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Abstract. Cryptographic multilinear map is a useful tool for constructing numerous secure protocols
and Graded Encoding System (GES) is an approximate concept of multilinear map. In multilinear
map context, there are several important issues, mainly about security and efficiency. All early stage
candidate multilinear maps are recently broken by so-called zeroizing attack, so that it is highly required
to develop reliable mechanisms to prevent zeroizing attacks. Moreover, the encoding size in all candidate
multilinear maps grows quadratically in terms of multilinearity parameter κ and it makes them less
attractive for applications requiring large κ.

In this paper, we propose a new integer-based multilinear map that has several advantages over
previous schemes. In terms of security, we expect that our construction is resistant to the zeroizing
attack. In terms of efficiency, the bit-size of an encoding grows sublinearly with κ, more precisely
O((log2 κ)2).

To this end, we essentially utilize a technique of the multiplication procedure in scale-invariant fully
homomorphic encryption (FHE), which enables to achieve sublinear complexity in terms of multilin-
earity and at the same time security against the zeroizing attacks (EUROCRYPT 2015, IACR-Eprint
2015/934, IACR-Eprint 2015/941), which totally broke Coron, Lepoint, and Tibouchi’s integer-based
construction (CRYPTO 2013, CRYPTO2015). We find that the technique of scale-invariant FHE is
not very well harmonized with previous approaches of making GES from (non-scale-invariant) FHE.
Therefore, we first devise a new approach for approximate multilinear maps, called Ring Encoding Sys-
tem (RES), and prove that a multilinear map built via RES is generically secure. Next, we propose a
new efficient scale-invariant FHE with special properties, and then construct a candidate RES based
on a newly proposed scale-invariant FHE.

It is worth noting that, contrary to the CLT multilinear map (CRYPTO 2015), multiplication pro-
cedure in our construction does not add hidden constants generated by ladders of zero encodings, but
mixes randoms in encodings in non-linear ways without using ladders of zero encodings. This feature is
obtained by using the scale-invariant FHE and essential to prevent the Cheon et al.’s zeroizing attack.

1 Introduction

Cryptographic multilinear map is a mathematical structure with cryptographic assumptions introduced
by Boneh and Silverberg [6]. Garg, Gentry, and Halevi proposed the first approximate realization of the
cryptographic multilinear map, called the Graded Encoding Scheme (GES) [25]. Since then, numerous secure
protocols using multilinear map have been proposed. To name a few, the recent advances in indistinguishabil-
ity obfuscation [26], broadcast encryption [7], multipartite Diffie-Hellman key exchange [25], attribute-based
encryption [27, 28], witness encryption [30], programmable hashes [24], ID-based aggregate signatures [34],
and many other secure protocols seriously depends on the invention of candidate multilinear maps [25, 19,
38, 31, 18].

Zeroizing Attack on Integer-based Multilinear Maps. To utilize randomized encodings for multilinear
map, we need a way to check equality between two randomized encodings of the same message. The currently
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existing strategy is due to Garg, Gentry and Halevi [25]; A special parameter pzt is published. Once multiplied
by pzt, all encodings of zeros become relatively smaller values than that of encodings of non-zeros. Then,
due to homomorphic property of encodings, any encodings of the same message will have the same value in
the most significant bits of the resulting values multiplied by pzt, so that one can test the equality of given
encodings. Coron, Lepoint, and Tibouchi’s construction over the integers (CLT13) [19] also uses the same
strategy. In CLT13 scheme, a maximum level, say κ, encoding is of the form C/zκ, where C := CRTpi(ci),
which means the result of Chinese remaindering of ci (mod pi) for several secret primes pi’s. Let π =

∏n
i=1 pi.

Then, C =
∑
i=1,...,n ciui (mod π) for some ui’s (coefficients for Chinese remaindering). The zero-testing

parameter pzt is of the form
∑
j=1,...,n vj (mod π), which is designed to satisfy that uivj = 0 (mod π) for

i 6= j, so that C/zκ · pzt (mod π) is congruent to
∑
i ciuivi (mod π). Furthermore, if C is an encoding of 0,

then vi’s are designed to satisfy
∑
i ciuivi is sufficiently smaller than π, so that one can distinguish it from

encodings of non-zero with overwhelming probability. The authors expected that one cannot extract useful
information, in particular ci, from

∑
i ciuivi since it can be considered as a hidden subset sum problem with

hidden coefficients uivi’s and it can be intractable by sufficiently increasing n.

Recently, Cheon, Han, Lee, Ryu, and Stehlé totally broke the CLT13 scheme in the sense that all secrets
can be recovered in polynomial time [12]. The basic goal of Cheon et al.’s attack is to find ci from given a
level-0 encoding CRTpi(ci). (All other secrets can be recovered from ci’s in polynomial time.) Using lower
level encodings of 0, each of which is of the form CRTpi(rik)/zt, and arbitrary encodings CRTpi(xij)/z

κ−t,
one can construct a level-κ encoding of zero of the form CRTpi(xijcirik)/zκ. Once CRTpi(xijcirik)/zκ is
multiplied by pzt, one can obtain

∑
i xijcirikuivi as a small integer value since CRTpi(xijcirik)/zκ is an

encoding of zero. Let r′ik = rikuivi. One can consider the resulting value as a quadratic form
∑
i xijcir

′
ik

over Z with coefficients ci’s. The remaining of attack is to use the theory of basic linear algebra to recover
ci’s from such the quadratic form over Z (e.g., computing eigenvalues of diagonalizable matrix).

Very recently, a candidate fix of the CLT13 scheme [18] by the same authors, say the CLT15 scheme [18],
is also broken by two independent works due to Cheon, Lee and Ryu [13] and Minaud and Fouque [40].
Their main idea is to neutralize the effect of ladders of zero encodings in the multiplication procedure,
which was the main idea to prevent the Cheon et al.’s zeroizing attack in [18]. We will explain both ideas
of the CLT15 scheme and of attacks [13, 40] later in Section 6.1. As pointed out by Coron et al. [17], it is
important to make the adversary not to obtain from the multiplication process and the zero-testing process,
a simple system of equations over the base ring that can be solved using linear algebraic techniques. Viewed
in this light, the multiplication process in both the CLT13 and CLT15 schemes is quite simple and have
many vulnerable points since each value in slots of Chinese remaindering behaves independently during the
multiplication process. We find that the multiplication technique of leveled fully homomorphic encryption
(FHE) schemes [9, 22, 20, 15] can be a good candidate for preventing the zeroizing attack, in particular,
integer-based batch version scale-invariant FHE schemes [20, 15]. Contrary to the integer-based batch FHE
scheme [11], which is the underlying scheme used in the CLT13 scheme, the multiplication process in [20, 15]
has much more non-linear aspects. We will show that the multiplication process in the scale-invariant FHE
scheme have a resistance to the zeroizing attack in Section 6.1.1

Sublinear Complexity in terms of Multilinearity. The other important challenge in the context of
multilinear maps is to allow large κ-level linearity with small encoding size. The bit-size of each encoding
in all current candidate multilinear maps grows quadratically with level κ and overcoming the barrier of
O(κ2) complexity in the bit-size of encoding is a challenging open problem; for example, the view of Ananth,
Gupta, Isahi, and Sahai [3] is pessimistic about such the large level multilinear map with a small encoding
size and Apon, Huang, Katz, and Malozemoff [4] also asked for the construction of such the multilinear map
for implementing indistinguishability obfuscation.

What are the Obstacles to Sublinear Complexity? Let us consider the integer-based multilinear map
constructions due to Coron, Lepoint, and Tibouchi [19, 18]. Note that recent ideal lattice based multilinear
map constructions [25, 38] are broken by Hu and Jia [35]. The current design methodology for GES is using
randomized homomorphic encodings with small errors, over which multiplication procedure increases the

1 In fact, we propose a new scale-invariant FHE scheme and analyze on the proposed scheme.
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size of errors additively. Linear increasing of error size is critical to the size of encodings. One has to set η
the bit-size of coprime integers pi to be O(κρ), where ρ is the bit-size of errors and κ is the multilinearity
parameter. To thwart lattice-based attacks, one has to set the bit-size of encodings ω(η2 log2 λ), so that the
encoding size should be quadratic in κ.

In the context of fully homomorphic encryptions, there are two solutions to resolve this problem of rapid
increasing of errors. One of which is so-called bootstrapping technique, and the other is leveled FHE including
scale-invarinat FHE.

The bootstrapping is a technique for refreshing errors to be small. To the best of our knowledge, the
complexity of all known techniques [44, 42] is exponential in the bit-size of message space, but we need
exponentially large message space for cryptographic multilinear maps. For example, a kind of the subset
membership problem requires the message space to be exponentially large, so that one cannot apply the
brute-force attack.

As for the technique used in the previous leveled FHE schemes, it yields usually better performance
than that used in non-leveled FHE schemes in terms of ciphertext size since a multiplication increases
error size only polylogarithmically in the security parameter. One may think that it is trivial to achieve
our goal if one applies the technique used in leveled FHE schemes for encodings of GES. The existing
technique in all previous GES proposals, roughly speaking, uses the special element 1/z for sharp grading,
so that a level-i encoding of message m is of the form enc(m)/zi (mod N) for some N , where enc(·) is
an encryption function of the underlying homomorphic encryption scheme. If the multiplication function
in the underlying homomorphic encryption scheme is simple (e.g., multiplication in Z or in ZN ), then the
multiplication between two level-1 encodings enc(m0)/z and enc(m1)/z outputs enc(m0 ·m1)/z2, which is
a level-2 encoding of m0 ·m1 as desired. However, the multiplication function in leveled FHE is not simple,
so that it would be difficult to handle the special element 1/z with the multiplication function in leveled
FHE.2 More precisely, to make 1/z2 from 1/z, one needs to perform multiplication in some ring (e.g., ZN ),
but multiplication between two encryptions in leveled FHE (over the integers) is not a ring multiplication,
so that it is unclear how to handle enc(m0)/z and enc(m1)/z for obtaining of the form enc(m0 ·m1)/z2.

1.1 Our Contributions

We propose a new scale-invariant FHE scheme and then also propose a candidate multilinear map based
on our FHE scheme. Our approach to achieve candidate multilinear map is quite different from the previ-
ous GES schemes. We introduce a new concept, called Ring Encoding System (RES), which enables one to
perform ring operations without the description of the underlying ring from RES. In contrast to GES, RES
does not require sharp grading, which is a main difference between RES and GES. Then, the aforementioned
problem about harmonizing the technique of leveled FHE with GES does not occur in using RES. In fact, the
concept of RES is for self-bilinear map with unknown message space. There is a generic transformation from
self-bilinear maps to multilinear maps [14] and a proposal of secure self-bilinear map using the indistinguisha-
bility obfuscation [45], which was used to construct unbounded multilinear maps via the indistinguishability
obfuscation. The concept of RES can be interpreted as a self-bilinear map encoding. To show the reliability
of using RES for cryptographic purpose, we prove that there is no generic polynomial time attacker breaking
several cryptographic hard problems such as the Computational Diffie-Hellman and the Subgroup Member-
ship problems with non-negligible probability, where the generic attacker means, informally, one who has
only oracle access for all procedures of RES instead of real procedures of RES. We note that a realization
of RES runs over arithmetic circuits which the underlying scale-invariant FHE can handle. Even though the
definition of generic attackers covers limited adversaries, the security against generic attackers shows the
reliability of new approach via RES for multilinear maps. Second, we propose a realization of RES by using
a new integer-based efficient scale-invariant FHE with special property, which is of independent interest.
More precisely, the proposed scale-invariant FHE does not reveal message space (e.g., a ring ZN ) when the
space is exponentially large. We note that unknown message space is an essential condition for RES. We will

2 In fact, this is also problematic for the bootstrapping technique.
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consider this issue in Section 3. Moreover, we analyze the security of the proposed RES, in particular, to
consider non-generic attacks such as zeroizing attacks.

Multilinear Maps via Self Bilinear Maps, Revisited. We start from revisiting the approach by Cheon
and Lee [14] who showed that (unbounded) multilinear maps can be constructed by self bilinear maps, which
are bilinear maps whose domain group and range group are the same. There is no predetermined maximum
level in unbounded multilinear maps. (Although unbounded property makes some decisional assumptions
generically easy, several important assumptions still are survivable; e.g., Subgroup Membership assumption in
composite order groups. We discuss this issue further later.) Unbounded multilinear map can be inductively
defined by using a self bilinear map. Given a κ-linear map eκ : G× · · · ×G→ G and a self bilinear map ẽ, a
(κ+ 1)-linear map eκ+1 is defined by eκ+1(ga1 , . . . , gaκ+1) := ẽ(eκ−1(ga1 , . . . , gaκ), gaκ+1).

When Cheon and Lee proposed such a generic transformation, they also showed that (unbounded) multi-
linear map obtained from self bilinear map can not hold the computational Diffie-Hellman in the underlying
group. Furthermore, the unbounded multilinear maps with the same domain and range can be considered as
the black box field, so that there exists a sub-exponential time attack against the discrete logarithm problem
due to Boneh and Lipton [5]. We note that, however, both the Cheon-Lee attack and the Boneh-Lipton
attack essentially use the group order, so that both are not applicable when the underlying group of self
bilinear map is unknown. In particular, Yamakawa, Yamada, Hanaoka, and Kunihiro already pointed out
this fact and used it for constructing a self-bilinear map using the indistinguishability obfuscation [45]. So far
there is no self bilinear map with unknown group order and without using indistinguishability obfuscation,
and it’s exactly our first goal in this paper.

Self Bilinear Map from (ZN). We begin with observing that ZN itself is a ZN -module for square-free
product of primes N ; that is, ZN is a additive cyclic group of order N , where any integer coprime to N
is a generator of (ZN ,+). Using operations in ZN we can simply construct an efficiently computable non-
degenerate self bilinear map as follows.

ê : ZN × ZN → ZN
(α · ω, β · ω) 7→ (α · ω) · (β · ω),

where scalars α, β are chosen from ZN \ {0}, a base ω is chosen from ZN \ {0, 1} with gcd(ω,N) = 1, and ·
is a multiplication modulo N . ê is clearly an efficiently computable non-degenerate self bilinear map, where
the underlying group is (ZN ,+) as a ZN -module; e.g., every element in ZN can be written of the form
α · ω since ω is invertible in ZN . The non-degeneracy is straightforward. The bilinearity is achieved since
ê
(
(α + α′)ω, βω

)
= (αβω2 + α′βω2) = ê

(
αω, βω) + ê

(
α′ω, βω) and the other side can be similarly shown.

Unfortunately, however, we cannot use the above example for cryptographic purpose since the group order
N is necessary for public evaluation of ê, which is a multiplication in ZN , so that one can apply Cheon-Lee
attack or directly compute ω−1 by using the Extended Euclidean Algorithm to solve the discrete logarithm
problem in (ZN ,+). Here, our question is that

“Can we perform ring operations without knowing the description of ring explicitly (e.g., N in the above
example)?”

Self Bilinear Map via Ring Encoding System. We introduce a new concept, called Ring Encoding
System, which enables to perform all ring operations without knowing the underlying ring explicitly. That
is, given RES construction, one can utilize it like a self-bilinear map as we discussed above, then applying
the Cheon-Lee transformation we have a candidate multilinear map. Conceptually, RES is exactly like a
combination of FHE and zero-testing parameter for equality test of randomized encodings. Here, an important
requirement of FHE is that addition and multiplication over encrypted messages can be performed without
the description of the message space.

To realize RES, we first propose a scale-invariant FHE scheme with unknown message space. Almost all
(integer-based) scale-invariant FHE schemes [22, 20] use the information about ZN for multiplications, so
that we cannot use such FHE schemes for RES. We find that a recent scale-invariant FHE proposal due to
Cheon and Stehlé [15] uses N for encryption and does not use it for multiplication and addition, so that it
can be used for RES. (In our RES, sampling algorithm yields only uniformly distributed encoding by using
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additive homomorphic property from a set of encodings, like that of GES, so that the encryption algorithm
of the underlying FHE is not necessarily used.) The heart of Cheon and Stehlé FHE is short parameters for
small message space, but the public key size of Cheon and Stehlé FHE for exponentially large message space
becomes very huge O(λ7). Our proposal has smaller public key size O(nλ4), where n is the number of slots
in batch.

Next, we follows the known approach for constructing zero-testing parameter in [18] for zero-testing
procedure. We note again that the security of our construction against the Cheon et al. attack is not mainly
depending on the zero-testing procedure, but on the multiplication procedure of scale-invariant FHE. Let
us present a high level intuition of the reason why we believe that the multiplication procedure in the
scale-invariant FHE is resistant against the zeroizing attacks. In our scale-invariant FHE (like the other
scale-invariant schemes), there is a special key for multiplication procedure, which is a vector z of a kind of
fake encryption in the sense that each component of Z looks similar to encryptions. Then, the multiplication
of given two encryptions a and b is as follows. First, compute a product of a and b over the integers. Second,
bitwise decompose ab, that is, c = ab 7→ c = (c1, . . . , c2γ) for c =

∑
i ci2

i. Finally, compute an inner product
between c and z modulo a zero encryption x0. We relegates the detailed reason why this process works
correctly in Section 4.1. Here, we only focus on the security against the zeroizing attack. The values in a and
b effect in each bit ci in a non-linear way, so that those also effect in the resulting value in 〈c, z〉 (mod x0)
in a non-linear way. In particular, if we use a batch version encryption scheme, randomness in each slot
of Chinese remaindering are diffused to the other slots. Therefore, we expect that one can hardly make a
simple system of equations when the above multiplication procedure is used in the zero-testing procedure.
We further analyze the security of our scheme against the zeroizing attacks in Section 6.1.

Finally, we obtain RES realization, which is not the ideal RES realization, but its noisy construction, so
that only limited ring operations can be performed over it as long as errors are small enough. Nevertheless, the
RES with noisy encoding is enough for large level multilinear maps since the encoding size is polylogarithmic
in the maximum allowable multilinearity level κ, that is, Õ((log2 κ)2 · λ3).

1.2 Related Works

Since the introduction of multilinear map by Boneh and Silverberg [6], the construction of multilinear maps
have received huge attention from crypto community. In 2013, Garg, Gentry, and Halevi proposed the first
construction of the candidate of multilinear maps (GGH) based on ideal lattices [25]. Langlois, Stehlé,
and Steinfeld presented GGHLite which improves the efficiency of the GGH [38]. Shorty after the GGH
construction, Coron, Lepoint, and Tibouchi proposed a construction over the integers (CLT) [19].

Recently cryptanalysis have been presented for the above constructions. Hu and Jia presented attack for
the GGH maps; their attack does not reveal users’ secrets, however, it efficiently attacks multipartite key
exchange and witness encryption. In [12], Cheon, Han, Lee, Ryu, and Stehlé totally broke the CLT using
the so-called zeroizing attack, which exploits encodings of 0 and the zero-testing parameter; it recovers all
secret parameters in polynomial time. After then there have been several trials to avoid the zeroizing attack
[8, 29], however, Coron et al. extended the Cheon et al. attack and showed those fixes are not secure [17].
Coron, Lepoint, and Tibouchi presented the new CLT map in [18], which is a tentative fix of the CLT13
scheme [19]. However, a polynomial-time attack on the new CLT map has been proposed by Cheon, Lee,
and Ryu [13], also independetly by Minaud and Fouque [40].

Currently three candidates of multilinear maps seem to be secure against the zeroizing attack. Yamakawa,
Yamada, Hanaoka, and Kunihiro proposed a weaker variant of self-bilinear map and constructed unbounded
multilinear map from it [45]. Their construction is based on the assumption of the existence of indistin-
guishability obfuscation (iO) although the current candidate construction for iO uses a multilinear map as
a building block. Albrecht, Farshim, Hofheinz, Larraia, and Paterson also proposed multilinear maps from
iO [2]. Gentry, Gorbunov, and Halevi presented another multilinear maps from lattices using a directed
acyclic graph [31].
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1.3 Outline

In the next section, we give definitions for objects we deal with in this paper. In Section 3, we introduce a
new concept called Ring Encoding System (RES) and then show how to construct multilinear maps by using
RES. In particular, we prove the generic hardness of several cryptographic assumptions in the multilinear
maps via RES in Section 3. In Section 4.1, we propose a new scale-invariant homomorphic encryption scheme
and show that the message space is provably hidden from public key of the proposed scheme. In Section 5, our
proposal for RES is presented and its security against non-generic attacks, in particular, zeroizing attacks,
is analyzed in Section 6.

2 (Unbounded) Multilinear Maps, Self Bilinear Maps, and Assumptions

In this section, we review definitions of (unbounded) multilinear maps, self bilinear maps and the trans-
formation between them due to Cheon and Lee [14]. Furthermore, to clarify what we can expect from the
Cheon-Lee transformation, we investigate the generic easiness/hardness of cryptographic assumptions.
Notation. Through the paper, we use notation λ and i = 0..a to denote the security parameter and

i ∈ Z ∩ [0, a], respectively.

Definition 1 ((Unbounded) Multilinear Maps) We say an algorithm GUML is a multilinear group gen-
erator if it takes the security parameter λ as input and outputs (N, {Gi}i=1..∞, {ei,j}i,j=1..∞) where Gi’s are
cyclic groups of order N and ei,j : Gi ×Gj → Gi+j satisfying the followings.3

– (non-degeneracy) For generators gi ∈ Gi and gj ∈ Gj, ei,j(gi, gj) = gi+j is a generator of Gi+j.
– (bilinearity) For any hi ∈ Gi, hj ∈ Gj and a, b ∈ ZN , ei,j(h

a
i , h

b
j) = ei,j(hi, hj)

ab.

From the family of bilinear maps {ei,j} defined above, for any κ one can easily make (κ+1)-level multilinear
maps

e(ga11 , . . . , g
aκ+1

1 ) := eκ,1(· · · e2,1(e1,1(ga11 , ga21 ), ga31 ), · · · ), gaκ+1

1 ) = g
a1···aκ+1

κ+1 ,

where gκ+1 = eκ,1(· · · e2,1(e1,1(g1, g1), g1), · · · ), g1) is a generator of Gκ+1.
Cheon and Lee showed that unbounded multilinear maps can be constructed by self bilinear maps.

Informally, self bilinear maps are bilinear maps with the same domain and range group. (Formal definition
is given below.) In fact, such the conversion is essentially the same as the above conversion from the family
of bilinear maps {ei,j} to a unbounded multilinear map; it is defined inductively. Given a κ-linear map
eκ : G×· · ·×G→ G and a self bilinear map ẽ, a (κ+1)-linear map eκ+1 is defined by eκ+1(ga1 , . . . , gaκ+1) :=
ẽ(eκ(ga1 , . . . , gaκ), gaκ+1).

Definition 2 (Self Bilinear Maps) We say an algorithm GSBL is a self bilinear group generator if it
takes the security parameter λ as input and outputs (N,G, ẽ) where G is a cyclic group of order N and
ẽ : G×G→ G satisfying the followings.

– (non-degeneracy) For a generator g ∈ G, ẽ(g, g) = gt is also a generator of G.
– (bilinearity) For a generator g ∈ G and any a, b ∈ ZN , ẽ(ga, gb) = ẽ(g, g)ab.

If the group order N is a public prime, that is, N is prime and known to the adversary, the unbounded
multilinear maps with the same domain and range G can be considered as the black box field since both
multiplication and addition between exponents of group elements in G are defined. Then, we cannot use
such multilinear map obtained from self bilinear map for cryptographic purpose since there exists a sub-
exponential time attack to the discrete logarithm problem due to Boneh and Lipton [5]. Furthermore, with
public prime N , Cheon and Lee [14] presented a polynomial O(log p) time attack to the Computational

3 Although the output contains infinite families of groups and bilinear maps, it does not always implies that the
output is infinite bit-string. We assume that such the families can be succinctly described with polynomial size
bit-string.
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Diffie-Hellman problem over the unbounded multilinear maps.4 In both attacks, it is crucial to know the
group order N , which is prime and hence φ(N) is easily computable. Therefore, for cryptographic purpose,
we are interested in only self bilinear maps with unknown prime order group, or known-but-hard-to-factor
composite order group. In particular, we are interested in hiding group order, rather than using composite
order, for reason of precaution; if the discrete logarithm of ẽ(g, g) to the base g is known, there is a polynomial
attack for the computational Diffie-Hellman problem even when N is hard-to-factor.5 Note that all known
candidate multilinear maps also hide their message spaces, which correspond to group order, over which
multilinear map is defined.6

Regardless of hiding order of underlying group of self bilinear map, there are easy cryptographic problems.
We sort out generically easy problem in the underlying group of self bilinear maps with an unknown group
order.

Definition 3 (Problems) Let GSBL(λ) → (N,G, ẽ) for security parameter λ. For positive integer κ, the
κ-MCDH/κ-MDDH/κ-DLIN problems are defined as follows: Let g be a generator of G and eκ be a κ-linear
map inductively defined via ẽ as the above.

– κ-Multilinear CDH (MCDH) problem: given a tuple (g, ga1 , . . . , gaκ+1) ∈ Gκ+2, find eκ(g, . . . , g)a1···aκ+1 .
– κ-Multilinear DDH (MDDH) problem: distinguish between two distributions DMDDH

c and DMDDH
r , where

DMDDH
r = (g, ga1 , . . . , gaκ+1 , gr) for r

$← ZN and DMDDH
c = (g, ga1 , . . . , gaκ+1 , eκ(g, . . . , g)a1···aκ+1).

– κ-Decisional Linear (DLIN) problem: distinguish between two distributions DDLINc and DDLINr , where

DDLINr = (g, g1, . . . , gκ, g
a1
1 , . . . , gaκκ , gr) for r

$← ZN and DDLINc = (g, g1, . . . , gκ, g
a1
1 , . . . , gaκκ , g

∑
i=1..κ ai).

To define the Subgroup Membership problem, we assume that the group order N is composite; that is, N = pq,
where p and q are coprime and not necessarily primes. Let gp be a generator of subgroup Gp ⊂ G of order p.

– Subgroup Membership (SubM) problem: given g, gp and g′, determine whether g′
$← G or g′

$← Gp.

The κ-MCDH/κ-MDDH/κ-DLIN/Subgroup Membership assumptions state that the advantage of any
polynomial-time adversary in attacking the corresponding problem is negligible in the security parameter.

Lemma 1 (Easy Problems) For any positive integer κ, there are polynomial time attacks to the κ-MDDH
problem and the κ-DLIN problem defined over the unbounded multilinear maps via self bilinear maps, regard-
less of knowing the group order.

The proof of Lemma 1 is given in Appendix A.1.
As for the other problems, we prove generic hardness of them in a special form of groups in the next

section. (It sounds paradoxical since the term ‘generic’ usually does not restrict the form of groups. Here,
we use the term ‘generic’ differently from the previous ‘generic group model’. More precisely, it is a kind
of generic ring model for the ring of integers modulus N for some N , where cryptographic hard problem is
defined in (ZN ,+).)7

In the context of bilinear maps and multilinear maps, the decisional linear problem in prime order groups
and the subgroup membership problem in composite order groups are regarded as having similar features
since the decisional linear problem can be considered as a kind of the subgroup membership problem in
product groups of prime order groups. We once again stress that even though the decisional linear problem
is generically easy in the self bilinear map context, the subgroup membership problem could be generically
hard.

4 Let ẽ(g, g) = gt for some (unknown) t. Given g, ga, gc, ẽ(ẽ(ga, gb), gt
φ(N)−2

) = ẽ(gabt, gt
φ(N)−2

) = gabt
φ(N)

= gab,
where φ is the Euler totient function. The last equality holds, because gt is also a generator of G, so that t is

coprime to N . Since gt
φ(N)−2

can be computed with O(log φ(N)) bilinear map operations, this attack runs in
polynomial time.

5 Let ẽ(g, g) = gt and t be given. Then, one can perform the Extended Euclidean Algorithm to compute t−1 mod N

in polynomial time in logN . Then, given ga, gb, ẽ(ga, gb)t
−1

= gab.
6 There is a technique of partially exposing the message space [18], but it is basically built on the multilinear maps

with an unknown message space.
7 It does not mean that those problems are generically easy in generic group model.
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3 Self Bilinear Map via Ring Encoding System

In this section, we introduce a new approach toward self bilinear maps with holding cryptographic assump-
tions. In particular, we prove the generic hardness of cryptographic assumptions such as MCDH and SubM
in our model.

First, let us begin with an intuitive example for building self bilinear maps from any commutative ring
with unity.

Example 1. [Transformation from Ring to Self Bilinear Map] Given a commutative ring R with
unity containing at least one non-unity invertible element ω,8 define a self bilinear map ê as follows.

ê : R×R → R
(α · ω, β · ω) 7→ (α · ω) · (β · ω),

where R is considered as a R-module with a basis ω and α, β are scalars chosen from R. One can easily check
that ê is a non-degenerate self bilinear map defined over R-module R.

To establish general notion, we consider the transformation from not only ZN but also commutative
rings. Nevertheless, one may assume R = ZN through the paper since our realization is only for R = ZN .

Remark 1. The definition of cryptographic multilinear map (of course, bilinear maps, too) is usually defined
over abelian groups. However, mathematical definition of multilinear map is defined over not only abelian
groups (that is, ZN -modules for cyclic groups of order N), but also R-modules for any commutative ring
R. In fact, multilinear maps over ZN -module are familiar in cryptography community since the standard
discrete logarithm problem is usually defined over ZN modules; that is, given an element g of a cyclic group
G of order N and x · g for scalar x ∈ ZN , finding x is hard, where · is a scalar multiplication. The discrete
logarithm problem over R-module can be defined by extending ZN -module to R-module; given an invertible
element ω of R-module G and α · ω for α ∈ R, finding α is hard, where · is a scalar multiplication.

Although Example 1 shows an easy way to build non-degenerate self bilinear maps from rings, for the
practical usage we require that ê should be efficiently computable. Then, one soon faces a dilemma; for
evaluating ê, one may need the description of R, but by using the description of R, one may be able to
efficiently solve hard problems. For example, if R = ZN , N is necessary for ring operations in ZN , but from
public N , which is the order of additive group (ZN ,+), one can apply the Cheon-Lee attack to solve the
CDH problem as in Section 2. Indeed, for R = ZN , public N is much more dangerous since one can perform
the Extended Euclidean Algorithm to find ω−1 in polynomial time in the size of N .

To resolve this dilemma, we introduce a new concept, called Ring Encoding System, for performing ring
operations without knowing the underlying ring explicitly, in the sense that the order of embedded group is
unknown. Note that what we consider here is similar to generic ring model [1, 36] or black box field [5], but in
contrast to RES both the generic ring model and the black box field make the underlying ring/field public.

3.1 Ring Encoding System

We introduce a new concept, called Ring Encoding System (RES).

Definition 4 (Ring Encoding System) A Ring Encoding System consists of a commutative ring R with
unity containing an invertible element that is not a multiplicative identity and a system of sets S = {S(α0) ⊂
{0, 1}∗ : ∀α0 ∈ R}, with the following properties.

1. S(α0) ∩ S(β0) = ∅ for distinct α0 and β0 in R.

8 The unity itself can be used as a basis of R-module, but we require another invertible element ω for the discrete
logarithm assumption; if we use the unity 1R instead of ω, the discrete logarithm problem, which requires given
α · 1R finding α, will be trivial.
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2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’ such that for every
α0, β0 ∈ R and every u ∈ S(α0) and v ∈ S(β0), it holds that u + v ∈ S(α0+β0) and −u ∈ S(−α0), where
α0 + β0 and −α0 are addition and negation in R.

3. There is an associative binary operation ‘×’ such that for every α0, β0 ∈ R and u ∈ S(α0) and v ∈ S(β),
it holds that u× v ∈ S(α0·β0), where α0 · β0 is multiplication in R.

For the sake of simplicity, we prefer to use [α] to denote some encoding of the ring element α, i.e., [α] ∈ S(α).
Through the paper, ω denotes the special non-identity invertible element in R.

We can define self bilinear maps based on RES similarly to Example 1. To make RES hold cryptographic
assumptions such as the discrete logarithm, we require that given [ω], no polynomial time algorithm can find
[ω−1] with non-negligible probability. Therefore, the non-identity requirement for ω is necessary.

Remark 2 (Ring Encoding System vs. Graded Encoding System). The definition of graded encoding system,
which is another concept for approximate multilinear maps, has similar feature to ours; that is, both systems
are for manipulating encodings and two operations (+, ·) over them. Contrast to ours, graded encoding system
uses sharp grading such that each encoding has a grade, multiplications increase its grade, and additions can
be carried out only for encodings with the same grade. In the ring encoding system, there is no such grade
for encodings.

RES Procedures, Complete Version. To manipulate ring encodings, we define several procedures.

Instance Generation. The randomized InstGen(1λ, R) takes as input the security parameter λ and a ring R
as input and outputs (pp, pzt), where pp is a description of a RES as above, in particular, pp contains [ω],
and pzt is a zero-test parameter. Note that pp does not contain R in an explicit form.
Ring Sampler. The randomized samp(pp) takes pp as input and outputs a [α] for a nearly uniform element
α ∈R R. Note that [α] does not need to be uniform in S(α).
Addition, Negation and Multiplication. Given pp and two encodings [α] and [β], we have add(pp, [α], [β]) ∈
S(α+β) and neg(pp, [α]) ∈ S(−α). Furthermore, we have mul(pp, [α], [β])→ [α ·β] ∈ S(α·β). We write [α] + [β],
−[α] and [α] · [β] as shorthands for applying these procedures, respectively.
Zero-test. The procedure isZero(pp,pzt, [α]) outputs 1 if [α] ∈ S(0) and 0 otherwise.
Extraction. This procedure extracts a random function of ring elements from their encoding. That is, ext(pp,
pzt, [α]) outputs s ∈ {0, 1}λ satisfying

1. For any α, α′ ∈ R and [α], [α′] ∈ S(α), ext(pp,pzt, [α]) = ext(pp,pzt, [α
′]).

2. The distribution {ext(pp,pzt, [α]) : α ∈R R} is nearly uniform over {0, 1}λ.

RES Procedures, Restricted Version. We are also interested in a restricted version of RES procedures,
in which a set of permitted circuits is predetermined at the instance generation. There are some reasons to
advocate a need for such the restricted concept. First, as aforementioned, we have to preclude adversary
from computing an inverse encoding of [ω], with only additions and multiplications. To the best of our
knowledge, it seems infeasible to compute an inverse without knowing the underlying ring. For example, if R
is a ring of integers modulo N , then, to the best of our knowledge, all efficient ways9 to compute a modular
inverse require to know N . One of which is using the extended Euclidean algorithm and the other is using
the Euler theorem. Nevertheless, we do not know whether there could exist generic algorithm computing
modular inverses or breaking cryptographic assumptions such as the DL and the SubM if ring operations are
unlimitedly allowed. We leave it as an interesting open problem to prove generic hardness of cryptographic
problems, or to disprove by proposing generic attack algorithms. (For the restricted version of RES over
R = ZN , we prove the generic hardness of cryptographic assumptions in the subsection 3.3.) Second, there
is a practical constraint for the restricted version, which is the limit of state-of-the-art technology. As we
mentioned in the introduction, unlimitedly performing two homomorphic operations over exponentially large
message space is an open problem at the present time.10

9 polynomial time in the security parameter
10 As of now, the running time of known bootstrapping technique is exponential in logN [42].
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Therefore, in the restricted version, we modify the Instance Generation procedure to take as input (or
produce as output) the description of the permitted arithmetic circuits PC . (In our RES procedures, sampled
encodings and ring operations over them can be considered as variables and polynomials over them. For the
restricted version, we mainly consider the case that R is the ring of integers modulo N for some N and any
polynomials over ZN of degree less than a predetermined limit is allowed to perform.) In addition, just like
the real-life version of GES, we modify Zero-test and Extraction procedures to allow negligible errors in the
restricted version.

Additional Procedures for Multilinear Maps. To make RES become further similar to multilinear maps,
we define additional procedures, though these are not newly defined but by using the previous procedures.

Encoding. The algorithm enc(pp, [α0]) takes as input params and an encoding [α0] for some α0 ∈ R, and
outputs mul(pp, [ω], [α0])→ [α0 · ω].
κ-linear Map. Given pp and κ encodings [α1 · ω], . . . , [ακ · ω], the κ-linear map κ-linear(pp, [α1 · ω], . . . , [ακ ·
ω]) performs

mul(· · · (mul(pp, [α1 · ω], [α2 · ω]) · · · ), [ακ · ω])→ [α1 · · ·ακ · ωκ] ∈ S(α1···ακ·ωκ).

We write [α1 · ω] · · · [ακ · ω] as a shorthand for applying κ-linear map.

3.2 Assumptions

We change Definition 3 of group-based hard problems to be adapted for RES.

Definition 5 (DL/MCDH/Ext-MCDH/Ext-MDDH problems) For any security parameter λ ∈ N
and the multilinearity κ ∈ N, the DL/κ-MCDH/Ext-κ-MCDH/Ext-κ-MDDH problems are defined as follows:
Fix a RES. Parameters are generated as

(pp,pzt)← InstGen(1λ, R);
∀j = 1..κ+ 1, xj ← samp(pp), yj := xj · [ω]← enc(pp, xj);
y′ ← κ-linear(pp, y1, . . . , yκ), yc ← mul(pp, xκ+1, y

′),
yr ← enc(pp, samp(pp));
γc ← ext(pp,pzt, yc), γr ← ext(pp,pzt, yr);

– Discrete Logarithm (DL) problem: given pp, pzt, and y1, find [x′1] such that ext(pp,pzt, [x1]) = ext(pp,pzt, [x
′
1]).

– κ-Multilinear Computational Diffie-Hellman (CDH) problem: given pp, pzt, and {yj}κ+1
j=1 , find y′c such

that ext(pp,pzt, y
′
c) = γc.

– Extraction κ-Multilinear Computational Diffie-Hellman (CDH) problem: given pp, pzt, and {yj}κ+1
j=1 , find

γc.
– Extraction κ-Multilinear Decisional Diffie-Hellman (DDH) problem: distinguish two distributions Dext

δ =(
pp,pzt, {yj}κ+1

j=1 , γδ
)

for δ ∈ {c, r}.

The DL/CDH/Ext-CDH/Ext-DDH assumptions state that the advantage of any polynomial-time adver-
sary in attacking the corresponding problem is negligible in the security parameter.

Submodule Membership Problem over Product Ring. We consider RES with a product ring R = R1 × R2,
where each ring Ri contains a non-identity invertible element ωi ∈ Ri, so that ω = (ω1, ω2) is a non-identity
invertible element in R. For this variant, we need an additional procedure for sampling encodings from the
subring R1 × {0} ⊂ R. Note that all elements in R1 × {0} are not invertible in R since 0 is not invertible in
R2. Considering a subring R1 × {0} of the product ring R for RES, we need to modify to InstGen algorithm
to take a subring as input.

Subring Sampler. The randomized subsamp(pp) takes pp as input and outputs an encoding [α1] for a
nearly uniform element α1 ∈R R1 × {0}.

10



One can show that the above variant using a product ring has the desirable properties, so called projecting [32,
23] and cancelling [23] in the context of composite order bilinear groups (of course, multilinear maps, too [33]).
Furthermore, we can define the Submodule Membership problem, which is an analogue of the Subgroup
Membership problem in composite order multilinear groups.11

Definition 6 (Submodule Membership problems) For any security parameter λ ∈ N, the Submodule
Membership problem is defined as follows: Fix a RES for a product ring. Parameters are generated as

(pp,pzt)← InstGen(1λ);
y0 ← samp(pp), y1 ← subsamp(pp);

– Submodule Membership (SubM) problem: given
(
pp,pzt, yδ

)
for δ ∈R {0, 1}, determine δ.

3.3 Generic Hardness of Cryptographic Problems in Restricted RES

In this subsection, to show the reliability of cryptographic assumptions over RES, we provide generic hardness
of the MCDH and SubM problems. Informally, generic algorithm A is defined as a game with the challenger
Och. During the game A has access to oracles, which are managed by Och, for two ring operations in R and
equality testing between the results of two sequences of ring operations. We relegate the formal definition of
generic RES algorithm in Appendix A.2.

In particular, we consider the case such that R = ZN and A is permitted to evaluate any polynomial of
degree less than 2δ−λ, where N is a product of δ-bit random primes, which covers the case of our realization
in Section 5. If we set δ = 2λ, then A can perform any polynomials of degree at most 2λ, which is reasonably
large for a lot of applications.

We use a notation Tn,δ to denote a set of all n-products of δ-bit primes. That is,

Tn,δ =
{ ∏
i=1..n

pi
∣∣ for i = 1..n, pi ∈ {δ-bit primes}

}
.

Theorem 1 Let N
$← Tn,δ, where n ≥ 1 and δ > λ for the security parameter λ. Let A be an arbitrary

generic polynomial time algorithms (possibly adaptively) computing polynomials of degree less than 2δ−λ.
Then, there is only negligible probability that A outputs the solution of the MCDH problem, where the MCDH
problem is defined over (ZN ,+). (Therefore, it directly implies that the DL problem is intractable, too.)

Theorem 2 Let N1
$← Tn,δ and N2 > 1 be coprimes, where n ≥ 1 and δ > λ for the security parameter λ.

If arbitrary generic polynomial time algorithm computes only (possibly adaptively) polynomials of degree less
than 2δ−λ, then its advantage in solving the SubM problem is negligible, where the SubM problem is defined
over (ZN1

× {0},+), which is identified as the submodule of order N1 in (ZN1N2
,+).

Both proofs of Theorem 1 and Theorem 2 are given in Appendix A.2.
To prove Theorem 1, we mainly use Shoup’s proving technique for the hardness of DL problem in the

generic group model [43]. Although in our model the adversary A can perform multiplication, contrary to
the generic group model, we restrict the maximum degree of polynomials that A can generate. Similar to
Shoup’s technique, we can also use the Schwartz-Zippel lemma to bound the adversary’s success probability.
Except for using larger degree polynomials, almost all parts of our proof is identical to the original Shoup’s
proof.

To prove Theorem 2, we need a new technique, which is quite different from those of Theorem 1 and
other generic proofs in generic ring model [36]. More precisely, the factoring assumption is usually required
to prove generic hardness of the subset membership problem. (e.g., the hardness of the subgroup membership

11 Considering multilinear maps and self bilinear maps as being defined over modules rather than abelian groups,
we prefer to call submodule membership problem than subgroup membership problem. However, if we restrict our
attention to abelian groups (that is, ZN -modules), we use the term of subgroup membership problem.
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problem in the generic group model due to Katz, Sahai and Waters [37] and the subset membership problem
in the generic ring model due to Jager and Schwenk [36]) In our proof, unknown modulus N = N1N2 is
essential, in particular N1. Roughly speaking, we show that if N1 is hidden and large enough, then A cannot
make N1 part of given element to be zero. If N1 parts of all elements generated by A are all non-zero, then A
cannot get any information about N2 part since generic algorithm A cannot obtain any information from the
representation of elements. That is, if A cannot make N1 part to be zero, then A cannot check whether N2

part is zero or not regardless of the size of N2, where N2 is coprime to N1, so that the submodule membership
problem is generically intractable. The essential idea behind the proof is to show that polynomially bounded
algorithm A cannot make any polynomial f of small degree (< 2δ−λ) such that it has large numbers of
common roots over Zpi for large numbers of δ-bit coprimes pi’s. Then, A cannot make any element to be
its N1-part zero for unknown random N1 and given randomly chosen problem instance. Our proof is of
independent interest since it proves the power of hiding message space for the first time; in particular, the
factoring assumption is not necessary in the context of subset membership problem.

3.4 Application to Multipartite Diffie-Hellman Key Exchange

We present a one-round N -way Diffie-Hellman key exchange protocol using RES in Appendix B.

4 Homomorphic Encryption with Unknown Message Space

In this section, we construct a new integer-based efficient scale-invariant FHE for a realization of RES. The
proposed scheme has the property of unknown message space.

We first give a high-level intuition for our homomorphic encryption scheme. Our construction basically
uses a recent multiplication methodology due to Cheon and Stehlé [15] since it is only one construction of
scale-invariant FHE with unknown message space. However, their methology inherently requires large public
key size, in particular, multiplication key size. Roughly speaking, the heart of the idea in the Cheon-Stehlé
scheme is to minimize the empty space in Approximate Common Divisors (ACD) instances, which is reserved
for handling error increasing. Therefore, to minimize error increasing for multiplication, a multiplication in
the Cheon-Stehlé scheme is carried out by bit operations and additions over ciphertexts; the multiplication
procedure in the Cheon-Stehlé scheme scheme consists of two steps. Given two ciphertexts, first bitwise-
decompose each ciphertext and compute a tensor product of two ciphertexts. Second, compute the inner
product between the result and the multiplication key. Therefore, the size of multiplication key depends on
γ2 where a ciphertext consists of γ bits. Roughly speaking again, the size of ciphertext γ is determined by
the complexity of lattice attack; that is, γ = ω((η−ρ)2 log λ), where η−ρ means the size of the empty space
reserved for error increasing in ciphertext. For small message space, it is sufficient to set η − ρ = O(log λ),
so that the Cheon-Stehlé scheme achieves very short ciphertext size for binary message space. However,
for exponentially large message space η − ρ should be larger than the bit-size of message space, that is,
η−ρ = O(λ), then there is no advantage over the other integer-based schemes [22, 20]. Therefore, we modify
the Cheon-Stehlé scheme to increase the empty space in ciphertext, so that at least one multiplication of
two ciphertext over the integers keeps some specific intermediate format. Then, the remaining procedure
is similar to the Cheon-Stehlé scheme; that is, bitwise-decompose and compute the inner product between
the result and the multiplication key. Since the multiplication over the integers results only 2γ bits, the
multiplication key depends on not γ2 but 2γ, so that our public key size is much shorter than that of the
Cheon-Stehlé scheme. Note that to make sufficiently large empty space in ciphertexts, contrary to the Cheon-
Stehlé scheme, we use the modulus p2

i instead of pi and this technique is already used by Coron, Lepoint,
and Tibouchi [20], but the Coron-Lepoint-Tibouchi FHE requires the description of the message space for
multiplication procedure.

We use the following notations: For three real numbers a, b, and e, we write a = b (mod e) if a− b is a
multiple of e. Given a real number a,

[
a
]
g

is a reminder of dividing a by g, which is also denoted by a mod g.

(Do not confuse with the notation [a] of an encoded ring element.) Given positive integers p, q0, and ρ, we
define the distribution Dρp,q0 = {qp2 + r : q ∈ Z∩ [0, q0), r ∈ Z∩ (−2ρ, 2ρ)}. Let n be a positive integer. As in
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[9], given x ∈ Z ∩ [0, 2n) and y ∈ R, we define BDn(x) = (x0, . . . , xn−1) ∈ {0, 1}n such that x =
∑n−1
i=0 xi2

i

and PTn(y) = (y, 2y, . . . , 2n−1y) ∈ Rn. We omit n if it is clear in the context.

4.1 The Basic Construction

We present our homomorphic encryption HE. In the following description, we assume that η, γ and τ are
functions in the security parameter λ and will be decided later.

HE.KeyGen(1λ) : Determine the message space Zg. Pick an η-bit random prime p with gcd(p, g) = 1 and

a γ-bit integer x0 = q0p
2 + r0 with q0

$← Z ∩ [0, 2γ/p2) and r0
$← Z ∩ (−2ρ, 2ρ). Sample y′, xi ← Dρp,q0

for i = 1..τ and set y = y′ + bpg e. Generate the multiplication key z = (z0, . . . , z2γ−1) as follows. For

i = 0..2γ − 1, zi = q′i · p2 +
⌊
p
g

[
g22i

p2

]
g

⌉
+ r′i, where q′i

$← Z ∩ [0, q0) and r′i
$← Z ∩ (−2ρ, 2ρ). Finally, output

pk = (x0, x1, . . . , xτ , y, z0, . . . , z2γ−1) and sk = p.
HE.Encrypt(pk,m ∈ Zg) : Choose a random subset S ⊂ {1, . . . , τ} and output c←

[∑
i∈S xi + y ·m

]
x0

.

HE.Decrypt(sk, c) : Output m←
[⌊

g
p · c

⌉]
g
.

HE.Add(pk, c1, c2) : Output c←
[
c1 + c2

]
x0

.

HE.Mult(pk, c1, c2) : Output c←
[
〈BD2γ(c1 · c2), z〉

]
x0

.

HE.Eval(pk, C, c1, . . . , ck): Given a circuit C with k inputs, and k ciphertexts ci ← HE.Encrypt(mi), it performs
the integer addition and multiplication gates over ci’s. When the depth of C is below the certain level, it
holds

HE.Decrypt(sk,HE.Eval(pk, C, c1, . . . , ck)) = C(m1, . . . ,mk)

with probability larger than or equal to 1− λ−ω(1).

Note that the multiplication key z can be considered as a vector of encryptions of secret-key-dependent-

messages; that is, z = x′+
⌊
p
g

[
PT2γ( g

2

p2 )
]
g

⌉
, where x′ = (x′0, . . . , x

′
2γ−1) and x′i ← Dρp,q0 . Therefore, as usual

in the context of homomorphic encryption, one has to assume circular security of the underlying encryption
scheme [44, 11, 20, 15].

To show the correctness of the proposed scheme, we first show that the ciphertext is of the form q · p2 +⌊
p
g

⌉
· (mi + r∗g) + r for some noise r∗ and r. Next, we show that how many operations on encryptions can

be supported, with keeping noise size to be controllable; that is, the resulting ciphertext is decryptable.

Lemma 2 Let c← HE.Encrypt(pk,m) and ci = qip
2 +
⌊
p
g

⌉
(
[
mi

]
g

+ r∗i g) + ri for some qi, r
∗
i , and ri. Then,

the followings hold.

1. c is of the form qp2 +
⌊
p
g

⌉
(m+ r∗g) + r for some q, r, and r∗ with |r| ≤ 2(τ + g)(2ρ − 1) and r∗ = 0.

2. HE.Add(pk, c1, c2)→ qp2 +
⌊
p
g

⌉
(
[
m1 +m2

]
g

+r∗g)+r with |r| ≤ |r1 +r2|+2ρ−1 and |r∗| ≤ |r∗1 +r∗2 |+1.

3. HE.Mult(pk, c1, c2) → qp2 +
⌊
p
g

⌉
(
[
m1m2

]
g

+ r∗g) + r with |r∗| < 2γ and |r| < 22ρ∗+4g2(|r1| + |r2|) if

|r∗i | < 2ρ
∗

and |ri| < 2η+ρ∗+1

We relegate the proof of Lemma 2 to Appendix C.1. In ciphertexts, there are two different type noises r∗

and r. Addition increases noises only linearly. Usually, the bottleneck in practicality of HE is multiplication.
As for multiplication, r∗ is changed to small one regardless of original ones r∗1 and r∗2 . On the other hand,
r is affected by r∗i , but the size of |r| is increased only linearly if r1 and r2 have the same size; that is, if
log2 |r1| = log2 |r2|, then the noise length in bits has only grown additively 2ρ∗+4+2 log2 g+1. For example,
if one has to product 2m encryptions with the same error size log2 |r|, then first one makes a binary tree with
2m leaves, puts encryptions in leaves, and makes an intermediate node as a multiplication of children nodes.
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Then, the final output size is upper bounded by m(2ρ∗ + 4 + 2 log2 g + 1) + log |r|.12 When considering the
number of allowable additions and our parameter selection for γ, it is sufficient to assume ρ∗ = O(λ).

Lemma 3 Given a ciphertext c = qp2 +
⌊
p
g

⌉
(
[
m
]
g

+ r∗g) + r, if |r∗|g2 + |r|g < 2η−1, then the decryption

algorithm HE.Decrypt(sk, c) outputs [m]g.

Proof. We have, for some δ ∈ [−g/2, g/2] ∩ Z,
⌊
g
pc
⌉

=
⌊
qpg + g

p
p+δ
g (
[
m
]
g

+ r∗g) + g
pr
⌉

= qpg + (
[
m
]
g

+

r∗g) +
⌊
δ([m]g+r∗g)+gr

p

⌉
. If |r∗|g2 + |r|g < 2η−1, then it is congruent to m modulo g.

Definition 7 The scheme HE is L-homomorphic if for any depth L circuit C and any set of inputs m1, . . . ,mk ∈
Zg, it holds that

HE.Decrypt(sk,HE.Eval(pk, C, c1, . . . , ck)) = C(m1, . . . ,mk)

with probability ≥ 1− λ−ω(1), where (pk, sk)← HE.KeyGen and ci ← HE.Encrypt(mi) for i = 1..k.

Theorem 3 Suppose |r∗| is bounded by 2ρ
∗
. The scheme HE is L-homomorphic if η−ρ ≥ L(2ρ∗+ 2 log2 g+

5) + log2 g + log2(g + τ) + 3.

The proof of Theorem 3 is given in Appendix C.1.

Parameter Selection. For the security parameter λ, the below are constraints that the parameters of the
scheme must satisfy. We are interested in the case when g is exponentially large in λ.

• ρ ≥ λ to avoid the brute force attacks on the noise [10, 22],
• η = ρ+O(Lλ) from Theorem 3, where L is the multiplicative depth of the circuit to be evaluated,
• γ = ω(η2 log2 λ), to thwart lattice-based attacks (see [44, 21, 16, 20]),
• τ ≥ γ + 2λ in order to apply the leftover hash lemma. (To guarantee statistically close to the uniform

distribution over Zx0 for a γ-bit integer x0, we need at least γ + 2λ number of xi’s.)

Concretely, one can set parameters: ρ = λ, η = O(ρ+Lλ), γ = O(L2λ3), and τ = γ + 2λ. The difference
of η from that of [20] comes from the size of message space Zg. Since log2 g is set to O(λ), the number
of allowable additions need to be exponentially many, which enlarges the size of ρ∗. However if we take
g = O(log2 λ) as usual homomorphic encryptions, we can set η = ρ + O(L log2 λ). In this case the concrete
parameter follows those of [20], i.e., ρ = λ, η = Õ(L + λ), γ = Õ(L2λ + λ2), and τ = γ + 2λ. We remark
that each element in pk can be compressed to roughly 2η + λ bits as in [22].

4.2 Generalization to Batch Homomorphic Encryption

We present the batch version BHE of HE, which is a building block of our construction for multilinear
map. For coprimes a0, . . . , an and integers α0, . . . , αn, we use a notation c = CRTa0,...,an(α0, . . . , αn) for the
Chinese remaindering; that is, c is the unique integer in [0,

∏n
i=0 ai) that is congruent to αi modulo ai for

i = 0..n. In the paper, for the sake of simplicity, we will frequently use the Chinese remaindering for coprimes
q0, p

2
1, . . . , p

2
n, and so in this case let us omit these coprime numbers and otherwise we will explicitly write;

that is, CRT means CRTq0,p21,...,p2n . We define the distribution Dρp1,...,pn,q0 as

{CRT(q, r1 . . . , rn) : q
$← Z ∩ [0, q0), ri

$← Z ∩ (−2ρ, 2ρ)}.

To extend our scheme to the batch version, we follow the previous approach [11, 20]; for a message

m = (m1, · · · ,mn) ∈ Zg1 × · · · × Zgn , a corresponding encryption is of the form c =
⌊
pi
gi

⌉
(mi + r∗i gi) + ri

(mod pi) for all i = 1..n and c = q (mod q0) for some random integers q, r∗i ’s and ri’s. The resulting scheme
BHE is as follows.

12 Note that if one computes sequentially, the final error size will be exponentially large in m.
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BHE.KeyGen(1λ) : Determine the message space R = Zg1 ×· · ·×Zgn . Pick an η-bit random coprime integers
p1, . . . , pn with gcd(pi, gi) = 1 and let π =

∏n
i=1 pi. Choose a γ-bit integer

x0 = q0 · π2 + CRTp21,...,p2n(r0,1, . . . , r0,n)

with r0,i
$← Z∩ (−2ρ, 2ρ) and q0

$← Z∩ [0, 2γ/π2) an coprime integer with the pi’s. Sample xi ← Dρp1,...,pn,q0
for i = 1..τ and y′i ← Dρp1,...,pn,q0 for i = 1..n and set

yi = y′i +
⌊pi
gi

⌉
·

((
π2

p2
i

)−1

mod p2
i

)
· π

2

p2
i

.

Generate the multiplication key z = (z0, . . . , z2γ−1) as follows. For i = 0..2γ − 1, zi is defined as

CRT(q′i,
⌊
p1
g1

[
g212i

p21

]
g1

⌉
+ r′i,1, . . . ,

⌊
pn
gn

[
g2n2i

p2n

]
gn

⌉
+ r′i,n),

where q′i
$← Z ∩ [0, q0) and r′i,1, . . . , r

′
i,n

$← Z ∩ (−2ρ, 2ρ). Finally, output

pk = (x0, x1, . . . , xτ , y1, . . . , yn, z0, . . . , z2γ−1)

and sk = (p1, . . . , pn).
BHE.Encrypt(pk,m ∈ R) : Choose a random subset S ⊂ {1, . . . , τ} and output c ←

[∑
i∈S xi +

∑n
i=1 yi ·

mi

]
x0

.

BHE.Decrypt(sk, c) : Output mi ←
[⌊

gi
pi
· c
⌉]
gi

for i = 1..n.

BHE.Add(pk, c1, c2) : Output c←
[
c1 + c2

]
x0

.

BHE.Mult(pk, c1, c2) : Output c←
[
〈BD(c1 · c2), z〉

]
x0

.

BHE.Eval(pk, C, c1, . . . , ck): Identical to HE.Eval

Parameter Selection. We remark that the asymptotic parameter selection for our BHE is the same to
that of HE since x0 is not error-free. For realization of RES, we consider parameters when log2 gi = O(λ)
and q0 = 1, i.e.,

∏n
i=1 pi. Thus we have γ = O(nη). As in HE, one can set ρ = λ, η = ρ + Lλ. To satisfy

γ = ω(η2), n is set to ω(η log2 λ).

4.3 Unknown Message Space

We argue that in the proposed schemes, the message space Zg can be provably hidden.13 That is, it is not
necessary to know g in the procedure of public algorithms BHE.Encrypt, BHE.Add, and BHE.Mult and g is
required only in the procedure of BHE.KeyGen and BHE.Decrypt. More rigorously, we can show that g is
hidden from pk under the n-DACD∗ assumption, i.e., we do not require additional assumption for moving
to BHE with unknown message space. We define the n-DACD∗ assumption in Appendix C.2.

To this end, we show that pk is indistinguishable from random integers modulo x0, where g is not used
in the generation x0, under the n-DACD∗ assumption. Formally, we give the following lemma.

Lemma 4 Let BHE be the encryption scheme with L-homomorphic property, given in Section 4.2. In par-
ticular, parameters are chosen according to our setting. Let (pk, sk)← BHE.KeyGen. Define the distribution

Dx0 = {x′ $← ([0, x0) ∩ Z)τ+2γ+n}.

Then, there exists an algorithm to generate pk′ = (x0,x) ∈ Z × Zτ+2γ+n such that (1) (pk′, sk) is a valid
pair of public key and secret key for BHE, (2) x is indistinguishable from x′ ← Dx0

under the n-DACD∗

assumption, and (3) the resulting scheme is at least (L− 1)-homomorphic.

13 Instead, the size of message space, denoted by ρ′, is known. Furthermore, we have to slightly modify the definition
of the semantic security, so that the adversary has to choose a message from {0, 1}ρ

′+1 for the challenge phase.
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Schemes CT PK Msg Sp.

DGHV

DGHV10 [44] Õ(λ5) Õ(λ10) unknown

CNT12a [22] Õ(λ5) Õ(λ5) unknown

CNT12b [22] Õ(L2λ3) Õ(L3λ4) known

batch [11] Õ(λ5) Õ(nλ7) unknown

Scale-inv.

CLT14a [20] Õ(L2λ3) Õ(L3λ4) known

CLT14b [20] Õ(L2λ3) Õ(nL3λ4) known

CS15 [15] Õ(L2λ3) Õ(L5λ7) unknown

Ours
non-batch Õ(L2λ3) Õ(L3λ4) unknown

batch Õ(L2λ3) Õ(nL3λ4) unknown

λ: the security parameter, n : the number of slots in each BHE,
Msg Sp.: Message Space, L: multiplicative depth,

CNT12a: Compressed pk, CNT12b: Modulus-switching

CLT14a: Non-batch version, CLT14b: Batch version

Table 1. Comparison of integer-based HE schemes

The proof of Lemma 4 is straightforward using the standard hybrid argument. Lemma 4 directly implies
that pk of BHE leaks no information about the message space g since the message space Zg is not used at
the generation of x0.

4.4 Comparison

We compare complexities of performance and properties among integer-based (batch) homomorphic encryp-
tion (denoted by (B)HE) schemes in Table 1. In the table we say message space Zg is can be unknown if g is
not required in the procedure of public algorithms and required only in the procedures of key generation and
decryption. We consider the compressed form of ACD instance [22] in public key except the original DGHV
(the first row).

5 Our Proposal for Ring Encoding System

Construction We describe our proposal for RES in Figure 1. In the description, we assume that n, η, γ, ρ,
` and ν are functions in the security parameter λ and will be decided later. First, let us briefly provide a
high-level description of our construction.

Instantiation. InstGen(1λ, L) algorithm takes the security parameter and the depth L of permitted circuits.
Next it generates all secret and public parameters. It runs BHE.KeyGen(1λ) as a subroutine, where BHE is
L-homomorphic,14 and generates additional parameters {x′j}j=1..`, y, s and pzt. x

′
j ’s and y are encryptions

of random messages by BHE.Encrypt.15 pzt and s are for isZero and ext algorithms, which are not used in
BHE.

Sampling. samp(pp) generates an encryption of random element m ∈ Zg1 × · · · × Zgn by subset-sum
of encryptions x′j ’s. If we set ` ≥ nα + 2λ, then the leftover hash lemma implies that the distribution

of ({x′j}j=1..`,m) is statistically indistinguishable from the distribution of ({x′j}j=1..`,m
′), where m′

$←
Zg1 × · · · × Zgn .

Operations. add and mul algorithms are exactly the same as BHE.Add and BHE.Mult of the underlying HE
scheme, respectively.

14 All parameters γ, η, and τ are, in fact, functions in λ and L.
15 BHE.Encrypt is for public key encryption scheme. In fact, we use symmetric key version of encryption function

instead of BHE.Encrypt since InstGen algorithm already knows secret key of homomorphic encryption scheme.
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• InstGen(1λ, L): Run BHE.KeyGen(1λ) →
(
pk = (x0, {xi}τi=1, {yi}

n
i=1, {zi}

2γ−1
i=1 ), sk =

(p1, . . . , pn)
)
, where q0 is set by 1 and π2 =

∏
i=1..n p

2
i is γ bits. Note that π2 is not published.

Set p̂k = (x0, z0, . . . , z2γ−1), which is the evaluation key for BHE.Add and BHE.Mult. (The other
parts in pk are for BHE.Encrypt.) Generate another secrets; the underlying hidden ring R = Zg1···gn
for gi

$← {α-bit primes} and special non-identity invertible element ω = CRTg1,...,gn (ω1, . . . , ωn)

for ωi
$← Z ∩ (0, gi).

Compute public parameters, which will be used for sampling, encoding, zero-testing, and extrac-
tion;

(1) Sampling: (mij)
$← Rn×`, rij

$← (−2ρ, 2ρ) ∩ Z and let mj = (m1j , . . . ,mnj). For j = 1..`,

generate x′j := [mj ]← CRT
p21,...,p

2
n

(
⌊
p1
g1

⌉
m1j +r1j , . . . ,

⌊
pn
gn

⌉
mnj +rnj), so that x′j has the form

BHE.Encrypt(pk,mj) with smaller error size.

(2) Encoding: Choose ri
$← (−2ρ, 2ρ)∩Z and generate y := [ω]← CRT(

⌊
p1
g1

⌉
ω1+r1, . . . ,

⌊
pn
gn

⌉
ωn+

rn), so that y has the form BHE.Encrypt(pk,ω) with smaller error size.

(3) Zero-testing: N
$← {γ+4η+1-bit primes}, generate H = (hij) ∈ Zn×n and (α1, . . . , αn) ∈ Zn,

which will be specified later. Then, generate (pzt)j =
∑
i=1..n hij · αi · p

−1
i mod N for j = 1..n

(4) Extraction: Generate a seed s for a strong randomness extractor Extract.

Finally, output pp :=
{
p̂k, {x′j}

`
j=1, y, s

}
and pzt.

• samp(pp) : Choose a random subset S ⊂ {1, . . . , `} and output c ←
∑
j∈S x

′
j , where the sum is

performed by using BHE.Add.

• add/mul(pp, c1, c2): Output cadd ← BHE.Add(p̂k, c1, c2)
/

cmul ← BHE.Mult(p̂k, c1, c2).

• isZero(pp,pzt, c): Output 1 if ‖c · pzt mod N‖∞ < N · 2−ν for some parameter ν specified later.
Otherwise, output 0.

• ext(pp,pzt, c): Output Extracts(msbsν(c · pzt mod N)), where msbsν takes the ν most significant
bits of the result.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Additional Procedures for Multilinear Maps ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

• enc(pp, c) : Output c′ ← mul(pp, c, [ω]).

• κ-linear(pp, c1, . . . , cκ): Output c′ ← mul(· · · (mul(pp, c1, c2) · · · , cκ).

Fig. 1. Ring Encoding Scheme

Re-randomization. In our scheme, there is no particular re-randomization procedure. In the previous ap-
proximated multilinear maps, the re-randomization of encodings is used to attain an analogue of the discrete
logarithm assumption; in particular [18], the way to encode at higher level is just modulus multiplication, so
that its inverse is trivial unless there is additional re-randomization procedure. Inverting the multiplication
procedure in the underlying BHE scheme (without re-randomization) is a hard subset-sum problem, so that
it can be a oneway function. We expect that it still preserves the onewayness with given the zero-testing
parameter. The detailed analysis is given in Section 6.

Zero-testing. The basic idea for isZero is identical to the previous approximate multilinear maps, in par-
ticular [18]. We first explain how to generate the zero-testing vector pzt ∈ Zn, and then why isZero works.
Similarly to [18], we choose a random prime integer N of size γ + 4η+ 1 bits, and then for i = 1..n generate
pairs (αi, βi) satisfying the following conditions, by using LLL in dimension 2 (that is, by using Lagrange-
Gauss reduction)16. 1) |αi| < 2η−1, 2) |βi| < 4

3 ·
N

2η−1 < 22−ηN , and 3) βi = αi · (u′i/pi) (mod N) where
u′i = ( πpi )

2
[
( πpi )

−2
]
pi

. We also generate an integer matrix H = (hij) ∈ Zn×n, as in [19, 18]; H is invertible in

Z and ‖H‖∞ ≤ 2β and ‖H−1‖∞ ≤ 2β for some β specified later. The generation of the H matrix is given in
Appendix D.2. Finally, the zero-testing vector pzt is computed as (pzt)j =

∑n
i=1 hij · αi · p

−1
i mod N. isZero

algorithm computes ω = c · pzt mod N and test whether ‖ω‖∞ is small or not. We relegate the details, in
particular, the correctness of zero-testing procedure, in Appendix D.1.

16 A simple algorithm to generate (αi, βi) is given in [18]; (αidN/B2e, βi) is the shortest vector of the lattice generated

by the rows of ( dN/B
2e

0
u′i/pi mod N

N
), where B = (3/4)1/42η−1.
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Extraction. ext algorithm is exactly the same as [18], which is essentially the same as [25, 19]. Using the
seed s in pp, one can extract uniform bits from a strong randomness extractor. We relegate the extraction
algorithm in Appendix D.3. (Also, one can find it in [18].)

Parameter Selection. Parameters follow the selection of BHE. The bit-size α of the prime gi must be
large enough so that the message space Zgi can be concealable. One can set α = 2λ (see Section 3.3). Other
parameters can be chosen as follows: 1) The number ` of level-0 encodings for samp must satisfy ` ≥ nα+ 2λ
in order to apply the leftover hash lemma [19] and 2) For a conservative security as in [18] we let β := 3λ.

6 Security Analysis of RES Proposal

When choosing the parameters of RES to allow computing polynomials of degree less than 2δ−λ, we can
prevent the generic attacks on MCDH and SubM problems (Theorem 1 and 2). On the other hand, it
does not guarantee that our RES is secure against non-generic attacks such as zeroizing attack and lattice
attacks [12, 13, 40, 18, 17, 35]. In this section, we argue the reliability of the security of our RES construction
by considering all known non-generic attacks and plausible new attacks.

6.1 Zeroizing Attacks

We review the Cheon et al.’s zeroizing attack and its variants against integer-based multilinear map [19] in
Appendix E.1. In this subsection, we briefly describe a recent attack [13, 40] on the new multilinear map [18],
and we apply all known zeroizing attacks [12, 13, 40] to our RES.

A New Attack on CLT15. To thwart the zeroizing attacks, Coron, Lepoint and Tibouchi modified both
the multiplication and zero-testing processes [18], so that the result of the Cheon et al. attack does not
have a quadratic form any more. To force the multiplication process to make a non-linear part, they hide
the modulus π =

∏
i pi, which is used in both multiplications and zero-testing in the previous version [19].

Instead, ladders of zero encodings are used to make a similar effect to the modular reduction and those add
non-linear noises in the resulting encoding. Let us briefly explain their multiplication procedure. For the sake
of the simplicity, we only consider a multiplication of two level-1 encodings. Let X = {Xk}k be a level-1
ladder of zero encodings. Then, a reduction by X, denoted by [·]X , is subtracting Xk’s to reduce the size
of input encoding in a certain way. For example, given c1 = a1i/z (mod pi) and c2 = a2iz (mod pi), one
can compute a multiplication of two encodings by [c1 · c2]X = c1 · c2 −

∑
k bkXk < π for some bk ∈ {0, 1}.

Then, the result is congruent to (a1ia2i −
∑
k bkrki)/z

2 modulo pi, where Xk = rki/z
2 (mod pi), and the

additional term
∑
k bkrki makes hard to apply the Cheon et al. attack. It is obvious that if π is known, one

can remove such the additional term, so that it is essential to hide π in the modified CLT map. Since π
is hidden, the zero-testing process should be modified accordingly. Coron et al. also devise an alternative
zero-testing process, which does not require π explicitly but use a new independent larger integer N , and
the new zero-testing method also adds non-linear term. These new multiplication and zero-testing processes
produce nonlinear part in resulting zero-testing value and so make it hard to extract quadratic form of CRT
component over the integers, which is main idea of [12].

Recently, new attacks on the modified CLT scheme [18] are provided in [13] and [40] independently. Both
attacks share essentially the same idea; Although the ladders of zero encodings and a new modulus N make
non-linear parts, one can trace coefficients of ladders of zero encodings applied, so that remove the effect
of non-linear part generated by the modified multiplication and zero-testing processes over the integers.
Resultingly, the security of CLT15 [18] is reduced to CLT13 scheme [19] as Minaud and Fouque pointed
out [40].

We note that Coron et al.’s zero-testing process is quite similar to ours, but completely different multi-
plication process. We also hide the modulus π2 due to complete different reason; what we intended is not
to prevent zeroizing attack, but to prevent a trivial factoring of π2 by computing a square root of it. That
is, our zero-testing process also generates some non-linear part, but the security of our scheme against the
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zeroizing attack does not depend on it. Therefore, in this paper, in order to verify the non-applicability of
the newly proposed attack to our scheme, we only focus on the aspect of the attack removing non-linear part
generated by the ladder reduction and omit discussion on the nonlinear part generated by the modulus N .

Let us describe a high level intuition behind the new zeroizing attacks [13, 40]; that is, we explain how
to remove nonlinear parts. Let a be a large size encoding. To run zero-testing procedure correctly, first we
have to reduce the size of encoding a. We recall the zero-testing lemma provided in [13], which says about
the conditions for the correctness of the zero-testing procedure, in an informal way. Denote the resulting
ladder reduced encoding by a′ = [a]X = a −

∑
k bkXk < X1 for bk ∈ {0, 1}. Let vi = [gi · p̂i−1/zκ]pi · p̂i for

p̂i =
∏
j 6=i pj .

Lemma 5 (Informal, [13, Zero-testing lemma]) If x = CRTpi(ri · gi/zκ) with |ri| < pi/2, then x can
be uniquely written as x =

∑
i ri · vi + t · π. Furthermore, if x is smaller than or equal to X1, the equation

[pzt · x]N =
∑
i

ri · v′i + t · π′,

holds over the integers, where v′i = [pzt · vi]N and π′ = [pzt · π]N .

For the sake of simplicity, we let X = {Xk}k be a level-κ ladder of zero encodings. We write a =∑
i si · vi + t · π and Xk =

∑
i ski · vk + tk · π. Since a′ = [a]X is also an encoding of zero and smaller than

X1, we have

[pzt · a′]N =
[
pzt · (a−

∑
k

bkXk)
]
N

=
∑
i

(si −
∑
k

bkski) · v′i + (t−
∑
k

bktk) · π′,

where the last equality holds over the integers by Lemma 5. If one can find
∑
i si · v′i + t · π′ over Z, the

quadratic form of input variables over the integers can be obtained, so that the security of the scheme [18]
is reduced to the previous version [19]. To find such integer values, we try to remove

∑
k bkski part by

considering fk :=
∑
i ski ·v′i+ tkπ

′ over Z.17 Using the Lemma 5, the value fk’s can be computed inductively.
The value f1 is immediately obtained from [pzt · X1]N , since X1 equals to X1. We compute [pzt · [X2]X ]N
for [X2]X = X2 −X1 ≤ X1, so that we have

∑
i(s2i − s1i) · v′i + (t2 − t1) · π′ over the integers. We obtain f2

by computing [pzt · [X2]X ]N + f1 over the integers. For k > 2, we can compute fk inductively. Finally, we
can eliminate the nonlinear part

∑
k bkski in [pzt · a′]N by adding

∑
k bkfk, hence we obtain

∑
i si · v′i + t · π′

over the integers.

Apply to Our RES. The new attack against the modified CLT scheme [13, 40] can be considered as a
method to eliminate non-linear parts and thus to reduce the security of the modified CLT map into that
of the original CLT map. Therefore, to argue the security of the proposed RES, we focus on the zeroizing
attack against the original CLT map [12]. Nevertheless, we also show that the technique used in the new
attack [13, 40] can hardly apply to our RES scheme.

We first show that the multiplication process of our RES generates non-linear parts, which plays an
essential role to prevent the zeroizing attack [12]. For easy explanation, we first simplify the variables in
encodings by ignoring a noise from rounding function. In fact, there are too many factors generating non-
linear part even to analyze. Therefore, for the sake of simplicity, we ignore rounding functions in encodings.
We remark that BHE.Mult algorithm outputs [〈BD2γ(a · b), z〉]x0

for given encodings a = CRTp2i
(
ai
)

and

b = CRTp2i (bi). If we ignore the rounding b·e, z = x′ +

(
CRT

(⌊
p1
g1

[
g212

j

p21

]
g1

⌉
, . . . ,

⌊
pn
gn

[
g2n2

j

p2n

]
gn

⌉))
j=1..2γ

is a

vector of encryption of PT2γ(g2
i /p

2
i ). Therefore, BHE.Mult(pk, a, b) can be written as

CRTp2i

gi
pi
· (ai · bi) +

2γ∑
j=1

ej · rij

 , (1)

17 One can easily find bi, since ladder reduction by X is deterministic process.
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from the observation that x · y = 〈BD2γ(x),PT2γ(y)〉 for any x ∈ Z ∩ [0, 22γ) and y ∈ R. Here, ej is
the j-th element of BD(a · b) and rij = r′ij + pi · r′′ij where r′ij is modulo pi value of j-th element of x′

and r′′ij is
(
g2
i · 2j/p2

i −
[
g2
i · 2j/p2

i

]
gi

)
/gi. We have the nonlinear term (

∑2γ
j=1 ej · rij) generated by the

multiplication process. Since each bit in a · b contains the information of more than one slot in the Chinese
remaindering, one can interpret our multiplication procedure as making inter-slot diffusion of the values
in the Chinese remaindering. This is one of the most important difference from the previous candidate
multilinear constructions over the integers [19, 18], whose multiplication processes do not have property of
the inter-slot diffusion. That is, each value in slots of the Chinese remaindering is multiplied independently

Next, we present more detailed attack and its non-applicability to our RES. As the attack in [12], we
consider a product of three encodings including, any encoding a, an encoding of zero b, and a target encoding
c. Let a = CRTp2i (ai), b = CRTp2i (bi), and c = CRTp2i (ci), where all encoded by our RES. We consider a
product of those three encodings d = BHE.Mult(pp,BHE.Mult(pp, a, b), c). Then we have

d = CRTp2i

gi
pi

gi
pi
· ai · bi +

∑
j

ej · rij

 · ci +
∑
k

e′k · rik


= CRTp2i

g2
i

p2
i

· ai · bi · ci +
gi
pi
·
∑
j

ej · rij · ci +
∑
k

e′k · rik


=

n∑
i=1

g2
i

p2
i

· ai · bi · ci +
gi
pi
·
∑
j

ej · rij · ci +
∑
k

e′k · rik

 · u′i + α′ · π,

for some ej , e
′
k ∈ {0, 1} and α′ ∈ Z, where u′i = ( πpi )

2
[
( πpi )

−2
]
pi

. Using the definition of pzt and the analysis

in Section 5, we have the following equation over the integers:

[pzt · d]N =

n∑
i=1

g2
i

p2
i

· ai · bi · ci +
gi
pi
·
∑
j

ej · rij · ci +
∑
k

e′k · rik

 · u′′i + α′ · π′,

for u′′i = [pzt · u′i]N and π′ = [pzt · π]N . We see that the additional part ( gipi ·
∑
j ej · rij · ci +

∑
k e
′
k · rik)

depends on d in a nonlinear way. Therefore, if we apply Cheon et al. attack, we cannot construct quadratic
form over the integers.

We consider more attacks than the above naive approach. One may try to subtract the nonlinear part
using the technique in [13, 40] which removes the effect of the ladders of zero encodings. We argue that
it is hard to apply the technique to our RES due to the following reasons. The nonlinear part generated
by our multiplication process is related to both input encodings a, b and the multiplication key z; in (1)
ej is related to both a and b, and rij is related to z. The external noise rij in z inserted when running
homomorphic multiplication. Since the multiplication key are not encodings of zero, contrary to the ladders
of zero encodings [18], it seems hard to remove the nonlinear part without changing underlying message. We
note that nonlinear part in [18] comes from the ladder of zero encodings which is independent from message.
Furthermore, the noise rij is added not slot-wise but inter-slot diffused manner on encodings a and b due
to the bit decomposition BD procedure. We also consider an attack computing not BHE.Mult but integer
multiplication of encodings. We can write a · b over the integers as follows:

a · b = CRTp2i (ai) · CRTp2i (bi) = CRTp2i ([ai · bi]p2i ) +B · π2 =

n∑
i=1

([ai · bi]p2i ) · ui +B′ · π2,

for some B and B′ of bit length γ and ui = π2/p2
i · ((π2/p2

i )
−1 mod p2

i ). Due to large B′, we obtain only
modulo N value of pzt · (a · b) not over Z. To get quadratic form of CRT component over the integers, the
zero-testing value pzt · (a · b) is relatively small compared to modulus N . On the other hand, we cannot run
valid zero-testing procedure on a · b because of large value B′, and so we only have an equation over ZN not
over Z.
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We emphasize again that we use the same zero-testing parameter [18] with the totally different purpose.
In [18], they use an independent N to hide π =

∏
i pi when running zero-testing procedure and consequently

it produces additional nonlinear which prevents the zeroizing attack [12]. On the other hand, the modulus N
no longer plays a role in defending the zeroizing attacks due to [13]. In our RES, we use the same zero-testing
parameter (pzt)` =

∑n
i=1 hi` · αi · p

−1
i mod N to prevent factoring attacks on π not the zeroizing attacks.

6.2 Lattice Attacks

We consider lattices attacks on level-0 encodings, public key including zero-testing key and multiplication
key. We relegate the details in Appendix E.2

6.3 Assumptions

Decision type assumptions are useful in design of cryptographic protocols. Generally, we have the following
relations among variants of the Diffie-Hellman assumption on our RES.

MCDH 99K Ext-MCDH 99K Ext-MDDH 99KMDDH

Here, Problem A 99K Problem B means that Problem A is harder than or equal to Problem B.

As proved in Lemma 1, the MDDH problem is easy in our RES, regardless of knowing the group order.
It is straightforward that the Ext-MCDH problem is easier or equivalent to the MCDH problem and the
Ext-MDDH problem is easier or equivalent to the Ext-MCDH problem. Therefore, if we assume that the
Ext-MDDH is a hard problem, the hardness of the Ext-MCDH and MCDH are guaranteed. It seems hard
to reduce to more classical assumptions such as AGCD. In this section, therefore, we show the reason why
we believe that the Ext-MDDH is hard.

Let yj = xj · [ω] and yc, yr be κ-level encodings of [ωκ] ·
∏κ+1
i=1 xi and a random message, respectively. The

MDDH problem is to determine b ∈ {c, r} from yb and the Ext-MDDH problem is to determine b ∈ {c, r}
from γb ← ext(pp,pzt, yb). In the case of MDDH problem, one can easily check whether yb is an encoding of

[ωκ] ·
∏κ+1
i=1 xi or not by checking an equality

ext
(
pp,pzt, (κ+ 1)-linear(pp, y1, . . . , yκ+1)

) ?
= ext

(
pp,pzt,mul(pp, yb, [ω])

)
,

which holds if and only if b = c. In Ext-MDDH problem, on the other hand, it is hard to make use of
the above equality check, since extraction algorithm ext and multiplication algorithm mul do not commute.
The reason why it is hard to compute ext

(
pp,pzt,mul(pp, yb, [ω])

)
from ext(pp,pzt, yb) and [ω] comes from

complicated homomorphic multiplication and independent modulus N in zero-testing procedure.

Submodule Membership problem(SubM). We explain a reason why SubM problem seems to be hard
in our RES. We first describe attack against SubM in the original CLT [19]. Even though the CLT scheme
is totally broken by Cheon et al. attack and hence SubM assumption does not hold any more, but this gives
an evidence why SubM seems hard in our RES setting.

Roughly speaking, Submodule Membership problem is to determine an element m ∈ R is in a strict
submodule R′ or not for a given encoding c = enc(m). Since the underlying hidden ring in our construction

is R =
∏n
i=1 Zgi for prime integers gi’s, the strict nontrivial subgroup R′ is of the form R′ =

∏t
i=1{0} ×∏n

i=t+1 Zgki for some 1 ≤ t < n and ki ∈ [1, n], where × is a canonical product. We assume ki = i and t = 1.

The problem is given as c0 = enc(m0) and c1 = enc(m1) where m0 = (m0i)i ∈ R and m1 = (m1i)i ∈ R′.
Let c be a zero encoding and compute Dc, Dc0 and Dc1 for fixed auxiliary sets A and B as in Equation (3):

Dc = XA · diag(g1 · r1, g1 · r2, . . . , gn · rn) · diag(u1, . . . , un) ·XB
Dc0 = XA · diag(g1 · r01 +m01, g1 · r02 +m02, . . . , gn · r0n +m0n) · diag(u1, . . . , un) ·XB
Dc1 = XA · diag(g1 · r11, g1 · r12 +m12, . . . , gn · r1n +m1n) · diag(u1, . . . , un) ·XB .
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One can distinguish between c0 and c1 by comparing two values α0 = gcd(detDc,detDc0) and α1 =
gcd(detDc,detDc1); α1 is about g1 times larger than α0 with high probability.

It seems difficult to apply this attack on our RES because two non-linear parts comes from modulus
N and complicated homomorphic multiplication procedure. Therefore we conjecture that SubM assumption
holds in our RES.

Onewayness of BHE.Mult. Contrary to the previous candidate multilinear maps, there is no re-randomization
procedure in our RES. Nevertheless, we argue that an analogue of the discrete logarithm assumption is still
hard; given pp and enc(pp, c), it is hard to find c′ such that ext(pp,pzt, c) = ext(pp,pzt, c

′).
Finding the exact solution c from given enc(pp, c) = BHE.Mult(pk, [ω], c) =

[
〈BD([ω] · c), z〉

]
x0

is exactly

like inverting BHE.Mult(pk, [ω], ·) function. Let c = BD([ω] · c) ∈ {0, 1}2γ . Then, finding c is equivalent to
finding c, so that inverting BHE.Mult(pk, [ω], c) is a subset-sum problem of finding c with an instance (z, x0).
Even though, due to pzt, z is not indistinguishable from the uniform distribution over Zx0

, z has sufficient
entropy; each zi is generated by using a (γ−η)-bit random integer and a ρ-bit random integer. Since there are
2γ components in z, the subset-sum problem instance (z, x0) has large enough density 2γ/ log2 x0 = 2 > 1
and c also has sufficient entropy (exactly the same entropy as that of c), we can conclude that this subset-sum
problem is exponentially hard, so that equivalently breaking the onewayness of BHE.Multc0(c1) is infeasible.
(For the detailed analysis for the subset-sum problem, we refer to [41, 21].) To break the discrete logarithm
assumption, one may try to find c′ 6= c such that ext(pp,pzt, c) = ext(pp,pzt, c

′). If one knows c, it is easy to
generate such a c′; just add an encoding of 0 to c. However, it seems difficult to find such a c′ without firstly
finding c.

6.4 Noise Growth of BHE

When the proposed BHE sheme is used for restricted RES, it is required that one is not allowed to compute
polynomials over the predefined degree in order to guarantee the generic hardness of MCDH and SubM
assumptions (Theorem 1 and 2). Unfortunately, it is not straightforward to analyze the distribution of
noises after evaluations over BHE-cihpertexts due to the complicated multiplication procedure in terms of
randomness diffusion. Indeed, it is a reason why we expect the multiplication procedure prevents the zeroizing
attack. Instead, we provide an evidence to support that our BHE is proper to the use of restricted RES by
experiments. That is, we show that one cannot evaluate polynomials of degree 2δ−λ, where δ is the bit-size
of gi’, in the sense that any evaluation of reasonably selected arbitrary polynomials increases noises large
enough, so that the noises will wrap up the modulus pi’s. Even though our experiments may not perfectly
guarantee the non-existence of polynomials that increase noises very small, we expect that one can hardly
find such polynomials since the message space and messages, over which polynomials are evaluated, are
randomly chosen and completely hidden from the viewpoint of adversary.

We relegate our experimental result in Appendix F.
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A Generic Easiness and Hardness of Problems

A.1 Generically Easy Problems

Lemma 1 (Easy Problems) For any positive integer κ, there are polynomial time attacks to the κ-MDDH
problem and the κ-DLIN problem defined over the unbounded multilinear maps via self bilinear maps, regard-
less of knowing the group order.

Proof. Let ẽ(g, g) = gt for some t so that eκ(g, . . . , g) = gt
κ−1

. Given a κ-MDDH problem instance
(g, ga1 , . . . , gaκ+1 , gc), one can check whether c = tκ−1a1 · · · aκ+1 holds or not by checking an equality

eκ+1(ga1 , . . . , aaκ+1)
?
= ẽ(g, gc), which holds if and only if c = tκ−1a1 · · · aκ+1.

Let eκ(g1, . . . , gκ) = gs for some s. Given a κ-DLIN problem instance (g, g1, . . . , gκ, g
a1
1 , . . . , gaκκ , gc),

one can check whether c =
∑
i=1..κ ai holds by checking an equality

∏
i=1..κ eκ+1(g1, . . . , gi−1, g

ai
i , . . . , gκ, g)

?
= ẽ(gc, g). The left-hand side is equal to

∏
i=1..κ ẽ(g

sai , g) = gts
∑
i=1..κ ai . The right-hand side is equal to

gts
∑
i=1..κ ai if and only if c =

∑
i=1..κ ai. ut

A.2 Generic Hardness of Cryptographic Problems in Restricted RES

We formalize a new concept of generic algorithm in the RES context, in terms of a game between algorithm
A and a challenger Och. Och is given as input description of a ring R, over which RES is defined, and problem
instance x0, . . . , x` ∈ R. We assume that the ring description contains efficient ways to uniformly sample an
element in R and to perform two ring operations (+, ·) in R. During interaction, Och keeps a list List, which
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is initialized by (0, x0), . . . , (−`, x−`) at the beginning of the game. A can issues the following three types of
oracle queries to Och.

•Sampling. Och chooses a random element x`+i from R for the i-th sampling query and stores
(
− `− i, x`+i

)
in List.
•Ring Operation. Suppose that A issues the k-th ring operation query (i, j, ◦) for i, j < k and ◦ ∈ {+, ·}.
Then, Och appends a vector

(
k, (i, j, ◦)

)
into List.

•Equality-Test. Let Pk be a straight line program that takes as input xk’s of (k, xk) ∈ List for k ≤ 0 and
performs a sequence of operations in order from (1, ∗) to (i, ∗) in List. Once Och receives

(
i, j
)

from A, Och
checks whether Pi = Pj . Och returns true to A if the equality holds. Otherwise, Och sends false to A.

Theorem 1 Let N
$← Tn,δ, where n ≥ 1 and δ > λ for the security parameter λ. Let A be an arbitrary generic

polynomial time algorithms (possibly adaptively) computing polynomials of degree less than 2δ−λ. Then, there
is only negligible probability that A outputs the solution of the MCDH problem, where the MCDH problem is
defined over (ZN ,+). (Therefore, it directly implies that the DL problem is intractable, too.)

Proof. To bound the success probability of arbitrary generic algorithm A, we consider another game between
A and a simulator Osim.

Simulator Description. Osim begins with choosing N
$← Tn,δ and setting variables W,X1W, . . . ,Xκ+1W

as the κ-MCDH problem instance. During the simulation, the simulator keeps a list List, which is initiated by
row vectors

(
0,W, 1

)
,
(
−1, X1W, 2

)
, . . . ,

(
−(κ+1), Xκ+1W, 2

)
, where each vector is assigned for each variable

of the MCDH instance, respectively. The first component is reserved for index, the second component is used
for the assigned variable (or operations), and the third one is for degree of the corresponding polynomial.
We use two notations Pi and dg(i) to denote the corresponding multivariate polynomial and its degree,
respectively.

As for queries, the simulator responds as follows.

•Sampling. Osim prepares a new variable Ai for the i-th sampling query and stores
(
− (κ+ 1)− i, Ai, 1

)
in

List.
•Ring Operation. Suppose that A issues the k-th ring operation query (i, j, ◦) for ◦ ∈ {+, ·}. If ◦ = +, then
Osim stores a vector

(
k, (i, j, ◦),max{dg(i), dg(j)}

)
. If ◦ = ·, then Osim stores a vector

(
k, (i, j, ◦), dg(i) +

dg(j)
)
. If dg(k) ≥ 2δ−λ, then Osim stops the simulation and outputs ⊥.

•Equality-Test. Once Osim receives
(
i, j
)

from A, Osim checks whether Pi(A1, . . . , A`,W,X1, . . . , Xκ+1)
?
= Pj(A1, . . . , A`,W,X1, . . . , Xκ+1), where the number of all sampling queries before the present time is
`. This test can be done with overwhelming probability by choosing ω′, x′1, . . . , x

′
κ+1 and a′1, . . . , a

′
` from

ZN at random and checking Pi(a
′
1, . . . , a

′
`, ω
′, x′1, . . . , x

′
κ+1) = Pj(a

′
1, . . . , a

′
`, ω
′, x′1, . . . , x

′
κ+1) (mod N). (The

Schwartz-Zippel lemma exactly guarantees the overwhelming success probability of this test; if Pi − Pj is
a non-zero polynomial over ZN , then there exists a δ-bit prime p such that p|N and Pi − Pj 6= 0 (mod p).
Since the degree of Pi−Pj is less than 2δ−λ, the probability that a random point hits a root of Pi−Pj over

Zp is less than 2δ−λ

p < 1
2λ

.)

At the end of interaction, Osim chooses ω, x1, . . . , a1, . . . , aL
$← ZN , where L is the number of all sampling

queries. If there exists an index i in the list List such that Pi(a1, . . . , aL, ω, x1, . . . , xκ+1) = ωκ
∏
j=1..κ+1 xj

(mod N), then A wins.

Analysis. In the adversarial view, the distribution of the above simulation and that of the original game is
identical unless there are queries making two distinct polynomials Pi and Pj over ZN such that Pi(a1, . . . , aL,
ω, x1, . . . , xκ+1) = Pj(a1, . . . , aL, ω, x1, . . . , xκ+1) (mod N). We call such the event Fail. Therefore, A’s suc-
cess probability in the original game is bounded above by Pr[Fail] + Pr[A wins|¬Fail]. Both Pr[Fail] and
Pr[A wins|¬Fail] are related to the probability that a randomly generated point hits a root of multivariate
polynomial of degree less than 2δ−λ over Zp for some p|N , which is bounded above by a negligible function
1

2λ
. This can be easily proven by well-known the Schwartz-Zippel lemma. Since we only consider polynomial

time adversaries, the number of pairs of polynomials for the event Fail is bounded by polynomial in λ, so
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that we conclude that the adversarial success probability in the original game should be negligible function
in λ. ut

Remark 3. In the proof of Theorem 1, the modulus N needs not to be hidden. In fact, the reason why we
consider the unknown modulus in the RES context is mainly due to the Cheon-Lee attack, which computes

gt
φ(N)−2

for given a group generator g of order N and some element gt. In the restricted version RES
context, computing tφ(N)−2 from t is a large degree polynomial, so that it is not allowed adversaries to
perform. Nevertheless, we require unknown modulus due to holding the SubM assumption.

Theorem 2 Let N1
$← Tn,δ and N2 > 1 be coprimes, where n ≥ 1 and δ > λ for the security parameter λ.

If arbitrary generic polynomial time algorithm computes only (possibly adaptively) polynomials of degree less
than 2δ−λ, then its advantage in solving the SubM problem is negligible, where the SubM problem is defined
over (ZN1

× {0},+), which is identified as the submodule of order N1 in (ZN1N2
,+).

Proof. To bound the success probability of arbitrary generic algorithm A, we consider another game between
A and a simulator Osim.

Simulator Description. Osim begins with setting variables X,Y, Z as the SubM problem instance. During
the simulation, the simulator keeps a list List, which is initiated by row vectors

(
0, X, 1

)
,
(
−1, Y, 1

)
, . . . ,

(
−

2, Z, 1
)
, similarly to the simulator in the proof Theorem 1. We also use the same notations Pi and dg(i) in

the proof of Theorem 1.
As for queries, the simulator responds as follows.

•Sampling. For a sampling query from the whole module, Osim prepares a new variable Ai and stores(
− 2− i, Ai, 1

)
in List. Similarly, for a sampling query from the submodule, Osim prepares a new variable

Bi and stores
(
− 2− i, Bi, 1

)
in List.

•Ring Operation. Suppose that A issues the k-th ring operation query (i, j, ◦) for ◦ ∈ {+, ·}. If ◦ = +, then
Osim stores a vector

(
k, (i, j, ◦),max{dg(i), dg(j)}

)
. If ◦ = ·, then Osim stores a vector

(
k, (i, j, ◦), dg(i) +

dg(j)
)

If dg(k) ≥ 2δ−λ, then Osim stops the simulation and outputs ⊥.

•Equality-Test. Once Osim receives
(
i, j
)

from A, Osim checks whether Pi(A1, . . . , B1, . . . , X, Y, Z)
?
= Pj(A1,

. . . , B1, . . . , X, Y, Z), where the number of all sampling queries before the present time is `. It can be done

with overwhelming probability by choosing N ′
$← Tn,δ and x′, y′, z′, a′1, . . . , b

′
1, . . .

$← ZN ′ and checking
Pi(a

′
1, . . . , b

′
1, . . . , x

′, y′, z′) = Pj(a
′
1, . . . , b

′
1, . . . , x

′, y′, z′) (mod N ′). (More precisely, the detail about error
probability of this test is given in Lemma 6.)

At the end of interaction, A outputs her guess β′ for whether Z indicates an element in the whole

module or the submodule. Then, Osim chooses N1
$← Tn,δ and N2 > 1 with condition gcd(N1, N2) = 1

and β
$← {0, 1}, x, a1, . . . , aL

$← ZN1N2 , y, b1, . . . , bL′
$← ZN1 × {0}, where L and L′ are the number of all

sampling queries for the whole module and the submodule, respectively and ZN1 × {0} is identified as the

subring of order N1 in ZN1N2
. In addition, if β = 0, z

$← ZN1N2
. Otherwise, z

$← ZN1
× {0}. A wins if and

only if β′ = β.

Analysis. In the adversarial view, the distribution of the above simulation and that of the original game
is indistinguishable18 unless there are queries making two distinct polynomials Pi and Pj over Z such that
Pi(a1, . . . , b1, . . . , x, y, z) = Pj(a1, . . . , b1, . . . , x, y, z) (mod N1N2). We call such the event Fail. Unless the
event Fail occurs, A’s advantage is 0 since β is chosen at random after receiving β′.19 Therefore, A’s advantage
in the original game is bounded above by Pr[Fail]. To compute an upper bound of Pr[Fail], we consider a larger

event F̃ail that there exists a pair of two distinct polynomials Pi and Pj over Z generated by A such that
the equality Pi(a1, . . . , b1, . . . , x, y, z) = Pj(a1, . . . , b1, . . . , x, y, z) holds over ZN1

instead of ZN1N2
. Then, for

this equality, we can consider a1, . . . , b1, . . . , x, y, z as independent random integers over ZN1 . The following

Lemma 6 shows that Pr[F̃ail] is negligible in λ. ut
18 There could be negligible errors from polynomial number of equality test queries.
19 Again, we ignore negligible errors occurred during the equality test queries.
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Lemma 6 Suppose that arbitrary generic polynomial time algorithm A is given variables X1, . . . , Xt. If A
generates a non-zero polynomial f(X1, . . . , Xt) in Z[X1, . . . , Xt] of degree less than 2δ−λ by using generic
ring operations from given variables X1, . . . , Xt, then

Pr
N1

$←Tn,δ

ai
$←ZN1

[
f(a1, . . . , at) = 0 (mod N1)

]

is negligible in λ, where n ≥ 1 and δ > λ.

Proof. Ignoring negligible distance, it is sufficient to show that

Pr
p

$←{δ-bit primes}

ai
$←{0,...,2δ+λ}

[
f(a1, . . . , at) = 0 (mod p)

]

is negligible in λ since N1 is a product of δ-bit primes and the distribution of ai (mod p) is close to the
uniform distribution in Zp, with negligible statistical distance. This probability is equal to

Pr
ai

$←{0,...,2δ+λ}

[
f(a1, . . . , at) = 0

]
+ Pr
ai

$←{0,...,2δ+λ}

[
f(a1, . . . , at) 6= 0

]
· Pr
p

$←{δ-bit primes}

ai
$←{0,...,2δ+λ}

[
f(a1, . . . , at) = 0 (mod p)

∣∣f(a1, . . . , at) 6= 0
]
.

Since deg(f) < 2δ−λ, Pr
ai

$←{0,...,2δ+λ}

[
f(a1, . . . , at) = 0

]
< 2δ−λ

2δ+λ
= 1

22λ is negligible. (We omit the details,

which is almost the same as that of the Schwartz-Zippel lemma, though the Schwartz-Zippel lemma deals
with only finite fields.)

Next, we show that

Pr
p

$←{δ-bit primes}

ai
$←{0,...,2δ+λ}

[
f(a1, . . . , at) = 0 (mod p)

∣∣f(a1, . . . , at) 6= 0
]

is negligible. Since we assume that A is a generic PPT algorithm, the number of sum-gates, of fan-in 2,
performed by A is polynomially bounded, say q. Let Fi = 2(2i−1)q+i(δ+λ) and h(X1, . . . , Xt) be a degree-
i polynomial generated by A. We first argue that maxai∈{0,...,2δ+λ}{|h(a1, . . . , at)|} < Fi. We inductively
shows that such the inequality holds for i ≥ 1. From q sum gates, the maximum scalar A can make is
bounded above by 2q. (Recall that A begins with variables X1, . . . , Xt.) Thus, F1 = 2q+δ+λ = 2q · 2δ+λ
can be an upper bound for any degree-1 polynomial h. Suppose that the argument is true for i = 1..k − 1.
Let us consider arbitrary degree-k polynomial h, which is generated by computing a sum of products of
lower-degree polynomials. Note that this is the all cases that A can make a degree-k polynomial from lower
degree polynomials generically. Let i1, . . . , i` be positive integers such that i1 + · · · + i` ≤ k. If g is an
`-product of polynomials of degree i1, . . . , i`, then maxai∈{0,...,2δ+λ}{|g(a1, . . . , at)|} is bounded above by

2(2k−`)q+k(δ+λ) =
∏
j∈{i1,...,i`} 2(2j−1)q+j(δ+λ) due to our hypothesis. From ` ≥ 2, we obtain the bound

2(2k−2)q+k(δ+λ). There are at most 2q additions in the sum after performing at most q sum-gates, so that we
obtain the desired bound Fk = 2(2k−1)q+k(δ+λ) for arbitrary h of degree k.

From this bound of point evaluation of polynomials of degree at most 2δ−λ, which is generated by A, we
know that for any non-zero polynomial f(X1, . . . , Xt) generated by A and any ai’s chosen from {0, . . . , 2δ+λ},
f(a1, . . . , at) has at most ( qδ + 1)2δ−λ+1 distinct δ-bit prime factors. Since the number of all δ-bit primes is

approximately 2δ

2δ (from the prime number theorem) which is exponentially larger than ( qδ + 1)2δ−λ+1, we

conclude that Pr
p

$←{δ-bit primes}

ai
$←{0,...,2δ+λ}

[
f(a1, . . . , at) = 0 (mod p)

∣∣f(a1, . . . , at) 6= 0
]
≤ 4(q+δ)

2λ
is negligible. (Recall

that both q and δ are polynomially bounded.) The theorem statement directly follows. ut
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B One-Round Multipartite Diffie-Hellman Key Exchange from RES

We present a one-round N -way Diffie-Hellman key exchange protocol from RES.

Setup(1λ, N): Run InstGen(1λ, C)→ (pp,pzt), where the permitted circuit C contains monomials of degree
N .

Publish(pp, i): The i-th party Pi samples ci ← samp(pp). Run enc(pp, ci) → c′i. Publish c′i as Pi’s public
key and keep ci as his secret key.

KeyGen(pp, i, ci, {c′j}j 6=i): Run (N − 1)-linear(pp, c′1, . . . , c
′
N ) → c′ and mul(c′, ci) → c̃. Then, extract the

secret s by running ext(pp,pzt, c̃)→ s.

In the proposed RES realization, we can set C to contain any circuits of depth L and then the encoding
size will be Õ(L2λ3) as in Table 1. Therefore, if we set L = dlogNe, then the encoding size will become
polylogarithmic in the total number of participants.

It is straightforward that the above N -party Diffie-Hellman key exchange protocol is secure under the
Ext-DDH assumption; that is, given pp,pzt and {c′j}j=1,...,N , the resulting secret s is indistinguishable from
random bit-strings of equal length.

C Missing Parts in Proposed Scale-invariant Homomorphic Encryption

C.1 Missing Proofs

Proof of Lemma 2. (1) By definition, a fresh ciphertext c is equal to
∑
i∈S xi + y ·m− kx0 for some set

S and k ∈ [0, τ + g], and so c = (
∑
i∈S qi + qym − kq0)p2 +

⌊
p
g

⌉
m +

∑
i∈S ri + rym − kr0. Therefore, the

absolute value of the noise of c is bounded above by 2(τ + g)(2ρ − 1).

(2) As for the addition, we have[
c1 + c2

]
x0

= (q1 + q2)p2 +
⌊
p
g

⌉([
m1

]
g

+
[
m2

]
g

+ (r∗1 + r∗2)g
)

+ r1 + r2 − kx0

=
⌊
p
g

⌉([
m1 +m2

]
g

+ (r∗1 + r∗2 + δ)g
)

+ r1 + r2 − kr0 (mod p)

for some k, δ ∈ [0, 1]. Therefore, the noise |r1 + r2− kr0| ≤ |r1 + r2|+ 2ρ− 1 and |r∗1 + r∗2 + δ| ≤ |r∗1 + r∗2 |+ 1.

(3) We have

c1 · c2 = qp2 +
⌊
p
g

⌉2

(
[
m1

]
g

+ r∗1g)(
[
m2

]
g

+ r∗2g)

+
⌊
p
g

⌉(
(
[
m1

]
g

+ r∗1g)r2 + (
[
m2

]
g

+ r∗2g)r1

)
+ r1r2

= qp2 +
⌊
p
g

⌉2([
m1m2

]
g

+ r∗g
)

+ r

with |r∗| ≤ g22ρ∗+2 and |r| ≤ 2ρ
∗+1+η(|r1|+ |r2|).

Let us consider 〈BD(c1 · c2),
[
PT( g

2

p2 )
]
g
〉. Since all entries in BD(·) are bits, it is congruent to 〈BD(c1 ·

c2),PT( g
2

p2 )
〉

modulo g, and by definition of BD and PT, 〈BD(c1 · c2),PT( g
2

p2 )
〉

= c1c2
g2

p2 = qg2 + (
[
m1m2]g +

r∗g) + ε with |ε| ≤ g322ρ∗+2−η(|r1|+ |r2|). Therefore, we have

〈BD(c1 · c2),
[
PT(

g2

p2
)
]
g
〉 = q′g +

[
m1m2]g + ε

with q′ ≤ 2γ and |ε| ≤ g322ρ∗+2−η(|r1|+ |r2|). This implies that

〈BD(c1 · c2),
p

g

[
PT(

g2

p2
)
]
g
〉 =

⌊p
g

⌉
(
[
m1m2]g + q′g) + r′,
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with |r′| ≤ | 12 (
[
m1m2]g + q′g)|+ |pg ε| ≤ g

222ρ∗+3(|r1|+ |r2|). Here, we assume that γ � g22ρ∗(|r1|+ |r2|) and
it holds in our parameter selection.

Next, we consider 〈BD(c1c2),x〉, where x = (x′0, . . . , x
′
2γ−1) and x′i ← Dρp,q0 . It is equal to qp2 + r for

some q and r with |r| ≤ 2γ2ρ.
Putting in all together, we have that the output of HE.Mult is equal to[

〈BD(c1 · c2), z〉
]
x0

=
[
〈BD(c1c2),x +

⌊
p
g

[
PT( g

2

p2 )
]
g

⌉
〉
]
x0

= qp2 +
⌊
p
g

⌉
(
[
m1m2]g + q′g) + r′′

with |q′| ≤ 2γ and |r′′| ≤ g222ρ∗+4(|r1| + |r2|). Here we assume that 2γ2ρ+1 < g222ρ∗+3(|r1| + |r2|) and it
holds in our parameter selection. This completes the proof. ut

Proof of Theorem 3. For each i = 0..L, Let ci = qip
2 +

⌊
p
g

⌉
(mi + r∗i g) + ri be a ciphertext after the

evaluation of the i-th level gates. Let Ri and R∗i be the bounds for |ri| and |r∗i |, respectively. From 1 of
Lemma 2, R0 ≤ 2(τ + g)(2ρ − 1) and R∗0 = 0. 3 of Lemma 2 then implies Ri+1 < 22ρ∗+5g2Ri and R∗i < 2γ.

Thus we have cL = qLp
2 +

⌊
p
g

⌉
(mL + r∗Lg) + rL, where RL < (22ρ∗+5g2)L · 2(τ + g)(2ρ − 1) and R∗L < 2γ.

By Lemma 3, it is required that 2γg2 + (22ρ∗+5g2)L · 2g(τ + g)(2ρ − 1) < (22ρ∗+5g2)Lg(τ + g)2ρ+2 ≤ 2η−1

for the correct decryption of cL.

C.2 Security Analysis

To prove the semantic security of our homomorphic encryption schemes, we follow the approach used in
the security arguments in [20]; In [20], the semantic security of the proposed homomorphic encryptions are
reduced to the decisional approximate common divisors (DACD) and the n-decisional approximate common
divisors (DACD) assumptions [11]. The reduction given in [20] is quite straightforward since, informally,
the assumptions just say that given the public key a random encryption of zero is indistinguishable from
a random integer modulo x0 if the number of encryptions of zero in public key is sufficient to apply the
leftover hash lemma. To be accurate, both the instances in the DACD and the n-DACD assumptions do
not contain the multiplication key of homomorphic encryption scheme, so that what the authors show is
the proposed non-batch homomorphic scheme (and its batch version, resp.) without the multiplication key is
semantically secure under the DACD (the n-DACD, resp.) assumption. For the semantic security of the full
scheme containing the multiplication key, one can modify the DACD and n-DACD assumptions to contain
the multiplication key in their problem instance. Or one can assume a ‘circular security’ of the restricted
scheme; the multiplication key in the scale-invariant scheme has a form of a fake encryption of secret key bits.
In the context of the homomorphic encryption schemes, it is common to assume the circular security [44, 11,
20, 15].

We first give natural generalizations of the DACD and the n-DACD assumption by using large message
space instead of the binary field.

Definition 8 ((ρ, η, γ)-DACD [11]) Let p be a random odd integer of η bits, q0
$← Z ∩ [0, 2γ/p2), r0

$←
Z∩ (2−ρ, 2ρ). Given x0 = q0 ·p2 +r0, polynomially many samples from Dρp,q0 and y ← Dρp,q0 +bpg e, determine

b ∈ {0, 1} from c = x+ b · r mod x0 where x← Dρp,q0 and r ← [0, x0) ∩ Z.

Definition 9 ((ρ, η, γ)-n-DACD [11]) Let p1, . . . , pn be coprime random η-bit integers of product π, q0
$←

Z ∩ [0, 2γ/π2) that is coprime to pj’s, r0,j
$← Z ∩ (2−ρ, 2ρ).

Given x0 = q0 · π2 + CRTp21,...,p2n(r0,1, . . . , r0,n) and polynomially many samples from Dρp1,...,pn,q0 , and

yj = y′j +
⌊
pj
gj

⌉((
π2

p2j

)−1

mod p2
j

)
· π

2

p2j
where y′j ← Dρp1,...,pn,q0 for j = 1..n, determine b ∈ {0, 1} from

c = x+ b · r mod x0 where x← Dρp1,...,pn,q0 and r ← [0, x0) ∩ Z.
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As commonly happens in the previous scale-invariant homomorphic encryption scheme [20, 15], to prove
the semantic security of the full scheme, i.e., allowing multiplication, it suffices to include the public key for
the multiplication z in the above decisional assumptions. We call such assumptions DACD∗ and n-DACD∗,
respectively.20

The following theorem shows that the semantic security of our schemes in Section 4.1 and Section 4.2.
Note that using the standard hybrid argument, the proofs are straightforward, as aforementioned.

Theorem 4 The scheme with the multiplication parameters z given in Section 4.1 is semantically secure
under the (ρ, η, γ)-DACD∗ assumption. The batch version with the parameters z given in Section 4.2 is
semantically secure under the (ρ, η, γ)-n-DACD∗ assumption.

D Missing Parts in Proposed RES

D.1 Zero-testing Procedure

Given a level-κ encoding c of (m1, . . . ,mn), we can write

c =
∑n
i=1

(⌊
pi
gi

⌉
([wκimi]gi + gir

∗
i ) + ri

)
· ui − a · π2

=
∑n
i=1

(
r∗i pi +

⌊
pi
gi

⌉
· [wκimi]gi + r′i

)
· ui − a · π2

for some r∗i ’s, ri’s, r
′
i’s, and a < n22η, where ui = ( πpi )

2
[
( πpi )

−2
]
p2i

. Letting ui = ( πpi )
2
(
eipi +

[
( πpi )

−2
]
pi

)
for

some 0 ≤ ei < pi, we have

c =
∑n
i=1

(
r∗i pi +

⌊
pi
gi

⌉
· [wκimi]gi + r′i

)
· ( πpi )

2
(
eipi +

[
( πpi )

−2
]
pi

)
− a · π2

=
∑n
i=1

(⌊
pi
gi

⌉
· [wκimi]gi + r′i

)
· u′i + a′ · π,

where a′ < n22η+γ/2+2 and u′i = ( πpi )
2
[
( πpi )

−2
]
pi

. We then get

(ω)j = (c · pzt mod N)j

=
∑n
i=1 hijαip

−1
i ·

(∑n
k=1

(⌊
pk
gk

⌉
[wκkmk]gk + r′k

)
· u′k + a′ · π

)
mod N

=
∑n
i=1 hij ·

((⌊
pi
gi

⌉
[wκimi]gi + r′i

)
· βi

+
∑n
k=1,k 6=i

(⌊
pk
gk

⌉
[wκkmk]gk + r′k

)
· αi · u

′
k

pi
+ a′ · αi · πpi

)
mod N

We argue that if mi = 0 for all i = 1..n, then ωj is sufficiently smaller than N . We have that βi, αi · u
′
k

pi
, and

a′ ·αi · πpi have size at most |N |−η+2, (η−1)+(γ−η)−η = γ−η−1, log2 n+(2η+γ/2)+(η−1)+(γ/2−η) =
log2 n+γ+2η−1 bits, respectively. Therefore, if mi’s are zero and ri’s are sufficiently small, each component
in the right-hand side is small compared to N , which is γ + 4η + 1 bits. Furthermore, we can show that if

mi 6= 0 for some i, then ‖ω‖∞ must be large due to the term
∑n
i=1 hij ·

(⌊
pi
gi

⌉
[wκimi]gi + r′i

)
· βi, which is

larger than N . We provide the following lemma.

Lemma 7 Let all parameters are selected according to our parameter setting. Let 3 + 2 log2 n ≤ ρf ≤
η−α−2β−λ−9 and ν = η−ρf−β−λ−4 ≥ α+β+5. Let c be a level-κ encoding of message m = (m1, . . . ,m)

such that c =
⌊
pi
gi

⌉
([wκimi]gi + gir

∗
i ) + ri (mod p2

i ) for all i = 1..n. Assume that ‖r∗‖∞, ‖r‖∞ < 2ρf , where

r∗ = (gnr
∗
n, . . . , gnr

∗
n), r = (r1, . . . , rn). If m = 0 then ‖ω‖∞ < 2−ν−λ · N . Conversely, if m 6= 0 then

‖ω‖∞ > 2−ν+2 ·N .

20 Or we can use a circular security assumption as in the previous homomorphic encryption schemes [44, 11, 20, 15].
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Proof. We begin with a level-κ encoding c of a message m = (m1, . . . ,mn), which can be written as

c =
∑n
i=1

(⌊
pi
gi

⌉
([wκimi]gi + gir

∗
i ) + ri

)
· ui − a · π2

=
∑n
i=1

(
r∗i pi +

⌊
pi
gi

⌉
· [wκimi]gi + r′i

)
· ui − a · π2

=
∑n
i=1

(⌊
pi
gi

⌉
· [wκimi]gi + r′i

)
· u′i + a′ · π

for some r∗i ’s, ri’s, r
′
i’s, a < n22η, and a′ < n22η+γ/2+2, where ui = ( πpi )

2
[
( πpi )

−2
]
p2i

and u′i = ( πpi )
2
[
( πpi )

−2
]
pi

.

Here, we have |r′i| < |ri|+ |gir∗i |, so that ‖r′‖∞ < 2ρf+1, where r′ = (r′1, . . . , r
′
n).

Let us consider each component in (ω)j , which is equal to

n∑
i=1

hij ·
((⌊pi

gi

⌉
[wκimi]gi + r′i

)
· βi +

n∑
k=1,
k 6=i

(⌊pk
gk

⌉
[wκkmk]gk + r′k

)
· αi ·

u′k
pi

+ a′ · αi ·
π

pi

)
mod N.

Let s = (si)i=1..n and t = (ti)i=1..n such that

si =
(⌊pi
gi

⌉
[wκimi]gi + r′i

)
· βi mod N,

ti =

n∑
k=1,
k 6=i

(⌊pk
gk

⌉
[wκkmk]gk + r′k

)
· αi ·

u′k
pi

+ a′ · αi ·
π

pi
mod N.

Here, we use the centered modular reduction, so that |x mod N | ≤ |x| for all x ∈ Z. For i = 1..n, if m = 0,
then we have

|si| = |r′i · βi mod N | ≤ 2ρf−η+3 ·N.

|ti| =
∣∣∣ n∑
k=1,
k 6=i

r′k · αi ·
u′k
pi

+ a′ · αi ·
π

pi
mod N

∣∣∣ ≤ n2ρf+γ−η+2 + n2γ+2η+2

Using 3+log2 n ≤ ρf < η, |ti| is upper-bounded by n2γ+2η ≤ 2ρf−η+3 ·N . Therefore, ‖s+t‖∞ ≤ 2ρf−η+4 ·N
From this bound, we have that ‖ω‖∞ = ‖HT (s + t) mod N‖∞ is upper-bounded by

‖HT (s + t)‖∞ ≤ ‖HT ‖∞‖s + t‖∞ < 2β+ρf−η+4 ·N.

Using ν = η − ρf − β − λ− 4, we obtain the above is equal to 2−ν−λ ·N , as in the lemma.
Next, we show that if m 6= 0, that is mi 6= 0 for some i, ‖ω‖∞ > 2ν+2 · N . To this end, we show that

‖s‖∞ is sufficiently large. Suppose that m 6= 0. Consider

si =
(⌊pi
gi

⌉
[wκimi]gi + r′i

)
· βi mod N.

βi = αi · (u′i/pi) mod N and the following lemma implies that 2−η−1 ·N < |βi|.
Lemma 8 (Appendix D, [18]) For any integers a, b,m such that |b| < m/2, gcd(a,m) = 1 and a 6= 0
does not divide b, if x = b/a mod m, then |x| ≥ m

2|a| .

Therefore,

|si| ≥
⌊pi
gi

⌉
· βi > 2η−α−12−η−1 ·N = 2−α−2 ·N

so that ‖s‖∞ ≥ 2−α−2 ·N and

‖s + t‖∞ ≥ ‖s‖∞ − ‖t‖∞ > 2−α−3 ·N.

Finally, we have, as required,

‖ω‖∞ ≥
‖(HT )−1ω‖∞
‖(HT )−1‖∞

≥ ‖(H
T )−1ω mod N‖∞
‖(HT )−1‖∞

=
‖s + t‖∞
‖(HT )−1‖∞

> 2−α−β−3 ·N ≥ 2−ν+2 ·N.
ut
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D.2 Generation of H Matrix

To generate a random matrix H ∈ Zn×n satisfying two bounds ‖HT ‖∞ ≤ 2β and ‖(H−1)T ‖∞ ≤ 2β , we use
the algorithm proposed by Coron et al. [18], which revises the original algorithm [19] to depend the weakness
pointed out by Lee and Seo [39]. We explain the Coron et al.’s algorithm.

For any matrix A ∈ Matbn/2c×dn/2e({−1, 0, 1}), we define HA ∈ Zn×n as HA =
(
Ibn/2c

0
A

Idn/2e

)
. Then,

H is generated by a product of HA’s and HT
A’s; we compute alternatively HA and HT

A, so that H has of

the form H =
∏β′

i=1 Hi, where for odd i’s Hi = HA, for even i’s Hi = HT
A′ , and β′ is decided as follows:

we can keep the norm of the product and if such the norm exceeds 2β/(1 + dn/2e), then stop multiplying.
Note that the norm of both matrix HA and its transpose are bounded by 1 + dn/2e, so that β′ is decided
to maximize the norms of both H and HT with the upper bound 2β .

D.3 Extraction

Our extraction algorithm is the same as that of Coron et al.’s [18]. For completeness, we recall the extraction
algorithm in [18].

Given an encoding c, we extract a message-only-dependent value in the sense that the resulting value is
independent from the randomness used in c. The algorithm is simple; (1) Multiply c by pzt modulo N , (2)
Collect the ν most significant bits of each of the n components of the resulting vector, (3) by using the seed
s in pp, apply a strong randomness extractor. That is, Extracts(msbsν(c · pzt mod N)), where msbsν takes
the ν most significant bits of the result.

Lemma 7 guarantees that for two encodings of the same message ext outputs the same result, and for
two encodings of different message it always outputs different result. More precisely,

‖(c− c′) · pzt mod N‖∞

< 2−ν−λ ·N if c and c′ encode
the same m,

> 2ν+2 ·N otherwise.

This implies that msbsν(c ·pzt mod N) has the min-entropy at least log2 |Zg1×· · ·Zgn | ≥ n(α−1). Therefore,
a strong randomness extractor can extract a nearly uniform bit-string of length blog2 |Zg1 × · · ·Zgn |c − λ.

E Security Analysis of RES

E.1 Review Zeroizing Attacks

We first describe how the homomorphic multiplication on encodings and zero-testing procedure in the CLT
scheme [19] work. Let p1, . . . , pn be secret key and π =

∏
i pi be public key. Let c1 = CRTpi(r1i · gi +m1i)/z

s mod
π, c2 = CRTpi(r2i · gi +m2i)/z

t mod π be encodings of m1 = (m1i)i,m2 = (m2i)i with level s, t, respec-
tively. The homomorphic multiplication on c1 and c2 is just c3 = [c1 · c2]π, and so we have the (s + t)-level
encoding c3 = CRTpi(r3i · gi +m1i ·m2i)/z

s+t mod π for r3i = r1i · r2i · gi + r1i ·m2i + r2i ·m1i.

For a κ-level encoding c = enc(m) = CRTpi(ri · gi +mi)/z
κ (mod π), the zero-testing procedure is done

by computing [pzt · c]π, where pzt =
∑
i hi · ([zκ · g

−1
i ]pi) ·

∏
j 6=i pj mod π. We observe that

w = [pzt · c]π =

n∑
i=1

hi · (ri +mi · (g−1
i mod pi)) ·

∏
j 6=i

pj mod π.

Therefore if mi = 0 for all i = 1..n, since hi’s ri’s are small comared to pi, we obtain that w is relatively
small compared to π and so w = CRTpi(hi · ri · p̂i) < π for p̂i =

∏
j 6=i pj . This enables us to test whether c

is an encoding of zero or not.
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With Low-Level Zeroes. Recently, Cheon et al. [12] proposed a zeroizing attack to the Coron et al.
GES [19]. Using low-level encodings of zero, they describe an attack that expresses the zero-testing procedure
as a diagonal quadratic form in the CRT component of encodings over Z to recover all pi’s in polynomial
time from π =

∏n
i=1 pi.

We briefly describe the Cheon et al. attack to the original CLT scheme [19] that allows κ-level multilin-
earity. For given s-level encodings c(b) for b ∈ {0, 1}, let A = {a1, . . . , an} be the set of t-level of encodings
and B = {b1, . . . , bn} be the set of (κ − t − s)-level encodings of zero for 1 ≤ s, t ≤ κ. We note that
the set A and B can be derived from 1-level encodings of zero and one. Let aj = CRTpi(aji)/z

t mod π,

bk = CRTpi(bki · gi)/zκ−t−s mod π and c(b) = CRTpi(c
(b)
i )/zs mod π, where aji, bki, c

(b)
i ∈ Zpi for all

i, j, k ∈ [1, n]. 21 Then aj · c(b) · bk = CRTpi(aji · c
(b)
i · bki · gi)/zκ mod π is a κ-level encodings of zero

and we have
d

(b)
jk = pzt · (aj · c(b) · bk) modπ

= CRTpi(aji · c
(b)
i · hi · bki) modπ

(2)

from pzt = CRTpi(hi · g−1
i ) · zκ mod π. Since aj · c(b) · bk is an encoding of zero, the last equality in (2) holds

over the integers. Hence, we have a quadratic form in the CRT component over Z,

d
(b)
jk = aj · diag(c

(b)
1 u1, . . . , c

(b)
n un) · bTk

where aj = (aj1, . . . , ajn), bk = (bk1, . . . , bkn) and ui = hi · πpi · ((
π
pi

)−1 mod pi). We can write Db =
(
d

(b)
jk

)
of

the form
Db = XA · diag(c

(b)
1 u1, . . . , c

(b)
n un) ·XB ∈ Zn×n (3)

over the integers for (n× n) matrices XA, XB whose j-th row and k-th column are aj and bTk , respectively.
By computing eigenvalues of D0 ·D−1

1 , we can recover all pi in polynomial time.

Without Low-Level Zeroes. Cheon et al. attack depends on successful zero-testing on top-level zero
encodings. They assume the adversary can access low-level encodings of zero. On the other hand, some
applications that do not provide low-level encodings such as indistinguishability obfuscations [26, 3].

Coron, Gentry, Halevi, Lepoint, Maji, Miles, Raykova, Sahai and Tibouchi extend Cheon et al. attack
by considering several methods to make top-level zero encodings without low-level encodings of zero [17].
One of them is to find encoding sets such that they share the zero in CRT component. That is, we consider
the case such that a · c · b is a level-κ encoding of zero, even though a, b and c are non-zero encodings. In
this case, we have the same quadratic form with Cheon et al. attack. The other way is to find multinomial
on encodings to have top-level zero encodings. In this approach, since each monomial encoding may not be
an encoding of zero, some g−1

i ’s are remained in diagonal matrix, which yields a rational quadratic form of
CRT components. However it does not matter because g−1

i factors fall off when computing D0 ·D−1
1 .

We describe only different things of their attacks using a concrete example. For non-zero encodings
a, a′, b, b′, c and c′, we assume that (a · c · b+ a′ · c′ · b′) is a top-level zero encoding. Here, we denote (e||e′)
by concatenation of two vectors e and e′. Since (a · c · b + a′ · c′ · b′) is an encoding of zero, the value
d = pzt · (a · c · b+ a′ · c′ · b′) mod π can be represented over rational without modulo reduction as follows:

d = (a||a′) · diag(c1u1/g1, . . . , cnun/gn||c′1u1/g1, . . . , c
′
nun/gn) · (b||b′)T ∈ Q

where ui = hi · πpi · (( πpi )
−1 mod pi), a = ([zta · a]pi)i, b = ([ztb · b]pi)i and a′, b′ are defined similarly

for i ∈ [1, n]. 22 If we consider sets A = {aj}j , A = {a′j}j , B = {bk}k, B = {b′k}k, C = {c(0), c(1)} and

C ′ = {c′(0), c′(1)} such that aj · c(b) · bk + a′j · c′(b) · b′k is an encoding of zero for each j, k ∈ [1, 2n], we have

Db = (d
(b)
jk ) for d

(b)
jk = pzt · (aj · c(b) · bk + a′j · c′(b) · b′k) mod π as follows:

Db = XA,A′ · diag(c
(b)
1 u1/g1, . . . , c

(b)
n un/gn||c′(b)1 u1/g1, . . . , c

′(b)
n un/gn) ·XB,B′ ∈ Q2n×2n,

21 Here, we simply denote CRTpi(ai) by the unique element in Z∏
pi

that is congruent to ai modulo pi for all i.
22 Here, ta and tb denote the level of encodings a and b, respectively.
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where XA,A, XB,B′ are (2n×2n) integer matrices whose j-th row and k-th column are (aj ||a′j) and (bk||b′k)T ,

respectively. Since each aj · c(b) · bk and a′j · c′(b) · b′k may not be zero encoding, g−1
i factors are remained in

the diagonal matrix, but they are removed when computing D0 ·D−1
1 .

E.2 Lattice Attacks

We consider lattices attacks on level-0 encodings, public key including zero-testing key and multiplication
key.

Level–0 Encodings. The level-0 encodings in our construction are instances of approximate GCD problem.
There are several lattice attacks in [44, 21, 22] and we can apply the same argument except we use p2

i instead
of pi. One of the lattice attacks to level-0 encodings given in [19] is based on computing a short vector which
is orthogonal to a vector x = (x1, . . . , xt) modulo x0, where the all xi’s are level-0 encodings of zero. If the
reduced vector is short enough, the error ri ≡ x (mod pi) can be recovered and so the secret key pi’s are
revealed. We have the constraint on parameters γ = (2η)2 · ω(log λ) as in [19]. From γ = n · η, we choose
n = (η/4) · ω(log λ) to defeat the attack. For more attacks and details, refer [44].

Zero-Testing Parameter. The zero-testing parameter pzt is almost same with [18]. When choosing pa-
rameters αi and βi, we have the same constraint on size, |αi| < 2η−1, |βi| < 22−ηN and different constraint
on their relation, βi = α · (u′i/pi) (mod N) where u′i = ( πpi )

2[( πpi )
−2]p2i from [18]. We also use 2η-bit larger

modulo integer N . The lattice attack on the zero parameter in [18] only depends on the size of α, β,N
and pi’s, we can consider similar attack to our construction, including, the hidden subset sum attack, the
Coppersmith attack and the inverse zero-testing matrix attack [18].

The zero-testing parameter pzt =
∑n
i=1 hi ·αi · p

−1
i mod N is a linear combination form of secret vectors

hi. So we can think similar approach to the hidden subset sum attack [41] to find vectors hi. For any vector
u in L⊥pzt , it satisfies

∑n
i=1〈hi,u〉 ·αi ·p

−1
i = 0 (mod N), which yields L⊥pzt ⊂ L

⊥
a for a = (a1/p1, . . . , an/pn).

We hope that the vector u is short enough that it must be orthogonal to hi for each i. That is, if u is short
to ensure that v := (〈hi,u〉)i is shorter than λ1(L⊥a ), we have v = 0. If we can find sufficiently many such
u, the hidden vector hi can be recovered. On the other hand, we can not guarantee the existence of u, since
the size of vector v is about 2β · λ1(L⊥pzt) which is much larger than λ1(L⊥a ). We note that λ1(L⊥pzt) and

λ1(L⊥a ) are both N1/n. Therefore, it is hard to apply hidden subset sum attack to our construction.

Both the Coppersmith attack and computing the inverse zero testing matrix are also thwarted by our
choice of parameters using almost same argument in [18]. We omit the detail. See [18].

Zero-Testing on Encodings. Even though several attacks on the zero testing parameter pzt and encodings
are failed by our choice of parameters, the secret information may be extracted during zero-testing procedure.
Let w = pzt · c mod N be a resulting vector of zero-testing procedure on an encoding c. Then,

(ω)j =(c · pzt mod N)j

=

n∑
i=1

hijαip
−1
i ·

( n∑
k=1

(⌊pk
gk

⌉
[wκkmk]gk + r′k

)
· u′k + a′ · π

)
mod N

We can consider the hidden subset sum attack to find hidden vector hi’s as the above attack. The attack is
also thwarted by the same reason.

Multiplication Key. If we assume circular security, the multiplication key z does not affect the security of
our FHE scheme. In multilinear map, on the other hand, the secret information may be leaked when manip-
ulating the multiplication key with the zero-testing parameter pzt. Since the multiplication key resembles
an encodings

([
g2

12i/p2
1

]
g1
, . . . ,

[
g2
n2i/p2

n

]
gn

)
, there is no plausible attack on them as discussed above.
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λ ρ log2 gi η n γ τ

20 20 40 1018 5 10180 10220

30 30 60 1508 15 45240 45300

40 40 80 1998 52 207792 207872

Table 2. Parameter selection for implementation of BHE

F Noise Growth of BHE

We implement BHE for three security parameters λ = 20, 30, 40. For experiment we set L = 7 and log2 gi = 2λ
as in Theorem 1 and 2. We present other parameters in Table 2 for each security level; in particular,
η = ρ + L(2ρ + 2 log2 gi + 5) + 3 log2 gi + 3 according to Theorem 3 and γ is chosen according to the
methodology suggested by Coron et al. in [21, Section 6.2], which derives parameters resistant to lattice-
based attacks.

In the 1st experiment, we investigate noise size of multiplication of 2i BHE-ciphertexts for i = 0..7, which
corresponds to the evaluation of monomials of degree 2i over BHE-ciphertexts. We compute them from trees
of depth i; Input values (fresh ciphertexts) are assigned to leaves. Each internal node is multiplication of two
BHE-ciphertexts located at its child nodes. The root node (output), then, is a BHE-ciphertext of multipli-
cation of 2i ciphertexts in leaves. We call a resulted BHE-ciphertext from multiplication of 2i ciphertexts in
this way a BHE-ciphertext of degree 2i. We investigate bit-length of noise added in a BHE-ciphertext of each
root node in Figure 2 for λ = 20, 30, 40. Each number beside points on the line presents average of noises in
slots of a BHE-ciphertext at the root node. Points without numbers are estimated noises of BHE-ciphertexts
of degree 2i for i > 7 from previous noises. A Horizontal dotted-line is the noise bound of each security level
λ at L = 7. Figure 2 shows that the bit-length of noise in a BHE-ciphertext of degree 2i increases almost
linearly in i. A bit-length of fresh BHE-ciphertext (degree 1) is about log2(τ + gi) + ρ, where τ is set to
γ + 2λ. The difference of bit-length of noises between two BHE-ciphertexts of degree 2i and 2i−1 is about
log2 gi + log2 γ. Note that at each security level λ, it is not allowed to compute BHE-ciphertexts of degree
2λ.

In the 2nd experiment we evaluate more complicated polynomial over ciphertext. We consider a circuit
to compute polynomials of degree 128; Polynomials are computed via tree of depth 7 as follows: We prepare
4 trees of depth 7 to compute monomials of degree 128. We set fresh BHE-ciphertexts of random messages
to leaves of each tree and compute multiplications of BHE-ciphertexts as in the 1st experiment. We then
construct a new tree as follows: At each depth 7− i in the tree for i = 0..7, the individual nodes are 1) added
by 4 BHE-ciphertexts at the same position in 4 precomputed trees and 2) multiplied by a ciphertext at a
neighborhood node, which results in a sum of BHE-ciphertexts of degree 2i. We investigate average bit-length
of noises added in BHE-ciphertexts at each depth in the constructed tree in Figure 3. Figure 3 shows noises
and their behavior are quite similar with the 1st experiment. We also note that in this experiment it is not
allowed to compute BHE-ciphertexts of degree 2λ.

Note that both Theorem 1 and 2 assume that an adversary can compute polynomials of degree at most
2δ−λ, where δ = log2 gi = 2λ. According to Figure 2 and 3, if we set log2 gi = 2λ, L = cλ for properly chosen
0 < c < 1 (c = 0.125 for our experiments), then we expect that BHE no longer permits circuits to compute
polynomials of degree 2λ. Therefore, our BHE seems to satisfy conditions for restricted RES.
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Fig. 2. Noise increase of Monomial with respect to Degree

Fig. 3. Noise increase of Polynomial with respect to Degree

36


