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Abstract. We present an actively secure multi-party computation of
the Advanced Encryption Standard (AES). To the best of our knowledge
it is the fastest of its kind to date. We start from an efficient actively
secure evaluation of general binary circuits that was implemented by
the authors of [DLT14]. They presented an optimized implementation of
the so-called MiniMac protocol [DZ13] that runs in the pre-processing
model, and applied this to a binary AES circuit. In this paper we de-
scribe how to dedicate the pre-processing to the structure of AES, which
improves significantly the throughput and latency of previous actively
secure implementations. We get a latency of about 6 ms and amortised
time about 0.4 ms per AES block, which seems completely adequate for
practical applications such as verification of 1-time passwords.

Introduction

Secure Multi-party computation (MPC) allows a set of players (or comput-
ers) with private inputs to evaluate a function on these inputs. Security means
that all players learns the output of the function and essentially nothing else.
More precisely the problem of MPC for n players is to compute a function
f(x1, ..., xn) = (y1, ..., yn) such that Player, Pi, learns only yi after evaluating f
and xi is the private input held by Pi. This problem was first proposed by Yao
in [Yao82,Yao86] and has been an active area of research since.
The description of the function f can take different forms. In this work we
consider descriptions of f as a circuit over the (AND,XOR) or (MUL,ADD)
basis for binary and arithmetic circuits respectively. Protocols for evaluating
such function typically implement an ideal functionality sometimes called an
Arithmetic black-box [DN03]. The Arithmetic black-box is depicted in Fig. 1.
Intuitively, the players agree on a circuit over the actions Open, Input, Xor/Add
and And/Mul. Players provide input values using the Input command, and then
work their way through the circuit invoking the appropriate command for each
gate. Finally the Open command is used to the result.
MPC for the case where a majority of the players are corrupt require public-key
machinery and was therefore for a long time thought to be impractical, especially
for the case of active security. To resolve this, the so-called pre-processing-model
was proposed, where the heavy computations are pushed to a pre-processing
phase. Using precomputed material one can evaluate the function securely much



Fig. 1: The Arithmetic Black Box.

faster in the on-line phase. With recent result [NNOB12,DKL+13,DLT14,FJN14]
in particular, practicality is within our reach, see [IKM+13] for an in depth dis-
cussion on the power of correlated randomness. We consider here the particu-
lar protocol nick-named MiniMac from [DZ13]. This is an arithmetic black-box
protocol in the pre-processing-model, which was designed to handle arithmetic
circuit over small fields efficiently. To do this, it computes on vectors of field
elements instead of single values.

Benchmarking Oblivious AES is a much used example of how practical MPC is
becoming, see [PSSW09] and [NNOB12,DKL+12,GHS12,DLT14,HKS+10,HEKM11].
Oblivious AES distinguishes itself from the classical AES encryption by being
distributed between two or more parties. All players know the plaintext and ev-
erybody learns the ciphertext. The key, however, is additively shared meaning
that the key k is not known to any player.
Performance wise, previous state of the art for Oblivious AES with malicious
security is the implementation using a binary circuit in [DLT14] where they re-
port on amortized running times less than 4 milliseconds per AES-block and
3-4 seconds latency on ordinary consumer hardware. In [KSS13] a different im-
plementation was reported that uses the algebraic description of AES over F28 .
They achieve about 1 ms amortised time per AES block and a latency of 100
ms.

Our contributions. We show that both amortised time and latency can be im-
proved significantly: in the fastest configuration, we obtain about 0.4 ms amor-
tised time and a latency of about 6 ms. We present three constructions which are
variations on the idea that if we exploit the special structure of AES, rather that
seeing it as a general binary or arithmetic circuit, we can tailor the pre-processing
such that we save on the number of rounds and also on local computation. We try
out these ideas in practice using the implementation of MiniMac from [DLT14]
1 as our starting point.
The basic approach in our first protocol is to pre-process a number of tables,
each of which implement an AES S-box followed by the Mix-Column and Shift-
Row operations applied to the bits output from the S-box in question. We first

1 Available at http://tinyurl.com/q2dmcuw
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a describe what the correlated randomness should look like to implement the
tables, and then we present a slightly modified version of the MiniMac protocol
using this material to perform AES. This solution computes 5 simultaneous
AES blocks in only 10 rounds of online communication. In comparison [DLT14]
required at least 6800 rounds.

No AES blocks Time/AES ms Latency ms Prep. size Mb/player

MiniMac [DLT14]

680 4 9962 130, 0.2/AES

Protocol 1 incl. Key Expansion

5 3 15 270, 54/AES

Protocol 1 without Key Expansion

5 1.2 6 220, 44/AES

Estimated time, Protocol 2 (no on-line multiplications)

15 0.4 6 650, 44/AES

Estimated time, Protocol 3 (minimized preprocessing)

15 0.8 12 10.5, 0.7/AES

Fig. 2: Execution times of our AES protocol.

For our second protocol, we observe that after we introduce the tables, we no
longer need to do secure multiplication in the on-line phase. This allows us to
change the internal representation used in MiniMac to allow more parallelism at
no extra cost. This immediately saves us a factor roughly 3 in amortized time
per AES instance.
For the third protocol we give a new construction that shows how to obtain much
smaller preprocessing material. We save a factor of at least 60 in the size of pre-
processed data at the cost of doing 1 extra round of communication and more
local computation in the final protocol. Some explanation of the idea behind this
optimisation is in order as the idea may be of interest beyond oblivious AES:
the efficiency of MiniMac is based on the idea of computing on vectors of values
in a SIMD fashion, i.e. we add and multiply vectors coordinate-wise. Concretely,
the implementation of MiniMac we started from uses vectors containing 85 data
bytes. Now, the reason why it makes sense to compute the AES SBox by table
look-up is that the input is only 1 byte, so we need only 256 entries in the table.
However, the result we get will be just one byte, and this result needs to go to
the right place in the vector representing the state after the table look-up, of
course without revealing what was output from the table. The simplest solution
is to make the table entry be an entire MiniMac word containing data that only
depends on the single byte that is output from that table entry. This will work,
as we explain in more detail later, but of course means that tables get very large.
What we do for protocol 3 is to show that with an appropriate combination of
masking by random values and unconditional MACs, we can have table entries
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that only consist of a single data byte and some authentication information.
This idea can be applied to computation of any function with small input and
output, possibly followed by some linear function.
We implemented the Protocol 1 and based on this we calculated the size of pre-
processed data for the other results and conservatively estimated their running
times, as detailed in the following sections. A summary of this can be seen in
Table 2.
The demands we have to the pre-processed data are quite specialized and it may
not be clear how we can do the required preprocessing reasonably efficiently.
In particular, the preprocessing assumed by the original MiniMac protocol does
not produce data of the form we need. In principle, the problem can be solved
by writing down an arithmetic circuit that takes some random bits as input and
outputs the data players need; and then evaluate that circuit using the original
MiniMac protocol. This would be an extremely large circuit, and therefore, in the
final section, we give a recipe for how pre-processed material may be constructed
more efficiently from a generic MiniMac instance.
A main take-home message from our paper is that the only structure we need
from AES to speed up the computation is that it’s non-linear parts consist only of
Sboxes with small inputs, this is what allows us to use table look-up with tables
of feasible size. In future work, it will therefore be interesting to investigate if
secure computation of other ciphers or hash functions can be made practical
using a similar approach.

The MiniMac protocol

This protocol is in a nutshell a SIMD Arithmetic black-box. That is, the protocol
operates on a so called representation consisting of a vector of field elements.
The actions of the Arithmetic black-box operates in parallel on all elements of
the vector simultaneously. The details and proof of security can be found in
[DZ13] while the extension for operating efficiently on binary fields was discov-
ered in [DLT14]. For our purposes here we will think of MiniMac simply as an
implementation of a SIMD Arithmetic Black-box and hence describe MiniMac’s
representation of data as containing an l-vector over a finite field2.

[[a]] = [[(a1, ..., al)]]

The operations Input, Add, Mul and Open for the Arithmetic black-box operates
on such vectors. E.g. adding two elements in the box with MiniMac yields the
computation:

[[a]] + [[b]] = [[(a1 + b1, ..., al + bl)]] = [[a + b]]

In a similar way Input requires the secret values to be loaded into the box to be
l-vectors and Open gives the parties an l-vector back.

2 Actually, the players in MiniMac have additive shares of the vectors and a special
type of MACs are used to prevent cheating, but these details are not important here.
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Advanced Encryption Standard

AES is described in [DR00]. Here we consider only 128-bit 10 round encryption
with AES. As a courtesy to the reader we give here a summary of the intimate
details. The algorithm can be considered to have two distinct phases: The Key
Expansion and the 10 Rounds. The Key Expansion operates on a 16 byte state of
key material and the 10 rounds operate on a 16 byte state of plain/cipher-text.

The key expansion in more details operates on a 16 byte state of key material
initially containing the encryption key. This state is updated in each round to
contain the corresponding round-key.

In [DR00] the key expansion algorithm is explained in an algorithmic way over
bytes. Our framework of implementation is geared for matrix operations thus we
here give an alternative characterization of the key schedule in terms of matrices.
Here we abstract the S-Box operations to merely a table lookup and explain later
how such lookups can be done securely with MiniMac. Let K0 = (k0, ..., s15) be
the initial 16 bytes of encryption key. The key is divided in to 4 so called words
w0 through w3 in the natural increasing order of indices. Word w3 = (k12, ..., k15)

Fig. 3: The AES key schedule

is passed through the key schedule core, denoted g in Figure 3, which rotates
the word one position left rot(w3) = (k13, k14, k15, k12) and then forms the result
T3 = (sb(k13), sb(k14), sb(k15), sb(k12)). Here sb refers the S-box. We have the
four word state T = (T0, T1, T2, T3) = (k0, ..., k11, sb(k13), sb(k14), sb(k15), sb(k12)).
From T the remaining of the key schedule is (almost) a linear transformation,
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KS, over F28
16 depicted below:

KS × T ⊕ w3 =




1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




×




t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15




+




0
0
0
0
0
0
0
0
0
0
0
0
k12
k13
k14
k15




When expanding the key from round i to round i + 1 we denote w0, ..., w3 the
four words of the current key and denote the new key w4, ..., w7.
To see how the computation above resembles the operations depicted in Figure
3 we consider each word of the result in turn. The first word in the new key is
w4. We see from the figure that it should be w0 ⊕ T3 = (k0 ⊕ t12, k1 ⊕ t13, k2 ⊕
t14, k3 ⊕ t15). Doing the inner product with the first four rows of KS and T
yields this. Similar observations can be made progressing to rows 4 though 7
and rows 8 through 11 for words w5 and w6 respectively. For w7 the operation is
slightly different as it according to Figure 3 should be w3 ⊕w4 ⊕w5 ⊕w6 where
only w4, w5 and w6 are present in our T vector. To obtain the final result we
additionally XOR w3 onto KS×T obtaining the same operation as in Figure 3.
The reason for laying out the computation as above will become clear later.

The 10 rounds are the main encryption loop of AES. Algorithm 1 describes the
algorithm. Add Round Key covers the operation of XORing the current round
key with the current AES state obtaining a new AES state. The KeyExpansion
step updates the current round key into the one needed for the following round. If
the key expansion is computed beforehand as suggested above the KeyExpansion
step can be ignored. After the final step the 16 bytes AES state in S contains
the ciphertext. Our results rely on a mathematical interpretation of the steps in
AES which we will give in the following. We consider each step in Algorithm 1.
The Sub-Byte step is the operation of replacing each byte in the AES state with
the S-Box lookup for that byte. More precisely, if the AES state is S = (s0, ..., s15)
after applying Sub-bytes the AES state is S′ = (SBox[s0], ..., SBox[s15]). An-
other interpretation of the S-Box can be found in [DK10]. Here the S-Box is
considered a degree 254 polynomial over F28 . In our case, we will use a lookup
table however a low-depth binary circuit for the S-Box can be found in [BP11].
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Algorithm 1: AES Encryption

Data: S = (s0, ..., s15) - /* the AES state */

Data: K = (k0, ..., k15) - /* the AES key */

/* Prepare the 11 round keys */

/* Xor the 0th round key to the state */

1 AddRoundRey(K,S,0)
2 for round ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} do
3 KeyExpansion(K,round)
4 SubByte(S)
5 ShiftRows(S)

/* Considered as polynomials over F28 the columns of the state

are multiplied with the fixed polynomial 3x3 + x2 + x+ 2
mod x4 + 1. */

6 MixColumns(S)
/* Xor the [round]th key to the state */

7 AddRoundKey(K,S,round)

8 KeyExpansion(K,10)
9 SubByte(S)

10 AddRoundKey(K,S,10)

In the Shift-rows step we consider the 16 bytes AES state as a 4 × 4 matrix as
in Figure 4a. Then the shiftrows cycles the second row one element, the third
row two elements and the fourth row three elements as depicted in Figure 4b.
This operation corresponds to the 16 × 16 linear transformation performed by

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


(a) 16 bytes of AES state laid out in a 4×4-
matrix.

S =


s0 s4 s8 s12
s5 s9 s13 s1
s10 s14 s2 s6
s15 s3 s7 s11


(b) 16 bytes of AES state with Shift-rows
applied.

Fig. 4: Illustration of Shift-rows.
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the matrix on the 16-vector holding the AES state, S = (s0, ..., s15)




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0




×




s0
s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15




=




s0
s5
s10
s15
s4
s9
s14
s3
s8
s13
s2
s7
s12
s1
s6
s11




The Mix-columns step can also be described as a linear transformation:




2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 3 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 2 3 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 2 3 0 0 0 0 0 0 0 0
0 0 0 0 3 1 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 3 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 2 3 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 3 0 0 0 0
0 0 0 0 0 0 0 0 3 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3
0 0 0 0 0 0 0 0 0 0 0 0 3 1 1 2




×




s0
s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15




=




2s0 + 3s1 + s2 + s3
s0 + 2s1 + 3s2 + s3
s0 + s1 + 2s2 + 3s3
3s0 + s1 + s2 + 2s3
2s4 + 3s5 + s6 + s7
s4 + 2s5 + 3s6 + s7
s4 + s5 + 2s6 + 3s7
3s5 + s5 + s6 + 2s7

2s8 + 3s9 + s10 + s11
s8 + 2s9 + 3s10 + s11
s8 + s9 + 2s10 + 3s11
3s8 + s9 + s10 + 2s11

2s12 + 3s13 + s14 + s15
s12 + 2s13 + 3s14 + s15
s12 + s13 + 2s14 + 3s15
3s12 + s13 + s14 + 2s15




We are going to apply these matrices in the pre-processing phase and in the on-
line phases of our protocol using a trick which will be explained later. In all of our
application of Shift-rows and Mix-columns we compute on many AES blocks
in parallel. For this we introduce one additional bit of notation. Let SR and MC
be the Shift-rows and Mix-columns matrices as above respectively. To apply
e.g. SR to a vector holding n AES states we write SRn × S where SRn is the
16n × 16n-matrix having n SR on the diagonal and zero everywhere else. We
denote SRMC the matrix that applies Shift-rows followed by Mix-columns to
S. That is SRMC × S = MC × SR× S.
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The organization of this paper is as follows. In Section 1 we present how to com-
pute Oblivious AES as a multi-party computation with dedicated pre-processing.
We actually implemented this work as code and report on running times as low
as 5ms for 5 simultaneous AES instances in Figure 2. Our work can be repro-
duced following our instructions in Appendix A. Then in Section 2 we discuss an
optimization of the protocol from the fact that with dedicated pre-processing the
online computation is all linear. In Section 3 we discuss another improvement
reducing the size of our pre-processing material required. Finally in Section 4
we show how to efficiently get dedicated pre-processing from a general MiniMac
instance evaluating arithmetic circuits over F28 .

1 Fast AES using dedicated Preprocessing

In this Section we show how dedicated pre-processing can be used to efficiently
compute Oblivious AES. We list demands for the pre-processing material needed
and describe an online protocol using the material to compute Oblivious AES.
Also we present an implementation and performance numbers on consumer grade
hardware.
We employ the fastest version of MiniMac implementation from [DLT14] which
allows us to compute on vectors containing 85 bytes. In such a vector we can
pack 5 full AES states taking up 80 bytes. In this way we run a small number
of AES circuits in parallel. However notice here that we are running “different”
operations on individual bytes in the representation as we are not performing
the same operations to all bytes in the AES state. This is not supported directly
by MiniMac and hence we need help from the pre-processing.

The pre-processing will generate tables of correlated randomness corresponding
to handling the entire AES round (except add round key). Loosely put, we pre-
process random values with the AES round operation applied to them. Then, we
correct these at runtime to yield the AES round operation on the actual input
values.
We start by describing how we pre-process the S-Box. The S-Box can be thought
of as a table with 256 entries. To apply the S-Box to a single byte in the AES
state we look up the entry corresponding to that byte (e.i. the state byte has a
numeric base 10 value between 0 and 255 which we use as index into the S-box).
Lets consider how to do this for a single sj in our representation with 5 AES
states consisting of 80 bytes S = (s0, ..., s79). To ensure sj remains secret inside
the box we disguise sj with a uniformly random value Rj and open Rj+sj to all
the parties. Now we will construct a pre-processed table SBox+Rj

that contains
256 MiniMac representations of S-Box values. However, the indexing into the
table is permuted by adding the random Rj . More precisely, we want that

∀s ∈ [0, .., 255], j = 0 . . . 79 : SBox+Rj [s+Rj ] = [[(0, . . . , SBox[s], 0, . . . , 0)]]

where the value SBox[s] is placed in position j 3.

3 Note that when we say an entry in the table is a MiniMac representation of some
vector this actually means that players have additive shares of that vector as well as
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We will require the preprocessing to also output [[(R0, . . . , R79)]] and when the
time comes to do the S-boxes, we add this to the current state and open (s0 +
R0, . . . , s79 + R79). Then we do the 80 table look-ups and add all the outputs,
and then we have effective applied the S-Box to all 80 bytes.
This trick can be extended so that we can make the table look-up implicitly com-
pute also the linear transformation constituted by Shift-rows and Mix-columns.
Let the matrix SRMC denote the Shift-rows matrix multiplied with the Mix-
columns matrix from Section 1. Note that if taken directly from Section 1 this
matrix would only operate on one AES state, but it can be extended in a natural
way to operate on a vector containing 5 states.
Now, using the same random values Rj , we replace the S-box tables defined
above by 80 tables denoted AESBoxj , j = 0, . . . , 79, such that

∀s ∈ [0, .., 255], j = 0 . . . 79 : AESBoxj [s+Rj ] = [[SRMC×(0, .., 0, SBox[s], 0, ..., 0)]]

where again the non-zero value is placed at position j. Because the multiplication
by SRMC is a linear operation, it follows that if we do the 80 table look-ups
using (s0 + R0, . . . , s79 + R79) as indices and add the results, this time we will
obtain

79∑

i=0

[[SRMC×(0, .., 0, SBox[sj ], 0, ..., 0)]] = [[SRMC×(SBox(s0), ..., SBox(s79))]]

and this exactly the 5 new AES states we wanted. The protocol depicted in
Figure 5 describes how one AES round is handled using this approach.

AES Round: The AES round proceeds as follows:

1. Take a fresh AESBox = {AESBoxj}j=0,...,79 from the available ones and
the corresponding [[R]] = [[(R0, ..., R79)]].

2. Let the current state be [[S]] = [[(s0, ..., s79)]]. The parties compute [[δ]] =
[[R+ S]].

3. δ = (δ0, ..., δ79) is opened
4. As δ is known in plain by all parties, they can look up S′

j =
AESBox[δj ], j = 0, ..., 79 a.

5. The parties form the state S′ after SubBytes,ShiftRows and MixColumns
by computing S′ =

∑79
i=0 S

′
i.

6. Finally (a MiniMac representation of) the round key is added to the state
and the next round follows.

a For the 10th round we have a pre-processed AESBox which is the same except
we only apply the Shift-Row matrix to the values in the tables.

Fig. 5: Online phase, ΠAES−round

some MACs and corresponding keys, however, the details of this are not important
here.
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1.1 Experiments with the implementation

We have implemented MiniMac on-line phase and a program for creating the
pre-processing material for all parties running on one machine. In Figure 2 we
list timings of our experiments.
Execution time of out experiments are recorded as follows:
We have three test machines, two Peers who will carry out the MPC and a third
monitor who will record execution time. When the Peer processes have loaded
pre-processing material from Disk and otherwise ready to commence computa-
tion they report ”Ready” to the monitor. When both have done so, the monitor
will record a time stamp and send ”Start” to the Peers. Each Peer report to the
monitor ”Done” when it has reached completion of the MPC circuit. When all
Peers have reported ”Done” the monitor records the time and execution time is
taken to the difference between our two time stamps. More precisely, for Peer 0
and Peer 1 the following happens:

– Peer 0 starts, connects to the Monitor and listens for Peer 1 to connect.
– Peer 1 starts, connects to the Monitor and connects to Peer 0
– Then both peers loads pre-processing material and perform input-gates ob-

taining the initial shared AES state and reports ”Ready” to the Monitor.
Then they wait for the Monitor to signal start.

– When All peers has arrived at an initial AES-state the Monitor signals
”Start” and the MPC begins.

– Upon completing the AES circuit each peer reports ”Done” to the monitor.
– The Monitor records the time before the first “Start”-signal is issued until

the last Peer reports back its computation has completed. The difference
between these two time stamps is the computation time we report.

When to include the KeyExpansion requires a bit of discussion. When encrypting
many blocks of data the key expansion can be computed once and reused. This
requires that the round-keys are computed beforehand and stored. Thus using
11 representations one for each round key we can compute the key expansion
once and reuse it for encrypting any number of blocks afterwards. Therefore, a
good approximation of amortized execution time per block of encryption with
large bodies of plain-text can be achieved with one round of encryption omitting
the key expansion entirely and multiplying up. However, when measuring the
latency (with a fresh key not pre-loaded) from when starting the encryption
until the first block of cipher-text is ready, the key expansion does count and
as we will see, it plays a significant role. In summary we care about two types
of measurements: Latency from scratch and amortized execution time per block
over many blocks . See the result in Figure 2. Here, xxx/AES is the number of
pre-processed Mega bytes required per computed AES block.

2 Exploiting the absence of on-line multiplications

The representation of data used in MiniMac is carefully designed to support se-
cure coordinate-wise multiplication of vectors. However, using the techniques we
have seen in the previous section, we do not need such multiplication operations.
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In this section we describe how we can exploit this fact to change the data
representation so that we can compute on more data at smaller cost.

One important step in representing a vector in MiniMac format (and the only
one we need to worry about here) is to encode it in a linear code. In order
to support multiplications, one needs two properties from this code: first, the
encoding must be in systematic form, that is, the encoded vector appears in the
first positions of the resulting codeword. Second, the so-called Schur transform
of the code must have large enough minimum distance. To obtain the Schur
transform of a code C is the linear span of all vectors in {a∗b| a, b ∈ C}, where
a ∗ b is the coordinate-wise (or Schur) product of a and b.

The implementation from [DLT14] obtains these properties by encoding vectors
of length 85 into a Reed-Solomon code of length 255. Actually, one could use a
larger value than 85 and still satisfy the two properties, but since the underlying
field contains a root of unity of order 255 and 85 divides 255, these choices
allow us to use the FFT algorithm to encode and decode and this speeds up the
computations we need quite dramatically.

However, if we do not need to do multiplications, it turns out that the only
demand we need to satisfy is that the code itself has large enough minimum
distance, more precisely, it just has to be at least the security parameter divided
by 8 (since each field element is 8 bits long). Furthermore we no longer need the
code to be in systematic form.

With these relaxations, we can choose a Reed-Solomon code of length 255 and
encode vectors of length 239. Because the codeword length is still 255, we can
use FFT to encode and decode (the requirement for the data length to divide 255
was only necessary to have systematic encoding and still be able to use FFT).

This change will speed up our AES implementation in two ways: first we can pack
14 AES states into one vector instead of 5, so this almost a factor 3. Second, the
encoding is faster than before because we no longer need systematic encoding.
The reason for this is as follows: a Reed-Salomon codeword is computed by
taking a polynomial of at most a certain degree and evaluating it in a set of
fixed input points (255 in our case). For systematic encoding the polynomial
must take the values specified by our input in the first points, so to encode one
must first interpolate to get the right polynomial and then evaluate it in the
other points to get the rest of the codeword. For non-systematic encoding one
just thinks of the input as coefficients of a polynomial and then we just evaluate.

We did no do the resulting AES implementation, but since the number of rounds
will be the same and local computation is simpler, we can safely assume that the
total time for the protocol will not be larger than before. But we now compute
14 AES instances instead of 5, and in fact we can put 15 AES instances if we
settle 120 bits of security in the authentication of data values which is more than
enough in practice. So we can expect an amortized time of 0.4ms per AES block
and the same latency of 6ms.

The size of the pre-processing grows significantly as we now have 240 working
bytes we need 240 S-Boxes and we store a 256 entry table for each. The estimated
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size of the pre-processing material is ≈ 650 Mb per player per AES block we will
try to improve on this in the following.

3 Minimizing size of the pre-processing material

The ideas we described so far requires a rather large amount of pre-processed
material. Each of the S-Box tables we have been using so far has 256 entries
where each entry is an entire MiniMac codeword which requires 1056 bytes of
storage for each player. This translates to approximately 21MB of pre-processed
data per player per AES round using the first method we presented. We suggest
in the following a different way to represent the tables that saves a factor of about
60 in the preprocessing size. The price we pay for this optimization is one extra
round of communication per AES round and some extra local computation.

The idea We first describe our idea for organizing tables in a generic fashion
because we believe it can be interesting in other contexts than secure AES. So
assume that we are working with an arithmetic black-box, we have computed
[[x]] and would like to compute [[f(x)]]. We assume for concreteness that x ∈ F28 ,
but this is not necessary in general. If f is rather complicated to compute via a
circuit, as is the case for the AES S-Box, we can do better using a precomputed
table. The first step towards this is similar to what we already did above: we
will pre-process a random value [[R]] and also pre-process a table f+R defined as

f+R[z +R] = f(z), for z = 0, . . . 255.

Now we can compute and open [[x + R]] = [[x]] + [[R]] and look up in the table.
This will hide x because we add R but is of course insecure because f(x) will
become public.
A slightly better idea is to pre-process a random [[v]] and re-define the table as

f+R[z +R] = f(z) + v, for z = 0, . . . 255.

Now the table look-up will produce f(x) + v and we can add this to [[v]] to get
[[f(x)]]. This is still not secure, however: we use the same mask v for all entries
and so different table entries are not independent and we may reveal information
on how the table was permuted and hence indirectly information on x.
So the final idea is to not store the table in the clear but instead secret share the
entries additively between the players. We will only open the entry we actually
look up, and now it is secure to use the same mask v for all entries. To prevent
players from lying about their shares, we add standard message authentication
codes (MACs) to the shares.
More concretely, this means that for each table entry w = f(z)+v, we choose in
the preprocessing random r1, r2 such that r1+r2 = w, and in addition we choose
random vectors a1, b1,a2, b2, these will serve as MAC keys. Then we compute
MACs, m1 = a2 ∗ (r1, . . . , r1) + b2 and m2 = a1 ∗ (r2, . . . , r2) + b1 and give
r1,m1,a1, b1 to the first player and r2,m2,a2, b2 to the other. Here, ∗ denotes
the coordinate-wise (or Schur) product of vectors.
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We will use (|w|) to denote all this data in the following. The reader should
think of this as a randomized representation of w that can be reliably opened:
the players would exchange shares and MACs and then use their keys to check
the MACs. It is well known and easy to prove that having, say, the first player
accept an incorrect value requires that you guess a1. So if we choose the length
of ai and bi to be 8 bytes, for instance, we get 64 bits of (unconditional) security
which should be more than enough in most cases.
So the final table is of form

f+R[z +R] = (|f(z) + v |), for z = 0, . . . 255.

We will need one representation (|·|) for each table entry, but the values a1 and
a2 can be the same for all entries without affecting security. So in this case, a
table entry requires essentially 1 + 8 + 8 = 17 bytes for each player. This is a
factor more than 60 less than the 1056 bits we needed before.
A final observation is that if what we really want to compute is not [[f(x)]]
but [[L(f(x))]] where L is a linear function, then we can precompute [[L(v)]].
When players have computed f(x) + v they can locally compute L(f(x) + v) =
L(f(x)) + L(v) and add this into [[L(v)]] to get [[L(f(x))]].

Using the Idea for AES In the following we describe our observation above
using plain codewords with 240 working bytes in each representation. We start
by designing the content of the pre-processed S-Boxes differently as follows. We
have a random [[R]] = [[R0, ..., R239]] and 240 tables in mind namely one table
for each byte in our 15 AES states. Let [[S]] = [[S0, ..., S239]] denote the MiniMac
representation holding our 15 AES states. For Sj the jth state byte we consider
the table with S-Box values rotated by Rj and masked with a single vj from a
random v ∈ F240

28 , see Figure 6a. Now our idea is to additively share this table
between the players with MACs. Thus each player m gets a table rm,j such that
the entries rm,jk in rm,j add up to Sb[(Rj + k) mod 256] + vj =

∑n−1
m=0 r

m,j
k

for fixed k, j summing over m adding each of the shares held by the players.
This is illustrated in Figure 6b for two players, e.g. m ∈ {0, 1}. Each table
rm,j is MACed towards the other player(s). Thus in addition player m has a
table M(rl,j) for l ∈ {i|0 ≤ i < n ∧ i 6= m}. For two players the situation is
depicted in Figure 7 Thus we define an AESBox in this new set up as a triple
of three things: A random representation [[R]], a random representation v with
the SRMC-linear transformation applied to it [[SRMC × v]] and a set of 240
tables with 256 entries constructed as described above.

AESBox = {[[R]], [[SRMC15 × v]], {(|rjk |)}j∈[239],k∈[255]}

Here we used (|rjk |) to denote the set of values shared with MACs as described
in Figure 7 for all the players constituting table j.

The on-line phase is summarized in Figure 8. Similar to our previous solution
we start by taking an AESBox = ([[R]], [[SRMC × v]], {(|rjk |)}j∈239,k∈[255]}) and
”blind” the the current states in S by adding our random R to it obtaining [[∆]] =
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Rj Sb[0] + vj

Sb[1] + vj

...

...
Sb[255] + vj

(a) Table with 256 S-Box entries
rotated by a random value Rj
and masked by vj . Each entry is
one byte.

Rj Sb[0] + vj

Sb[1] + vj

...

...
Sb[255] + vj

=
⊕

r0,jk r1,jk

... ...

... ...

= v

= RRj

vj

The Box r0,j r1,j

(b) The Box intended for state position j now additively
shared in r0,j and r1,j . Player i gets table ri,j = (ri,j0 , ..., ri,j255).
Each players also gets his shared state for [[v]] and [[R]].

Fig. 6: The new layout

[[S ⊕ R]]. Then we open [[∆]] to everyone. Now since our rm,j tables are shares
of the S-Box masked by vj and rotated by Rj we can lookup (|Sbox[Sj ]⊕ vj |)
by letting each player m take rm,j∆j

to be his share of (|Tj |) = (|Sb[Sj ]⊕ vj |).
As v is randomly chosen it blinds the actual value looked up in the S-Box
thus we can safely open (|Tj |). To open (|Tj |) the parties exchange the Values
and MACs describe above in Figure 7 and the receiving parties checks that the
MACs are correct. If no one aborts everybody know Tj = Sb(Sj)⊕ vj . Knowing
all Tj ,∀j ∈ [239] the players compute T =

⊕
j∈[239] Tj . Now the parties take

the linear transformation SRMC15 and apply it to T obtaining SRMC15×T =
SRMC15×S⊕SRMC15×v. Then the new state S′ after SubBytes, Shift-rows
and Mix-columns is computed as SRMC15×T ⊕ [[SRMC15×v]] = [[SRMC15×
Sb(S)]]. Finally the round key is added to the S′ and the following AES round
follows.

For the 10th round SRMC15 is replaced by the linear transformation SR15

which is the 240× 240 matrix having 15 SR matrices on its diagonal. Note this
influences [[SR15 × v]] requiring a bit of book keeping taking a special AESBox
for the last round.

This protocol requires two rounds of communication instead of one for the first
two protocols we presented. Also, it requires players to compute the linear map-
ping SRMC locally. This, however, can be done in a simple way by a table
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r1,jk

...

...

r1,j

Ψ1,j
k ⊕ r1,jk Ψ0,j

k

κ bits

Mac M(r0,j)Mac Key Ψ1,j

Player 0 Player 1

Mac M(r0,j) Mac Key Ψ0,j

r0,jk

...

...

r0,j

Ψ1,j
k Ψ0,j

k ⊕ r0,jk

κ bits

Fig. 7: Above we depict the (|x|) = {{x0 ∈ F28 , M(x0) ∈ Fκ/828 , Ψ1 ∈ Fκ/828 },
{x1 ∈ F28 ,M(x1) ∈ GFκ/8, Ψ0 ∈ Fκ/828 }} representation. Player 0 hold from left
to right a MAC key table, a Mac table and a table of values. The Key table
allows Player 0 to check the table of values held by Player 1. The MAC table
allows player 0 to convince Player 1 his table of values is authentic.

ΦAESRound

1 Take an available AESBox = ([[R]], [[SRMC × v)]], {(|rjk |)}j∈[239],k∈[255])
2 All parties compute [[∆]] = [[S]]⊕ [[R]] = [[S ⊕R]]
3 [[∆]] is opened to each player.
4 Each player uses ∆j to lookup rm,j∆j

, obtaining (|Tj |) = (|Sb(Sj)⊕ vj |)a as a (|·|)-
representation between them.

5 Tj is opened to everyone for j ∈ [239].
6 The players compute T =

∑239
j=0 Tj = Sb(S)⊕ v

7 The players computes SRMC × T = SRMC × Sb(S)⊕ SRMC × v
8 The players take S′ = SRMC × T ⊕ [[SRMC × v]] = [[SRMC × Sb(S)]] as the

AES state after SubBytes, Shift-rows and Mix-columns.
9 Finally the AES round key [[Kround]] is added obtaining the next state Sround+1 =

S′ ⊕Kround.

a rm,j∆j
is the particular share each player can lookup. Here we use (|Tj |) when

referring to these shares as a combined shared value Tj mutually authenticated
with MACs.

Fig. 8: ΦAESRound

look-up for each byte position in the input. Therefore we conservatively esti-
mate that this protocol will require twice the time needed for protocol 1.
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4 Pre-processing from the original MiniMac Protocol

Our solutions above put some quite specialized requirements on the pre-processing
material. In this section we show how one may generate such data by first run-
ning the pre-processing phase of the original MiniMac protocol and then using
this to run the original MiniMac online phase. We set this up such that the
function we compute will output the pre-processing material we need for our
construction. We will describe how to generate the AESBoxes as required by
our protocol in Section 1. Generating pre-processing material for the protocol
in sections 2 and 3 is a matter of applying appropriate linear transformations
to the result presented here. Our goal is to generate AESBox tables from a

· · ·

· · ·

· · ·

...
...

...

256

256

S0,1S0,0 S0,255

S1,0

S255,0 S255,255S255,1

S1,1 S1,255

Fig. 9: 256 × 256 table for entry j in [[R]] with entry Si,s = SRMC5 × Ψ for Ψ
having SBox[i+ s] in position j.

random representation [[(R1, ..., R85)]]: Getting such a random value is directly
supported by MiniMac. Now for each position j in [[(R1, ..., R85)]] we take 2562

as depicted in 9. Each entry Si,s is a public MiniMac representation with value
SRMC5 × (0, . . . , SBox[i+ s], . . . , 0), i ∈ [0; 255], s ∈ [0; 255].
Recall that our protocol in Section 1 requires an AESBox to have the form:

s ∈ F28 , AESBoxj [Rj + s] = [[SRMC5 × (0, ..., SBox[s], ..., 0)]]

This is exactly the values stored in row Rj of our 2562 table above. The chal-
lenge is to lookup this row. To this end we start by computing the vector
[[(0, . . . , Rj , . . . , 0)]] = (0, . . . , 1, . . . , 0) × [[R]]. Recall that the original MiniMac
protocol in [DZ13] allows its pre-processing to generate values of the form:

[[R]], [[L×R]]

for linear transformations L. The particular transformation we are after here is
the one replicating Rj onto every position obtaining [[(Rj , . . . , Rj)]]. Then we
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compute Φi = (1− [[(Rj , . . . , Rj)− i]]255) for i ∈ [0; 255] where i is the 85 vector
with i in all entries. The resulting table for all s ∈ F28 is AESBoxj [Rj + s] =∑255
i=0 Φi × Si,s.

To see why this is actually what we wanted consider Φi. Because the subgroup
of units in F28 has order 255 [[(Rj , ..., Rj) − i]]255 is all ones when Rj 6= i and
zero only when Rj = i. As we want ones when they are equal we compute
(1 − ([[(Rj , ..., Rj) − i]]255)) = Φi which is all ones only when Rj = i and all
zero otherwise. In this way Φi selects the row of Si,s where i = Rj forming our
AESBoxj for each possible value of s. Now the steps above are repeated for all
entries in [[R]] forming the full AESBox = {AESBoxj}j=0,...,84.
We note that the Si,j tables do not all have to exist in memory at the same time;
it is enough to generate the columns as needed on the fly.
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5 Conclusion

We have seen that for dishonest majority protocols in the preprocessing model,
the efficiency and in particular the latency of oblivious AES can be dramatically
improved by tailoring the preprocessed data to the structure of AES. And that
in particular that the only structure that matters is the fact that AES makes
use of Sboxes with small input, so that we can use table look-up to circumvent
the use of circuits to compute the non-linear parts.
Our study shows that we need only about 0.4 ms amortised time and 6 ms
latency to do AES, which seems completely adequate for real life applications
such as verifying 1-time passwords.
In future work, it would be interesting to see if other block ciphers or hash
functions can be done securely and practically with a similar approach.
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A Reproducing our results with the implementation

Getting the code

The implementation of our work can be found on GitHub at
http://tinyurl.com/qbx99jv

Requirements

– AutoMake 1.15
– Bash 3.2 or later
– Reasonable GCC compiler supporting C99 (or Windows SDK Visual Studio

2013 or later).

Building on Windows IA64

Install Visual Studio 2013 and open the solution file in
miniapps/dedicatedaes/winx64/daestest.sln. Press F7 in the x64-release
build configuration to build the code. We have experienced problems with many
small allocations on Windows making the
malloc and free implementation on this system degenerate in performance.

Building on Linux and OSX

To build the code type ./build.sh release or
./build.sh debug depending on which configuration you want. To reproduce
the performance numbers reported in the paper please build in the release

configuration.

Generating pre-processing material for testing

Running the program with command line arguments -prep will generate the
default set of preprocessing material needed to compute one block of ciphertext.
./miniapps/dedicatedaes/linux/src/cheetah -prep or on windows setting
the command-line arguments and pressing F5. Alternatively the windows .exe
file can be located in
miniapps/dedicatedaes/winx64/daestest/Debug/daestest.exe

Running the protocol

Running the program with -mpc -prepfile <filename> will make the process
given aes preprocessing material file for player zero listen and wait for the other
players to connect.
E.g. for two players
cheetah -mpc -prepfile ./aes prep 4 player 0.rep will start the listening
peer listening on all interfaces port 2020. While cheetah -mpc -prepfile ./aes prep 4 player 1.rep

-ip xxx.yyy.zzz.www -port 2020 will connect to a peer at ip-address xxx.yyy.zzz.www
on port 2020.

22

http://tinyurl.com/qbx99jv

	Fast Oblivious AESA dedicated application of the MiniMac protocol

