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Abstract. At SAC 2006, Liskov proposed the zipper hash, a technique
for constructing secure (indifferentiable from random oracles) hash func-
tions based on weak (invertible) compression functions. Zipper hash is a
two pass scheme, which makes it unfit for practical consideration. But,
from the theoretical point of view it seemed to be secure, as it had resisted
standard attacks for long. Recently, Andreeva et al. gave a forced-suffix
herding attack on the zipper hash, and Chen and Jin showed a second
preimage attack provided f1 is strong invertible. In this paper, we analyse
the construction under the random oracle model as well as when the un-
derlying compression functions have some weakness. We show (second)
preimage, and herding attacks on an n-bit zipper hash and its relaxed
variant with f1 = f2, all of which require less than 2n online computa-
tions.
Hoch and Shamir have shown that the concatenated hash offers only n

2
-

bits security when both the underlying compression functions are strong
invertible. We show that the bound is tight even when only one of the
underlying compression functions is strong invertible.

Keywords. zipper hash, concatenated hash, time/memory trade-off,
(second) preimage, herding attack.

1 Introduction

Cryptographic hash functions play a very important role in modern cryptogra-
phy. These hash functions have many information security applications especially
in digital signatures [7], encryption [6], authentication [5] and in many crypto-
graphic protocols such as password hashing [39], bitcoins [35] etc. An n-bits
hash function H : {0, 1}∗ → {0, 1}n, takes an arbitrary length input (message)
and produces an n-bits output (digest). Hash functions are used in many differ-
ent settings and accordingly their security requirement changes. The three most
general security notions are:

Collision Resistance. It should be hard to find two messages M 6= M ′,
such that H(M) = H(M ′).
Second Preimage Resistance. Given a message M , it should be hard to
find another message M ′ 6= M , such that H(M ′) = H(M).
Preimage Resistance. Given a hash value h, it should be hard to find a
message M , such that H(M) = h.
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For a random oracle the collision attack requires 2n/2 computations, and the
preimage and second preimage attacks require 2n computations. A secure hash
function is expected to offer the same level of security.

Among the different hash function designs, Merkle-Damg̊ard [34, 16] or MD
hash function has been the most popular and widely used design. Naturally, it
is the most studied design as well. The cryptanalysis of MD hash has revealed
several weaknesses in the design. Dean [17] first showed that the fixed points
(i.e., f(h,m) = h) in the underlying compression function can be used for a long
message second preimage attack in O(2n/2) complexity. Later, the seminal work
by Joux [25] suggested a new efficient way to construct multicollision1 on the
MD hash. Immediately after his work, Kelsey and Schneier [28] applied the ideas
of Joux attack to Deans attack, and eliminated the requirement of fixed points in
the compression function by building a new structure called [a, b]-expandable
message.2

Another result in the same line of research is the herding attack by Kelsey
and Kohno [27]. The attack is a chosen-target forced prefix (CTFP) attack, i.e.,
the adversary first commits to a digest value h and is then presented with a
challenge prefix P . Now, the adversary needs to efficiently compute a suffix S,
such that H(P‖S) = h. Andreeva et al. [3] gave a modified version of herding
attack on the zipper hash, called chosen-target forced-suffix (CTFS) attack in
which the adversary is presented with a challenge suffix. The underlying tech-
nique used in these attacks, requires a precomputed structure called diamond
structure, which is again a special form of multicollision and requires O(2

n
2 + k

2 )
computations.

Inherent weeknesses (such as invertibility, collision and fixed point property)
in specific hash function definitions can be used to construct efficient practical
attacks. This is evident from the attacks by Wang et al. [41, 43, 42, 44], Biham
et al. [8], Klima [29] and Joux et al. [26] on hash functions based on the MD4
design, such as MD5, RIPEMD, SHA-0 and SHA-1. Several popular compres-
sion functions such as Davis-Meyer, Miyaguchi-Preneel etc. are based on block
ciphers. Preneel et al. [38] first studied the 64 most basic compression functions
based on block ciphers. Black et al. [12] further proved that among the 64 choices
12 provide full collision and preimage security and 8 of the remaining 52 provide
full collision security. Interestingly, many of these 20 secure constructions have
one or more weaknesses (such as Davis-Meyer which offers efficient fixed point
computation). These facts are compelling enough to analyse the security of a
hash design in the presence of weaker compression functions [22].

To preclude the aforementioned attacks on the Merkle-Damg̊ard design, many
variants were proposed, such as the concatenated hash, HAIFA [9] construction
by Biham et al. and the dithered Merkle-Damg̊ard hash by Rivest [13]. It has
been shown that these designs are not fully secure [25, 20, 1, 4], and their

1 A setM of size r is said to be a r-multicollision set for H if ∀M, M ′ ∈M, H(M) =
H(M ′).

2 A multicollision set M such that ∀` ∈ [a, b], ∃M ∈ M with ‖M‖ = `, the number
of message blocks in M .
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security is implementation dependent. At SAC 2006, Liskov proposed the zipper
hash [32] and argued that it is indifferentiable [15, 33] with random oracle even
when the underlying compression functions have some weaknesses. To formulate
the model for weakness, the adversary is given access to some oracles which solve
some tasks. For example, a strong invertible oracle returns h given (h′,m),
such that f(h,m) = h′. Whereas, a weak invertible oracle returns (h,m) for a
given h′ such that f(h,m) = h′. In addition to these, in this paper, we consider
one more oracle which returns a fixed point h given m.

The analysis of zipper hash has seen relatively less interest due to the fact
that it is a two pass scheme, and hence practically inefficient. But theoretically it
is intriguing that the design withstands the standard attack techniques. The first
significant attack on this design was given by Andreeva et al. [3], which talks
about the chosen-target forced-suffix attack. Recently, Chen et al. [14] showed
a second preimage attack with the assumption that the first pass compression
function is strongly invertible. Further, the multicollision attacks by Nandi et
al. [36] are also applicable on the zipper hash. In light of these recent develop-
ments, it would be interesting to investigate the (second) preimage and herding
security of this design under various assumptions on the underlying compression
functions.

1.1 Our Contribution

In this paper, we demonstrate (second) preimage and herding attacks on an n-bit
zipper hash and its relaxed variant with f1 = f2, all of which require less than
2n online computations.
Second preimage attack. Our second preimage attacks are applied in the fol-
lowing cases: (i) we precompute a specific structure of size O(n) (which requires
O(2n) computations for a general compression function and O(23n/4) computa-
tions when multiple fixed points are available) or (ii) relaxed variant of zipper
hash (i.e., f1 = f2).
Preimage attack. We provide a preimage attack given that the f2 is strong
invertible. We also demonstrate preimage attacks under weaker assumption on
f2, namely f2 is weak invertible (i.e., easy to invert for a target chaining value
but the adversary has no control on choosing the message block), and one of the
above cases for the second preimage holds.
Herding attack. Under the assumption of strong invertible property for f2, we
obtain a forced-prefix herding attack.
Apart from our attacks on the zipper hash we also give two attacks on the con-
catenated hash under some weakness assumptions on the underlying compression
functions.

1.2 Organisation of the Paper

We start off with fixing the preliminary ideas and notations in section 2. In
section 3, we briefly describe the various attack structures that are used for hash
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function analysis and summarise the two known attacks on the zipper hash. In
sections 4, 5, and 6 we present our attacks on the zipper hash, relaxed zipper
hash, and the concatenated hash respectively. Section ?? concludes the paper,
where we summarise our results.

2 Notations and Basic Definitions

2.1 Notations

For any n ∈ N, {0, 1}n represents the set of all n-bit binary strings. {0, 1}+
denotes the set of all binary strings of length > 0, and {0, 1}∗ denotes {0, 1}+ ∪
{Λ}, where Λ represents the empty string. For any x ∈ {0, 1}n, |x| denotes the
length (in no. of blocks) of x, and 〈x〉k denotes the k-bit binary representation of
|x|. For x, y ∈ {0, 1}n, x‖y represents the concatenation of x and y. We denote
the padded version of a message m ∈ {0, 1}∗ by m := (m1,m2, · · · ,m`), where
mi denotes the individual message block for 1 ≤ i ≤ `. For a message block
m, mi represents i consecutive concatenations of m. Throughout this paper we
will assume that the second preimage adversary is challenged with a message of
length 2t blocks.

2.2 Iterated Function

Given any compression function f : {0, 1}n × {0, 1}n′ → {0, 1}n and a prede-
fined n-bit constant iv, referred as initial value, the iterated hash f+(iv; ·) :
({0, 1}n′)+ → {0, 1}n is defined by iterating f sequentially as follows:

f+(iv; m1,m2, . . . ,m`) = h` := f(· · · f(f(iv,m1),m2) · · · ).

We can also write hi = f(hi−1,mi) where h0 = iv, 1 ≤ i ≤ `.

A directed arc-labelled graph G corresponding to a compression function f
has the set of vertices V = {0, 1}n, the set of labels L = {0, 1}n′ and whenever

f(u,m) = v we have a label m for the arc (u, v). We write u
m−→ v. Thus, the

following sub-graph (we also refer as structure) represents the computation of
the iterated function f+. We may have hi = hj and so the above structure is a
walk and not necessarily a path.

h0
h1 h2 h3 h`−3 h`−2 h`−1

h`
m1 m2 m3 m`−2 m`−1 m`

Padding Function. A block-parsing function ξ : {0, 1}∗ → ({0, 1}n′)+ is an
injective function. It is said to be a padding function if there exists a function
P : {0, 1}∗ → {0, 1}∗ such that for all m, ξ(m) = m‖P (m). The following are two
popular examples of padding functions in which d is chosen to be the smallest
non-negative integer such that n′ divides |P (m)| + |m|: (i) Pozp = 10d and (ii)
PsMD = 10d‖〈m〉64 where 〈m〉64 denotes the 64-bit binary representation of the
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size |m|. Note that we can apply the later padding function to all messages of
sizes at most 264 which is more than sufficient for all practical messages. Unless
mentioned explicitly, we fix an initial value iv and a padding rule P . We also
denote m‖P (m) by m := (m1, . . . ,m`) for some `. When P = PsMD, the compo-
sition function f+ ◦ P is known as MD hash function, proposed independently
by Merkle [34] and Damg̊ard [16].

2.3 Zipper Hash

Conceptually, the Zipper hash [32] is a two-pass hash function that pro-
cesses a message m ∈ {0, 1}∗ in the first pass and its block-wise reverse in
the second pass. Though zipper hash was originally defined to create secure
hash functions from weak compression functions, we will be considering the
zipper hash design on a general compression function not necessarily weak.
Fig. 1 shows the graphical description of zipper hash function. Note that h`
is the hash output for the single-pass and it is actually the MD hash output.

f1 f1 f1

f2f2f2

m1 m2 m`

iv
h1 h`−1

h′`−2h′`−1 h`
h′`

Fig. 1: Computation of the zipper hash Z(M): Here we apply some padding rule to
obtain message blocks m1, . . . ,m`. h

′
` is the final output of the zipper hash.

h0
h1 h2 h3 ht−3 ht−2 ht−1

ht

htht+1ht+2ht+3h2t−3h2t−2h2t−1

h2t

m1

m1

m2

m2

m3

m3

mt−2 mt−1 mt

mt−2 mt−1 mt

First pass

Second pass

Fig. 2: Graphical Description of Zipper Hash Function where the first and second pass
are computed through f1 and f2 respectively. When we choose f1 = f2, we call it the
relaxed zipper hash.

Formally, an n-bit zipper hash function Z based on two compression functions
f1 and f2 (and a fixed initial value iv) can be defined as

Z(m) := f+
2 (f+

1 (iv; m);mrev)
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where m = (m1, . . . ,m`) and mrev = (m`, . . . ,m1) is the block-wise reverse of
m. Fig. 2 shows graphical description of the zipper hash function. Throughout
this paper, we will denote the compression function of first pass and second pass
by f1 and f2 respectively, and distinguish the corresponding arc labels by using
thick lines for the second pass, and denote the junction point between the two
passes by an unfilled node (i.e. ◦).

2.4 A Note on TMTO Attacks

One-wayness of a function is the most fundamental problem in cryptogra-
phy [18]. Hellman [21] first showed a preimage attack or in other words, broke
the one-wayness of any function H (i.e., given h, to find M such that H(M) = h).
In his attack, the online time T and memory M satisfy the relation TM2 = 22n.
Consequently, the attack is known as a time/memory trade-off (TMTO) algo-
rithm. Note that in the TMTO set-up, the precomputation time is not consid-
ered, since this is a one-time offline activity which can be performed at the crypt-
analyst’s leisure. Several efforts have been made to improve the time/memory
trade-off curve [11, 37, 23, 19, 10]. However, most of the improvement either
assumes multiple targets or works for a specific structure of a one-way function,
e.g., stream ciphers [19, 11].

2.5 A Note on Notions of Invertibility

Weak invertible Function. A compression function f : {0, 1}n × {0, 1}n′ →
{0, 1}n is said to be weak invertible if given z it is easy to compute a random
(x, y) pair, such that f(x, y) = z, i.e., the adversary can get random preimages
at each invocation. Four of the eight group 2 compression functions (f13, f14, f16

and f18 in [12]) of PGV function family [38] are weak invertible.

Strong invertible Function. A compression function f : {0, 1}n ×{0, 1}n′ →
{0, 1}n is said to be strong invertible if,

• it has a backward interface [22, 31], i.e., given y, z it is easy to compute x,
such that f(x, y) = z. Or,
• it has a bridging interface [22, 31], i.e., given x, z it is easy to compute y,

such that f(x, y) = z.

In other words, the adversary has the additional power to set one of the value
as per need. Four of the eight group 2 compression functions (f15, f17, f19 and
f20 in [12]) of PGV function family [38] are strong invertible. Observe that a
strong invertible function can simulate a weak invertible funtion, and thus, it is
a stronger notion of invertibility.

3 Attack Structures and Known Results

3.1 Some Attack Structures

Joux Multicollision. Joux in his seminal paper [25], gave a novel method
to get 2k-multicollision set of f+ by successively applying birthday attack k
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times (as illustrated in the figure below). Note that, the structure does not
need space for all the 2k elements, as it can be simply described by only 2k
message blocks. The number of computations for this structure is O(k · 2n/2).

h0 hk

m1

m′1

m2

m′2

mk−1

m′k−1

mk

m′k

≡≡ h0 hk

k

Fig. 3: Joux multicollision structure and its shorthand representation in R.H.S.

Kelsey-Schneier Expandable Message. Kelsey and Schneier extended
the Joux multicollision idea to get an expandable message set (see
the illustration below and [28] for details). Like Joux multicollision,
we can also represent this set by about 2k + 1 message blocks. The
construction of this structure requires O(2k + k · 2n/2) computations.

h0 hk

m1

|m′1| = 2

m2

|m′2| = 3

mk

|m′k| = 2k−1 + 1

≡≡ h0 hk

k

Fig. 4: Kelsey Schneier expandable message and its shorthand representation in R.H.S.

Diamond Structure. A 2k Diamond D is a complete binary tree with 2k leaf
nodes, where each node represents a chaining value and the directed arc (h, h′)
with label m represents the transition f(h,m) = h′. The set of leaves and the
root node of D will be denoted by Dl and hD, respectively. Based on the direction
of edges, we can have two different types of diamond structure:

1. Converging Diamond [27], where the direction of arcs is from the leaves to

the root node. It takes O(2
n
2 + k

2 ) computations to build this structure us-
ing forward queries only [27, 30]. If the adversary has access to a strongly
invertible interface, then this structure can be built in O(2k) backward com-
putations. In this later case, this structure is also referred as inverse dia-
mond [14].

2. Diverging Diamond, where the direction of edges is from the root node to
the leaves. It takes O(2k) computations to build this structure using forward
queries only.

hk hk

(a) (b)

2k 2k

Fig. 5: Shorthand for (a) 2k-converging diamond, (b) 2k-diverging diamond.

Collision between Lists. Given two lists L1 and L2 of size 2k and 2n−k re-
spectively, with high probability we can find a collision between these lists. Note
that one of the lists can be generated run-time while finding collision. This
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technique is called hitting and is very useful in finding a linking string3 from
a random chaining value to a chain. Meet-in-the-middle is a special case of the
two list collision in which, one of the list is created by making forward queries
and the other list by backward queries. This technique is extensively used for
constructing attacks or structures.
Apart from these, several other examples of attack structures are available in the
literature. Kite structure [4, 40] (which is nothing but a combination of diverging
and converging diamond structures) has been used to construct second preimage
attack on Dithered hash and Hash Twice. Similarly, Interchange structure [31]
has been used by Leurent and Wang to construct a preimage attack in less than
2n online computations on XOR combiners.

3.2 Known Attacks on Zipper Hash

Chosen Target Forced Suffix Attack. Andreeva et al. [3] proposed a mod-
ified version of herding attack which works on forced-suffix. The attack is illus-
trated in fig. 6. In the offline phase, the adversary first creates a (k · n2 +(n−k))-
cycles Joux multicollision J with endpoint ha, using f1 computations. The first
k · n2 cycles of J are used in reverse, to build a 2k-converging diamond D using
f2 computations, and hD is committed as the target hash value. In the online
phase, after getting a suffix S from the challenger, the adversary first computes
hc = f+

2 (f+
1 (ha, S), Srev), and then uses the last (n− k) cycles of J in reverse,

to get a linking message to D. The path from hc to hD gives the required prefix.

iv
ha

hb

hb
hc

h

k · n
2 n− k

S

Srev

Fig. 6: Herding Attack on Zipper Hash [3]

Second Preimage Attack with Strong Invertible f1. Chen et al. [14] pro-
posed a second preimage attack on Zipper hash with strong invertible f1. As illus-
trated in fig. 7, the attack works in two stages. In the offline phase, the adversary
starts from a random chaining value hm and creates an n-cycles Joux multicol-
lision J with endpoint ha, using f2 computations. The adversary then creates
two lists L1 and L2 of 2n/2 messages each, by splitting J in the middle. Starting
from ha an expandable message set E is created to counter the length padding.
In the online phase, hitting technique is used to find a linking string m between
hb and the second pass chain. The index of hitting i(say) fixes the prefix of sec-
ond preimage message. Now the adversary computes hc = f+

1 (iv,m0, i‖m‖∗),
3 A string is a concatenation of one or more message blocks.
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where ∗ is the message of appropriate length drawn from E . Meet-in-the-middle
technique is used to connect hc and hm using block-wise reverse of messages
in L1 and L2, respectively. The path from iv to hm gives the required second
preimage.

iv h2t

h2t

h2t−i

h

hm

hahb

hi

hj

m0,i

n

κ

Me

Fig. 7: Second preimage attack over Zipper hash with strongly invertible f1 [14].

4 Attacks on Zipper Hash

In this section, we present (second) preimage and herding attacks on the zipper
hash design. The second preimage attack requires Õ(2n) precomputations to
construct a structure of O(n) size. This structure is similar to the rho structure
in the Pollard rho cycle detection algorithm, so we refer it as the rho structure.
We start off with the construction of this structure, followed by our attacks on
the zipper hash.

4.1 Rho Structure

A 2k-rho structure is a rho-shaped structure with a unit cycle length, i.e., a self
loop and a tail of size 2k denoted by Tρ. Moreover the labels for the tail as well
as the self-loop are the same (which is m in Fig. 8). We denote the start of rho
by hsρ; the tip of rho by htρ; and the rho label by mρ.

h0 h2k
m m m

m

≡≡ hsρ htρ

mρ

Tρ

2k

Fig. 8: Rho structure and its shorthand representation.

Based on the properties of the underlying compression functions, the rho struc-
ture can be constructed in two ways:
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Under Random Oracle Assumption. When the underlying compression
functions f1 and f2 behave as random oracle, the construction follows:

1. In the first phase, a fixed point chaining value h and the corresponding
message block m is found for the given compression function.

2. In the second phase, the aim is to construct a 2k-blocks chain to the fixed
point found above using the block m repeatedly. This is done by choosing a
random chaining value, and repeatedly applying m. In at most 2n computa-
tions, it is expected that the chain will hit h.4

Both fixed point finding and the rho tail construction takes Õ(2n) computations.
The construction requires O(n) offline memory for book-keeping.

Under Multiple Fixed Points Assumption. A compression function is said
to have multiple fixed points weakness, if computing multiple fixed points for a
given message string is easy. Some of the insecure PGV schemes [38] have this
property. Though we do not have knowledge of any practical scheme exhibiting
this property, under this weak assumption the rho structure can be constructed
in less than 2n computations. The construction steps are as follows:

1. The fixed point algorithm queries a multiple fixed point oracle internally. It
will return a list L of 2n/2 fixed points and corresponding message block m.

2. The rho construction algorithm applies the 2k chain construction technique
on each element of a list C1 of 2n/2 randomly selected chaining values. But
here the process stops at 2k steps. Suppose the set of endpoints of these
chains be C2. The algorithm then applies list collision between L and C2 to
find the required tip of rho from L and the tail of rho from C1.

The multiple fixed point finding step requires Õ(2n/2) oracle calls and the rho
tail construction requires Õ(2k+ n

2 ) computations. So, for k < n
2 the construction

requires less than 2n computations. The algorithm requires O(2n/2) memory for
storing L, C1 and C2.
The rho structure can also be extended, in which case, a 2k long chain is com-
puted from the tip of rho.5

4 Note that, we leave out the cases in which either h is reached before 2k or there is
a cycle in the path. In these cases, one can start with a new node to reach already
obtained nodes from which the tip node is reachable.

5 Note that, this requires either a different message block (other than mρ) or a different
compression function computation (say f2).
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h0
1

h0
2

h0
i

h0
2n/2

h2k−2
1

h2k−2
2

h2k−2
i

h2k−2

2n/2

m2k−2

m2k−2

m2k−2

m2k−2

m

m

m

m

Fig. 9: Illustration of rho construction in multiple fixed points case.

4.2 Second Preimage Attack

The problem of a long-message second preimage attack on the zipper hash con-
struction is to the best of our knowledge an open problem. Though, Chen and
Jin showed a second preimage attack on the zipper hash design with weaker
compression functions [14], but the general zipper hash design has seen fewer
analysis. The forced-suffix attack by Andreeva et al. [3] is the only substantial
attack on this design. The difficulty lies in three facts.

1. First, f1 and f2 are independent, i.e., the two pass scheme can use completely
independent compression functions for the two passes.

2. Second, the message blocks which are processed last in the first pass are
processed first in the second pass.

3. Third, and a bit easier problem is to accommodate the length padding op-
erations.

These three facts compel the adversary to fix the meeting point of first and
second pass operations in such a way that it does not violate the message block
symmetry and incorporates the padding rule. This makes it hard to apply known
attack techniques and structures[28, 27, 4, 2], which generally work for the
iterated hash designs and its variants. We present here a second preimage attack
that requires less than 2n online computations.

The attack requires a one-time Õ(2n) precomputation. This is similar to the
TMTO attack technique (as discussed in section 2). The attack can be sum-
marised as follows:

1. In the precomputation phase, a 2k rho structure is computed using f1 com-
putations.

2. In the online phase, the padding block is applied after the tip of rho and the
structure is extended using f2 computations.

3. From the endpoint ha of the extension, a 2n−k Joux multicollision J is
constructed using f2 computations.
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4. From hb a [t, 2t + t − 1] expandable message set E is computed. This takes
care of the length padding.

5. From hc hitting technique is used to compute a one block connection to the
second pass chain. This fixes the message length for E (set to i− 2k − (n−
k)− 1).

6. Suppose the walk from hb to h is ω and hd = f+
1 (iv, ωrev). At last, the

messages from J are used in block-wise reverse fashion to get a link with
Tρ.

7. The walk from iv to htρ gives the required second preimage message.

iv ht

ht

hd

hi
h

hsρ
htρ

ha

hbhc

2k 2k

n− k M

Fig. 10: Second preimage attack on Zipper hash.

Clearly, the precomputation phase costs, Õ(2n) in a random oracle model and
Õ(2n/2+k) in multiple fixed points oracle. Assuming k ≤ n

2 , and a 2t blocks

message (where t = O(k)), the overall online complexity is Õ(2n−k). For k = n
2

this optimises to Õ(2n/2). Note that, in the above algorithm as the message size
increases beyond O(2n/2), the complexity increases.

4.3 Preimage Attacks

The preimage security of zipper hash has not been studied up until now. With
an assumption, that the finalisation function is identity, we are presenting two
preimage attacks on the zipper hash. The first attack requires a weak invertible
f2, and the second attack requires a strong invertible f2.

Using Weak Invertible f2 The preimage attack is similar in its philosophy
to the second preimage attack discussed in 4.2. It uses a precomputed 2n/2 rho
structure where the fixed point is computed on f2. The complete attack can be
summarised as follows:

1. In the precomputation phase, a 2n/2 rho structure is constructed where the
tail is constructed using f1 and the tip is computed using f2. From the tip
of rho, a 2n/2 Joux multicollision set J is constructed.
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2. In the online phase, meet-in-the-middle is used to find a two block linking
message between hb and the target hash value h.6 The two block string is ω
(say) and hc = f+

1 (iv, ω) (say). The last step is to use the messages from J
in block-wise reverse fashion to get a matching with Tρ. The walk from iv
to htρ gives the required preimage message.

iv

hsρ htρ

hbh

hc

2n/2

n/2 M

Fig. 11: Preimage attack on Zipper hash with weak invertible f2.

All the online computations cost Õ(2n/2) and hence the overall online complexity
is Õ(2n/2). The offline phase requires Õ(2n). The offline complexity becomes
Õ(2k+n/2) for multiple fixed points assumption, in which case, the complexity
becomes Õ(23n/4) and memory complexity reduces to Õ(2n/4) for k = n

4 .

Using Strong Invertible f2. If the underlying f2 function is strong invertible
then we can easily construct a preimage attack using Joux multicollision struc-
ture and meet-in-the-middle technique. The complete attack can be summarised
as follows:

1. In the first phase, starting at iv a 2n Joux multicollision J is constructed
using f1. J is then divided into two sets M1 and M2 of n

2 cycles each.
2. In the second phase, messages from M1 and M2 are used in block-wise

reverse to construct a meet-in-the-middle attack between ha and the target
hash value h. The block-wise reverse of the linking message between ha and
h gives the required preimage.

Each step requires Õ(2n/2) computations. So, the overall computational com-
plexity is Õ(2n/2) each.

Application to Herding Attack on Zipper Hash If the underlying f2 function of
the zipper hash is strongly invertible then, the adversary can use the preimage
attack procedure, to herd any prefix or suffix to a target hash value.

6 Note that, here we are assuming that f2 produces random and distinct preimages at
each invocations.
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iv ha

hah

n

M1 M2

Fig. 12: Preimage attack on Zipper hash with strongly invertible f2.

5 Attacks on Relaxed Zipper Hash

As noted in the last section, the independence of the underlying compression
functions is an important requirement for the security of zipper hash. But, since
the construction is two-pass, it might seem fair to use a single compression
function in both the passes. We show here, that doing so will have catastrophic
effects on the security of the construction. We present here (second) preimage
attacks that exploit the f1 = f2 condition, to bring down the security from n
bits to n

2 bits. The second preimage attack requires a double-pipe expandable
message set that can handle the length variations for two independent hash
computation walks. We will begin with a discussion on the construction of this
structure, followed by our attacks.

5.1 Double-Pipe Expandable Message Set

A double-pipe expandable message set is essentially an expandable message set
but with an additional constraint that the expandable message set property
should hold for two independent hash computation walks (chains). The Formally,

For two compression functions f1 and f2 and a message m, a double-pipe is
the pair of walks (ω1, ω2) generated by independent hash computations on
f1 and f2 starting from arbitrary chaining values h1 and h2 respectively.

With this definition in mind, it is easy to define the double-pipe expandable
message set as,

A [a, b] double-pipe expandable message set is an [a, b] expandable message
set for each of the components of the double-pipe setting.

In other words, a double-pipe expandable message set can simultaneously provide
us with expandable message set for two independent hash computation chains.
This can be useful in constructing attacks on multi-pass and hash combiner
schemes.

Before indulging ourselves in the construction of a double-pipe expandable mes-
sage structure observe that similar notion exists for Joux multicollision. For
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example, to get a single collision on double-pipe (see figure 13), we need 2n/2

multicollisions on the first pipe so that we get 2n/2 messages to get a single
collision on the second-pipe, i.e., a single collision on double-pipe will have n

2
number of blocks in each arc.

ha hb

hc hd

n/2

Fig. 13: Single collision in double-pipe.

Therefore, to get a single double-pipe collision, we need O(n2 ·2
n/2) computations.

It is easy to observe that finding 2k double-pipe multicollisions require O(nk2 ·
2n/2) computations (k single double-pipe collisions).
Now, we will extend this idea to a double-pipe expandable message set. Sup-
pose, while constructing a normal [k, 2k + k − 1] expandable message set E , we
inserted a 2n/2 Joux multicollision after each cycle (illustrated in figure 14) of
the expandable message set. This gives us a [nk2 + k, 2k + nk

2 + k − 1] expand-
able message set for the first pipe. Now, for the second pipe, we construct the
expandable message as follows:

1. For each cycle from E , construct two separate walks α and β.
2. Use the intermediate 2n/2 Joux multicollision to collide α and β.

This will give a [nk2 + k, 2k + nk
2 + k− 1] double-pipe expandable message set E ′ .

Note that, if the second pipe uses block wise reverse of messages with respect
to the first pipe, then the multicollision structure should be inserted before each
cycle.

h0 hk

h00 hkk

|m1| = 1

|m′1| = 2

n/2 |m2| = 1

|m′2| = 3

n/2 |mk| = 1

|m′k| = 2k−1 + 1

n/2

|x1| = n
2 + 1

|x′1| = n
2 + 2

|x2| = n
2 + 1

|x2| = n
2 + 3

|xk| = n
2 + 1

|x′k| = n
2 + 2k−1 + 1

Fig. 14: A [nk
2

+ k, 2k + nk
2

+ k − 1] double-pipe expandable message set.

Clearly it takes O(2k +(nk2 +k) ·2n/2) computations to construct a [nk2 +k, 2k +
nk
2 + k − 1] double-pipe expandable message set. Observe that the double-pipe

expandable message set can be generalised over multiple pipes. This has been
discussed in [24].
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5.2 Second Preimage Attack

This attack uses a variant of the chain structure [24] in which we only store the
even indices. The attack is similar to the previous one with some critical changes
in the handling of length padding. The complete attack (illustrated in fig. 15)
can be summarised as:

1. First, a 2k+1−1 simple chain structure is computed using the padding block
of m, storing the even indices in C.

2. From the endpoint hb of C, a 2n−k Joux multicollision J is constructed.
3. From the endpoint hc of J first pipe DE1 of a [nk2 + k, 2k + nk

2 + k − 1]
double pipe expandable message DE is constructed and from its endpoint hd
a [t, 2t + t− 1] expandable message set E is constructed.

4. From the endpoint he of E hitting technique is used to compute a one block
connection to the second pass chain. This fixes the message length from E
(set to i− 2k − nk

2 − n− 1).

5. Suppose the walk from h to he is ω and hf = f+
1 (iv, ωrev). From hf the

messages in DE1 are used to construct the second pipe DE2 of the double
pipe expandable message set DE . This will help in compensating for the
length uncertainty produced by the chain collision in next step.

6. Now, the messages from J are used in block-wise reverse fashion to get a
matching with C. This fixes the lengths of messages in DE1 and DE2 (set to
nk
2 + k + j

2 ), for matching at index j in C). The midpoint from index j to
2k+1 is shown as hm.

7. The walk from iv to index hm in the chain structure gives the required second
preimage message.

iv ht

ht

hf

hg

hi
h

ha
hm hb

hc
hd

he

2k+1 − 1
n− k M

Fig. 15: Second preimage attack on Relaxed Zipper Hash.

Note that, the precomputation phase is not necessary for this algorithm. The
computational cost can be analysed in four parts,
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1. The chain structure takes Õ(2k) computations.
2. The double pipe expandable message set takes O(2k + (nk2 + k) · 2n/2) com-

putations.
3. The expandable message set E and the Joux multicollision cost O(2t + t ·

2n/2 + 2n−k).
4. The hitting process takes O(2n−k) computations.

For t = O(k) and k = n
2 the overall complexity becomes O(2n/2). The memory

complexity is O(2k). As in 4.2, the complexity increases as the message size
increases beyond O(2n/2).

5.3 Preimage Attack

As in 5.2, the preimage attack on the relaxed zipper hash uses a 2
n
2 +1− 1 chain

instead of the rho structure and hence does not require any precomputation. The
attack (illustrated in fig. 16) is similar to the previous attack on zipper hash.
The complexity analysis is also similar to the previous attack.

iv
hd

h

ha
hm hb

hc

2
n
2
+1 − 1

n/2 M

Fig. 16: Preimage attack on Relaxed Zipper Hash with weakly invertible f2.

6 Attacks on Concatenated Hash

In this section, we present two attacks on concatenated hash. The first attack is a
second preimage attack on concatenated hash with a strong invertible component
and the second attack is a preimage attack on concatenated hash with one weak
and one strong invertible component.

6.1 Preimage Attack on Concatenated Hash

Hoch and Shamir [22] proved that the concatenated hash combiner has n
2 bits

security when both the underlying compression functions are strong invertible.
Here we show that the bound is tight even when one of the compression function
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is only weak invertible. The attack as illustrated in fig. 17 can be summarized
as follows:

1. For the weakly invertible component, we start at iv1 and compute a 2n Joux
multicollision set J . Divide J into two sets M1 and M2 of n

2 blocks each.

2. From the target hash value compute 2n/2 random chaining values using
the weakly invertible interface, and compute 2n/2 random chaining values
from ha using forward queries. Use these two sets of 2n/2 chaining values to
compute a 2-block message x between ha and h.

3. Invert the strongly invertible component on x from g and then useM1 from
iv2 and M2 from ga to construct a meet-in-the-middle attack. The walk
from iv2 to g will give a preimage in both the components, and hence in the
concatenated hash.

iv1
ha

h

hb

hc

hd

he

iv2 ga
g

n

Fig. 17: Preimage attack on concatenated hash.

The attack requires construction of a Joux multicollision set and meet-in-the-
middle attack on lists of 2n/2 size. So, the complexity is Õ(2n/2). Note that,
this attack is a minor improvement over the attack suggested by Leurent and
Wang in [31]. The earlier attack works only when both the components are
strong invertible, whereas, our attack works for a relaxed condition. This shows
that the bound computed by Hoch and Shamir in [22] is tight when one of the
components is only weak invertible.

6.2 Second Preimage Attack on Concatenated Hash

Here we assume that both the components are iterated hash and one of the
component is strong invertible. Under these assumptions, we can construct a
second preimage attack on the concatenated hash as follows:

1. For the non invertible component, start from iv1 and compute a 2n Joux
multicollision set J .
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2. From the endpoint of J construct a Kelsey-Schneier long-message second
preimage attack [28] on the rest of the chain. Together with the multicollision
set, this step gives 2n second preimages for the non invertible component.

3. For the strongly invertible component, divide J into two sets M1 and M2

of n
2 blocks each. Invert the strongly invertible component on the second

preimage string found in step 1 till hi. Say this inversion ends at ga.
4. Now, we construct a meet-in-the-middle attack between iv2 and ga using
M1 and M2 respectively to get the valid second preimage message.

The attack has similar complexity as in the Kelsey-Schneier attack [28], i.e., the
complexity becomes O(2n/2) in the optimal case and increases as the message
size increases beyond O(2n/2).

iv1

h1

hi
h

h2

iv2 ga
g

n

ω
′

x

Fig. 18: Second preimage attack on concatenated hash.

7 Conclusion

In this paper, we have presented the first generic second preimage attack on
zipper hash function and its relaxed variant (f1 = f2). We have also investi-
gated the different attacks possible on zipper hash due to the weaknesses in the
compression functions. Though the zipper hash is of lesser practical significance
(due to its two pass nature), it is our belief that the results in this paper are
important, as they show that even after an additional pass, this scheme has some
security flaws. Particularly, our result on the relaxed variant of zipper hash is
quite strong and surprising as it requires less than O(2n) offline as well as on-
line computations. Our attacks on the general zipper hash design falls under the
TMTO attack category [21], where the adversary is allowed a one time large
precomputation of O(2n). The second preimage attack on the general zipper
hash follows the time memory trade-off relation, TM = 2n. In tables 1 and 2,
we have summarised the attack complexity results for the zipper hash function
and its relaxed variant.
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Attacks Offline Com-
plexity

Online Com-
plexity

Remarks

Second Preimage Attack
(see section 4)

Õ(2n) Õ(2n−k + 2k +

2n/2)

The online complexity optimises to

O(2n/2) for k = n
2 . Note that the of-

fline cost becomes Õ(2k+n/2) for multi-
ple fixed points oracle, i.e., the complex-

ity reduces to Õ(23n/4) for k = n
4 .

Preimage Attack (see
section 4)

Õ(2n) Õ(2n/2) This attack works for weak invertible f2.

The complexity becomes Õ(23n/4) for
multiple fixed points oracle.

Preimage Attack (see
section 4)

Õ(2n/2) Õ(2n/2) This attack works for strong invertible
f2.

Herding Attack (see sec-
tion 4)

Õ(2n/2) Õ(2n/2) This attack works for strong invertible
f2, and utilises the preimage attack tech-
nique.

Table 1: Complexity results for attacks on zipper hash.

Attacks Offline Com-
plexity

Online Com-
plexity

Remarks

Second Preimage Attack
(see section 5)

Õ(2n/2 + 2k +

2n−k)

The complexity optimises to Õ(2n/2) for
k = n

2 .

Preimage Attack (see
section 5)

Õ(2n/2) Õ(2n/2) This attack works for weak invertible f2.

Table 2: Complexity results for attacks on relaxed zipper hash.

We also give two attacks on the concatenated hash that show the tightness of
bounds computed by Hoch and Shamir [22] for concatenated hash with weak
compression functions. In table 3 we sumarise the attack complexity results for
the concatenated hash function.

Attacks Offline Com-
plexity

Online Com-
plexity

Remarks

Second Preimage Attack
(see section 6)

Õ(2n/2 + 2k) Õ(2n−k) This attack works for one strongly invert-
ible. The offline and online complexity

optimises to Õ(2n/2) for k = n
2 .

Preimage Attack (see
section 6)

Õ(2n/2) This attack works for one weakly invert-
ible and one strongly invertible compo-
nent.

Table 3: Complexity results for attacks on concatenated hash.
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