparison with the latter. On the contrary, if T prefers to protect the secret and chooses
to abort, it results in increasing the value −αT · (Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′}−1/2)
and decreasing the value βT · (Pr{fin(T (x0.x1), R(i)) = 1} − 1) in comparison with the former.
From the above discussion, at least the pair of strategies (σT , σR) is not in Nash equilibrium.

Next, we show that the compiled protocol Comp(SOT-F̂MT )-F̂CP is secure. Regarding the dis-
honest actions of R mentioned above, R cannot enhance its own utility even if applying f for generat-
ing y0 and y1. Since the functionality F̂CP rejects incorrect messages, the protocol execution would
never be completed. Therefore, it results in decreasing the value βR · (Pr{fin(T (x0.x1), R(i)) =
1} − 1) compared to that of the case where R follows the protocol specifications. On the T ’s side,
there is no need to worry about the R’s dishonest actions, and hence T can obtain the highest
utility by following the protocol honestly. Similarly to the R’s case, if T chooses to deviate from
the protocol, T ’s total utility obviously decreases. Thus, the pair of strategies (σT , σR) is in Nash
equilibrium.
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5 Concluding Remarks

In this paper, we have proposed a compiler of two-party protocols in the LUC framework such that
it transforms any two-party protocol secure against semi-honest adversaries into a protocol secure
against malicious adversaries. Then, we have shown the application of our compiler to an oblivious
transfer protocol to achieve a primitive with both UC and game-theoretic security. We emphasize
that our main purpose was to address how protocols with security in the game-theoretic model can
be composed to obtain an overall game-theoretically secure protocol. In this sense, our result is
successful and the constructed protocol has desirable properties.

An interesting line for future work is to address whether this resulting protocol carries over to
the general multi-party computation protocols as a building block in the game-theoretic setting.
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