
Cryptanalysis of the Round-Reduced Kupyna
Hash Function

Jian Zou1,2, Le Dong3

1Mathematics and Computer Science of Fuzhou University, Fuzhou, China, 350108
2Key Lab of Information Security of Network Systems (Fuzhou University),

Fuzhou, China, China, 350108
3 College of Mathematics and Information Science, Henan Normal University,

Xinxiang, China, 453007
zoujian@fzu.edu.cn, dongle127@163.com

Abstract. The Kupyna hash function was selected as the new Ukrainian
standard DSTU 7564:2014 in 2015. It is designed to replace the old In-
dependent States (CIS) standard GOST 34.311-95. The Kupyna hash
function is an AES-based primitive, which uses Merkle-Damg̊ard com-
pression function based on Even-Mansour design. In this paper, we show
the first cryptanalytic attacks on the round-reduced Kupyna hash func-
tion. Using the rebound attack, we present a collision attack on 5-round
of the Kupyna-256 hash function. The complexity of this collision at-
tack is (2120, 264) (in time and memory). Furthermore, we use guess-and-
determine MitM attack to construct pseudo-preimage attacks on 6-round
Kupyna-256 and Kupyna-512 hash function, respectively. The complex-
ity of these preimage attacks are (2250.33, 2250.33) and (2498.33, 2498.33) (in
time and memory), respectively.

Key words: Kupyna, preimage attack, collision attack, rebound attack,
meet-in-the-middle, guess-and-determine

1 Introduction

Cryptographic hash functions are playing important roles in the modern cryp-
tography. They have many important applications, such as authentication and
digital signatures. In general, hash function must satisfy three security require-
ments: preimage resistance, second preimage resistance and collision resistance.
In the last few years, the cryptanalysis of hash functions has been significantly
improved. After the pioneering work of Wang [26–28], there is a strong need for
a secure and efficient hash function. In 2015, the Kupyna hash function[17] was
approved as the new Ukrainian standard DSTU 7564:2014. In addition, GOST R
34.11-2012 [18] was selected as the new Russian National hash function standard.

Ukraine had been using the Commonwealth of Independent States (CIS)
standard GOST R 34.11-94 [19] as the main cryptographic hash function until
2015. GOST R 34.11-94 [19] was theoretically broken in 2008 [13, 12]. As a
result, the Kupyna hash function is designed to replace the old Russian standard

GOST R 34.11-94 that no longer fits performance and security requirements. The
Kupyna hash function was approved in 2015, which is widely used in Ukraine.
Note that for the remainder of this article, we refer to the Kupyna hash function
simply as Kupyna.

Kupyna is an iterated hash function based on the wide-pipe Merkle-Damg̊ard
design. It uses Davies-Meyer compression function based on Even-Mansour block
cipher construction. The compression function of Kupyna employs an SPN struc-
ture following the AES design strategy. Kupyna supports output length from 8
bits to 512 bits. The recommended modes are Kupyna-256, Kupyna-384 and
Kupyna-512.

With respect to the collision attack, the rebound attack proposed by Mendel
et al. [14] is very effective with the differential attack against AES based struc-
ture. From then on, many techniques are proposed to improve the original re-
bound attack such as start-from-the-middle technique [11], linearized match-
in-the-middle technique [11], Super-Sbox analysis [7, 5], and multiple-inbound
technique [10]. At FES 2014, Mendel et al.[15] constructed a 5-round collision
attack on Grøstl-256.

At FSE 2008, Leurent [8] proposed the preimage attack on the full MD4
hash function. From then on, many techniques are proposed to improve the
preimage attacks. One of them is the meet-in-the-middle (MitM) preimage attack
with the splice-and-cut technique. This method is first proposed by Aoki and
Sasaki to attack MD4 [2]. The MitM attack preimage attacks have been applied
to many hash function such as HAVAL-3/4 [20], MD4 [8, 2], MD5 [21], Tiger
[6], RIPEMD [25], SHA-0/1 [3], and SHA-2 [1, 6]. In CRYPTO 2009, Aoki and
Sasaki [3] combined the MitM attack with the guessing of carry bits technique
to improve their preimage attack on SHA-0 and SHA-1. In FSE 2012, Wu et al.
[29] improved its complexity and proposed the first pseudo preimage attack on
Grøstl. Using the combination of the guess-and-determin and the MitM attack,
Sasaki et al. [22] improved the preimage attacks on Whirlpool in AsiaCrypt
2012. In addition, Zou et al. [30] combined the guess-and-determin with the
MitM attack to propose an improved pseudo-preimage attack on Grøstl.

In this paper, we combine the guess-and-determine technique with the MitM
to propose a pseudo-preimage attack on 6-round Kupyna-256 and an 8-round
pseudo-preimage attack on Kupyna-512. Then we construct a 5-round collision
attack on Kupyna-256. Our cryptanalytic results of Kupyna are summarized in
Table 1. We will explain these results in Section 3 and 4.

Outline of the paper The rest of the paper is organized as follows. We give
a short description of Kupyna in Section 2. In Section 3, we show our preimage
attacks on the round-reduced Kupyna. Then we present the collision attack on
the round-reduced Kupyna-256 in Section 4. Section 5 concludes the paper.

Table 1. Summary of Attack Results

Algorithm Target Attack Type Rounds Time Memory Source

Kupyna-256

Hash
Collision 5 2120 264 Section 4

Function
Output

Collision 5 2240 264 Section 3.2
Transformation

Hash Pseudo
6 2250.33 2250.33 Section 3.3

Function Preimage

Kupyna-512

Output
Preimage 8 2472 2120 Section 3.4

Transformation
Hash Pseudo

8 2498.33 2498.33 Section 3.5
Function Preimage

2 Description of Kupyna

Kupyna is an iterated hash function with an SPN structure following the AES
design strategy. Kupyna supports output length from 8 bits to 512 bits. The
recommended modes are Kupyna-256, Kupyna-384 and Kupyna-512. Assume a
message is padded and divided into message blocks M0,M1, . . . ,Mk−1 of l-bit
length, which is defined as

l =

{
512, if 8 ≤ n ≤ 256,
1024, if 256 < n ≤ 512.

We can process as follows to generate a hash value h:
CV0 ← IV
CVi+1 ← CF (CVi,Mi) for i = 0, 1, . . . , k − 1
h = Trunc(T⊕

l (CVk)⊕ CVk)

Here the IV is the initial value(If l = 512, IV=1 ≪ 510, else IV=1 ≪ 1024.),
and CF (CVi,Mi) is the compression function of Kupyna. T⊕

l (CVk) is a per-
mutation that is a component of the compression function and will be defined
later.

Before applying the compression function, the input message M is processed
to be a multiple of l bits by the padding procedure. According to the padding
procedure, a single bit ‘1’ and len0 ‘0’s are put at the end of the message M .
Here len0 satisfies the following equation lenM +1+ len0 ≡ 96 mod 512 (lenM

and len0 are short for the length of M and the number of ‘0’ respectively). After
the above step, we put another 96 bits including the length of the message at the
end of the padding. Then the padded message M∗ is divided into l bits blocks
Mi (i = 0, 1, . . . , k − 1).

The compression function uses two permutations T⊕
l and T+

l , and computes
as follows(see also Fig.1):

CFl(CVi,Mi) = T⊕
l (CVi ⊕Mi)⊕ T+

l (Mi)⊕ CVi.

l CVi-1 CVi

Mi-1

TruncatedT+

l
T

CVk

l
T

10

4016

15

14

13

12

11

23

22

21

20

19

18

17

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24 48

47

46

45

44

43

42

41 57

56

55

54

53

52

51

50

49

2

1

0

63

62

61

60

59

58

7

6

5

4

3

9

8

Fig. 1. Compression function, output transformation of Kupyna, and the byte positions
for Kupyna-256.

Here, CVi is the chaining value and Mi is a message block. Note that, the
compression function CFl has only two forms CF512 (for 8 ≤ n ≤ 256) and
CF1024 (for 256 < n ≤ 512). In the following, we only present Kupyna-256
and Kupyna-512 for simplicity. T⊕

l () and T+
l () are AES-like permutation with

8 × 8 and 8 × 16 sized state for Kupyna-256 and Kupyna-512 respectively. As
shown in Fig. 1, byte positions in a state S for Kupyna-256/512 are denoted by
G = (gi,j), gi,j ∈ GF (28), where i = 0, 1, ..., 7, j = 0, 1, ..., c−1 (if l = 512, c = 8;
if l = 1024, c = 16). Kupyna-256 adopts 10-round T⊕

512() and T+
512(). Kupyna-512

uses 14-round T⊕
1024() and T+

1024(). The round function of the two permutations
consist of the following four operations:

– AddConstant: The AddConstant operation adds a round-dependent con-
stant to the state.

– SubBytes: The SubBytes transformation applies an S-box to each cell of
the state.

– ShiftRows: The ShiftRows transformation cyclically rotates the cells of the
i-th row leftwards by shift vector (define later).

– MixColumns: In the MixColumns operation, each column of the matrix is
multiplied by an MDS matrix.

We use AC,SB, SR and MC to denote these transformations for short. The SB
function transforms each cell gi,j of the state matrixG = (gi,j) by SBi mod 4(gi,j),
where SBs : GF (28)→ GF (28), s ∈ 0, 1, 2, 3). We omitted the detail of the SB,
since its not important in our attack. The shift vectors used in T⊕

l () and T+
l ()

are different. T⊕
512() and T+

512() in Kupyna-256 uses (0,1,2,3,4,5,6,7), while T⊕
1024()

and T+
1024() in Kupyna-512 uses (0,1,2,3,4,5,6,11). For a detailed explanation, we

refer to the original paper [17]. Since the design of Kupyna is similar to Grøstl,
we can apply some attacks on Grøstl to Kupyna.

3 Preimage Attack on Kupyna

In this section, we will show how to construct a preimage attack on the Kupyna
hash function. Firstly, we present the previous preimage attacks on Grøstl. Sec-
ondly, we show how to construct the preimage attacks on Kupyna. Note that, if
we make CV

′

i = CVi ⊕Mi, then compression function can be rewritten as

CF (CVi,Mi) = T⊕
l (CV

′

i)⊕ CV
′

i ⊕ T+
l (Mi)⊕Mi.

This important property will be used in our preimage attack on Kupyna.

3.1 Previous Works

In FSE 2012, Wu et al.[29] proposed the first pseudo preimage attack on Grøstl
hash function. In [30], Zou et al. found out the attack of Wu et al. could be
divided into two-phase MitM attacks, then they could use the subspace preimage
to improve the complexity. Subspace preimage attack can be defined by a linear
subspace (with a linear function L(·)). In subspace preimage attack process, the
attacker should store the L(A) in the lookup table LSub, and check if there
exists an entry in LSub that L(A) is equal to L(B). If they find one, L(A ⊕ B)
is equal to 0, that means A⊕B is in the linear subspace. Compared with b-bit
partial preimage, the subspace preimage could achieve some balance between
the two-phase MitM attacks, and then reduce the overall complexity.

The idea of Zouet al. can be summarized as below. Suppose the hash output
is n-bit and the state size is 2n-bit. To find a pseudo preimage (H,M) of Grøstl,
it is desirable to invert the output transformation of Grøstl. LetX = CF (H,M),
then X is the preimage of the output transformation. With H

′
= H ⊕M , they

get
(P (H

′
)⊕H

′
)⊕ (Q(M)⊕M)⊕X = 0.

If enough candidates for P (H
′
) ⊕H

′
, Q(M) ⊕M , and X have been collected,

the pseudo preimage attack turns into a three-sum problem. The attack process
is similar to the generalized birthday attack[24]. Using four parameters x1, x2, x3

and b, the attack process can be described as follow:

1. Find 2x1 preimages X of the output transformation and store them in a
lookup table L1.

2. Find 2x3 subspace preimages of P (H
′
) ⊕ H

′
. Then store P (H

′
) ⊕ H

′
in a

lookup table L2.
3. Find 2x2 random M with the correct padding and calculate Q(M) ⊕ M .

Check if there exists an entry in L1 that Q(M) ⊕M ⊕ X is in the same
subspace of P (H

′
)⊕H

′
. Then 2x1+x2−b partial matches Q(M)⊕M ⊕X are

expected to remain (Here the dimension of the linear equation L(x) = t0 is
n− b).

4. For each of the 2x1+x2−b Q(M)⊕M ⊕X remained in step 3, check whether
there exists an entry in L2 that matches the remaining (2n − b) bits. Once
a full match is found, a pseudo preimage of Grøstl hash function is found.

Suppose for Grøstl with 2n-bit state, it needs 2C1(2n,n) computations to find a
fixed position n-bit partial preimage of X and it needs 2C2(2n,b) computations to
find a subspace preimage of P (X)⊕X. Then the overall complexity to compute
the pseudo preimage of Grøstl is:

2x1+C1(2n,n) + 2x3+C2(2n,b) + 2x2−1 + 2x1+x2−b · CTL, (1)

with memory requirement of 2x1 +2x3 . Here CTL is chosen as 1/640 and 1/2048
for 5-round Grøstl-256 and 8-round Grøstl-512 respectively. For a detailed ex-
planation of the attack, we refer to the original paper [18]. Note that, we will
use the same CTL in the preimage attacks on Kupyna.

3.2 Preimage Attack on 6-round Kupyna-256 Output
Transformation

Using the combination of the guess-and-determine technique and the MitM at-
tack, we can construct 6-round preimage attacks on the compression function of
Kupyna-256. The 6-round chunk separation of the state update transformation
is illustrated in Fig. 2. By guessing some unknown bytes, all the possible values
of the guessed bytes are used as extra freedom degrees in the MitM preimage
attack. As a result, more matching points can be obtained. Note that the guessed
bytes are extra constraints. After a partial match is found, we should check if
the guessed value produces a valid preimage. More details about the guessing
technique will be shown in the following attack algorithm.

Parameters for the Guess-and-Determine MitM Attack As shown in
Fig. 2, we use the purple bytes as the guessed bytes. The red/blue color means
neutral message. They are independent from each other. The white color stands
for the bytes whose values are affected by red bytes and blue bytes both, and
we can’t determine their values until a partial match is found. The gray bytes
are constants that come from the hash value or the initial structure. In order
to evaluate the complexity for the attack, we should define these parameters:
freedom degrees in red and blue bytes (dr, db), the guessing red and blue bytes
(Dgr, Dgb), the bits of the matching point bm.

SRSBACMCSRSBAC

SRSBAC MC

SRSBAC MC SRSBAC MC

MC

Initial

Structure

Matching Point

SRSBAC MC

Hash Value

Truncated

Fig. 2. Preimage attack on the Output Transformation of Kupyna-256

The Attack Algorithm and Complexity The guess-and-determine MitM
attack algorithm can be described as follows:

1. Set random values to constants in the initial structure.
2. For all possible values 2dr of the red bytes and 2Dgr of the guessing red

bytes, compute backward from the initial structure and obtain the value at
the matching point. Store the values in a lookup table Lcomp.

3. For all possible values 2db of the blue bytes and 2Dgb of the guessing blue
bytes, compute forward from the initial structure and obtain the value at
the matching point. Check if there exists an entry in Lcomp that matches
the result at the matching point. Expected number of the partial matches is
2dr+db+Dgr+Dgb−bm .

4. Once a partial match is found, compute and check if the guessed value is
right. The probability of the validity is 2−Dgr−Dgb . There are 2dr+db−bm valid
partial matches left. Then we continue the computation and check the full
match. The probability that a partial match is a full match is 2−(n−bm).

5. The success probability for the above steps is 2dr+db+Dgr+Dgb−bm ·2−(Dgb+Dgr)·
2−(n−bm) = 2dr+db−n. Then repeat the above steps for 2n−db−dr to find one
full match.

The complexity for each step can be calculated as follows:

1. In Step 2, building the the lookup table Lcomp takes 2dr+Dgr computations
and memory.

2. In Step 3, it takes 2db+Dgb computations to find the partial matches. Ex-
pected number of the partial matches is 2db+Dgb+dr+Dgr−bm .

3. In Step 4, testing all the partial matches in step 3 needs 2db+Dgb+dr+Dgr−bm

computations. The probability of the validity is 2−Dgb−Dgr , and there are
2db+dr−bm valid partial matches left.

4. In Step 5, repeat the above four step for 2n−db−dr times.

Then the complexity of the above attack algorithm is:

2n−db−dr · (2dr+Dgr + 2db+Dgb + 2db+Dgb+dr+Dgr−bm)

= 2n · (2Dgr−db + 2Dgb−dr + 2Dgb+Dgr−bm).
(2)

As shown in Fig. 2, the parameters for the attack on the 6-round compression
function of Kupyna-256 are as follow: dr = 16, db = 64, Dgr = 48, Dgb = 0,
bm = 64 and n = 256. According to equation (1), the overall complexity is
2256 · (248−64 + 20−16 + 248−64) ≈ 2240 compression function calls. Only Step 2
requires 216+48 = 264 memory.

3.3 Subspace Preimage Attack on T⊕
512(H

′
) ⊕ H

′

In [30], Zou et al. has shown that the guess-and-determine technique is not fit
for the b-bit subspace preimage attack when b is small. Our preimage attack
on T⊕

512(H
′
) ⊕H

′
adopts the technique used in [30]. The attack is obtained by

combining the MitM attack with a complicated initial structure. The detail of
the initial structure is shown as follows (also in Fig. 3):

1. Randomly set the State value #6[1,3,5,7,8,10,12,14,17,19,21,23,24,26,28,30](gray).
2. Set the value of the State #4[0,5,6,7,8,9,14,15,16,17,18,23,24,25,26,27] (blue)

so that the chosen 4 bytes at State #3[7,14,21,28] (red) can be achieved
through the Inverse-MixColumns operation.

3. For each value of the State #4[0,5,6,7,8,9,14,15,16,17,18,23,24,25,26,27] (blue),
we can calculate through the SubBytes and ShiftRows operations and get the
corresponding values of the State #5[0,1,2,3,8,9,10,15,16,17,22,23,24,29,30,31]
(blue).

4. With the known values of State #5 (blue) and State #6 (gray), we calculate
the rest blue bytes of State #5 and State #6 through the MixColumns
operation.

5. With the calculated bytes #5[4,5,6,7,11,12,13,14,18,19,20,21,25,26,27,28], we
compute the values of #4[33,34,35,36,42,43,44,45,51,52,53,54,60,61,62,63] through
the Inverse-ShiftRows and Inverse-SubBytes operations. We check whether
the values of the State #4[33,34,35,36,42,43,44,45,51,52,53,54,60,61,62,63]
satisfy the linear relationship so that the chosen 4 bytes at #3[35,42,49,56]
can be achieved through the Inverse-Mix-Columns operation

For Kupyna-256 compression function, we suppose that it needs 2Cr compu-
tations to find a suitable initial structure for the forward direction (from #6 to
#8) and it needs 2Cb computations to find a suitable initial structure for the
backward direction (from #6 to #4). Then the complexity to find a suitable
initial structure can be written as follows:

2n−db−dr · (2dr+Cr + 2db+Cb + 2db+dr−m)

= 2n · (2Cr−db + 2Cb−dr + 2−m).
(3)

As shown in Fig. 3, the parameters for this attack are as follows: Cr = Cb = 32
bits, dr = db = 40 bits, m= 8 bits. Then 28(= 240+40−32−32/28) 8-bit subspace
preimages can be found with a complexity of 28. It means that an 8-bit subspace
preimage can be found with a complexity of 20(= 28/28) and the complexity
2C2(512,8) = 20. According to Eq. (1) and 2C1(512,256) = 2240, 2C2(512,8) = 20.

The Complexity of Pseudo Preimage Attack on 6-round Kupyna-256
Hash Function The overall complexity can be expressed as 2x1+240 + 2x3 +
2x2−1 + 2x1+x2−8 · CTL. When x1 = 10.33, x2 = 251.33, x3 = 250.33, b = 8, the
minimum complexity is 2250.33 and the memory requirement is 2250.33.

3.4 Preimage Attack on 8-round Kupyna-512 Output
Transformation

Our 8-round preimage attack on the output transformation of Kupyna-512 com-
bines the guess-and-determine technique with the MitM attack. Since this attack
is similar to the preimage attack on 6-round Kupyna-256 Output Transforma-
tion, we omit the details of the attack and only show the chunk separation of
the 8-round preimage attack in Fig. 4.

Fig. 3. Chunk separation of subspace preimage attack on 6-round Kupyna-256

In Fig. 4, the parameters for the attack on the output transformation of 8-
round Kupyna-512 are as follows: dr = db = 80 bits, Dgr = Dgb = 40 bits, m =
144 bits and n = 512 bits. According to Eq. (2), the complexity of our attack
can be calculated as 2C1(1024,512) = 2512 · (240−80 + 240−80 + 240+40−144) ≈ 2472

compression function calls. The memory requirement is 240+80 = 2120.

3.5 Subspace Preimage Attack on T⊕
1024(H

′
) ⊕ H

′

We show the chunk separation of subspace preimage attack on T⊕
1024(H

′
) ⊕H

′

in Fig. 5. Here we also do not adopt the guess-and-determine technique here,
because we cannot find a good guess-and-determine way to make the complexity
better than the simple MitM attack.

The parameters for the MitM attack: the freedom degrees dr = 16 bits, db
= 16 bits. The size of matching point bmax is 32 bits. We set dr = db = bbest =
16 bits, and then we can find 216(= 216+16/216) 16-bit subspace preimages with
the complexity of 216. It means that a 16-bit subspace preimage is found with
the complexity of 20(= 216/216). The complexity is 2C2(1024,16) ≈ 20.

The Complexity of Pseudo Preimage Attack on 8-round Kupyna-512
Hash Function The overall complexity can be expressed as 2x1+472 + 2x3 +
2x2−1+2x1+x2−16 ·CTL. When x1 = 26.33, x2 = 499.33, x3 = 498.33, b = 16, the
minimum complexity is 2498.33 and the memory requirement is 2498.33.

4 Collision Attack on 5-round Kupyna-256

In a collision attack, we want to find, for a given initial value IV , two messages
m and m′ such that H(IV,m) = H(IV,m′). In this section, we will use the
freedom of the message block to control the differential propagation in T⊕

l (),

AC SB SR

AC SB SR

AC SB SR

MC

MC

MC

MC

MC

MC

AC SB SR

AC SB SR

AC SB SR

AC SB SR

AC SB SR

MC

Matching point

MC

Initial

structure

Target

Fig. 4. Chunk separation of preimage attack on 8-round Kupyna-512 output transfor-
mation

Fig. 5. Chunk separation of 8-round Subspace Preimage Attack on T⊕
1024(H

′
)⊕H

′

by setting on differences in T+
l (). Based on these attacks, we then present the

collision attacks on the hash function of Kupyna-256.

4.1 Details of the Attack

In order to simplify the attack process, we use the alternative description of

Kupyna in the following way. Let T⊕′

l () and T+′

l () denote the permutation T⊕
l ()

and T+
l () without the last application of MC. Then, we can get an equivalent

description of Kupyna, by setting:


h0 ←MC−1(IV)

hi ← T⊕′

l (hi−1 ⊕mi−1)⊕ T+′

l (mi−1)⊕ h′
i−1 for i = 1, . . . , k

h = Trunc(MC(h′
k))

We show the collision attacks on the hash function of Kupyna-256 by us-
ing the Super-Sbox technique. The Super-Sbox rebound technique was indepen-
dently proposed by Lamberger et al. at Asiacrypto 2009 [7] and by Gilbert and
Peyrin [5] at FSE 2010. The Super-Sbox consists of 8 parallel S-boxes S, followed
by one MixBytes operation L and another 8 parallel S-boxes S: S-L-S.

If the differences in the message words are the same as in the output of the
state update transformation, the differences cancel each other through the feed-
forward. By using the freedom of the message blocks to cancel the differences
of the chaining values successively, we can construct the collision attack on the
Kupyna-256 hash function. Our differential path using the Super-Sbox rebound
technique is shown in Fig. 6. The 5-round collision trail:

64→ 64→ 8→ 1→ 8→ 8. (4)

SB

MC

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR
AC

SR

Inbound phase: average 1 Outbound phase: probability 2-56

Fig. 6. Supersbox technique used in the 5-round truncated differential trail

The inbound phase is shown by dashed arrows and the outbound phase is
shown by solid arrows. Note that, we should cancel the differences in 8 bytes in
each iteration. The probability of this is 2−64, so that we should generate 264

pairs following the differential trail for a given difference. As shown in Fig. 7,
the 5-round collision attack proceeds as follows:

1. Randomly choose message blocks m0, m
∗
0 and compute h1 until h1 is fully

active.

2. Use a right pair of message blocks m1, m
∗
1 for the trail of (4) to cancel 8

bytes of the difference in h1.

3. Use a right pair of message blocks m2, m
∗
2 for the trail of to cancel 8 bytes

of the difference in h2.
4. Repeat steps 3-4 in 8 times until we have found a collision in h9.

MC

m0

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m0)

AC

SB

SR

MC

AC

SB

SR

h1h0

MC

m1

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m1)

AC

SB

SR

MC

AC

SB

SR

h2h1

MC

m2

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m2)

AC

SB

SR

MC

AC

SB

SR

h2 h3

MC

m3

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m3)

AC

SB

SR

MC

AC

SB

SR

h4h3

MC

m4

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m4)

AC

SB

SR

MC

AC

SB

SR

h4

MC

m5

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m5)

AC

SB

SR

MC

AC

SB

SR

MC

m6

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m6)

AC

SB

SR

MC

AC

SB

SR

MC

m7

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m7)

AC

SB

SR

MC

AC

SB

SR

MC

m8

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

T+(m8)

AC

SB

SR

MC

AC

SB

SR

h9

h5

h5 h6

h6 h7

h7 h8

h8

Fig. 7. Truncated differential trail used in the attack on 5 rounds

Using super-box matches, we can find 264 pairs solutions for the inbound
phase with a complexity of 264 in time and memory. All in all, the average
time complexity to generate an internal state pair that follows the differential
path of the inbound phase is one. In the outbound phase, the state pairs of the

inbound phase are propagated outwards probabilistically. The transition from
8 active bytes to one active byte through the Mixcolumn transformation MC
has a probability of 2−56. As a result, there are only 28 pairs exist for this
truncated differential trail. The freedom in finding right pairs for the 5-round
trail is limited, more message blocks should be needed for the collision attack.
As pointed in , this problem can be solved by using more message blocks in each
step of the attack. The differences have to be canceled iteratively 8 times from h2

to h9. Then complexity of the attack is 8 ·264+56 = 2123, and we need the length
of colliding message 8 ·256 = 259. The memory requirement are 264. As noted in ,
we can use the tree-based approach to reduce the length of the colliding message
pair to 65 message blocks. By using denser characteristics, the complexity of the
5-round collision attack can be slightly reduced to 2120. Furthermore, we can
construct collisions in the chosen-prefix setting with the same complexity due to
the generic nature of our attack.

5 Conclusion

In this article, we propose the collision attacks and the preimage attacks on
the Kupyna hash function. The design of Kupyna is similar to Grøstl, but some
round constants are added with a modular addition. This design approach makes
many known attacks harder to apply. The original MitM attack [2] is not suit
to solve a pseudo-preimage of the Kupyna hash function due to the wide-pipe
design. In addition, we can not construct the collision attack on the Kupyna hash
function only by the original rebound attack. Our solution is the combination of
some known attacks such as the guess-and-determine technique and the MitM
preimage attack. To sum up, we present the first public security analysis of
the Kupyna hash function. Firstly, we propose a pseudo-preimage attack on 6-
round hash function of Kupyna-256 and a pseudo-preimage attack on 8-round
hash function of Kupyna-512 by combining the guess-and-determine technique
with the MitM attack. Secondly, we construct a collision attack on the 5-round
Kupyna-256 hash function. However, our attacks do not threat any security
claims of Kupyna.

References

1. Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preim-
ages for Step-Reduced SHA-2. In Matsui [9], pages 578–597.

2. Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step
MD5 and More. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, Selected Areas in Cryptography, volume 5381 of LNCS, pages 103–119.
Springer, 2008.

3. Kazumaro Aoki and Yu Sasaki. Meet-in-the-Middle Preimage Attacks Against
Reduced SHA-0 and SHA-1. In Shai Halevi, editor, CRYPTO, volume 5677 of
LNCS, pages 70–89. Springer, 2009.

4. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a SHA-3
candidate. Submission to NIST (Round 3), 2011.

5. Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved attacks
for aes-like permutations. In Seokhie Hong and Tetsu Iwata, editors, FSE, volume
6147 of Lecture Notes in Computer Science, pages 365–383. Springer, 2010.

6. Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced Meet-
in-the-Middle Preimage Attacks: First Results on Full Tiger, and Improved Results
on MD4 and SHA-2. In Masayuki Abe, editor, ASIACRYPT, volume 6477 of
LNCS, pages 56–75. Springer, 2010.

7. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. Rebound distinguishers: Results on the full whirlpool compression
function. In Matsui [9], pages 126–143.

8. Gaëtan Leurent. MD4 is Not One-Way. In Nyberg [16], pages 412–428.

9. Mitsuru Matsui, editor. Advances in Cryptology - ASIACRYPT 2009, 15th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture
Notes in Computer Science. Springer, 2009.

10. Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolic, Yu Sasaki, and Martin
Schläffer. Rebound attack on the full lane compression function. In Matsui [9],
pages 106–125.

11. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Im-
proved cryptanalysis of the reduced grøstl compression function, echo permutation
and aes block cipher. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh
Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867 of Lecture Notes
in Computer Science, pages 16–35. Springer, 2009.

12. Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (second) preim-
age attack on the gost hash function. In Nyberg [16], pages 224–234.

13. Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak, and
Janusz Szmidt. Cryptanalysis of the gost hash function. In David Wagner, editor,
CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 162–178.
Springer, 2008.

14. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The rebound attack: Cryptanalysis of reduced whirlpool and grøstl. In Orr Dunkel-
man, editor, FSE, volume 5665 of Lecture Notes in Computer Science, pages 260–
276. Springer, 2009.

15. Florian Mendel, Vincent Rijmen, and Martin Schläffer. Collision attack on 5 rounds
of grøstl. In Fast Software Encryption - 21st International Workshop, FSE 2014,
London, UK, March 3-5, 2014. Revised Selected Papers, pages 509–521, 2014.

16. Kaisa Nyberg, editor. Fast Software Encryption, 15th International Workshop,
FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers,
volume 5086 of Lecture Notes in Computer Science. Springer, 2008.

17. Gorbenko I. Kazymyrov O. Ruzhentsev V. Kuznetsov O. Gorbenko Y. Boiko A.
Dyrda O. Dolgov V. Pushkaryov A. Oliynykov, R. A new standard of ukraine: The
kupyna hash function. Cryptology ePrint Archive, Report 2015/885, 2015.

18. Information Protection and Special Communications of the Federal Security
Service of the Russian Federation. Gost r 34.11.2012 information technology
cryptographic date security hash-functions (in english). http://tk26.ru/en/

GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf/.

19. Information Protection and Special Communications of the Federal Security Ser-
vice of the Russian Federation. Gost r 34.11.94 information technology crypto-
graphic date security hash-functions (in russian).

20. Yu Sasaki and Kazumaro Aoki. Preimage Attacks on 3, 4, and 5-Pass HAVAL.
In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of LNCS, pages 253–271.
Springer, 2008.

21. Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster Than
Exhaustive Search. In Antoine Joux, editor, EUROCRYPT, volume 5479 of LNCS,
pages 134–152. Springer, 2009.

22. Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating fundamental
security requirements on whirlpool: Improved preimage and collision attacks. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of Lecture
Notes in Computer Science, pages 562–579. Springer, 2012.

23. Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, volume 3621 of Lecture Notes in Computer Science. Springer,
2005.

24. David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, CRYPTO,
volume 2442 of LNCS, pages 288–303. Springer, 2002.

25. Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo Sakiyama.
(Second) Preimage Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New
Local-Collision Approach. In Aggelos Kiayias, editor, CT-RSA, volume 6558 of
LNCS, pages 197–212. Springer, 2011.

26. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
sha-1. In Shoup [23], pages 17–36.

27. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2005.

28. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks
on sha-0. In Shoup [23], pages 1–16.

29. Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou.
(pseudo) preimage attack on round-reduced grøstl hash function and others. In
Anne Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science,
pages 127–145. Springer, 2012.

30. Jian Zou, Wenling Wu, Shuang Wu, and Le Dong. Improved (pseudo) preimage
attack and second preimage attack on round-reduced grostl hash function. J. Inf.
Sci. Eng., 30(6):1789–1806, 2014.

