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Abstract—The challenge of maintaining confidentiality of
stored data in cloud is of utmost importance to realize the
potential of cloud computing. Storing data in encrypted form may
solve the problem, but increases the security issues and diminishes
the essence of cloud while performing operations on cloud data
by repeated decryption-encryption. Hence, Fully homomorphic
encryption (FHE) is an effective scheme to support arbitrary
operations directly on encrypted data. Further, cloud mostly
acts as storage database, hence secured sorting and searching
of FHE cloud data can be an effective field of research. We have
investigated the feasibility of performing comparison as well as
partition based sort on CPA resistant FHE data and highlight
an important observation that time requirement of partition
based sort on FHE data is no better than comparison based
sort owing to the security of the cryptosystem. We identify the
recrypt operation, which is the denoising step of FHE as the main
reason of costly timing requirement of such operations. Finally,
we propose a two stage sorting technique termed as Lazy sort
with reduced recrypt operation, which proves to be better in
terms of performance on FHE data in comparison to partition
as well as comparison sort.

Index Terms—Cloud, Searching, Sorting, Fully Homomorphic
encryption.

I. INTRODUCTION

CLoud services provide a low cost approach to use large
shared resources in the domain of data storage and

management. However, due to possibility of public access
to the information in cloud, cloud security is an important
area of research nowadays. Confidentiality of data can be
maintained by storing the encrypted form of data in the
cloud. This process assures the security but imposes extra
challenges in case of performing any operation on such data.
Each time it is required to bring the data back to process in
unencrypted domain in the client side. This leads to several
security issues as the ciphertext is continuously exposed to
the adversary. Furthermore, if the computations are performed
at the client side, the basic objective of cloud computing is
defeated. Hence, it is required to perform direct processing
on encrypted data and this is supported by homomorphic
encryption scheme. With this scheme the notion of delegating
the ability to process secured data without giving access to it
was first introduced in [1]. However, Gentry in his work [2],
introduced the concept of performing arbitrary manipulations
like addition, multiplication etc on encrypted data without the
knowledge of secret key and it is termed as fully homomorphic
encryption. The basic idea of Fully Homomorphic Encryption
(FHE) is as follows: Consider the messages m1, . . . ,mt,
which are encrypted to the ciphertexts c1, . . . , ct with the FHE
scheme under some key. For any polynomial time computable

function f , the FHE scheme allows anyone to efficiently
compute a ciphertext that decrypts to f(m1, . . . ,mt) under
the secret key.

In recent few years, works on different approaches on
FHE schemes have been reported in literature. Fundamental
encrypted additions and multiplications on single bits are
defined in [2] and implemented using integers in [3] and
[4]. A survey and further efficiency enhancement on fully
homomorphic encryption has been reported on [5] and [6].
In [7] and [8] some advancements have been proposed to
implement faster encryption schemes. However, all such re-
search mainly aim to achieve an increased efficiency of the
homomorphic encryption schemes. In [9], [10], Brenner et.al
have proposed an encrypted processor to perform encrypted
operations. However, implementing operations on encrypted
data is not very straightforward as it is done on unencrypted
data and works are very limited on investigating how to define
practical operations over fully homomorphic data. However,
such techniques can be fundamental to apply FHE on cloud
data to allow computations over encrypted data in the cloud
server without decryption. This motivates us to investigate how
different operations can be defined on FHE cloud data. Since,
cloud mainly acts as storage database, searching and sorting on
stored encrypted data can prove to be very important opera-
tions. In this work, we investigate how to actually perform
these two operations directly on FHE data. We propose a
method for encrypted data search, in which an encrypted data
(to be searched) should be send to cloud server where the
database with encrypted data is residing. The entire search
operation will take place in the server without any decryption
operation and the encrypted search result is obtained. Our
security analysis further confirms that the final search result
should be encrypted otherwise the cryptosystem is prone to
CPA attack [11].

Further, sorting has attracted a great deal of attention
in computer science research. This theoretically interesting
problem of information-shuffling has practical significance
in cloud database. However, to the best of our knowledge
not much work has been reported to sort data in encrypted
domain. In [12], an initial effort has been made to tackle the
problem of comparison based sort on FHE data. Present work
targets to find an answer to another very important question:
can any type of sorting be performed on FHE encrypted
data? Since, efficiency is a major challenge in homomorphic
domain, partition based sorting can be the first choice over
comparison based sort due to the fact that partition based sort
works on O(nlogn) time to sort n numbers of unencrypted
data. However, our analysis reveals an interesting result that
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contrary to unencrypted domain, partition based sort provides
the same time complexity (even poorer performance) with
comparison based sort for encrypted data. In this context,
we provide a formal proof to support that if an adversary
is capable of performing traditional partition based sort on
FHE data on an encrypted array, then the encryption scheme
is prone to chosen plaintext attack (CPA). We show that to
perform partition based sort (like Quicksort) one needs to
not only encrypt the information, but also the indices of the
array. This paper shows that an index encryption allows one to
partition the array, but ensuring that the adversary is unable to
perform CPA. Further this paper first points out the problem of
handling recursion in encrypted domain and hence an iterative
approach of quicksort is implemented with encrypted data
using specialized stack-functions. In conclusion, implementa-
tion results are provided to support our analysis that the FHE
Quicksort provides no additional advantage over comparison
based sort, like FHE Bubble Sort and Insertion sort. Finally,
we propose a two staged sorting technique, LazySort with
reduced number of Recrypt operation, which is the de-noising
step of FHE scheme. Since, recrypt is one of the costly
FHE operations, our analysis shows how efficient reduction of
recrypt operation increases the efficiency of sorting. Detailed
experimental results show that LazySort is a better choice in
terms of performance over comparison or partition based sort
in case of encrypted FHE data. As a summary the contributions
of the work are:

• We develop techniques for performing search and sort
over encrypted data.

• We show that partition based sort over encrypted data
does not perform better than comparison sort.

• We highlight the problems of handling recursion on
encrypted data with underlying unencrypted processor
and show that encrypted indices and encrypted stacks
should be realized to support it.

• The security of the underlying FHE has been linked to
the operations of searching and sorting.

• We present a technique called Lazysort to show that
suitable reductions of costly recrypt operation is a way to
improve the efficiency of computations over FHE data.

The overall paper is organized as follows: section II de-
scribes the basic concepts of homomorphic encryption and
the Scarab library to design homomorphic modules. Section
III describes how FHE is related to cloud computing and
few related works with respect to encrypted searching and
sorting. In section IV we explain the relation between security
and search operation on a cryptosystem in the light of CPA
and Section V discusses about the proposed search algorithm
on FHE data and design of the related submodules. Section
VI explains the proposed comparison sort technique with en-
crypted swap operation. In section VII, we explain the security
analysis of performing comparison as well as partition based
sort on FHE data and in section VIII we show that partition
sort is actually feasible on encrypted data handling along
with different design challenges of implementing encrypted
operations on underlying unencrypted processor. However, in
section IX our timing analysis proves that partition based sort

does not provide any gain over comparison sort in case of
encrypted data, hence finally in section X we propose a two
stage sorting scheme with minimized recrypt operation which
helps to make the encrypted sorting efficient. Section XI and
section XII include experimental details and final conclusion.

II. PRELIMINARIES

The main objective of this paper is to investigate the
searching and sorting operations on FHE cloud data. Before
discussing the operations, here we first discuss a few words
about the FHE scheme. Fully Homomorphic encryptions pro-
vide a mechanism to perform arbitrary computations over
encrypted data. The promise shown in the work of Gentry [13]
had been followed by several improvements to develop more
efficient realizations of this technique, which has potential
applications for performing privacy preserving operations, so
relevant to cloud computing. In this section, we first provide
a brief outline of the FHE scheme and a popular library for
performing the basic computations based on this encryption.

A. Fully Homomorphic Encryption

Homomorphism is a structure-preserving transformation be-
tween two sets, where an operation on two members in the
first set is preserved in the second set on the corresponding
members. Let P and C be sets with members p1, p2 ∈ P ,
T is a transformation with an operation ⊕ between the two
sets with its reverse function T ′ and an operation 	. The
system is homomorphic, if ∀(p1, p2) ∈ P , (p1 ⊕ p2) =
T ′(T (p1)	 T (p2)).

Group Homomorphic Encryption (GHE) schemes are pub-
lic key encryptions that allow to compute an operation on
ciphertexts being equivalent to some binary operation on
the corresponding plaintexts [11]. Somewhat Homomorphic
Encryption (SHE) schemes allow a specific class of functions
to be evaluated on ciphertexts. Usually this scheme supports an
arbitrary number of one operation but only a limited number
of second operation. Fully homomorphic encryption (FHE)
scheme is an extended form of group homomorphic encryption
(GHE). GHE only supports a single arbitrary operation on
plaintext (as well as on ciphertext), whereas FHE supports two
arbitrary operations (+, ∗) on plaintexts (as well as (⊕,�) on
ciphertexts).

Gentry defined a FHE scheme which is outlined next. The
scheme has the security paramter λ, and sets N = λ, P = λ2,
Q = λ5. The scheme also uses two integer parameters 0 <
α < β and the following algorithms:
(a) KeyGen(λ): Generate a random P -bit odd integer, p. A

set −→y = {y1, y2, . . . yβ} is generated such that yi ∈ [0, 2).
Out of these elements, there must exist a sparse subset
S ⊂ −→y of α elements, such that

∑
yj∈S(yj) = 1

p mod 2.
Set sk to be a binary encoding s of the sparse subset S,
where s = (0, 1)β . Set pk ← (p,−→y ).

(b) Encrypt(pk,m): Obtain the ciphertext c = m′ + pq,
where m′ is a random N -bit integer st. m = m′ mod 2.
Generate −→z : zi ← c.yi mod 2. Return c∗ = (c,−→z ). In
the rest of the paper, we shall mention Encrypt(pk,m)
as Encrypt.
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(c) Decrypt(sk, c∗): Output LSB(c) XOR LSB(b
∑
t Stzte),

where LSB() returns the least significant bit of the input,
and b.e returns the nearest integer to the input. Decryption
works since (up to small precision errors)

∑
t Stzt =∑

t cStyt = c
p mod 2.

It can be argued that the above encryption allows quite won-
derfully arbitrary computations on encrypted data. Thus we
can define operations like Evaluate(f, c1, . . . , ct), where f is
an arbitrary operation on the ciphertexts, c1, . . . , ct. The result
of the computation is always a ciphertext, c whose decryption
would be same as the function f applied on the plaintexts
corresponding to, c1, . . . , ct. However, the decryption can be
erroneous if the noise (measured as c mod p increases. In
order to reduce the error during the computations, there is an
additional operation, called Recrypt which takes the ciphertext,
c and produces another ciphertext, say c′ which corresponds
to the same plaintext, but with a reduced noise level. The
operation is done by allowing to compute the decryption
function, as the function f in the Evaluate function.

However, direct application of Gentry’s FHE scheme has
performance issues, hence lots of improvements and ap-
proaches from alternate assumptions have been proposed in
[3], [14]. In our work, while performing homomorphic oper-
ations, we have re-used the homomorphic modules proposed
in Scarab library [15].
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Fig. 1. FHE processing on cloud data

III. WHY FHE IS ESSENTIAL IN CLOUD COMPUTING?

In recent years, privacy enhancing technologies in the
context of cloud computing is an interesting area of research.
Cryptographic solutions provide a possible solution to main-
tain confidentiality of stored data in cloud server [11], but
it requires repeated decryption-encryption for any processing
of cloud data. In this scenario, cloud can evaluate arbitrary
functions directly on encrypted data without learning the result
and having access to the secret key, if cloud data is encrypted
with FHE scheme. Figure 1 shows how simple addition can
directly be processed on FHE encrypted cloud data in the cloud
server without the knowledge of secret key.

Till date FHE is considered to be impractical due to the slow
performance and trusted server-side software is considered
to be cheap and easy-to-implement alternatives to FHE [11].
However, in the field of cloud computing usage of secure hard-
ware limits the power of outsourcing computations due to the
limitation of required hardware. Further, the trusted hardware
is usually very resource constrained. Some other approaches

like Yao’s Garbled circuits [16] suffer from a major drawback,
that they need to be rebuilt for different inputs. Gennaro et al.
[17] proposed how this limitation can be sorted with the use
of FHE as black box. Other solutions like twin clouds [18]
and token based cloud computing with additional hardware
[19] also suffer due to lack of parallelization scope. In this
scenario, FHE is a major solution to provide confidentiality to
cloud computing.

As mentioned in [11], “it must be emphasized that homo-
morphy is a theoretical achievement that merely lets us arith-
metically add and multiply plaintexts encapsulated inside a
ciphertext. In theory, this allows the execution of any algorithm
complex manipulations like text replacements or similar, but
putting this to practice requires the design (compilation) of a
specific circuit representation for the algorithm at hand. This
may be a nontrivial task”. To address this issue we choose
two widely used operations sorting and searching which are
very relevant to cloud computing databases and investigate
how they can be realized by FHE operations.

A. Related works

The problem of searching on encrypted data was first
considered explicitly by Song, Wagner and Perrig in 2001
[20]. However, this problem was addressed long back in [21]
and [22]. The simplest way to perform encrypted data search
by deterministic encryption scheme (or property-preserving
encryption) suffers from security issues of leaking information
[23]. Again the use of functional encryption (FE) performs
slow search but better security [24]. Some other encrypted
search operations are proposed in [25]–[27] and [28]. How-
ever, all these encryption schemes along with attribute based
encryption do not support arbitrary operations on cloud data.
Performing arbitrary operations on encrypted data is only pos-
sible if data is encrypted with Fully homomorphic encryption
schemes. In [9], [10] confidential search with homomorphic
cryptography is explored However this search scheme used
the concept of an obfuscated Bloom Filter, which requires
the knowledge of unencrypted database to reduce the search-
space by constructing an initial data-structure. The secrecy
of the data searched is also maintained by relying on the
obfuscation used and not on the underlying encryption used,
thus weakening the security of the scheme. In [29], authors
propose the idea of order preserving indexing to compare
encrypted ciphertext. The data owner (client) uses a trap-door
to compute the index which is randomized and provided to the
service provider (cloud server). The randomization prevents
the leakage of the trap-door. However, as the authors mention
that if FHE schemes like [5] are used, the order preserving
indices will not remain randomized well. Furthermore, the fact
that the service provider can determine the relative ordering of
plaintexts from ciphertexts can have potential security implica-
tions [30]. In present literature, works on encrypted sorting are
also very limited. In [31], few sorting techniques on somewhat
homomorphic encrypted data have been discussed. In [32],
homomorphic sorting is explored where data is encrypted
with additive homomorphic encryption. However, for cloud
servers where arbitrary data is stored encrypted with FHE
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schemes, dedicated techniques are required for performing
specific operations. To emphasize, although theoretically FHE
can support arbitrary computations, for efficiency we need to
develop suitable techniques of implementation.

In this paper, we consider two important operations on en-
crypted data, namely searching and sorting. To the best of our
knowledge, there is not much reported work in the literature
which discusses on the algorithmic issues and challenges faced
in implementing common operations like searching and sorting
on arbitrary FHE data (not structured data as proposed in [29]).
In this pursuit, we face several challenges, like the inefficiency
of divide and conquer strategies to reduce the run time of
the algorithm. We link the limitations to the fact that the
encryption is secured in the Chosen-Plaintext Attack (CPA)
sense, and we present reductions to prove that such tricks
are not viable on FHE data. On the other hand, we propose
some other techniques to make the operations of searching and
sorting more practical on FHE data. The main technique that
we propose here is the Lazy Computation. In this method,
we propose that suitably dropping the number of Recrypts,
which are the most costly step in the FHE process, one can
get an almost correct result. This can be backed up with some
other algorithms which are more efficient on such input, and
one can obtain an overall gain.

Throughout our discussion, we assume database, where data
is encrypted using FHE. However, for divide and conquer
strategies (we show with sorting as an example) the address
(index of the array in this context) is also needed to be
encrypted. In the next section, we first show the inter-relation
between the capability to search the encrypted database with
performing a Chosen Plaintext attack (CPA) on the underlying
encryption. We subsequently proceed with the proposal of the
search technique.

IV. SECURITY IMPLICATION OF THE CAPABILITY TO
PERFORM SEARCH ON FHE DATA

A. CPA security in cloud computing

CPA is an extremely practical attack model in the cloud
computing context when considering the security of data
encrypted with a public key algorithm. The reason is since the
encryption key is public, an adversary can easily obtain ciphers
for arbitrary chosen plaintexts, which makes CPA feasible.
Hence, we evaluate the implementations of our operations on
FHE (which is a public key encryption scheme) considering
CPA as a threat model.

In our work, we intend to develop a search algorithm on
encrypted cloud data. With the availability of such algorithms,
it is expected that the client can encrypt data and check if the
data is present in the encrypted database of cloud server. The
data to be searched, and the database on which the search is
performed are all encrypted. The steps of the search is thus
performed ensuring that they do not leak information of any
of the above, but the client should be certain whether the
search result is a success or failure. However, one possible
threat of performing the search is that any adversary can
send an encrypted data to the cloud and check whether it
exists in the cloud database or not (since both the encryption

algorithm and cloud server are public) and this may leak
information about the cloud database. For this reason, the
security notion should confirm that every scheme used in this
paper should be Chosen Plaintext Attack (CPA) secure, and
we relate the capability of searching on FHE data to perform
a CPA on the FHE. As mentioned in [30] a public-key en-
cryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions under a chosen-plaintext attack (or is CPA secure)
if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that:

Pr[PubKcpa
A,Π(n) = 1] ≤ 1

2
+ negl(n) (1)

Here, PubKcpa
A,Π(n) is an experiment which returns 1, when

an adversary A is able to determine whether a challenge c
corresponds to the encryption of m0 or m1, two messages
encrypted by Π. We follow the experimental set up for
Indistinguishable CPA (IND-CPA) as discussed in [33]
and perform the security analysis of searching and sorting
operations on FHE data in the subsequent sections.

enc(m  )         0

{m  ,  m }0 1

{c, c’}

{c}

Case 1: Match Found

Case 2: Match not Found

=>c is 

Adversary

(i is not 0 or 1)

{enc(m ),enc(m  )}     i            0

=>c is 

enc(m  )         1

Encryption Oracle

Search Oracle

Fig. 2. Relation between Searching on FHE data and CPA

B. Security analysis of search operation on FHE data

In this section, we consider an adversary A′(s,D), which is
capable of performing a search of an encrypted data s, over an
encrypted database, D. The adversary A′ returns 1 if the search
is successful (that implies the search decision is correct), else
returns 0.

Now we propose a CPA adversary (as shown in figure 7)
A, which uses the above adversary as a sub-routine. First,
let us see the challenge of A according to the experiment
PubKcpa

Adv,Π(n). Let m0,m1,m2, . . .mn be the messages and
A choose two arbitrary messages m0 and m1 among them.
The adversary is provided with a challenge c which is cor-
responding to the encryption of mb, where b ∈ {0, 1}. The
adversary is asked to guess the bit b, ie. to predict whether
the c corresponds to the encryption of m0 or m1. Note that if
the encryption is randomized, the adversary A has a negligible
probability of success, as repeating the encryption with either
m0 or m1 using the encryption oracle has a probability of
1/2n−1 of matching with the challenge cipher c. Considering
E as encryption scheme, r as the random number used during
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challenge c generation and r′ as the random number used by
adversary, mathematically this can be explained as:

Pr(b = b′) = Pr(b = b′|b = 0).P r(b = 0) +

Pr(b = b′|b = 1).P r(b = 1)

=
1

2
.[Pr(b′ = 0|c = E(m0, r))

+Pr(b′ = 1|c = E(m1, r))] (2)

Pr(b′ = 0|c = E(m0, r)) = Pr(b′ = 0|c = E(m0, r),

r′ = r).P r(r′ = r)

+Pr(b′ = 0|c = E(m0, r),

r′ 6= r).P r(r′ 6= r)

= 1.
1

2n
+

1

2n
(1− 1

2n
)

=
1

2n
(2− 1

2n
) (3)

Further, Pr(b′ = 1|c = E(m1, r)) is also 1
2n (2 − 1

2n ) ,
hence Pr(b = b′) ≈ 1/2n−1.

Instead, the adversary A calls the adversary A′ to an-
swer the above challenge in the experiment PubKcpa

A,Π(n).
The adversary A passes the challenge c and the ciphertext
corresponding to plaintext m0, and all the other plaintexts,
but not m1. The adversary A′ thus is given a database D
consisting of the encryptions of m0 and all other messages
(note that the ciphertext corresponding to m1 is missing). Then
the adversary A′ performs the search of the challenge cipher
c in the database and returns a response 0 or 1 according to
the success or failure of the match. It is easy to check, that
a success indicates that c is corresponding to the ciphertext
of m0. However, if A′ returns 0, then the challenge c can
correspond to either m0 or m1. Hence, A returns a random
bit b′ Thus, if A′ returns a 1, A guesses b′ = 0.

Formally, we assume Pr[A′(c,D) = 1] = ε(n) , where
ε(n) is assumed to be non-negligible. Now, Pr(b = b′) can
be realized with the following equations:

Pr(b = b′) = Pr(b = b′|A′(c,D) = 1).P r(A′(c,D) = 1) +

Pr(b = b′|A′(c,D) = 0).P r(A′(c,D) = 0)

= 1.ε(n) +
1

2
.(1− ε(n))

=
1

2
+

1

2
.ε(n) (4)

The value of Pr(b = b′) thus violates the CPA security
requirement as mentioned in equation 1. From this discussion
it is evident that if an adversary can successfully determine
the result of the search operation, the underlying encryption
scheme is vulnerable to CPA attack. Then the question arises
how to perform search over encrypted data without compro-
mising CPA security. The answer is though search operation
is being performed directly on encrypted data (without any
decryption), the search result is also encrypted. This encrypted
search result is directly delegated as the input to next operation
(if the next operation is dependent on the search result) or
it is send back to the client. Now the client can perform a
final decryption and get the result of the search. Hence, for

performing the search in the encrypted domain on the FHE
data, the final result of the search has to be encrypted to ensure
CPA security. In the next section, we discuss how encrypted
search techniques can actually be performed using modules
for performing homomorphic computations on FHE data.

V. LINEAR ENCRYPTED SEARCH ON FHE DATA

Performing search operation on a database requires two
steps: first the search item should to be compared with each
of the existing data of the database (comparison step), second
the judgment to be made based on the comparison decision
whether the item is actually present in the database (deci-
sion step). However, the encrypted comparison and decision
making should be realized with some encrypted homomor-
phic operations. In next section, we first discuss how the
modules required for encrypted search can be designed using
homomorphic operations and then explain the actual search
algorithm using those modules. All the underlying modules
are designed based on some underlying Fully Homomorphic
primitive submodules present in Scarab library [15].

A. Required submodules for implementing search algorithm
on FHE data

Our proposed search is performed based on comparing
the search item with other database elements. Comparison
basically depends on the subtraction results of FHE data,
and then the postprocessing of the results. Here are the main
submodules required for the algorithm:
• FHE subtraction FHE Sub module.
• FHE bit inversion FHE Inv module.
• FHE equality check FHE Equal module.

Fig. 3. Fully Homomorphic Subtraction

FHE subtraction module: FHE subtraction (FHE Sub
module as shown in figure 3) module outputs the subtraction
result of two encrypted data. FHE Sub module is built by per-
forming FHE addition of one ciphertext with 2’s complement
of another ciphertext. The subtraction can be implemented by
adding one number with the 2’s complement of another. FHE
addition module is designed based on bit-wise FHE addition
module of Scarab library. Here, we show the basic operations
of FHE subtraction circuit:

For two plaintext numbers a and b, subtraction can be
computed as:

a− b = a + 2’s complement of b (5)

Now, homomorphic subtraction between a′ and b′ (encryp-
tions of a and b respectively) is computed using the homo-
morphic addition between a′ and Enc( 2’s complement of b).
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The 2’s complement of b in the encrypted domain is obtained
as follows:
Enc( 2’s complement of b, pk)
= b′ ⊕ Enc(11 . . . 1, pk)⊕ Enc(1, pk)

Finally, the subtraction between a′ and b′ is computed as:

a′ − b′ = a′ + Enc( 2’s complement of b) (6)

FHE bit inversion: FHE Inv module performs encrypted
bit inversion by adding Enc(1) with the input bit (by FHE add
module). If the input bit is Enc(1), then addition of 1, results
to encrypted 0. Again, if the input is encrypted 0, then the
resultant is Enc(1) by addition.

Bit− Multiplication Module

Bit− Inversion Module

FHE_Subtract Module

(First Input)’ (Second Input)’

(Equality Result)’

Fig. 4. Fully Homomorphic equality check

FHE equality check module: FHE Equal module is de-
signed to check if two FHE data are equal. If two operands
are equal, then FHE subtraction (output of FHE Sub module)
of these two operands should result encrypted 0. To check
whether the subtraction result is 0:
• Each of the bits of the subtraction result is inverted (using

FHE Inv module).
• Bitwise multiplication is performed on resultant inverted

bits using FHE Mul module present in Scarab library.
• If the subtraction result is nonzero (implies that two in-

puts are not equal), then atleast one bit of the subtraction
result must be nonzero. Hence, the multiplication result
becomes zero due to the presence of inversion of the
nonzero bit (or bits).

• Thus, FHE Equal module outputs Enc(1) if two FHE
inputs are equal, else Enc(0) if two are unequal.

Now, in the next subsection we explain the search algorithm
on FHE data using the above mentioned modules.

B. Linear search algorithm on FHE data

In this section, we outline how the search is actually
performed on encrypted data using the homomorphic modules
explained in section V-A:
• Let an encrypted data s is to be searched in a database
D with n encrypted data items.

• Initially, FHE subtractions (using FHE Sub module) are
performed between s and each of the database items, let
the encrypted subtraction results be sub0, sub1, . . . , subn.

• Each subtraction result is checked if it is equal to 0 (using
FHE Equal module). Any subtraction result subi equals
to 0 implies that s matches with the i-th item of the
database. If no subtraction result equals to 0, it indicates
s is not present in the database.

• However, it requires decryption of n outputs of
FHE Equal module to take decision about the search
result at this stage. To avoid such large number of
decryptions, we perform postprocessing on the outputs
of FHE Equal module in encrypted domain to generate
a single bit encrypted search result. If the search result
is Enc(1), it indicates the search item matches with one
or more items present in the database.

• In the postprocessing phase, each of the outputs of the
FHE Equal module is inverted using FHE Inv module
and bit-wise FHE multiplication is performed among the
inverted bits. If any of the outputs of FHE Equal module
equals to 1 (indicates match is found), then it inverts to
bit 0. All other outputs of equality check becomes 0 and
inverts to 1. Thus, final multiplication result bit becomes
0 (or 1), depending on any match is found or not.

• The inversion of this multiplication result is stored di-
rectly in the server as the encrypted search result. If the
final multiplication result is 0, it indicates the search is
unsuccessful and the intended data is not present in the
database.

Fig. 5. Timing requirement for FHE Search

The above mentioned encrypted search algorithm has been
evaluated for correctness on a Linux Ubuntu 64-bit machine
with i686 architecture 1.6GHZ processor. Figure 5 shows the
timing requirement for searching. The above linear search
operation confirms the presence or absence of any data in the
encrypted collection, but the final result of the search is also
encrypted. In comparison to the method proposed in [29] of
comparing encrypted ciphertexts using order preserving index,
our method may be less efficient, but supports generalized
FHE schemes present in [5].

Security Analysis

The proposed search algorithm on encrypted data meets
the security requirement as explained in IV-B since all the
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performed intermediate operations are encrypted and finally
encrypted search result is produced. It may be noted here that
one may be tempted to apply Divide and Conquer strategies
like binary search to improve the timing of the above op-
eration. However, as discussed in section VII, to ensure the
CPA security of the scheme, the result of the search technique
should not be known at any stage to the adversary. Thus
the search algorithm cannot partition the entire database and
perform selected search. Hence, classical algorithmic improve-
ments are not directly applicable for operations on encrypted
data. In the next section, we provide another example of
operation on database, namely sorting and highlight the chal-
lenges of implementing partitioning on encrypted operations.
Subsequently, we provide some techniques for accelerations
which can be used in the FHE context.

VI. SORTING ON ENCRYPTED DATA

In this section, we shall describe the aspects of sorting on
encrypted data. There are various types of sorting techniques
on unencrypted data, and we classify them into two classes
depending on their time complexities. It may be mentioned that
all the following sorting algorithms are based on comparisons,
but we classify them to emphasize that one type uses a divide
and conquer strategy, while the other does not.
• Simple Comparison based sorting (like Bubble sort,

Insertion sort etc) works in O(n2) time to sort n number
of unencrypted data.

• Divide and Conquer based sorting (like Quick sort,
Merge sort, Heap Sort etc) works in O(nlogn) time
to sort n number of unencrypted data. These class of
sorting algorithms divide the problem into sub-problems
and finally merges the solution in a recursive fashion.

Though sorting on data is an age old topic of research, much
work has not been reported on sorting encrypted data. When
the underlying data is encrypted by FHE to support arbitrary
computations, new challenges and limitations are faced. A first
attempt to realize simple comparison based sorting on FHE
data was investigated in our prior work [12]. However, further
security analysis and limitations to apply Divide and Conquer
strategies to sort over FHE data were not mentioned. In this
work, we provide first an overview on the techniques adopted
for performing a simple comparison based sort and the timing
results obtained thereof. Subsequently, we discuss the aspect
of applying improved sorting algorithms like Quicksort to FHE
data, and propose a method which we call as index encryption
to achieve such operations. However we also present the
limitations of applying such divide and conquer strategies to
FHE data by showing explicitly that the ability to divide the
problem (partition in case of Quicksort) is equivalent to define
a successful CPA adversary against the FHE scheme. Finally,
we propose a two stage sorting technique which proved to be
effective to increase the performance of encrypted sorting.

A. Bubble and Insertion Sort on Encrypted Data

In this section, we consider two common sorting algorithms
based on comparisons, namely Bubble and Insertion sorts on
encrypted data. Comparison based sorting algorithms are based

on conditional swap operations. When the data is encrypted
this operation translates to a Fully Homomorphic Swap (FHS)
operation. The FHS operation, denoted also as FHE swap
uses the following primitive circuits: FHE add, FHE mul,
FHE fulladd, and FHE halfadd.

The FHS circuit depends on two main operations : sub-
traction operation (as explained in section V-A) and a mul-
tiplexer in the encrypted domain, denoted as FHE Sub and
FHE mux respectively. These operations are built using the
above mentioned primitive circuits. Figure 6 shows the overall
swap operation in fully homomorphic domain.

Fig. 6. Fully Homomorphic Swap

The FHE swap operates on two encrypted arguments,
denoted as A0 and A1. It compares them by performing a
FHE Sub and then uses the encrypted result of the compar-
ison to multiplex out a ciphertext which is homomorphically
greater than the other. Let, the greater one is stored in B1,
while the smaller one is stored in B0. However, the logic
is done in the encrypted domain in such a way that it is
emphasized that the final results of the swap B0 and B1 may
not be the same as the inputs A0 and A1. But they are homo-
morphically same, implying that the plaintext corresponding to
them are same. This happens again due to the randomization
of the encryption scheme. Finally, the following equations
represent how the swap operation takes place between two
elements A0 and A1 depending on the encrypted subtraction
result of A1 and A0. Thus, bt = MSB(FHE Sub(A0, A1)),
where MSB is the maximum significant bit of the subtraction
result, which is also in the encrypted format. The equations
are:

A1 = FHE MUX(A1, A0, bt)

A0 = FHE MUX(A1, A0, (1− bt))

The detailed design of FHE MUX is explained in [34], [35].
Having discussed the implementation of a comparison based
sorting, we make an analysis on the aspect of implementing
sorting through divide and conquer. We address this issue of
applying recursive algorithms to FHE data, by considering
partitioning based sorts like Quicksort, which provide a signif-
icant speed up in case of sorting unencrypted data. However,
we show that in case of FHE data unique challenges are
encountered. However, to the best of our knowledge there is
no analysis present in the literature about performing partition
based sort on encrypted data. Further, from the existing knowl-
edge of partition based sort on unencrypted data, it is evident
that partition based sort is expected to be more efficient over
comparison based sort. Our research first analyzes how far the
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encrypted partition based sort meets this expectation pertaining
to the properties of FHE data. In other words, our work first
explains whether it is really possible to achieve performance
gain by partition based sort (over encrypted comparison sort)
maintaining the security of the cryptosystem. Hence, in the
next section we first analyze the feasibility of implementing
partition based sort on FHE data in the light of security and
then explain our proposed schemes of actually implementing
partition sort on encrypted data.

VII. SORTING BASED ON DIVIDE AND CONQUER:
PARTITION BASED SORT

In this section we first analyze the feasibility of implement-
ing partition based sort on FHE data in the light of security and
then explain our proposed schemes of actually implementing
partition sort on encrypted data.

A. Security analysis of partition based sorting in fully homo-
morphic domain

Fig. 7. CPA due to partition based FHE sorting

In this section, we shall investigate the security implications
of performing partition based sort on FHE data. Basically, we
examine whether the FHE scheme remains secured against
Chosen-Plaintext Attacks (CPA) (discussed in section IV-A)
if it is possible to perform partition based sort on encrypted
data. Considering Quick sort as an example of partition based
sort, encrypted quick sort will be discussed in the rest of the
paper. Quick sort algorithm requires three steps:
• Pivot selection.
• Comparison of each element with the pivot and decision

making to partition.
• Perform sorting recursively on each of the partition the

array.
Now, we shall explain quick sort in the light of CPA

indistinguishability experiment following the set-up explained
in [33] and show how the possibility of performing encrypted
partitioning may lead to the cryptosystem being vulnerable to
CPA attacks. More formally the situation will be explained
with figure 7 and the following steps:
• Let an adversary Adv be capable of performing partition

based sort on an encrypted database D and returns the
final sorted array.

• Figure 7 shows that that in such scenario adversary Adv
has access to a partition oracle and an encryption

oracle. Encryption oracle returns the encryption of any
message, once the message is given as an input. The
Partition oracle takes as input an array of encrypted
data and a pivot element, and returns two partitions of
the input array. One partition contains all the elements
lesser than the pivot element and other partition holds all
elements equal to or greater than the pivot element.

• Now, as before the adversary Adv receives a challenge
c which is the encryption of either the message say m0

or m1. The adversary wins if he is capable of guessing
correctly whether c is the encryption of m0 or m1, ie. he
has to guess the bit b with a probability non-negligibly
higher than 1/2, where Enc(pk,m0) = c (where pk is
the public key). For convenience we write m0 = 0 and
m1 = 1, i.e c = Enc(b) where b ∈ {0, 1}.

Now, we define such a successful adversary Adv, which
uses a partition oracle. The partition oracle can obtain par-
tition based sorted array on encrypted data (without any
single decryption). However, that indicates that the decision
of partitioning (whether one encrypted data is lesser or greater
compared to encrypted pivot) is not hidden to the Adv. In this
scenario, adversary can send {c, Enc(pk, 1)} to the partition
oracle and make it as pivot. Now, the partition oracle can return
two results:
• Case 1: {c, Enc(1)︸ ︷︷ ︸

pivot

} indicates c is lesser than the pivot

(note that ordering is with respect to plaintext) and clearly
it is the encryption of 0.

• Case 2: {Enc(1)︸ ︷︷ ︸
pivot

, c} indicates c is equal to or greater than

the pivot and clearly it is the encryption of 1.
Based on the response of the partition oracle, the adversary

is thus capable to easily guess the bit b, ie. the plaintext 0
or 1 which resulted in the challenge ciphertext c. Hence, it
is evident that the cryptosystem is prone to chosen plaintext
attack if it is possible to perform partition based sorting on
encrypted data in the traditional way of comparison with pivot
(as done on unencrypted data). It is interesting to note here
that the comparison based sort is not vulnerable to the CPA
attack. We clarify and stress this point in the next section.

B. Why comparison based sorting is secured?

Comparison based sort on FHE data is performed using fully
homomorphic conditional swap (FHS) operation. The FHS
circuit depends on two main operations: subtraction operation
and the homomorphic multiplexer. It is interesting to note
that the capability to perform the above partition based sort
can lead to a CPA adversary, while such a reduction is not
possible for a comparison based sort. Close observation of the
homomorphic swap operation explains why this sorting does
not lead to the CPA adversary. The crux of this lies in the fact
that it is never disclosed to the adversary which of the two
inputs to the block FHE swap (FHS) is greater. Since, all
the elements that are fed as the input to the swap circuit are
modified by the FHE operations in the FHE primitive circuits,
changes also take place in the input ciphertext, ofcourse
ensuring that they correspond to the same plaintexts. The
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security of the FHE scheme is retained since an adversary
is incapable of collecting the information whether the swap
operation is really taking place or not. Note that the adversary
cannot tally the outputs with the inputs, as they are changed
and the equality is only in the plaintexts which is hidden to
the attacker. This makes comparison based sort secured.

The basic difference between comparison based sort and
partition based sort lies in their working techniques. Compar-
ison sort works fine in the encrypted domain because it is
not required to know if one given input is homomorphically
greater (or smaller) than another input, but still one can
place the greater elements and the smaller elements in their
correct positions. However, this information is necessary in
the partitioning phase of quicksort. In this phase of quicksort,
one compares the elements of the array with the pivot and
increases or decreases the running indices based on the results
of the comparisons. However, in homomorphic domain this is
not feasible as the FHS step never reveals whether the swap
took place, and also changes the values of the inputs. Hence,
the array of encrypted numbers cannot be partitioned in the
classical sense. On the contrary, the ability to partition in the
classical sense implies that the underlying FHE data can be
subjected to a CPA attack.

In the next section, we take a fresh look at partitioning
and make an attempt to realize quicksort on FHE data. To
be more precise, the limitation in applying the partitioning to
FHE can be alleviated if one also encrypts the index of the
array. This layer of encryption helps one to hide the position of
the pivot and thus although the partitioning happens the exact
pivot index is hidden to the adversary. In the next section, we
detail the idea of index encryption and explain how to use it
to realize quicksort.

VIII. PARTITION BASED SORTING WITH INDEX
ENCRYPTION

In this section, we shall discuss the steps to perform
partition based sort on an array of FHE data. The essential
function for performing quick sort is as follows:

void quickSort(array, first, limit)
{

if (first < last)
{

p = partition(A, first, last);
/* Partitioning index */

quickSort(A, first, p - 1);
quickSort(A, p + 1, last);

}
}

The above code follows standard recursive manner by which
quicksort on unencrypted data is implemented. The essential
functions are partition and two recursive calls to the quicksort
routine itself. Recursive codes are realized on the system stack,
which performs two operations push and pop to maintain
the activity chart of the program. Now consider the situation
when the array is encrypted. As discussed, the position of the
pivot is also computed in an encrypted fashion, and thus the

limits of the arrays (which are the indices) are also stored
in an encrypted fashion. Further note, that the system stack is
unable to realize the above recursion. This is because the stack
stores the start (left) and the end (right) indices in an encrypted
format. But the decision to pop or push, ie. to decrement or
increment the stack pointer depends on encrypted data: ie.
the encrypted pivot position and the left or right index, both
of which are also encrypted. Thus the address of the stack
also needs to be encrypted, and hence one needs to develop
a user-defined encrypted stack to realize a FHE-quicksort.
In the following, we provide an overview starting with an
organization of the encrypted array with an encrypted index.

A. Encrypted array with encrypted index
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1

D
n−1
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 0

(i  )’
 1

(i      )’
 n−1

(D  )’
  0
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(D   )’
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D
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1 i ............ in−1
i0 2i

Fig. 8. Encrypted array with encrypted indices

Figure 8 shows how an array A is mapped to its encrypted
form. The base address of A is encrypted (by FHE encryption)
and that is considered as the base address of the encrypted
array. The next encrypted locations are obtained by performing
FHE additions to the previous locations. For example, enc(1)
is added (by FHE addition) to the encrypted i-th location
address ((i)′) and encrypted address of i + 1-th location
is obtained. However, due to the randomness property of
FHE encryption, the consecutive unencrypted addresses do
not remain consecutive after encryption. Finally, data of i-
th location (say Di) is placed to (i)′ location as (Di)′ in the
encrypted array.

This encrypted array is chosen as the data structure for
implementing partition based quick sort on encrypted data.
Now, we shall decide the implementation approach of the al-
gorithm. Recursive and iterative are the two different practiced
implementation approaches of performing quick sort. Here, we
first discuss what are the problems of implementing recursive
methods on encrypted data and then explain our proposed
scheme handling such implementation challenges.

B. Problems of recursion on encrypted data

In general, recursive implementations are very popular for
partition based sort on unencrypted data from design point
of view. However, it is required to specify the initialization
or termination condition of recursion. While working with
encrypted data and encrypted indices, the initialization or
termination conditions of recursion are the results of encrypted
FHE operations (by homomorphic modules). However, present
underlying processors are unencrypted and unable to process
such encrypted recursion conditions. Hence, direct implemen-
tation of recursion methods are not possible in such existing
processors.
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In case of recursive implementation of partition sort, in-
termediate partition parameters are stored in recursion stack.
In our approach of handling encrypted sort, an encrypted
auxiliary stack is designed and encrypted partition indices
values are stored in this encrypted stack. Now, we shall outline
the design of an encrypted stack which is capable of handling
encrypted push pop operations and extend our idea on how to
use it implementing partition based sort. Here, we define the
encrypted stack with following operations:

FHE

FHE

Encrypted

Memory

  

FHE_SUB

Encrypted 

addresses

MUX

MUX

Encrypted
input

  data

Encrypted

input  data

Base 
Address

enc_top

Input addresses

FHE Addition

Fig. 9. Encrypted Push Operation

Encrypted Push operation:: Push is responsible for both
initialization and data insertion to stack. At initialization of
stack, stack size (mentioned by enc top) is Enc(0).

During data insertion (Push operation), the encrypted base
address of stack is increased by enc(1) each time and encrypted
data is stored in the next address. enc top is increased accord-
ingly to hold the index of the top of the stack (which indicates
the size of the stack too). All these increment operations
are again homomorphic and take place using FHE addition
operations. Figure 9 shows the push operation of encrypted
data in top location of encrypted stack. Here enc top is added
with encrypted base address value and data is pushed when
address match is found.
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Fig. 10. Encrypted Pop Operation

Encrypted Pop operation:: Pop operation in such encrypted
stack is even more interesting since all encrypted data are

now residing in encrypted addresses. Now, during pop oper-
ation, the stack top decreases and (when added to the base
address) gives the modified address from where data should
be popped. However, the challenge is this modified address
value is not exactly bit-wise same with the existing stack
locations. This creates the real ambiguity in case of fetching
(or popping) data from an encrypted stack. Here we use
the encrypted multiplexer to check which encrypted stack
location is homomorphically equal to the modified address. If
a match is found, data is popped from that particular location.
However, encrypted multiplexer gives an encrypted result
(address matched or not) and hence the location (from which
data is actually fetched) remains hidden from any adversary.
Figure 10 shows the pop operation of encrypted data from
top location of encrypted stack. Here enc top is added with
encrypted base address value and data is popped when address
match is found.

Error handling:: During handling of any stack, two error
conditions are possible. Firstly, attempting to push data when
the stack is full and the secondly trying to pop data when the
stack is empty. Both these error conditions can be handled by
comparing the existing stack size with maximum stack size
(to check whether the stack is full) or with enc(0) (to check
whether the stack is empty).

This encrypted stack is used to store the start and end indices
of the partition and to continue quick sort in sub-arrays.

C. Quicksort using Encrypted Stack

The quicksort on the encrypted data (FHE-quicksort) where
the array indices are also encrypted is next described. As
discussed, the data is encrypted and stored in an array with
encrypted index locations. The FHE-quicksort function has
the following arguments:

fhe_qsort(encarray, encfirst, enclimit, pk)

The arguments are respectively the encrypted array, the
encrypted starting address of the array, and the encrypted end
address of the array and the public key pk. As discussed the
implementation is done using an encrypted stack, which stores
the intermediate partition parameters. Here, we first describe
the function to realize the partition.

Encrypted partition: The partition function takes as input
the encrypted array, along with the encrypted left and right
indices. The initial pivot can be chosen as the first, middle or
any random element of the input array. However, the last index
(encrypted) has been chosen here. The final position of the
pivot is determined by encrypted comparisons. A crucial step
of the partitioning algorithm is to compare homomorphically
the encrypted pivot pv data with the encrypted data pointed
by an encrypted running index, j′. Based on the comparison
result, another encrypted running index i′, is incremented.

This comparison is done using the comparison circuit
FHE isgreater (as shown in figure 11), which operates on
two encrypted values. The two encrypted values are subtracted
and MSB of the subtraction result is fed as the input of the
comparison circuit. If the MSB is Enc(1), the first input is
lesser than the second, else otherwise.
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Fig. 11. Fully Homomorphic greater comparison

The comparison result between enclimit and the encrypted
index jIndex homomorphically sets the value of a variable
cond loop depending on the result of the comparison. The
encrypted bit cond loop decides whether i′ will be incre-
mented or hold the previous value. Likewise, the encrypted
value stored in the encrypted address jIndex, denoted as
data indexj, is compared with the data of the encrypted pivot,
data pivot and another condition, cond2 is set homomor-
phically. Finally, both the conditions are homomorphically
multiplied to generate the signal cond. The update of the
index i′ is done through a homomorphic multiplexer, denoted
as FHE mux which takes the encrypted value of i, iIndex
and the (i + 1)′, iIndex incr as inputs. The selection among
the two inputs is done by the encrypted value cond. The code
snippet is as follows:

fhe_isgreater(cond_loop, enclimit,
jIndex, pk);

fhe_isgreater(cond2, data_pivot,
data_indexj, pk);

fhe_mul(cond, cond_loop, cond2, pk);
fhe_mux(mod_i, iIndex,

iIndex_incr, cond, pk);

Thus this continues until the correct position of the pivot is
determined in the encrypted form. However, since all the deci-
sions are performed in the encrypted format, one cannot decide
on the termination condition without decrypting. Hence, the
pivot based partitioning, although performed homomorphically
from the left index of the array (or sub-array in the recursive
calls), to the right index, is always executed on the complete
array length of maximum number of data to be sorted. This
is a major bottle-neck in terms of performance, and overall
time-complexity.

D. The Encrypted Quicksort through Encrypted Stack

As stated before, the overall sorting is performed using a
user-defined stack, where both the content and the address
are encrypted. The stack stores the encrypted end limits of the
array portions currently being sorted (denoted as l = encfirst
and h = enclimit). Encrypted Push operation is responsible
for both initialization and data insertion of the encrypted array
limits to the stack. For initialization of the stack, an address is
encrypted and that is considered as the starting base address of
stack. Stack size (mentioned by encrypted stack top) is Enc(0)
at this point.

The sorting function at each iteration pops out the end limits
of the encrypted array. The partition function (discussed in

the previous section) provides the encrypted pivot position,
p. Subsequently, the encrypted array indices p − 1 and l are
homomorphically compared to check p−1 > l and if true, the
stack is pushed with the data of l and p−1. Note the decision to
push the stack depends on an encrypted comparison, and thus
implying why the stack addresses also needs to be encrypted.
Likewise, we perform the pushing of the encrypted index p−1.
Furthermore, we perform the check whether p + 1 < h, and
in a similar manner push the indices p + 1 and h. Both the
push and pop stack operations are encrypted as mentioned in
section VIII-B.

In the quick sort, push or pop operation to or from the stack
continues till (stack top ≥ 0). However, implementation
of this step (in encrypted quick sort) requires a comparison
between encrypted stack top and Enc(0), which in turn
generates an encrypted result. To solve this issue, the entire
loop is run for the size n of the array, where n data is
being sorted (again we cannot terminate depending on the
stack being empty). The result is still functionally correct, as
there will be redundant operations which does not make any
change to the array in the homomorphic sense. Likewise for
partitioning, each time the run is done over the entire array
length. However, for a given call to the partition function, thus
sorting happens from the running index l to h (the current left
and right indices of the array), for ranges outside this limit,
no change or sorting is done in the homomorphic sense. This
ofcourse has an adverse effect on the time complexity, and
in fact provides bad timing than the comparison based sorts,
because of increased stack operations. However, as discussed,
this redundancy is mandatory since without decryption one
cannot reveal the index position of the stack or determine the
termination condition. Finally, the proposed sorting algorithm
on encrypted data meets the security requirement as explained
in VII since all the performed intermediate operations are
encrypted and an encrypted sorted array is produced as the
final result. In the next section, we formally analyze the timing
requirements of our proposed sorting schemes (comparison as
well as partition based schemes) to decide which encryption
scheme is most suitable while working on encrypted data.

TABLE I
COMPARISON OF DIFFERENT SORTINGS

Sorting No. of elements Average Timing requirement
(sec)

Bubble Sort 5 235
10 1527
40 21565

Insertion Sort 5 290
10 1602
40 21757

Quick Sort 5 776
10 4102
40 46757

IX. TIMING REQUIREMENT FOR SORTING SCHEMES ON
ENCRYPTED DATA

In this section, we compare different proposed sorting tech-
niques on encrypted data in terms of their time complexities.
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TABLE II
ESTIMATE OF DIFFERENT SUBOPERATIONS FOR SORTING

Operation Overhead(sec)
1. FHE add(XOR) 0.04
2. FHE mul(AND) 0.05
3. FHE recrypt 0.04

We consider to sort n data stored in the cloud and encrypted
with FHE scheme.

To perform encrypted comparison sort on this database
we need to have n encrypted comparisons in each of the n
iterations as explained in section VI-A. Hence, as a worst case
analysis, it requires n2 comparisons. Let the time for each
encrypted comparison be Tc and the total time for comparison
sort Tcomp can be computed as Tcomp = n2 ∗ Tc.

For performing quick sort on encrypted data as explained
in section VIII, partitioning and stack handling are the two
main operations. Let the partitioning time be Tp and the stack
handling time be Ts and hence for each iteration the sorting
time is Tp +Ts. Now, as stated above iteration count depends
on push or pop operations to or from the stack continues
till (stack top ≥ 0) and to handle the difficulty of program
termination, this loop iterates for n times (and not terminate
depending on the stack being empty) maintaining the correct
functionally. Hence, at this stage the total time requirement
for quick sort Tquicksort becomes Tquicksort = n ∗ (Tp + Ts).

Now, for each partition operation let the main array is
divided into two subarrays. Now, each of the elements of each
partition need to be compared with pivot, but the comparison
loop should iterate for n times (maximum length of main input
array) for each partition sub-array ( since the actual partition
index is encrypted and actual partition length is not known).
Hence, for each iteration partition time becomes Tp = 2∗n∗Tc
and the overall time becomes:

Tpartition = n ∗ (Tp + Ts) (7)
= n ∗ (2 ∗ n ∗ Tc + Ts) (8)
= 2 ∗ n2 ∗ Tc + n ∗ Ts (9)

Hence, the time complexity of quick sort on encrypted
data is no better than comparison sort. Further, the stack
operation adds extra overhead to this timing requirement.
Since, the required time for encrypted push and pop operations
proportionally increases with the increase of the stack size,
this stack timing overhead Ts is also very high. Actual timing
requirements of the sorting schemes presented in table I also
confirms our analysis in this issue.

However, as can be observed that the average time for
performing the encryptions increases quadratically with the
number of elements. Now, with the objective of improving
the performance of comparison sort, we investigate the cause
of such a timing requirement. From table II, we observe
that the underlying recrypt operations are the main reason
for such a timing requirement (since this operation need to
be executed after each of the homomorphic operations to
reduce the noise level). We can observe from the table that

TABLE III
TIMING ANALYSIS FOR LAZY SORT

Number of data Fully homomorphic sorting Time Lazy sort time
(sec) (sec)

W=2 W=6 W=10
10 1527 923 1623 2150
20 5300 3092 4292 5492
30 11980 6507 8307 9065
40 21750 11350 13544 15972

the timing requirement of FHE add (which includes time for
addition operation + time for recrypt) is almost equal to timing
requirement of recrypt operation. Further, timing requirement
of FHE mul (which includes time for multiplication + time
for recrypt) also confirms that the reason of large timing
requirement of FHE operations is mainly due to the presence
of recrypt operation, which is the main denoising operation
of FHE scheme. Next, we introduce a method called lazy
computations, where the sorting is performed in two phases.
In the first phase we remove recrypts carefully to result in
an almost correct output with some errors present due to the
removal of recrypt operations. The first phase, which we called
a lazy phase is followed by another phase where the error is
removed. In the next section, we explain the lazy sort, where
the first step is erroneous but fast. The second step is precise
but uses suitable sorting algorithm, which performs well on
almost sorted data.

X. LAZY SORTING

In this section we introduce the concept of lazy-sorting,
which we propose as an effective way of reducing the over-
heads due to the costly recrypt operations. In context to
this lazy iterative sorting, the overall process is divided into
two steps: the first applies Bubble sort with reduced recrypt
operations. The second phase applies Insertion sort on the
resultant array. The rationale behind such an approach is that
the selected removal of recrypt operation introduces error in
the results. But if the removal of recrypt is done carefully, the
error is controlled resulting in an almost sorted array, which
can be sorted efficiently by the Insertion Sort phase, which
runs in linear time on nearly sorted data.

Thus, minimization of recrypt after a certain threshold may
introduce some error in the comparison decision (swap) of
fully homomorphic encrypted data. Hence, this will in turn
introduce some error in the sorting decision. The term error
indicates an element is placed in wrong position in the final
sorted array. Now, if we perform any erroneous comparison
sort with minimized recrypt, it will take comparatively less
time due to the use of comparison circuit with reduced number
of recrypts and results an almost sorted array. Finally, we apply
insertion sort, which works in linear time for an almost sorted
array.

Before introducing error on encrypted data with the reduc-
tion of recrypt, we perform an analysis on unencrypted data
to observe how much erroneous swaps can be tolerated to
result in an almost sorted array. In this experiment, we have
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Fig. 12. Allowable Error analysis on unencrypted data

introduced a few percentage of wrong comparisons to observe
how much error is introduced in the resultant array. The plot in
figure 12 shows that with an around 30% error in comparison,
60% data are placed in the proper position. This is an average
of several experiments with more than 1000 data, which shows
around 700 data are properly placed by performing Bubble sort
with reduced recrypt.

Futher reduction of recrypt to introduce error

Now, according to the trend in figure 12, it is evident that
it is not possible to remove all the recrypts since it will
introduce 100% error and result in positioning large number
of elements in the wrong places of the final array. For this
reason, careful choice of removable recrypts are necessary. We
have identified the recrypts present in FHE subtract, which is
one of the main submodule of FHE swap. In this function,
we have removed the recrypt operations required to correct
the values of carry bit (cout) of the addition result using
FHE fulladd. This in turn reduces the time requirement in
every iteration of addition and finally reduces the time for
swap operation. However, use of this modified swap operation
results correct output with 70% accuracy. This results in an
almost sorted array. Subsequently, we apply insertion sort,
which has linear time complexity for almost sorted array. Table
III shows the advantage of this scheme. Lazy sort approach
helps to improve the performance significantly, where general
Bubble sort in homomorphic domain requires around 21500s.
The table shows with increased value of window required time
for sorting increases. In our experiment, we obtain fully sorted
array with window size w = 10.

XI. EXPERIMENTAL DETAILS

All the above mentioned sorting algorithms have been eval-
uated for correctness on a Linux Ubuntu 64-bit machine with
i686 architecture 1.6GHZ processor using the FHE modules
of Scarab library [15]. We have chosen arbitrary integer data
(not structured data as mentioned in [29]) and encrypted
with encryption algorithm of Scarab library. We see from
our results that techniques like divide and conquer (although
theoretically feasible) on FHE data, does not improve the
performance while working on unencrypted processor. On the

contrary, because of the excessive book-keeping and stacking
operations, it has an adverse effect on the performance. Thus,
the best option seems to restrict on iterative sorting algorithms.

Experimental challenges

Among different sorting techniques, implementation of bub-
ble sort on FHE data is quite straightforward. In spite of the
fact that Bubble sort and Insertion sort both are comparison
based, there is some basic difference in their implementation
techniques. In each iteration of insertion sort, single element
is inserted in the proper position. Thus any element is placed
in k-th location provided all the previous k − 1 elements are
smaller (or greater). Thus, handling of an encrypted while loop
is necessary which imposes design challenge while working
on unencrypted processor. In this case, we consider a special
window based technique and assume that insertion position
of the any element lies within an window. While performing
insertion sort on arbitrary data set, this window is considered to
be whole array length. However, in case of implementing Lazy
sort, where insertion sort is applied on almost sorted array a
smaller window size is sufficient to result a fully sorted array
(as shown in table tb:sortwthminRecrypt).

XII. CONCLUSION

The application of Fully Homomorphic Encryptions (FHE)
to cloud computing is a coveted goal. Inspite of its promises,
there are several challenges of implementing operations on
FHE data. The paper deals with the problems of searching
and sorting as two common operations on encrypted database.
We formally relate the ability to search in encrypted database
to a chosen plaintext adversary and develop a technique for
performing search on array encrypted with FHE. Subsequently,
the paper shows methods to perform comparison based sorting
on encrypted data. The work also addresses the application of
common algorithmic techniques like divide and conquer, by
taking an example of Quick sort and shows several challenges
of applying such algorithms on FHE data. Relating to CPA
resistance, the article shows that although theoretically fea-
sible, the division or partition step on encrypted data does
not lead to any advantage due to the inability to detect the
exact partition index. Further, the paper presents several new
data structures like encrypted array with encrypted index,
encrypted stack and accompanying push and pop operations to
realize recursive programs on encrypted data. Time complexity
and simulation results have been provided to show while the
methods are correct, the performance need to be improved.
Finally, we propose a technique called Lazy sort, which shows
a significant improvement in performance over traditional
comparison and partition based sort on encrypted data. To the
best of our knowledge, our work has made the first attempt
of implementing such operations on FHE unstructured data
and to our belief, this work leaves a hope that with further
tricks (like further reduction of costly recrypt operations and
suitable hardware accelerations) FHE computations can be
indeed practical for cloud computing.
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