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Abstract. Semaev [14] shows that under the first fall degree assumption, the complex-

ity of ECDLP over F2n , where n is the input size, is O(2n1/2+o(1)
). In his manuscript,

the cost for solving equations system is O((nm)4w), where m (2 ≤ m ≤ n) is the num-
ber of decomposition and w ∼ 2.7 is the linear algebra constant. It is remarkable that
the cost for solving equations system under the first fall degree assumption, is poly in
input size n. He uses normal factor base and the revalance of ”Probability that the
decomposition success” and ”size of factor base” is done.
Here, using disjoint factor base to his method, ”Probability that the decomposition
success becomes ∼ 1 and taking the very small size factor base is useful for complexity
point of view. Thus we have the result that states
”Under the first fall degree assumption, the cost of ECDLP over F2n , where n is the
input size, is O(n8w+1).”
Moreover, using the authors results in [11], in the case of the field characteristic ≥ 3,
the first fall degree of desired equation system is estimated by ≤ 3p+1. (In p = 2 case,
Semaev shows it is ≤ 4. But it is exceptional.) So we have similar result that states
”Under the first fall degree assumption, the cost of ECDLP over Fpn , where n is the

input size and (small) p is a constant, is O(n(6p+2)w+1). ”

1 Notation

Let p be a prime and

E/Fpn : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0

be an elliptic curve. Here, we discuss the complexity of ECDLP considering extension degree
n being input size.

Problem 1 ((ECDLP)) Let P,Q ∈ E(Fq) such that < P >3 Q. ECDLP is the problem
finding integer N satisfying Q = NP .

Petit et al. [12] shows that when p = 2 under the first fall degree assumption, it is in
O(n2/3+o(1)). The author [11] shows this result can be generalized in the case p ≥ 3. Recently,
many researchers [6] [14] propose the method using 3 terms Semaev’s formula. In [14], Semaev
shows that when p = 2 under the first fall degree assumption, it is in O(n1/2+o(1)).

Throughout this paper, we fix {α1, ..., αn} (αi ∈ Fpn) by the base of vector space Fpn/Fp

and put

V = V (k) := {
k∑

i=1

xiαi |xi ∈ Fp}

by k dimension vector space in Fpn .



2 Semaev’s formula

Here, we define the Semaev formula [13] and show its property.

Definition 1. In the case p = 2. Let

E/F2n : y2 + xy = x3 + Ax2 + B (A,B ∈ F2n).

Put

S2(x1, x2) := x1 − x2,

S3(x1, x2, x3) := (x1x2 + x1x3 + x2x3)2 + x1x2x3 + B, and

Sm(x1, ., xm) := Resx(Sm−j(x1, ..., xm−j−1, x), Sj(xm−j , ..., xm, x)) recursively.

In the case p ≥ 3. Let

E/Fpn : y2 = x3 + A4x + A6 (A4, A6 ∈ Fpn).

Put

S2(x1, x2) := x1 − x2,

S3(x1, x2, x3) := (x1−x2)2x2
3−2((x1+x2)(x1x2+A4)+2A6)x3+(x1x2−A4)2−4A6x1x2, and

Sm(x1, ., xm) := Resx(Sm−j(x1, ..., xm−j−1, x), Sj(xm−j , ..., xm, x)) recursively.

Proposition 1 (Semaev [13]). The following two conditions are equivalent;
1) There exists some P1, ..., Pm ∈ E(Fpn)\{∞} such that P1 + ... + Pm = 0.
2) Sm(x(P1), ..., x(Pm)) = 0.

3 Index Calculus of ECDLP

Here, we remember the Index Calculus algorithm of ECDLP [1]. Recall

V = {
k∑

i=1

xiαi |xi ∈ Fp}

is k dimension vector space in Fpn and put factor base Fb by

Fb := {P ∈ E(Fpn) |x(P ) ∈ V }.

In the index calculus, random element R(∈ E(Fpn)) is decomposed into m elements in Fb,
i.e,. R is decomposed by R = P1 + ..., +Pm for some Pi ∈ Fb. This process reduces to solving
some equations system and if we take parameter k, m as km ∼ n, the probability that the
decomposition success is 1/m!.

4 Decomposition using S3

Here, we describe the method for the Decomposition using S3 ([6], [14]), which decompose
R ∈ E(Fpn) into m elements P1, ..., Pm ∈ Fb.

Definition 2 (EQS1). EQS1(m,R) consists of the m− 1 equations

S3(X1, X2, U1) = 0, S3(U1, X3, U2) = 0, ..., S3(Um−3, Xm−1, Um−2) = 0, S3(Um−2, Xm, x(R)) = 0,

where variables Xi moves in V and Ui in Fpn .



Algorithm 1 Index Calculus algorithm of ECDLP [1]
Input: E/Fpn elliptic curve, P, Q ∈ E(Fq) st. < P >3 Q
Output: Integer N satisfying NP = Q

Set parameter k, m satisfying km ∼ n
Put V = {Pk

i=1 xiαi |xi ∈ Fp}
Put Fb := {P ∈ E(Fpn) |x(P ) ∈ V }
Decompose step:i := 0, {PB1, ..., PB#Fb} := Fb
while i ≤ #Fb do

n1, n2 ← random integer, Put R := n1P + n2Q
if R is written by the sum of m elements in Fb,
i.e., R =

P#Fb
j=1 ajPBj (aj = 0 or 1,#{j|aj = 1} = m) then

i + +,Put ni,1 := n1, ni,2 := n2, ai,j := aj (j = 1, .., #Fb)
Linear algebra step:
for all i = 1, ..., #Fb + 1 do

Put −→p i := (ai,1, ..., ai,#Fb)

Find b1, ..., b#Fb+1 ∈ Z/#E(Fpn)Z st.
P#Fb+1

i=1 bi
−→pi ≡ −→

0 mod #E(Fpn)
Computation of ECDLP:
Return −P#Fb+1

i=1 bini,1/
P#Fb+1

i=1 bini,2 mod #E(Fpn)

In order for solving EQS1, we consider its Weil descent. So, for a while, we describe the
definition of Weil descent.

Definition 3 (Weil descent). Let F = F (X1, ..., XN ) ∈ Fpn [X1, ..., XN ], −→v = (v1, ..., vN ) ∈
AN (Fpn) 1 and j1, ..., jN be some integers ≤ n. 2 We describe the set of new variables Xij

(1 ≤ i ≤ N, 1 ≤ j ≤ ji). Put the set of field equations by

Sfe := {Xp
ij −Xij | 1 ≤ i ≤ N, 1 ≤ j ≤ ji}.

The polynomials F ↓j = F ↓−→v ,j
(∈ Fp[{Xij}], 1 ≤ j ≤ n) is defined as follows; 3

n∑

j=1

F ↓−→v ,j
× αj = F (v1 +

j1∑

j=1

x1jαj , ..., vN +
jN∑

j=N

xNjαj) mod Sfe.

Definition 4 (EQS2). EQS2(m,R) is the equations system obtained by Weil descent (taking
v1 = ... = vN = 0) from each equations of EQS1(m,R) and field equations.
i,e., EQS2(m,R) := {F ↓−→

0 ,j
| 1 ≤ j ≤ n, F ∈ EQS1(m,R)} ∪ Sfe.

Remark that EQS2(m,R) consists of n(m − 1) variables, n(m − 1) degree 4 polynomials
(when p = 2 degree 3 polynomials can be taken) coming from the Weil descent of S3 and
n(m− 1) degree p field equations.

Let P1, ..., Pm ∈ Fb such that P1 + ... + Pm = R. Then we see easily EQS1m,R have
solution

(X1, ..., U1, ...) = (x1, ...u1, ...) ∈ A2m−2(Fpn)

such that xi = x(Pi) (i = 1, ...,m).

1 Here, we take −→v =
−→
0 . Latter we will consider disjoint factor base and at this time, the values

v1, ..., vN must be needed.
2 Here, j1 = ... = jN = dimFp V = k.
3 Strictly saying, we must define F ↓j = F ↓−→v ,

−→
J ,j

, where
−→
J = (j1, ..., JN ), since not only v1, ..., vN ,

j1, ..., jN must be needed in the definition of Weil descent. However, in this paper, j1 = ... = jN =
dimFp V = k and it is fixed. So we simply omit this term in the definition.



Lemma 1 (Semaev [14]). Let x1, ..., xm ∈ V and u1, ..., um−2 ∈ Fpn . Suppose

(X1, ..., U1, ...) = (x1, ...u1, ...) ∈ A2m−2(Fpn)

is a solution of EQS1(m,R). Then we have the following;
1) There exists P1, ..., Pm ∈ E(F2n) such that

P1 + .. + Pm = R, x(P1) = x1, ..., x(Pm) = xm.

2) Such P1, .., Pm can be recovered from the solution of EQS1(m,R).
3) Put S := {P |P ∈ {P1, ..., Pm} ∩ E(Fpn)}. So, there exists some 2-torsion T ∈ E(Fpn)[2]
satisfying

∑
P∈S P + T = R.

(Note #S ≤ m. From 1), T = ∞ when #S = m.)

From this Lemma, the decomposition of R reduces to solving EQS1(m,R) and solving
EQS2(m,R).

Semaev treats the case km ∼ n and we will suppose km ∼ n. Note that #FB ∼ #V = pk

and the Probability that the element in E(Fpn) is written by the form P1 + ...+Pm (Pi ∈ Fb)
is estimated by

(#Fb)m

m!
· 1
#E(Fpn)

∼ (pk)m

(m!) · pn
∼ 1

m!
.

On the other hands, Probability that the element in E(Fpn) is written by the form P1 +
... + Pt + T (Pi ∈ Fb, t < m, T ∈ E(Fpn)[2]\{∞}) is estimated by

3
(#Fb)t

t!
· 1
#E(Fpn)

∼ 3
(pk)t

(t!) · pn
∼ 3

1
pk(m−t)t!

¿ 1
m!

.

So the probability that R is written by R = P1 + ... + Pt + T for some t(< m) and T ∈
E(Fpn)[2]\{∞} is very small and negligible. Thus, further, we assume that R is written by
R = P1 + ... + Pm (Pi ∈ Fb) and exceed the discussion.

5 First fall degree assumption

Definition 5 (First fall degree). Let K be a field and f1, ..., fM ∈ K[X1, ..., XN ]. First
fall degree of {f1, ..., fM} is the minimal integer dF satisfying the following.
There exists g1, ..., gM ∈ K[X1, ..., XN ] such that
1) maxi{deg gifi} ≥ dF ,

2) deg(
∑M

i=1 gifi) < dF ,

3)
∑M

i=1 gifi 6= 0.

Under the following assumption, the algorithm for solving ECDLP in sub-exponential
complexity are proposed [12], [11], [14].

Assumption 1 {f1, ..., fM} Degree of the polynomial appears in the Gröbner basis compu-
tation (by F4 algorithm) of {f1, ..., fM} is ≤ dF .

From this assumption, the number of the monomial appears in the Gröbner basis compu-
tation is ≤ O(NdF ) So, we have the following;

Lemma 2. The complexity of Gröbner basis computation (by F4 algorithm) of {f1, ..., fM}
is ≤ O(NdF w), where w ∼ 2.7 is the linear algebra constant.

Many researchers misunderstand the definition of first fall degree and use this assumption
and estimation of the complexity using the following FAKE version.



Definition 6 (Fake first fall degree). Let f1, ..., fM ∈ Fp[X1, ..., XN ] and let Sfe := {Xp
i −

Xi | 1 ≤ i ≤ N} be the set of field equations Fake first fall degree of {f1, ..., fM} ∪ Sfe is the
minimal integer d′F satisfying the following.
There exists g1, ..., gM ∈ K[X1, ..., XN ] such that

1) maxi{deg gifi mod Sfe} ≥ dF ,

2) deg(
∑M

i=1 gifi mod Sfe) < dF ,

3)
∑M

i=1 gifi 6≡ 0 mod Sfe.

In [14], Semaev says from the equation S3(x, u, RX) = 0, where x =
∑k

i=1 xiαi u =∑n
i=1 uiαi and RX ∈ Fpn , the relations of low first degree do not appears. Considering

xuS3(x, u, RX), one can easily have the relation that its Fake first fall degree d′F ≤ 4. He uses
the true definition of first fall degree.

In [11], the author shows the following lemma and it has no problem to use Fake first fall
degree instead of use true first fall degree.
Lemma 3 ([11]). Let F = F (X1, ..., XN ) be a polynomial in Fp[X1, .., XN ] such that F ≡
0 mod Sfe. i.e., There are f1, ..., fM ∈ Fp[X1, .., XN ] such that F :=

∑N
i=1 fi · (Xp

i −Xi). So,
there are some polynomials fnew

1 , ..., fnew
M ∈ Fp[X1, .., XN ] satisfying F :=

∑N
i=1 fnew

i · (Xp
i −

Xi) and deg fnew
i ≤ deg F − p (i = 1, ..., N).

Example 1 Let X, Y, Z are variables moves in F2. Note that the set of field equations is
written by Sfe = {X2 + X, Y 2 + Y, Z2 + Z}.
Let F = (X2 + X)(Y 2 + Y ) + (X2 + X)(Y 2 + Z) ∈ F2[X,Y, Z]. From its construction,
F ≡ 0 mod Sfe and expanding the formula, we have F = X2Y +Y 2Z+Y Z+X2Z+XY 2+XZ
and deg F = 3.

F can be transformed by F = (X2 + X)(Y 2 + Y ) + (X2 + X)(Y 2 + Z)
= (X2 + X)(Y 2 + Y ) + (X2 + X)(Y 2 + Y ) + (X2 + X)(Y 2 + Y ) + (X2 + X)(Y 2 + Z)
= (X + Z)(Y 2 + Y ) + (X2 + X)(Y + Z), and F can be written by the sum of smaller degree
polynomials, which are divided by a certain field equation.

Proof of this Lemma is complicated and not constructive.
From this lemma, we have the following:

Lemma 4. Let f1, ..., fM ∈ Fp[X1, ..., XN ]. Put dF by the first fall degree of {f1, ..., fM} and
put d′F by the Fake first fall degree of {f1, ..., fM} ∪ Sfe. Then dF ≤ d′F .

Now, we will estimate the first fall degree of EQS2(m,R) in case of p ≥ 3. For this purpose,
we prepare the following

Lemma 5 (Also the author ’s result in [11]). Let F = F (X1, ..., XN ) be a polynomial
in Fp[X1, .., XN ] and let m = m(X1, ..., XN ) be a monomial in Fp[X1, .., XN ]. Then we have

[m · F ]↓j ≡
n∑

i=1

[αi ·m]↓j [F ]↓i mod Sfe (j = 1, ..., n).

Lemma 6. Let F = F (X1, ..., Xn) be a polynomial in Fpn [X1, .., Xn]. The first fall degree of
the equations system {F ↓j (∈ Fp[{Xij}]) | 1 ≤ j ≤ n} ∪ Sfe is heuristically ≤ (p− 1)n + deg F .

Proof. Put m = m(X1, ..., Xn) = Xp−1
1 · · ·Xp−1

n . From Lemma 5, we have

[m · F ]↓j mod Sfe ≡
n∑

i=1

[αi ·m]↓j [F ]↓i mod Sfe (j = 1, ..., n).

From field equation, deg([m · F ]↓j mod Sfe) is ≤ (p − 1)n + deg F − 1. On the other hands,
deg[αi ·m]↓j is heuristically = (p− 1)n and deg[F ]↓i is also heuristically = deg F . 4 Thus the
4 We use heuristic argument only here.



Fake first fall degree of {F ↓j (∈ Fp[{Xij}]) | 1 ≤ j ≤ n} is bounded by ≤ (p− 1)n + deg F and
from Lemma 4, we have this lemma.

From this proposition, we have the following:
Proposition 2 (Semaev [14] and its generalization to p ≥ 3). First fall degree of
EQS2(m,R)

5 is bounded by {
4 (p = 2)
3p + 1 (p ≥ 3) .

From this proposition and Lemma 2, we can estimate the complexity:
Proposition 3 (Semaev [14] and its generalization to p ≥ 3). Under the first fall degree
assumption, the complexity of solving EQS2(m,R) is bounded by

{
O((nm)4w) (p = 2)
O((nm)(3p+1)w (p ≥ 3) .

6 Complexity estimation by Semaev

Here, we adopt the easy and rough estimation. For this reason, the complexity of input size
n is written by the form O(exp(nα+o(1))), where limn→∞ o(1) = 0. Many complicated terms
are included into the o(1) term and so for normal size input n, o(1) has HUGE value although
limn→∞ o(1) = 0.

Semaev considers the case m ∼ n1/2+o(1) then k is taken k ∼ n
m = n1/2+o(1). Then we

have
1) #Fb ∼ pk = pn1/2+o(1)

= O(exp(n1/2+o(1))),
2) The probability that decomposition success = 1

m! ∼ 1
O(exp(n1/2+o(1)))

,

3) The complexity of ”Decompose step” = #Fb× cost of solving EQS2
Probability = O(exp(n1/2+o(1)))

4) The complexity of ”linear algebra step” = (#FB)w = O(exp(n1/2+o(1))) (w ∼ 2.7 linear
algebra constant).

Thus we have the following;
Proposition 4 (Semaev [14] and its generalization to p ≥ 3). Under the first fall
degree assumption, the complexity of solving ECDLP for an elliptic curve E/Fpn is estimated
by O(exp(n1/2+o(1))).

7 Disjoint factor base

The idea of using disjoint factor base is known by [10] and recently re-discovered by [5].
Recall V = {∑k

i=1 xiαi |xi ∈ Fp} be a dimension k vector space in Fpn and m, k be the
parameter mk ∼ n.

Let v1, ..., vm be elements in Fpn such that all V + vi (i = 1, ..., m) are disjoint. Put

Vi := V + vi (i = 1, ..., m),

F bi := {P (∈ E(Fpn)) |x(P ) ∈ Vi} (i = 1, ..., m),
F b := ∪m

i=1FBi, and
consider the decomposition of R(∈ E(Fpn)) by

R = P1 + ... + Pm (Pi ∈ Fbi)

and the index calculus whose factor base is Fb.
Note that #Fbi ∼ #Vi = #V ∼ pk, #Fb ∼ m · pk.
Using the similar argument in §2, the decomposition reduces to solving the following

equations system
5 Assume Sfe ⊆ EQS2(m,R)



Definition 7 (EQS3). EQS3(m,R) consists of the m− 1 equations

S3(X1, X2, U1) = 0, S3(U1, X3, U2) = 0, ..., S3(Um−3, Xm−1, Um−2) = 0, S3(Um−2, Xm, x(R)) = 0,

where variables Xi moves in Vi and Ui in Fpn .

Substituting Xi = vi +
∑k

j=1 Xijαj and Ui =
∑n

j=1 X(m+i)jαj to the equations in
EQS3(m,R) and the equations in Fp[{Xij}] are obtained from Weil descent process.

Definition 8 (EQS4). EQS4(m,R) is the equations system obtained by Weil descent from
each equations in EQS3(m,R) and field equations.
i,e., EQS4(m,R) := {F ↓−→v ,j

| 1 ≤ j ≤ n, F ∈ EQS3(m,R)} ∪ Sfe where −→v = (v1, .., vN ).

Similarly, solving EQS3 reduces to solving EQS4 and its complexity is estimated as
follows; 6

Proposition 5. First fall degree of EQS4(m,R) is bounded by

{
4 (p = 2)
3p + 1 (p ≥ 3) .

Proposition 6. Under the first fall degree assumption, the complexity of solving EQS4(m,R)

is bounded by {
O((nm)4w) (p = 2)
O((nm)(3p+1)w) (p ≥ 3) .

The difference between using normal factor base and disjoint factor base is the probability
that decomposition success. The number of the elements in E(Fpn) written by the form
P1 + ... + Pm (Pi ∈ Fbi) is

∏m
i=1 #Fbi ∼ (pk)m ∼ pk ∼ #E(Fpn). So, the probability that

decomposition success, is O(1). On the other hands, the size of all factor base ∪Fbi became
m times large. However, it is not heavy problem.

Now fix k = C0 be a small natural number and put the parameter m ∼ n
k = n

C0
. Then we

have
∏m

i=1 #Fbi ∼ (pk)m ∼ pn. (Note: if one takes k = 1, it sometimes happens #Fbi = ∅
for some i. To avoid such case and confirm the relation

∏m
i=1 #Fbi ∼ pn, we choose suitable

constant C0.) From m ∼ n
C0

, one has #Fb ∼ m · pk = pC0

C0
· n = O(n). So from Lemma 6,

since we must collect #Fb + 1 decompositions, the cost of ”decompose step” is estimated by
{

(nm)4w · pC
0

C0
n = (n n

C0
)4w · pC

0
C0

n = O(n8w+1) (p = 2)

(nm)(3p+1)w · pC
0

C0
n = (n n

C0
)(3p+1)w · pC

0
C0

n = O(n(6p+2)w+1) (p ≥ 3)
.

The complexity of linear algebra step is (#Fb)w ∼ (n · pC0

C0
)w = O(nw) and very very small.

Thus we have the following theorem:

Theorem 1. Under the first fall degree assumption, the complexity of solving ECDLP for an
elliptic curve E/Fpn is estimated by

{
O(n8w+1) (p = 2)
O(n(6p+2)w+1) (p ≥ 3) .

Acknowledgement I would like to have great thanks to Professor Kazuto Matsuo in Kana-
gawa University for useful advices and coments.
6 The situation is the same as the Semaev’s case. So, we omit the proof.



Algorithm 2 Index Calculus algorithm of ECDLP using dis joint factor base
Input: E/Fpn elliptic curve, P, Q ∈ E(Fq) st. < P >3 Q
Output: Integer N satisfying NP = Q

Set parameter k, m satisfying km ∼ n
Put V = {Pk

i=1 xiαi |xi ∈ Fp}
Put v1, ..., vm ∈ Fpn st. V + vi are disjoint
Put Vi := V + vi,
Put Fbi := {P ∈ E(Fpn) |x(P ) ∈ V }
Put Fb := ∪m

i=1Fbi

Decompose step:i := 0, {PB1, ..., PB#Fb} := Fb
while i ≤ #Fb do

n1, n2 ← random integer, Put R := n1P + n2Q
if R is written by the sum P1 + ... + Pm for Pi ∈ Fbi, then

Put aj by R =
P#Fb

j=1 ajPBj (aj = 0 or 1,#{j|aj = 1} = m)

i + +,Put ni,1 := n1, ni,2 := n2, ai,j := aj (j = 1, .., #Fb)
Linear algebra step:
for all i = 1, ..., #Fb + 1 do

Put −→p i := (ai,1, ..., ai,#Fb)

Find b1, ..., b#Fb+1 ∈ Z/#E(Fpn)Z st.
P#Fb+1

i=1 bi
−→pi ≡ −→

0 mod #E(Fpn)
Computation of ECDLP:
Return −P#Fb+1

i=1 bini,1/
P#Fb+1

i=1 bini,2 mod #E(Fpn)
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