
Bit Coincidence Mining Algorithm (Draft)

Koh-ichi Nagao (nagao@kanto-gakuin.ac.jp)

Faculty of Science and Engineering, Kanto Gakuin Univ.,

Abstract. Here, we propose new algorithm for solving ECDLP named ”Bit Coinci-
dence Mining Algorithm!”, from which ECDLP is reduced to solving some quadratic
equations system. In this algorithm, ECDLP of an elliptic curve E defined over Fq (q
is prime or power of primes) reduces to solving quadratic equations system of d − 1
variables and d+C0−1 equations where C0 is small natural number and d ∼ C0 log2 q.
This equations system is too large and it can not be solved by computer. However, we
can show theoritically the cost for solving this equations system by xL algorithm is
subexponential under the reasonable assumption of xL algorithm.

1 Introduction and Notation

Let q be a power of prime and

E/Fq : y2 + ã1xy + ã3y − x3 − ã2x
2 − ã4x− ã6 = 0

be an elliptic curve. Here, we mainly consider the case q being large prime.

Problem 1 ((ECDLP)) Let P,Q ∈ E(Fq) such that < P >3 Q. ECDLP is the problem
finding integer N satisfying Q = NP .

Here, we propose a new algorithm solving this problem, named ”Bit Coincidence Mining
Algorithm”! From this algorithm, ECDLP reduced to solving equations system which con-
sists of d quadratic equations over Fq of d − 1 variable where d = blog2 #E(Fq)c + 1. Let
C0 be a constant or the small value in O((log2 #E(Fq))α) for some 0 ≤ α ≤ 1. This algo-
rithm can be generalized that ECDLP is essentially reduced to to solving larger equations
system which consists of d + C0 − 1 quadratic equations over Fq of d − 1 variable where
d = blog2 qC0−1 #E(Fq)c+1 ∼ C0 log2 q. From the observation of Courtois et al., solving this
equations system by xL algorithm is subexponential. And so, under the assumption of the
complexity of xL algorithm, ECDLP is also subexponential. It is only the theoretical result
and since the equations system is very large, it is not computable.

Moreover, we show the computable version of this algorithm. Suppose d′bit of binary
expansion of N is known. So, ECDLP reduced to solving equations system which consists of
d quadratic equations over Fq of d−1 variable where d = blog2 #E(Fq)c+1−d′. Considering
the case that d′ is large, obtained equations system is small and so we have easily obtain the
solution of ECDLP.

2 Riemann Roch space L((d + 1)∞ − P0)

Let P0, P1, .., Pd be the d + 1 point in E(Fq)\{∞}. In this section, we further fix P0. Put
(xi, yi) := Pi. Then the space of function field L((d + 1)∞− P0), which means the set of the
elements of function field that has pole only at ∞, the order of the pole at ∞ is ≤ d + 1 and
has zero at P0, is spanned by

(x− x0), (x− x0)x, ..., (x− x0)xb(d−1)/2c, (y − y0), (y − y0)x, ..., (y − y0)xb(d−2)/2c.

Let A1, ..., Ad−1 be variables and
−→
A := (A1, ..., Ad−1). Put φ

1,
−→
A

(x), φ
2,
−→
A

(x)(∈ Fq[A1, ..., Ad−1, x])
as follows;

1) In the case d is odd,

φ
1,
−→
A

(x) :=
(d−1)/2∑

i=1

Aix
i−1, φ

2,
−→
A

(x) :=
d−1∑

i=(d+1)/2

Aix
i−(d+1)/2 + x(d−1)/2

2) In the case d is even,

φ
2,
−→
A

(x) :=
d/2∑

i=1

Aix
i−1, φ

1,
−→
A

(x) :=
d−1∑

i=d/2+1

Aix
i−d/2−1 + xd/2−1.

Also put

φ−→
A

(x, y) := (y − y0)φ1,
−→
A

(x)− (x− x0)φ2,
−→
A

(x)(∈ Fq[A1, ..., Ad−1, x, y]),

φ
3,
−→
A

(x) := y0φ1,
−→
A

(x) + (x− x0)φ2,
−→
A

(x)(∈ Fq[A1, ..., Ad−1, x]).

Note that φ−→
A

(x, y) = yφ
1,
−→
A

(x)− φ
3,
−→
A

(x).

Lemma 1. Let f ∈ L((d+1)∞−P0). Suppose ord∞f = −d−1, there exists −→a = (a1, ..., ad−1) ∈
Ad−1(Fq), such that f = φ−→a (x, y).

Remark Suppose ord∞f = −d−1, div(f) is written by P0 +P1 + ...+Pd− (d+1)∞, where
the property {P0, ..., Pd} ∩ {−P0, ...,−Pd} = ∅ holds.

Lemma 2. Let f ∈ L((d + 1)∞ − P0). Suppose div(f) is written by the form P0 + P1 +
... + Pd − (d + 1)∞, where P0, ..., Pd is some element in E(Fq)\{∞} satisfying {P0, ..., Pd} ∩
{−P0, ...,−Pd} = ∅, then, there exists −→a = (a1, ..., ad−1) ∈ Ad−1(Fq), such that f = φ−→a (x, y).

Put

f−→
A

(x) := φ2

3,
−→
A

(x)+ ã1xφ
1,
−→
A

(x)φ
3,
−→
A

(x)+ ã3φ1,
−→
A

(x)φ
3,
−→
A

(x)−φ
1,
−→
A

(x)2(x3+ ã2x
2+ ã4x+ ã6)).

Then we see degx f−→
A

(x) = d + 1 and (x− x0) | f−→A (x).
Put

g−→
A

(x) :=
{

f−→
A

(x)/(x− x0) (d is odd)
−f−→

A
(x)/(x− x0) (d is even) .

Then g−→
A

(x) is monic degree d polynomial associate to variable x. Let Bd−1, ..., B0 ∈ Fq[A1, ..., Ad−1]
by

g−→
A

(x) = xd + Bd−1x
d−1 + ... + B1x + B0.

Then we see that Bi (i = 0, ..., d− 1) are quadratic polynomials in Fq[A1, ..., Ad−1].

Lemma 3. Suppose there exists some P1, ..., Pd ∈ E(Fq)\{∞} such that
1) P0 + P1 + ... + Pd = 0
2) {P0, ..., Pd} ∩ {−P0, ...,−Pd} = ∅.
Then we have
there exists some −→a = (a1, ..., ad−1) ∈ Ad−1(Fq), such that g−→a (x) =

∏d
i=1(x− x(Pi))).

Proof. From the condition 2), φ(x, y) ∈ Fq(E) such that P0 + P1 + ... + Pd − (d + 1)∞ =
div(φ(x, y)), has the property ord∞φ(x, y) = −d−1. Then from the definition of φ−→

A
(x, y), we

see the existence of −→a = (a1, ..., ad−1) ∈ Ad−1(Fq), such that φ(x, y) is written by φ−→a (x, y).

Proposition 1. Let x1, ..., xd ∈ {x(P) ∈ Fq |P ∈ E(Fq)\{∞}}. Suppose there exists some
−→a = (a1, ..., ad−1) ∈ Ad−1(Fq) such that g−→a (x) =

∏d
i=1(x− xi).

Then we have
1) there exists some P1, ..., Pd ∈ E(Fq)\{∞}, satisfying
1-a) x(Pi) = xi (i = 1, ..., d),
1-b) P0 + P1 + ... + Pd = 0, and
1-c) {P0, ..., Pd} ∩ {−P0, ...,−Pd} = ∅.
2) −→a = (a1, ..., ad−1) ∈ Ad−1(Fq).

Proof. From the definition of φ−→
A

(x, y), φ−→a = φ−→a (x, y) satisfies div(φ−→a) = P0 + ...+Pd− (d+
1)∞, ord∞φ−→a (x, y) = −d−1. Then we have 1-a),1-b) and 1-3). Since P0, P1, ..., Pd∞ ∈ E(Fq),
we see φ−→a (x, y) ∈ Fq(E). Thus we have 2).

Definition 1 Let P0, ..., Pd ∈ E(Fq)\{∞}. Put ci(∈ Fq) (i = 0, ..., d− 1) by

xd +
d−1∑

i=0

cix
i =

d∏

i=1

(x− x(Pi)).

We define the equation system EQS1(P0, P1, ..., Pd) consists of d − 1 variable A1, ..., Ad−1
and d quadratic equations B0 = c0, B1 = c1,...,Bd−1 = cd−1.

From this definition, Proposition 1 can be expressed as follows

Theorem 1. Let P0, ..., Pd ∈ E(Fq)\{∞}. Suppose EQS1(P0, ..., Pd) has solution A1 =
a1, ..., Ad−1 = ad−1 in Fq. Then we have
1) There exists some l′i ∈ {1,−1} such that P0 +

∑d
i=1 l′iPi = 0,

2) (a1, ..., ad−1) ∈ Ad−1(Fq).

Remark l′is can be computed as follows:
Put xi, yi, y

′
i ∈ Fq by (xi, yi) = Pi, (xi, y

′
i) = −Pi and put −→a = (a1, ..., ad−1). Then

l′i :=
{

1 φ−→a (xi, yi) = 0
−1 otherwise (in the case φ−→a (xi, y

′
i) = 0 holds) .

3 ECDLP

Here, we give the algorithm for solving discrete logarithm problem for elliptic curve.
For a technical reason, we consider the group E[2]∩ < P > and consider the following

”Modified ECDLP”. Let 2k · m (m being odd natural number) be the order of E(Fq). In
the case mP = 0, E[2]∩ < P >= {∞} and otherwise, E[2]∩ < P > is written by the
form {T0,∞} for some 2-torsion point T0. Let k0 be the (minimal) natural number such that
(2k0m)P 6= 0 and (2k0+1m)P = 0. Then T0 (∈ E[2]) is expressed by T0 = (2k0m)P .

Problem 2 ((Modifyied ECDLP)) Let E/Fq be an elliptic curve and let P, Q ∈ E(Fq)
such that < P >3 Q. We call the problem finding N such that Q − NP ∈ E[2]∩ < P > by
”Modified ECDLP”.

In the case E[2]∩ < P >= {∞}, ”Modified ECDLP” is the same as ”ECDLP”. Otherwise,
suppose we have the relation Q − NP = T0 ∈ {T0,∞} = E[2]∩ < P >, we have Q =
(N + 2k0m)P and ECDLP is solved. Here, we remark that ”Modified ECDLP” is essentially
the same as ”ECDLP”.

Now, we will solve ”Modified ECDLP”.
Put d = blog2 #E(Fq)c + 1, Pi := 2i−1P (i = 1, 2, ..., d). Also put P0 := 2Q − ∑d

i=1 Pi

and solving the equation system EQS1(P0, ..., Pd). Assume EQS1 has a solution. From the

discussion of previous section l′i ∈ {±1} (i = 1, ...d) satisfying P0 +
∑d

i=1(l
′
iPi) = 0 can be

computable. Also put

li := (−l′i + 1)/2 ∈ {0, 1}, (i = 1, ..., d).

Since 2
∑

liPi = −∑
l′iPi +

∑
Pi, we have

0 = 2Q−
d∑

i=1

Pi +
d∑

i=1

l′iPi = 2(Q−
d∑

i=1

liPi).

Thus we have

Q−
d∑

i=1

liPi ∈ E[2]∩ < P > .

Assume EQS1 has no solution. we see similarly that such N does not exists.
Thus we have the algorithm for solving ”ECDLP”.

Algorithm 1 Bit coincidence mining algorithm
Input: E/Fq elliptic curve, P, Q ∈ E(Fq) st. < P >3 Q
Output: Integer N satisfying NP = Q

Put d := blog2 #E(Fq)c+ 1
Put Pi := 2i−1P (i = 1, 2, ..., d)

Put P0 := 2Q−Pd
i=1 Pi

Solve EQS1(P0, ..., Pd)
if EQS1(P0, ..., Pd) has no solution then

Such N does not exists and return False.
Compute l′i ∈ {±1} (i = 1, ..., d) st. P0 +

Pd
i=1 l′iPi = 0 from the solution of EQS1

Put li := (−l′i + 1)/2 ∈ {0, 1} (i = 1, ..., d)

if Q−Pd
i=1 liPi = 0 then

Return
Pd

i=1 li2
i−1

else
Compute T0(∈ E[2]\{∞}∩ < P >)
Compute Integer logP T0 satisfying (logP T0)P = T0

Return
Pd

i=1 li2
i−1 + (logP T0)

Remark Algorithm 1 returns False only in the case that there are no N such that Q−NP ∈
E[2]∩ < P >.

Remark In Algorithm 1, the value d is taken blog2 #E(Fq)c+1. So, general ECDLP reduced
to solving equations system consists of blog2 #E(Fq)c variables, blog2 #E(Fq)c+ 1 quadratic
equations over Fq.

4 Toy Example

Here, we compute toy example. Let E/F1021 : y2 = x3 + x + 6. We have #E(F1021) =
991 and it is prime order. Let P = (2, 4), Q = (101, 250) ∈ E(F1021). Put P1 := P =
(2, 4), P2 := 2P = (557, 498), P3 := 22P = (93, 425), P4 := 23P = (629, 471), P5 := 24P =
(632, 880), P6 := 25P = (660, 38), P7 := 26P = (182, 513), P8 := 27P = (27, 714), P9 :=
28P = (549, 777), P10 := 29P = (156, 982), P0 := 2Q−∑10

i=1 Pi = (662, 1016).
The polynomials φ

1,
−→
A

(x), φ
2,
−→
A

(x), φ
3,
−→
A

(x) in F1021(A1, ..., A9, x) are written by the fol-
lowing;

φ
1,
−→
A

(x) = A6 + A7 ∗ x + A8 ∗ x2 + A9 ∗ x3 + x4,

φ
2,
−→
A

(x) = A1 + A2 ∗ x + A3 ∗ x2 + A4 ∗ x3 + A5 ∗ x4,

φ
3,
−→
A

(x) = A1 ∗ x + 359 ∗ A1 + A2 ∗ x2 + 359 ∗ A2 ∗ x + A3 ∗ x3 + 359 ∗ A3 ∗ x2 + A4 ∗ x4 +
359 ∗A4 ∗ x3 + A5 ∗ x5

+ 359 ∗A5 ∗ x4 + 1016 ∗A6 + 1016 ∗A7 ∗ x + 1016 ∗A8 ∗ x2 + 1016 ∗A9 ∗ x3 + 1016 ∗ x4.
Note that φ

3,
−→
A

(x) depends on the coordinates of P0.

From this, we can compute g−→
A

(x),
∏10

i=1(x−x(Pi)) and the equations system EQS1(P0, ..., P10)
(where A1,...,A9 are variables) is written by
662 ∗A12 + 10 ∗A1 ∗A6 + 236 ∗A62 + 869 = 0,
1020 ∗A12 +303 ∗A1 ∗A2+10 ∗A1 ∗A7+10 ∗A2 ∗A6+662 ∗A62 +472 ∗A6 ∗A7+880 = 0,
1019 ∗ A1 ∗ A2 + 303 ∗ A1 ∗ A3 + 10 ∗ A1 ∗ A8 + 662 ∗ A22 + 10 ∗ A2 ∗ A7 + 10 ∗ A3 ∗ A6 +
A62 + 303 ∗A6 ∗A7 + 472 ∗A6 ∗A8 + 236 ∗A72 + 543 = 0,
1019∗A1∗A3+303∗A1∗A4+10∗A1∗A9+1020∗A22 +303∗A2∗A3+10∗A2∗A8+10∗A3∗
A7+10∗A4∗A6+2∗A6∗A7+303∗A6∗A8+472∗A6∗A9+662∗A72+472∗A7∗A8+228 = 0,
1019 ∗ A1 ∗ A4 + 303 ∗ A1 ∗ A5 + 10 ∗ A1 + 1019 ∗ A2 ∗ A3 + 303 ∗ A2 ∗ A4 + 10 ∗ A2 ∗ A9 +
662 ∗A32 + 10 ∗A3 ∗A8 + 10 ∗A4 ∗A7 + 10 ∗A5 ∗A6 + 2 ∗A6 ∗A8 + 303 ∗A6 ∗A9 + 472 ∗
A6 + A72 + 303 ∗A7 ∗A8 + 472 ∗A7 ∗A9 + 236 ∗A82 + 574 = 0,
1019 ∗A1 ∗A5 + 1019 ∗A2 ∗A4 + 303 ∗A2 ∗A5 + 10 ∗A2 + 1020 ∗A32 + 303 ∗A3 ∗A4 + 10 ∗
A3 ∗A9 + 10 ∗A4 ∗A8 + 10 ∗A5 ∗A7 + 2 ∗A6 ∗A9 + 303 ∗A6 + 2 ∗A7 ∗A8 + 303 ∗A7 ∗A9 +
472 ∗A7 + 662 ∗A82 + 472 ∗A8 ∗A9 + 115 = 0,
1019 ∗A2 ∗A5+1019 ∗A3 ∗A4+303 ∗A3 ∗A5+10 ∗A3+662 ∗A42 +10 ∗A4 ∗A9+10 ∗A5 ∗
A8 + 2 ∗A6 + 2 ∗A7 ∗A9 + 303 ∗A7 + A82 + 303 ∗A8 ∗A9 + 472 ∗A8 + 236 ∗A92 + 350 = 0,
1019 ∗A3 ∗A5 + 1020 ∗A42 + 303 ∗A4 ∗A5 + 10 ∗A4 + 10 ∗A5 ∗A9 + 2 ∗A7 + 2 ∗A8 ∗A9 +
303 ∗A8 + 662 ∗A92 + 472 ∗A9 + 132 = 0,
1019 ∗A4 ∗A5 + 662 ∗A52 + 10 ∗A5 + 2 ∗A8 + A92 + 303 ∗A9 + 650 = 0,
1020 ∗A52 + 2 ∗A9 + 65 = 0.

Solving this equations system, we have a solution

(A1, ..., A9) = (372, 568, 115, 683, 111, 739, 673, 739, 2),

and we can recover
[l1, l2, ..., l10] = [0, 1, 1, 0, 0, 0, 1, 0, 1, 1].

Put n :=
∑10

i=1 li2i−1 and we obtain n = 838 which is the discrete logarithm. By a direct
calculation, 838P = (101, 250) = Q and the result is checked to be true.

5 Complexity using Linearizion

First, we try to estimate the complexity for solving this equations system by xL algorithm
[2]. In [2], Courtois et al. treat the only case that the equations are of the form ”homogeneous
quadratic polynomial=constant”, but, one can obtain similar results if general quadratic
equations are used.

Let Md be the set of all monomials of variables X1, ..., Xn whose degree ≤ d.
In [2], Courtois et al. observed as follows;
When D = O(

√
n) and m ≥ n, the number of the equations obtained by ”Multiply Step”

is bigger than #MD and so, xL algorithm seems to be work. However, in the case m = n,
simulation(maybe computer experiments cf [2]) shows the D that xL algorithm works well
must be 2n. (Reason is clear, since the equations system have generally 2n solutions in K.) In
the case m = n+1, simulation(maybe computer experiments) shows the D that xL algorithm
works well must be n (in stead of

√
n, Reason is not clear1). In the case m = n + C0 (C0

some small value), D that xL algorithm works well can be taken O(
√

n). The observation of
the case m = n + C0 is written by the following Assumption 1 or Assumption 2. First, we
consider the strong assumption, that C0 does not depend on the input value n and can be
taken constant.
1 I think it is a mystery!!!!

Algorithm 2 xL algorithm [2]

Notation: K field, X1, ..., Xn variables,
−→
X := (X1, ..., Xn)

pi(
−→
X) ∈ K[X1, ..., Xn] (i = 1, ..., m) quadratic polynomials

Md := {All monomials of X1, ..., Xn degree ≤ d}
Assumption: n ≤ m

Input: pi(
−→
X) (i = 1, ..., m)

Output: −→x = (x1, ..., xn) ∈ An(K) satisfying pi(
−→x) = 0 (i = 1, ..., m)

Set parameter D = D(n, m)
Multiply:

for all m(
−→
X) ∈MD−2, p(

−→
X) ∈ {p1(

−→
X), ..., pm(

−→
X)} do

Genera all products m(
−→
X)p(

−→
X)

Linearize: Consider each monomial in MD as new variable and perform Gaussian elimination
on the equations obtained in ”Multiply”. The ordering on the monomial must be such that all the
terms containing 1 variable (say X1) are eliminated last
Solve: Assume that Linearize step yields at least one univariate equation in the powers of X1,
Solve this equation.
Repeat: Simplify the equations and repeat the process to find the values of the other variables.

Assumption 1 (Strong version) There are positive constants C0, C1 satisfying the follow-
ing:
Suppose m = n + C0 and D = C1

√
n, xL algorithm returns the solution in high probability.

Assume Assumption 1 and D = C1
√

n. we have
#MD =

(
n+D

D

) ¹ nC1
√

n = O(exp(n1/2+o(1))). (Many terms are absorbed into o(1) term.

Then o(1) is Huge, although limn→∞ o(1) = 0.) In order for performing xL algorithm,
the dominant part is Gaussian elimination of the matrix whose size is about #MD ×#MD.
Its cost is (#MD)w where w ∼ 2.7 is the linear algebra constant and it is also written by
O(exp(n1/2+o(1))).

Here, we prepare the weaker version of the assumption. 2

Assumption 2 (Weaker version) There are positive constants α, β, C0, C1 satisfying the
following:
1) 0 < α, β < 1, (1 + α)β < 1,
2) Suppose m = n+C0n

α and D = C1n
β, xL algorithm returns the solution in high probability.

Assume Assumption 2 and D = C1n
β . Similarly, we have that the cost of xL algorithm is

O(exp(n(1+α)β+o(1))).

In our situation, general ECDLP reduces to solving equations system whose
n = blog2 #E(Fq)c,m = n + 1 and so, the required D = D(n,m) is n and the complexity of
ECDLP is still exponential. In the next section, we modify the equations system and show
ECDLP is subexponential under the Assumption 1 or Assumption 2.

Remark If one uses Gröbner basis computation for solving equations system, the maximal
degree of the polynomials appears in the computation is generally larger than the that of xL.
At least, from the complexity point of view, for solving low degree equations system, using
xL seems to be better than using Gröbner basis.

6 Sub-exponential algorithm

Recall the situation we concern. Let E/Fq be an elliptic curve and P,Q ∈ E(Fq) such that
< P >3 Q. We consider the ECDLP which compute integer N satisfying Q = NP . Moreover,
2 If C0 depend on the input value n, we can show the subexponentiality of ECDLP under the

Assumption 2.

we suppose Assumption 1. (We will concern the case C0 ≥ 2.)

Put d := blog2(qC0−1 · #E(Fq))c + 1, and consider the EQS1(P0, ..., Pd), where Pi =
(2i−1)P (i = 1, ..., d) and P0 = 2Q−∑d

i=1 Pi.
Note that d ∼ C0 log2 q ∼ C0 log2 #E(Fq). From the discussion in §2, each solution of

EQS1 corresponds to the (l1, ..., ld) ∈ {0, 1}d such that Q =
∑d

i=1 liPi (or Q = T0+
∑d

i=1 liPi

where T0 ∈ E(Fq)[2]∪ < P >). Since #{0, 1}d = 2d ∼ qC0−1 · #E(Fq), the number of
(l1, ..., ld) ∈ {0, 1}d satisfying Q =

∑d
i=1 liPi. is estimated by qC0−1. Thus also the number of

the solution EQS1 is estimated by ≥ qC0−1.

Let Li = Li(A1, ..., Ad−1) (i = 1, ..., C0 − 1) be the random degree 1 polynomials in
Fq[A1, ..., Ad−1] and consider the new equations system

EQS2(P0, ..., Pd) := EQS1(P0, ..., Pd) ∪ {Li = 0 | i = 1, ..., C0 − 1}.
Since Li is random degree 1 polynomial, so, for any (a1, .., ad−1) ∈ Ad−1(Fq) , the probability
Li(a1, ..., ad−1) = 0 is 1/q and the probability Li(a1, ..., ad−1) = 0 holds for all i ∈ [1, ..., C0−1]
is 1/qC0−1. Thus the number of the solution EQS2 is estimated by ≥ 1 and from this solution,
the value of ECDLP can be recovered.

Note that EQS2 consists of n = d−1 variables and m = d+C0−1 quadratic equations (in-
cluding C0−1 linear equations), So from Assumption 1 and the discussion of the previous sec-
tion, the cost of solving EQS2 is in O(exp(d1/2+o(1))). Since d ∼ C0 log2 q ∼ C0 log2 #E(Fq)
and C0 is a constant, we have the following theorem;
Theorem 2. Suppose the Assumption1, the complexity of ECDLP is estimated by
O(exp((log2 #E(Fq))1/2+o(1))) where lim#E(Fq)→∞ o(1) = 0. 3

Algorithm 3 Subexponential algorithm (strong assumption version)
Input: E/Fq elliptic curve, P, Q ∈ E(Fq) st. < P >3 Q
Output: Integer N satisfying NP = Q

Assume ”Assumption 1”
Set parameter C0

Put d := bqC0−1 log2 #E(Fq)c+ 1
Put Pi := 2i−1P (i = 1, 2, ..., d)

Put P0 := 2Q−Pd
i=1 Pi

Solve EQS2(P0, ..., Pd) (Note:Cost for solving is O(exp(q1/2+o(1))))
if EQS2(P0, ..., Pd) has no solution then

return False.
Compute l′i ∈ {±1} (i = 1, ..., d) st. P0 +

Pd
i=1 l′iPi = 0 from the solution of EQS2

Put li := (−l′i + 1)/2 ∈ {0, 1} (i = 1, ..., d)

if Q−Pd
i=1 liPi = 0 then

Return
Pd

i=1 li2
i−1

else
Compute T0(∈ E[2]\{∞}∩ < P >)
Compute Integer logP T0 satisfying (logP T0)P = T0

Return
Pd

i=1 li2
i−1 + (logP T0)

Similarly we can obtain the following theorem and Algorithm 4; 4

Theorem 3. Suppose the Assumption2, the complexity of ECDLP is estimated by
O(exp((log2 #E(Fq))(1+α)β+o(1))) where lim#E(Fq)→∞ o(1) = 0.

3 The terms of C0 can be absorbed into o(1) term
4 Using C0n

α instead of C0, we have this result.

Algorithm 4 Subexponential algorithm (weak assumption version)
Input: E/Fq elliptic curve, P, Q ∈ E(Fq) st. < P >3 Q
Output: Integer N satisfying NP = Q

Assume ”Assumption 2”(Note α, β is the constant of this assumption)
Set parameter C0

Put d := bqC0nα−1 log2 #E(Fq)c+ 1
Put Pi := 2i−1P (i = 1, 2, ..., d)

Put P0 := 2Q−Pd
i=1 Pi

Solve EQS2(P0, ..., Pd) (Note:Cost for solving is O(exp(q(1+α)β+o(1))))
if EQS2(P0, ..., Pd) has no solution then

return False.
Compute l′i ∈ {±1} (i = 1, ..., d) st. P0 +

Pd
i=1 l′iPi = 0 from the solution of EQS2

Put li := (−l′i + 1)/2 ∈ {0, 1} (i = 1, ..., d)

if Q−Pd
i=1 liPi = 0 then

Return
Pd

i=1 li2
i−1

else
Compute T0(∈ E[2]\{∞}∩ < P >)
Compute Integer logP T0 satisfying (logP T0)P = T0

Return
Pd

i=1 li2
i−1 + (logP T0)

7 Some bits known ECDLP

Here, we give the algorithm for solving discrete logarithm problem for elliptic curve in which
some bits of the value of the discrete logarithm is known.

Problem 3 ((Some bits known ECDLP)) Let E/Fq be an elliptic curve and let P,Q ∈
E(Fq) such that < P >3 Q. Let I0, I1, Iunknown are the disjoint division of{0, 1, 2, ..., blog2 #E(Fq)c}.
Assume there exists some N written by the form

∑
i∈I1

2i+
∑

i∈Iunknown
li2i (where li ∈ {0, 1}

) such that Q = NP . We call the problem finding N (which is equivalent to finding l′i for
i ∈ Iunknown) by ”Some bits known ECDLP”.

For a technical reason, we also consider the group E[2]∩ < P > and consider the following
”Modified some bits known ECDLP”.

Problem 4 ((Modifyied some bits known ECDLP)) Let E/Fq be an elliptic curve and
let P, Q ∈ E(Fq) such that < P >3 Q. Let I0, I1, Iunknown are the disjoint division of
{0, 1, 2, ..., blog2 #E(Fq)c}. Assume there exists some N written by the form

∑
i∈I1

2i +∑
i∈Iunknown

li2i (where li ∈ {0, 1}) such that Q−NP ∈ E[2]∩ < P >. We call the problem
finding N (which is equivalent to finding l′i for i ∈ Iunknown) by ”Modified some bits known
ECDLP”.

In the case E[2]∩ < P >= {∞}, ”Modified some bits known ECDLP” is the same as
”Some bits known ECDLP”. Otherwise, suppose we have the relation Q − NP = T0 ∈
{T0,∞} = E[2]∩ < P >, we have Q = (N + logP T0)P and ECDLP is solved. Here, we also
remark that ”Modified some bits known ECDLP” is essentially the same as ”Some bits known
ECDLP”.

Now, we will solve ”Modified some bits known ECDLP”.
Put I1, ..., Id by {I1, ..., Id} = Iunknown, N0 :=

∑
i∈I1

2i, and Pi := 2IiP (i = 1, 2, ..., d). Also
put P0 := 2(Q−N0P)−∑d

i=1 Pi and solving the equation system EQS1(P0, ..., Pd). Assume
EQS1 has a solution. From the discussion of previous section l′i ∈ {±1} (i = 1, ...d) satisfying
P0 +

∑d
i=1(l

′
iPi) = 0 can be computable. Also put li := (−l′i + 1)/2 ∈ {0, 1} (i = 1, ..., d).

Since 2
∑

liPi = −∑
l′iPi +

∑
Pi, we have

0 = 2(Q−N0P)−
d∑

i=1

Pi +
∑

l′iPi = 2(Q−N0P −
d∑

i=1

liPi).

Thus we have

Q−N0P −
d∑

i=1

liPi ∈ E[2]∩ < P > .

Assume EQS1 has no solution. we see similarly that such N does not exists.
Thus we have the algorithm for solving ”Some bits known ECDLP”.

Algorithm 5 Bit coincidence mining algorithm for Some bits known ECDLP
Input: E/Fq elliptic curve, P, Q ∈ E(Fq) st. < P >3 Q, I0, I1, Iunknown division of
{0, .., blog2 #E(Fq)c}
Assume ∃N of the form

P
i∈I1 2i+

P
i∈Iunknown

li2
i (li ∈ {0, 1}) such that Q−NP ∈ E[2]∩ < P >

Output: Integer N satisfying NP = Q
Put I1, ..., Id by {I1, ..., Id} = Iunknown

Put N0 :=
P

i∈I1 2i

Put Pi := 2IiP (i = 1, 2, ..., d)

Put P0 := 2(Q−N0P)−Pd
i=1 Pi

Solve EQS1(P0, ..., Pd)
if EQS1(P0, ..., Pd) has no solution then

Such N does not exists and return False.
Compute l′i ∈ {±1} (i = 1, ..., d) st. P0 +

Pd
i=1 l′iPi = 0 from the solution of EQS1

Put li := (−l′i + 1)/2 ∈ {0, 1} (i = 1, ..., d)

if Q−N0P −Pd
i=1 liPi = 0 then

Return N = N0 +
Pd

i=1 li2
Ii

else
Compute T0(∈ E[2]\{∞}∩ < P >)
Compute Integer logP T0 satisfying (logP T0)P = T0

Return N = N0 +
Pd

i=1 li2
Ii + (logP T0)

Remark Algorithm 5 returns False only in the case that the assumption ”∃N of the form∑
i∈I1

2i +
∑

i∈Iunknown
li2i (li ∈ {0, 1}) such that Q−NP ∈ E[2]∩ < P >” is not true.

Now, we will consider the probabilistic version of ”Bit coincidence mining algorithm”.
Here also let E/Fq be an elliptic curve and let P,Q ∈ E(Fq) such that < P >3 Q.

Let I ′0, I ′1, I ′unknown are the disjoint division of{0, 1, 2, ..., blog2 #E(Fq)c}. This is the same
notation of Algorithm 5, but the symbols I0, I1, Iunknown are replaced I ′0, I ′1, I ′unknown re-
spectively.

Assume there exists some N written by the form
∑

i∈I′1 2i +
∑

i∈I′unknown
li2i (where

li ∈ {0, 1}) such that Q−NP ∈ E[2]∩ < P >.
Put Iunknown, Irandom by the division of I ′unknown, (i.e.,)

Iunknown ∪ Irandom = I ′unknown (disjoint division)

and put Irandom,0, Irandom,1 by the division of Irandom, (i.e.,)

Irandom,0 ∪ Irandom,1 = Irandom,1 (disjoint division).

From this notation, N is written by
∑

i∈I′1
2i +

∑

i∈Iunknown

li2i +
∑

i∈Irandom,0

li2i +
∑

i∈Irandom,1

li2i.

So, 1/2#Irandom probability, we have

li = 0 (i ∈ I0,random) and li = 1 (i ∈ I1,random).

Thus, put
I0 := I ′0 ∪ I0,random, I1 := I ′1 ∪ I1,random

and apply the Algorithm 5, we have the value of ECDLP in 1/2#Irandom probability. Otherwise
we have the result ”False” in 1− 1/2#Irandom probability.

Thus, we have the following probabilistic (so that the required equations system is small)
algorithm.

Algorithm 6 Probabilistic bit coincidence mining algorithm
Input: E/Fq elliptic curve, P, Q ∈ E(Fq) st. < P >3 Q, I′0, I′1, I′unknown division of
{0, .., blog2 #E(Fq)c}
Assume ∃N of the form

P
i∈I′1 2i+

P
i∈I′

unknown
li2

i (li ∈ {0, 1}) such that Q−NP ∈ E[2]∩ < P >

Fix natural number d′ (< #I′unknown) as parameter
Start:
Put Iunknown ∪ Irandom = I′unknown by random division of size #Irandom = d′
Put I0,random ∪ I1,random = Irandom by random division
Put I0 := I′0 ∪ I0,random, I1 := I′1 ∪ I1,random

Call Algorithm 5
if Algorithm 5 returns value N then

Return N
else /*Algorithm 5 returns False*/

Goto Start

Remark The average number of the calls of Algorithm 5 in Algorithm 6 is 2d′ where d′ is
the parameter in Algorithm 6.

8 Remarks

1. Consider the problem of solving equations system consists of n variables and m degree δ
equations by xL method. Here also assume m ≥ n. Put D ∼ n(δ−1)/δ and we have ”#MD <
of the equation obtained by multiply step”. So, it is expected that in the case m = n +
C0 for small C0, the complexity of solving equations system is O(exp(n(δ−1)/δ+o(1))) where
limn→∞ o(1) = 0.

2. This algorithm can be (or may be) generalized to the Jacobian of the curves. In the case
of the Jacobian of hyperelliptic curves, degree of the obtained equations system is 2 and
sub-exponentially under the Assumption 1 can be also shown. However, in the case of the
Jacobian of the general curve, degree of the obtained equations system is > 2. 5

3. Instead of using Riemann-Roch space, one can use equations system consists of Semaev
formal S3(x, y, z) = 0 of 3 variables [5], [13]. Using S3, ECDLP reduced to solving equations
system consists of d− 1 variables, d degree 4 equations, where d is taken blog2 #E(Fq)c+ 1.

4. We can easily construct sub-exponential version of ”Some bit known ECDLP” and ”Prob-
abilistic some bit known ECDLP” algorithms under the assumption of the complexity of xL
algorithm.

Acknowledgement I would like to have great thanks to Professor Kazuto Matsuo in Kana-
gawa University for useful advices and coments.

5 When the degrees of the equations is > 2, we must modify the Assumption and sub-exponentially
seems to be shown under the modified assumption

References

1. J. Ding, J. Buchmann, M. Mohamed, W. Mohamed and R-P Weinmann, MutantXL,
http://www.academia.edu/2863459/Jintai_Ding_Johannes_Buchmann_Mohamed_Saied_Emam_Mohamed

2. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving Overdefined
Systems of Multivariate Polynomial Equations. In Proceedings of International Conference on the
Theory and Application of Cryptographic Tech- niques(EUROCRYPT), volume 1807 of Lecture
Notes in Computer Science, pages 392–407, Bruges, Belgium, May 2000. Springer.

3. J-C. Faugére, L. Perret, C. Petit, and G. Renault, Improving the complexity of index calculus
algorithms in elliptic curves over binary fields, EUROCRYPTO 2012, LNCS 7237, pp.27-44.

4. S. Galbraith and S.Gebregiyorgis, Summation polynomial algorithms for elliptic curves in charac-
teristic two, https://eprint.iacr.org/2014/806

5. Y. Huang, C. Petit, N. Shinohara, and T. Takagi, On Generalized First Fall Degree Assumptions,
https://eprint.iacr.org/2015/358

6. M. Kosters, NOTES ON SUMMATION POLYNOMIALS,
http://arxiv.org/pdf/1503.08001.pdf 2015.

7. K. Nagao, Index calculus for Jacobian of hyperelliptic curve of small genus using two large primes,
Japan Journal of Industrial and Applied Mathematics, 24, no.3, 2007.

8. K. Nagao, Decomposition Attack for the Jacobian of a Hyperelliptic Curve over an Extension
Field, 9th International Symposium,ANTS-IX., Nancy, France, July 2010, Proceedings LNCS
6197,Springer, pp.285–300, 2010.

9. K. Nagao, Decomposition formula of the Jacobian group of plane curve,
https://eprint.iacr.org/2013/548

10. K. Nagao, Equations System coming from Weil descent and subexponential attack for algebraic
curve cryptosystem, https://eprint.iacr.org/2013/549

11. C. Petit and J-J. Quisquater. On Polynomial Systems Arising from a Weil Descent, Asiacrypt
2012, Springer LNCS 7658, Springer, pp.451-466.

12. I. Semaev. Summation polynomials and the discrete logarithm problem on elliptic curves.
https://eprint.iacr.org/2004/031.pdf

13. I. Semaev, New algorithm for the discrete logarithm problem on elliptic curves,
https://eprint.iacr.org/2015/310.pdf

