
1

Remote Cache-Timing Attack without Learning
Phase

Ali Can Atici, Cemal Yilmaz, Erkay Savas
Faculty of Engineering and Natural Sciences

Sabanci University
Istanbul 34956, Turkey

{alicana, cyilmaz, erkays}@sabanciuniv.edu

Abstract—Theoretically secure cryptographic algorithms can be vulnerable to attacks due to their implementation flaws, which
disclose side-channel information about the secret key. Bernstein’s attack is a well known cache-timing attack which uses execution
time as the side-channel. The major drawback of this attack is that it needs an identical target machine to perform its learning phase
where the attacker models the cache timing-behavior of the target machine. This assumption makes the attack unrealistic in many
circumstances. In this work, we present an effective method to eliminate the learning phase. We propose a methodology to model the
cache timing-behavior of the target machine by hypothetical modeling. To test the validity of the proposed method, we performed the
Bernstein attack and showed that, in majority of the cases, the new attack is actually superior to the original attack which uses a
learning phase.

Index Terms—Cache-timing attacks, side-channel, cache model, timing model.

F

1 INTRODUCTION

C RYPTOGRAPHIC algorithms that are secure against
known theoretical attacks can still be vulnerable to

side-channel attacks because of the flaws in their imple-
mentations [1]. Execution time, power consumption, elec-
tromagnetic emission, execution footprints in the micro-
architectural structure of underlying microprocessor, etc.,
can be used as side-channel information. Since in cryp-
tographic implementations, the secret key directly affects
the emitted side-channel information, observations made on
this leaked data can eventually lead to the revelation of the
secret key.

Side-channel attacks, which exploit the fact that micro-
architectural resources, such as cache memory and branch
prediction unit, are shared, are widely studied in the lit-
erature [2], [3], [4], [5]. Cache-based side channel attacks,
which are also the main focus of this paper, exploit the cache
access patterns of cryptographic applications. These attacks
typically operate by inferring if a cache access is a hit or
a miss, or if a certain cache line is accessed or not, mostly
by measuring the access time. If the inference is accurate,
the access patterns can be associated with im/probable key
values to extract the secret key or to reduce the size of the
key space.

Bernstein’s cache-timing attack [6] is a well-known
cache-based side-channel attack, which is applied remotely
in a client-server setting. The attack exploits the differences
in encryption times of randomly generated messages to
recover the secret key used by an OpenSSL implementation
of AES (Advanced Encryption Standard [7]). It is demon-
strated that exploitable timing differences in Bernstein’s
attack occur due to L1 data cache accesses by other pro-
cesses [8] or by the process itself [9], which result in conflicts
with the AES cache accesses, causing some table entries used

by AES to be evicted from the cache.
A major drawback of Bernstein’s attack is the necessity

of having a computer system which is identical to the target
system as the learning phase of the attack needs to construct
a model of the cache timing-behavior of the latter. Exact
replication of the target system and all its machine specific
cache effects can be very difficult, which causes the attack to
be considered unrealistic in many contexts [10], [11].

In this work we show that Bernstein’s attack does not
really need a specific learning phase. We propose a method-
ology, based on hypothetical modeling of the cache timing-
behavior of a system and demonstrate that the Bernstein’s
attack successfully recovers the key using one of the models
that best represents the cache timing-behavior of the system.
Our proposed methodology eliminates the need for an iden-
tical target machine, which makes the attack more realistic.
Furthermore, since the learning phase is eliminated, coun-
termeasures such as ASLR [9], which changes the cache
timing-behavior of a system between learning and attack
phases, can not be effective anymore.

The rest of the paper is organized as follows: Section 2
presents related works; Section 3 provides brief background
information on CPU caches, AES, Bernstein’s attack, and the
last round Bernstein attack; Section 4 discusses the details of
cache-timing attacks with learning phase; Section 5 outlines
our proposed approach; Section 6 explains how we conduct
the Bernstein’s attack without the learning phase by using
hypothetical modeling; and Section 7 concludes the paper.

2 RELATED WORK

Cache-based side-channel attacks were first mentioned
in [12] and later in [13]. We can divide cache-based side-

2

channel attacks into three categories: i) access-driven, ii)
trace-driven and iii) time-driven cache attacks. Access-driven
attacks exploit the information as to whether a cache line
(or set) is accessed (or not) during a cryptographic op-
eration to infer the secret key. In an access-driven attack,
the adversary is generally assumed to be able to run a so-
called spy process to create intentional cache contentions
with the cryptographic process to monitor the cache access
patterns of the latter. Osvik et al. [11], [14] propose an
approach, in which a spy process is employed to identify
the cache lines/sets that are accessed during a cryptographic
operation, where plaintext and/or the ciphertext are known.
In their attack Osvik et al. state two cases: synchronous
and asynchronous. In the synchronous case, the attacker is
capable of starting an encryption operation at will. They
show that a 128-bit AES key can be recovered after 300
encryptions on Athlon 64 platform with the synchronous
attack. The asynchronous case is more restrictive, where the
spy process has no interaction with the target process. It is
only allowed to use its own memory access measurements
to infer the secret key. In this case, they are able to recover
45.7 bits of the AES key after one minute of observation time
of encryption operations with the same secret key.

Trace-driven cache attacks (i.e., the second category of
attacks) were, on the other hand, first introduced in [2].
In these attacks, it is assumed that the adversary has full
control over the target device and that she can determine
whether a particular cache access is a miss or hit during
the cryptographic operation by observing power or electro-
magnetic emissions of the cryptographic device. Thus, the-
oretically the attacker will obtain a trace of cache access
outcomes during the cryptographic operation. In a simula-
tion of the attack reported in [2], it was shown that a 56-bit
DES key actually provides only 32-bit key security if the
attack is successfully applied. Trace-driven attacks are also
investigated in detail in [15].

Finally, in the last category of cache attacks, time-driven
attacks measure the execution time of a cryptographic oper-
ation and exploit the timing variations in different runs with
different plaintexts. The assumption is that the execution
time of the operation is heavily affected by the memory
access times due to cache misses. Thus, the variations in
different runs of the cryptographic operation occur because
of different number of cache hits and misses which are
dependent on the secret keys and the plaintext. This de-
pendency can eventually be used to infer the secret key.
In [16] Tsunoo et al. use the time variations that occur during
encryptions due to the cache misses as a result of table
lookups for s-box operations. The proposed attack is applied
to the DES algorithm, which is shown to be broken using
223 known plaintexts and at a success rate greater than 90%
after 224 operations.

Most of the cache attacks are originally designed to
be applied locally but they can be converted into remote
attacks, where cryptographic operations are executed in a
remote server. Works such as [17], [11], [14] demonstrate
how a particular cache attack can be applied remotely.

The majority of the cache attacks rely on the so-called
cache cleaning operation via a spy process, which evicts all
data of cryptographic process from the cache before the start
of an encryption operation. Bernstein’s attack [6], which can

be categorized as a remote timing-based attack is the only
exception. In this attack, there is an AES server and an AES
client. The AES client sends random plaintexts to the AES
server. The AES server encrypts the plaintexts and sends
the resulting ciphertexts back to the client. The client uses
the execution times of these encryption operations to infer
the secret key. The attack consists of two main phases. In
the first phase, known as the learning phase, which is run
on an identical platform to the target with a known key,
a statistical model is extracted depending on the timing
variations of the encryptions.

The second (i.e., attack) phase extracts a similar model on
the target machine, where the secret key is unknown, and
correlates the obtained two models to make inferences about
the secret key (i.e., reduces the key space expectedly for
a feasible exhaustive search). In his experiments, Bernstein
runs the attack on an AES server locally and reduces the key
space considerably after measuring the execution times for
230 sample plaintexts. In [8], Neve gives an explanation as to
why Bernstein’s attack works. The most interesting point in
the attack is that it does not need a spy process. An intrinsic
flaw in the implementation of AES server naturally causes
cache contentions, which in turn make the attack possible.
These flaws are further investigated in [9].

3 PRELIMINARIES

In this section we provide information about the basic
properties of CPU caches, the details of the AES algorithm,
how the original Bernstein attack is conducted, and how we
modified the Bernstein attack for the last round of the AES
algorithm.

3.1 CPU Caches

Cache is a fast memory between RAM and CPU, which
exploits the principle of locality [18]. The memory system
itself is a hierarchy of memories of different speeds. A data
item requested by the CPU is searched first in the topmost
(level 1) and also the fastest cache level; and in case it is not
found therein, the next level in the hierarchy is tried. If the
data is found in a cache level, it is a cache hit for this level of
the cache hierarchy. Any data item missing in a level leads
to a cache miss which in turn results in a delay in the access
time as the next levels need to be accessed.

Data transfers in memory hierarchy are allowed only
between two adjacent levels. Each transfer involving a cache
memory moves a block of data that will be accommodated
in a cache line. A cache line size is usually a multiple of
the CPU word length and therefore it is dependent on the
architecture of the underlying platform. A typical cache line
size in modern computers is 64 B.

3.2 Advanced Encryption Standard (AES)

AES [7] is a symmetric-key block cipher algorithm with a
block size of 128 bits. AES can work with 128, 192 or 256-bit
keys, each of which provides a different level of security.

AES computations are performed in rounds, in which
computations are performed on a 4×4 matrix of bytes,
which is referred as the AES state. AES has 10, 12, and

3

14 rounds for the key sizes of 128-bit, 192-bit, and 256-
bit, respectively. Every round uses a different key which
is generated from the master key according to the AES
key generation procedure. AES starts an encryption with an
initial AddRoundKey operation and each subsequent round
consists of the SubBytes, ShiftRows, MixColumns, and
AddRoundKey operations in the given order. However, the
last round of AES does not involve the MixColumns oper-
ation. AES performs a decryption by applying the inverse
of the round operations in the reverse order (note that all
round operations in the AES algorithm are reversible).

There exists a fast AES implementation which does
not perform the round operations separately. Instead, it
combines three steps in a round, namely the SubBytes,
ShiftRows, and MixColumns, into a lookup operation to
AES acceleration (or lookup) tables. In such an implemen-
tation, four lookup tables are precomputed, saved and used
in all AES rounds except for the last round. Since the last
round does not perform the MixColums operation, another
table is needed. One separate table suffices to implement
the last round. An AES round can be computed using 16
table lookup and 12 32-bit XOR operations, followed by
the AddRoundKey step, which basically consists of four
additional 32-bit XOR operations.

In this paper, we use an OpenSSL implementation
(v0.9.7a Feb 19, 2003) of AES, which employs five static
round tables (4 tables for the first rounds and an additional
table for the last round) as explained above.

3.3 Bernstein’s Cache-Timing Attack

Bernstein presents a cache based timing attack, which tar-
gets the lookup table based OpenSSL implementation of
AES [6]. In Bernstein’s attack there are two separate parties:
an AES server, which is the victim of the attack, and an
AES client, which is the adversary applying the attack. The
AES server waits for the incoming encryption requests from
the network. When a request is received, it encrypts the
message and sends back the ciphertext. The AES client sends
randomly generated messages to the server and gets the
corresponding ciphertext and measures the elapsed timing.

The attack has two main phases: learning phase and attack
phase. In the learning phase, the attacker uses an AES server,
which is identical to the target server, to encrypt a large
number of randomly generated plaintexts with a known key.
The attacker measures the execution time of each encryption
and saves it along with the plaintext. In the first round of
AES, the indexes to the lookup tables are computed as s0i =
pi ⊕ k0i , where pi and k0i are ith bytes of the plaintext and
the first round key, respectively, and i = 0, . . . , 15. In the
learning phase, since we know both the plaintext and the
key bytes, we can obtain a timing profile of the indexes,
which captures the access times of table lookups.

Then, in the attack phase, the same operation is repeated,
but this time on the target AES server using an unknown
key. In the attack phase, the key is not known therefore, for
each access in the first round, all possible key byte values
are tried and a timing profile of indexes (s′i = p′i ⊕ k) are
obtained for each key candidate where k = 0, 1, . . . , 255.
Then each of the timing profiles in the attack phase is
correlated with the timing profile obtained in the learning

phase. The key value giving the highest correlation is the
most likely key candidate. For more information about the
attack, the interested reader can profitably refer to [6], [8].

In Bernstein’s attack, the learning phase tries to model
the cache timing-behavior of the target system. The attack
needs no spy process to artificially evict cache lines holding
lookup table entries, but rather relies on naturally occurring
evictions, if any [9]. Also, no specific knowledge about the
target system is required, since the attack needs nothing
other than the timing information. Thus, Bernstein’s attack
is generic and can be applied to all similar systems.

3.4 Applying Bernstein’s Attack to the Last Round of
AES

In Bernstein’s original attack only the upper nibbles of key
bytes are used in indexes to access lookup tables, thus it
can recover at most half of a 128-bit AES key (when 64 B
cache blocks are used) [8]. Other half of the key can be
obtained, if the attack is extended to the second round of
AES [8]. However, the version of the AES implementation
used in both works [6] and [8] (OpenSSL v0.9.7a) allows
an easier attack on the last round of AES that has the
potential of recovering the entire key. In this work, we use
this attack methodology that allows us to recover 16 bytes
of the key [9].

In the last round of AES [7], a separate table, namely
T4, is used, which basically implements the AES SubBytes
operation. The outputs of T4 lookup operations (i.e., T4[s9i]
where s9i is the lookup index of round 10 and i =
0, 1, . . . , 15) are used as indexes to obtain the aforemen-
tioned statistical models. In the learning phase, the outputs
of T4 lookups used in the last round can be computed using
the formula

InvShiftRows(ci ⊕ k10i), (1)

where ci and k10i stand for the ith bytes of the ciphertext
and the 10th round key, respectively, and i = 0, 1, . . . , 15. As
both the key and the ciphertext are known in the learning
phase, we can obtain a timing profile based on the output
values of T4 lookup operations. As a result, we obtain a
total of 16 timing profiles for T4 lookup operations in the
last round, in each of which 256 average execution times of
AES are stored. Namely, timing profiles can be represented
as an array of T l

i[256] where i is the order of the T4 access
and i = 0, 1, . . . , 15.

In the attack phase the secret round key byte k̃10i is un-
known, thus we obtain one timing profile for each candidate
of the corresponding key byte using InvShiftRows(c′i⊕k)
for k = 0, 1, . . . , 255, namely T a

i,k[256]. Then, the timing
profiles in the attack phase T a

i,k are correlated to the timing
profile of the learning phase T l

i. The key value k yielding
the highest correlation is chosen as the most likely candidate
for the key byte k̃10i . The operation is repeated 16 times for
each byte of the round key used in the last round, i.e., k̃100 ,
. . ., k̃1015 . Since timing profiles are extracted according to the
T4 outputs and every bit of the 10th round key is used
to infer the T4 outputs, the last round attack can reveal the
entire key as opposed to the half of the key in the first round
attack.

4

4 A CLOSER LOOK AT THE ATTACK WITH LEARN-
ING PHASE

In Section 3, we outlined the cache-timing attack of Bern-
stein briefly and then explained a modified version of the
attack which focuses on the final round, instead of the first
round of AES. Both attacks need a learning phase. It is
now extremely crucial to understand what we achieve after
the learning phase is successfully applied. In [9] and [8]
the sources of the unintentional collisions in cache lines
holding the AES lookup tables are investigated. These un-
intentional collisions cause variations in access times due to
cache misses. The learning phase helps to obtain data cache
timing-behavior of AES process by registering the variations
in cache line access times.

Cache timing-behavior of AES process can be expressed
as a timing model for each of 16 T4 accesses in the last
round. Since we know the secret key in the learning phase,
the timing model for the ith access in the last round is
simply a histogram of average execution times of AES
indexed by T4 output bytes as computed in Eq. 1.

Figure 1 illustrates two of the 16 actual timing models
for 10th and 12th accesses to T4 when the learning phase is
applied on a computing platform with Intel Pentium P6200
CPU running Ubuntu 3.0.0-12 kernel. Here, the inverse s-
box operation is also applied to the models to enhance visual
clarity, hence the x-axis shows the byte indexes (s9i) used in
accesses to table T4.

In Figure 1, the timing measurements are either above or
below the average execution time. Here, the measurements
above the average can be attributed to cache misses in the
corresponding cache lines. Furthermore, the execution times
tend to remain above or below the average line for a group
of consecutive index values. This particular pattern can be
explained by the fact that a cache line holds 16 of the T4
entries; thus a collision in a cache line will naturally affect
the access times of 16 entries. In Figure 1, we also see a
symmetry between the two models. They actually suggest
that the same group of consecutive indexes (i.e. cache lines)
behave the same way while accessing table T4 (i.e., all hits
or all misses). Since these models belong to two different T4

(a) Byte 10 Model

(b) Byte 12 Model

Fig. 1. Learning Phase Models

lookup accesses, it is quite normal to see such a symmetry.
To summarize, at the end of the learning phase, we obtain a
timing model T l

i for the ith access in the last round, which
is just an array of 256 average execution times of AES.

In the attack phase, the timing measurements are ob-
tained, grouped and averaged depending on the values of
the ciphertext byte involved in ith output of the T4 lookup
operation, as the corresponding key byte value is unknown.
The result is cache timing-behavior model T̃ a

i , which is
again an array of 256 average execution times. Then, the
two timing models, namely T l

i and T̃ a
i are correlated. As T l

i

is indexed by T4 output values and T̃ a
i by ciphertext byte

values, we transform the latter into 256 timing models, T a
i,k

indexed by the T4 output values by applying an exhaustive
search on the key space of k ∈ [0, 255]. Actual correlations
are computed between T l

i and T̃ a
i , and the key values

with low correlations are eliminated. The remaining keys,
sorted from highest to lowest correlation, are expected to
be few resulting in a significant reduction in key space if
the attack is successful. The essential steps of the last round
attack with learning phase are given in Algorithm 1, where
T l = ∪15i=0T l

i and T a = ∪15i=0T̃ a
i are the sets of timing

models in the learning and attack phases, respectively.

Algorithm 1 Attack with learning phase

Require: T l and T a

Ensure: KR: Ordered reduced key space
1: K ← ∅
2: KR ← ∅
3: for i = 0 to 15 do
4: for k = 0 to 255 do
5: T a

i,k ← Transform(T̃ a
i , k)

6: γ ← Correlate(T a
i,k, T l

i)

7: ν ← Variance(T a
i,k, T l

i)
8: K[i]← K[i] ∪ (k, γ, ν)
9: end for

10: K[i]← Sort(K[i]) . Descending on γ
11: δ ← Threshold(K[i])
12: KR[i]← Reduce(K[i], δ)
13: end for

The last round attack can reveal the entire key, although
it still needs a learning phase. It is not an easy task for
an attacker to setup an identical platform and to run the
learning phase. It is also pointed out in [10] and [11] that,
neither to access an identical machine nor to recreate the
machine-specific cache effects may be feasible. To increase
the feasibility and applicability of the attack, we present a
novel methodology which needs neither an identical target
system nor a learning phase. We use hypothetical modeling
to obtain the timing-behavior of the cache and need only
the size of the lookup tables and the cache line size of
the computing platform. The details are provided in the
following sections.

5 SIMPLIFIED CACHE TIMING MODEL

In this section we introduce a methodology to model the
timing characteristics of the data cache for a running pro-
gram on the CPU. Although the timing model will be

5

obtained by certain assumptions, it can still be used effec-
tively even for the cases where these assumptions are overly
simplistic for a real world computing platform as shown in
our experimental results.

Highly complex and optimized cache implementations
and lack of details thereof, render an accurate modeling of
cache timing-behavior an involved task. Nevertheless, so far
as the cache attacks are concerned, we need a simplified
model requiring only the basic understanding of cache
organizations. Here, we provide a more formal explanation
of our simplified model for a data cache timing-behavior
based on the following definitions and assumptions:
Definition 1. (D1) Data in the data cache of a CPU is

comprised of individual bytes. Data can be a complex
structure or a simple array. Either way, elements of data
are individually accessible by data indexes. An AES
lookup table is an example for data, where an index is
an 8-bit number.

Assumption 1. (A1) Data in the cache is aligned and occupy
a number of consecutive cache lines (unfragmented). The
bytes of data are never colocated with other data in the
same cache line and its first byte is always placed in a
new cache line.

Assumption 2. (A2) The direct-mapping is used as a cache
placement strategy. While the exact location of data
is unknown and not needed, relative locations of its
elements and the number of cache lines they occupy can
be easily obtained under A1.

Assumption 3. (A3) Parts of data, essentially a sequence of
bytes, can be accessed simply by indexing. Each index
value points to an equal number of bytes.

Assumption 4. (A4) Accessing data in the cache (i.e., a cache
hit) and data not in the cache (i.e., a cache miss), take t
and (t+ ∆), respectively, and we always have ∆ > 0.

Assumption 5. (A5) Cache collisions may occur between two
different programs, or within the same program; i.e.,
data sharing the same cache lines evicting each other.
During the run of a program, collisions occur always on
the same cache lines.

Assumption 6. (A6) A cache collision in a cache line evicts
the entire block from the cache and brings a new block
from the memory.

Assumption 7. (A7) A program can observe only hits or only
misses in a single run, and the number of hits and misses
are equal.

Assumption 8. (A8) A program’s execution time varies with
its input depending on the cache hits and misses oc-
curred during its execution. Execution time of a program
can be, th or tm, when it observes hits or misses, respec-
tively. Execution times th and tm have equal probability
to occur.

Based on these assumptions, we obtain several immedi-
ate results, captured as propositions in the following.
Proposition 1. (P1) Following A1 and A3, the total number

of cache lines occupied by data can be calculated as⌈
|data|
b

⌉
, (2)

where |data| and b stand for numbers of bytes in data
and in a cache line, respectively.

Proposition 2. (P2) Following A4, A7 and A8, we can
approximate th, tm and ta of a program with

th = nh · t+ tf (3)

tm = nm · (t+ ∆) + tf (4)

ta = (th + tm)/2 (5)

where ta is the average execution time of a program, tf
is the execution time of instructions that do not require
memory access and nh and nm are the number of cache
hits and misses, respectively. As ∆, nh, nm > 0, we have
th < ta < tm. This result implies that program inputs
causing accesses to cache lines subject to collisions (see
A5) result in an execution time, which will tend to be
higher than the average execution times of all inputs, ta,
and vice versa.

Proposition 3. (P3) Let the cache line index range [c1, c2],
where c2 > c1 and c1, c2 ≥ 0, represent the indexes
where cache lines are in collision. Taking the assump-
tions A2, A5, and A6 into account, we can calculate
the range of data indexes which maps to the colliding
cache lines. Let κ denotes the number of bytes accessed
by each data index. Then, all data indexes within the
following range are mapped to the cache lines which
are in collision: [

c1 · b
κ

,
c2 · b
κ

+
b

κ
− 1

]
. (6)

Here, the cache line and data indexes starts from 0 (i.e.,
first b bytes of the data reside in the 0th cache line, second
b bytes reside in the 1st cache line etc.).

Based on these assumptions and propositions, an algo-
rithm can be given to extract a timing model of the cache
memory. Algorithm 2 describes the steps to obtain a model
for a given data. In Algorithm 2, m is the number of indexes
that are used to access data parts of κ bytes, b is the number
of bytes in one cache line, and finally Sc denotes the subset
of cache lines subject to collisions (i.e., contention set). The
algorithm returns a timing model T where each value of the
index used to access data is matched with a timing value.

Line 1 of Algorithm 2 calculates the set of data indexes
which results in cache misses and Line 3 of Algorithm 2
checks whether a data index is in set Ic. In case the referred
index causes a miss, the access to the corresponding data
part will take longer. In this model we assume ta = 0 to
model the timing behavior according to the timing differ-
ences from the average.
Example 1. Suppose that data is an array of 80 bytes and

each data index points to 2 bytes in the memory. If the
cache block size is b = 8, then data will use m = 40
indexes and fits in 10 cache lines. Further assume that
cache line indexes [2, 3] and [6, 8] are in the contention
set. Then using P3, we can find which data indexes will
cause a cache miss. If we use Algorithm 2, our model
will have a total of 40 indexes and the indexes in ranges

6

Algorithm 2 Modeling the Cache Timing-Behavior
Require: data, m, Sc, b, κ
Ensure: T : Cache timing-behavior model

1: Ic = MissDataIndex(Sc, b, κ) . (P3)
2: for s = 0 to m− 1 do . for each data index
3: if s ∈ Ic then
4: T [s] = 1
5: else
6: T [s] = −1
7: end if
8: end for

Fig. 2. Example Cache Timing-Behavior Model

[8, 15] and [24, 35] will have the value of 1, while the rest
of the indexes will have the value of −1 as illustrated in
Figure 2.

When Figures 1 and 2 are compared, one can easily
see the similarity between the patterns in the execution
times in the actual and the simplified timing models. In
the timing models obtained in the learning phase, table T4
is data and lookup bytes are the indexes as defined by the
terminology introduced in Section 5. The measured timing
values in the learning phase are noisy and obtained by
averaging excessively many AES execution times. All the
same, the simplified timing model captures essentially the
same behavior.

6 THE PROPOSED ATTACK METHODOLOGY AND
IMPLEMENTATION RESULTS

In this section, we give a formal description of the proposed
attack using hypothetical modeling without the learning
phase and present our experiment results.

6.1 Cache-Timing Attacks Without Learning Phase
In order for an attacker to model the cache timing-behavior
of the server in the learning phase, the attacker must pro-
duce an identical system the cache timing-behavior of which
must exactly be the same as the target computer. This is
a major drawback in the Bernstein’s original cache-timing
attack, which is also mentioned in [10] and [11], as this
can be infeasible in many circumstances. Using hypothetical
modeling as suggested here, however, eliminates the need
for an identical system, hence the learning phase. The attack
without the learning phase needs only the knowledge of the
cache line size of the target computer and the size of the
lookup tables. A typical cache line size is 64 B in majority

of contemporary computers and the AES lookup tables and
their sizes can be obtained by examining the source code of
the implementation.

Since we perform the last round attack, the data (see D1)
is table T4 of 1024 B, which is used only in the last round
of AES encryption. It has 256 indexes and each index is
used to access a 4 B entry. As all our target platforms have
cache line sizes of 64 B, table T4 occupies 16 cache lines. The
correct timing model of the cache can be obtained only if we
know the cache lines subject to eviction due to collisions.
But, without an identical computer system on which AES
runs with a known key, we infer no information about
the contention set and therefore the cache timing-behavior
cannot be obtained.

On the other hand, in our simplified approach, we have
only a total of 216 simplified models as T4 occupies 16
cache lines. Thus, a brute-force approach, based on trying
all simplified models exhaustively, is feasible.

To form our simplified models we need to find the cache
contention sets. As there are 216 simplified models (i.e.,
216 cache configurations of hits and misses), we can use
16-bit integers that take values in [0, 216 − 1] to represent
these models. For instance, the index value of 0x7FFF in
hexadecimal representation indicates that the first cache line
is in the contention set assuming that each bit of an index
stands for a cache line and that the bit value of 0 indicates
a collision in the corresponding cache line. Algorithm 3
explains how the cache contention sets are derived. It takes
an index and iterates through its bits starting from the
leftmost bit, which corresponds to the first cache line.

Algorithm 3 Obtaining a Cache Contention Set
Require:

l : index of simplified cache timing model
n : number of cache lines occupied by data

Ensure: SC : Cache contention set for index l
1: SC ← ∅
2: for i = 0 to n− 1 do
3: if (l mod 2 = 0) then
4: SC ← SC ∪ i
5: end if
6: l← l/2
7: end for

Finally, Algorithm 4 gives us the most possible cache
timing-behavior model given the timing measurement data
from the attack phase (i.e., Ta).

Algorithm 4, iterates through all simplified cache timing
models; it first finds the corresponding contention set in
line 3, then calculates the corresponding simplified model in
lines 4-6, and applies the AES s-box operation to the model
in line 7. Then, the attack phase in Algorithm 1 is applied
to find the size of the reduced key space in line 8. The sizes
of the reduced key space for simplified models are saved
as shown in line 9. Finally, they are sorted from smallest to
largest (Step 11) and the simplified model with the smallest
reduced key space size is chosen as the most probable cache
timing-behavior model (Step 12). Since we perform the last
round attack using the outputs of table T4, the AES s-box
operation is applied to the model in line 7. Once we obtain
the model, we can run Algorithm 1 and find the key bytes.

7

Algorithm 4 Searching For Cache Timing-Behavior Model
Require:

T4 : Lookup table
m : Index count of T4
κ : Size of each T4 entry in number of bytes
b : Size of each cache line in number of bytes
Ta : Timing model in attack phase
n : Number of cache lines occupied by T4
δ : Correlation threshold

Ensure: T̃h: Correct cache timing-behavior model
1: M← ∅
2: for l = 0 to 2n − 1 do
3: SC ← Algorithm 3(l, n)
4: for j = 0 to 15 do
5: Th[j]← Algorithm 2(T4,m,SC , b, κ)
6: end for
7: Th ← AES-sbox(Th)
8: KR ← Algorithm 1(Th, Ta)
9: M←M∪ (Th, |KR|)

10: end for
11: M← Sort(M) . Ascending on |KR|
12: T̃h ←M[0][0]

In order to test Algorithm 4, we ran it for the example in
Figure 1 and obtained the index 14433 as the most probable
cache timing model. When we plot this model, we obtain
Figure 3. A closer look at Figure 3 reveals that our simplified
model resembles to the real model depicted in Figure 1b.

Fig. 3. Calculated Learning Phase Model For Intel Pentium P6200

An important point to note here is that, in Algorithm 4,
we assume that all the lookup index bytes will have the
same timing model. Actually this is not always the case. In
Section 4 we mention that a cache timing model actually
gives us the cache lines which are in contention, thus a
model can take two forms as seen in Figure 1. Thus, for
the indexes used in lookup operations where the real model
is the symmetric of our simplified model, the correct key
value will tend to appear in the bottom of the sorted list of
reduced key spaces. The problem can be solved with a small
modification in Algorithm 1. In Algorithm 1, key guesses
are sorted depending on their correlation values, which can
be positive or negative. The key value with the maximum
correlation becomes the most possible candidate. In case of
a symmetry between the real and the simplified model, this
correlation grows in the negative direction for the correct
key guesses. Thus, if we take the absolute values of the
correlations before sorting, correct key byte will appear in
the first ranks in the sorted list.

6.2 Implementation and Results of Proposed Attack

We conducted the last round attack with and without learn-
ing phase on different hardware and software platforms
with varying client-server deployment configurations. In
each experiment setup, to carry out the attack, the AES client
uses 230 randomly generated messages, each of which is
of size 600 B. The AES server, in turn, uses the OpenSSL
v0.9.7a (Feb 19, 2003) implementation of AES (http://www.
openssl.org/source/), the same implementation used by
the original Bernstein’s attack, for the encryptions. In the
attacks with learning phase, two separate measurements are
used (i.e. learning and attack phase measurements) while
in the attacks without learning phase only attack phase
measurements are used.

For each experiment setup, we carried out a number of
attacks and calculated the average of the results. For each
key byte, the attacks produced a set of candidate key values,
sorted by their likelihood. By multiplying the sizes of the
candidate sets we obtain the reduced space for the whole
AES key, which necessitates exhaustive search.

Table 1 presents the results we obtained, in which the
first two columns summarize the CPU and the operating
system configurations used in the attacks, respectively. The
third column depicts the deployment configuration of the
AES client and server, i.e., whether the client and the server
are on the same core or on different cores. The last two
columns present the average sizes of the reduced key spaces
obtained after the attacks are applied.

In our experiments, we first observed that the correct
secret key is always in the reduced key space. We then
observed that in all the experiment setups, the sizes of
the reduced key spaces are always within feasible limits
for an exhaustive search. To put into a perspective, the
expected time of a brute-force search for a 56-bit DES is
less than a day by using the latest version (RIVYERA1) of
the specialized cryptanalytic engine COPACOPANA [19].
Although both attack methods are successful, the results
clearly show that the proposed attack without the learn-
ing phase outperforms the original attack in majority of
the cases. Since our simplified models are noise free and
specifically selected for the attack phase data, a performance
gain in the results can be expected. A further improvement
introduced by the new attack method is that it does not
need the modification of the ASLR flag as mentioned in [9],
as there is no need for a separate learning phase which
may cause a mismatch between learning and attack timing
models. We can also state that ASLR, which randomizes the
location of the lookup tables in the memory (and cache), is
not an effective countermeasure against the proposed attack.

Furthermore, we also tried a more realistic setup where
we measured the execution timings from the client side. In
this setup we used a PC which hosts two separate Intel
Xeon E5405 CPUs, where AES server and client run on
different CPUs. Since both programs run in the same PC, we
minimize the effects of network delay on the measurements.
In the classical attack (i.e., using both learning and attack
phases) we reduced the key space to 267 from 2128 with
234 measurements, while the proposed attack (i.e., without

1. See (http://www.sciengines.com/company/news-a-events/
74-des-in-1-day.html), which was accessed on June 21, 2015.

8

TABLE 1
Results obtained from the last-round attack with and without learning phase

Operating AES Client-Server Reduced Key Space Reduced Key Space
Processor System Deployment Configuration with Learning Phase without Learning Phase
Intel Pentium P6200 Ubuntu 3.0.0-12 kernel same core 232 232

Intel Pentium P6200 Ubuntu 3.0.0-17 kernel different cores 249 237

Intel Core 2 Duo P8400 Ubuntu 3.0.0-12 kernel same core 1 212

Intel Core 2 Duo P8400 Ubuntu 3.0.0-17 kernel different cores 224 229

Intel Xeon E5405 CentOS 2.6.18 kernel same core 234 219

Intel Xeon E5405 CentOS 2.6.18 kernel different cores 251 216

learning phase) reduced the key space to 260 with 234

measurements. These results demonstrate that the attack
can be applied in multi-processor and multi-core platforms.
This finding is especially important in cloud computing en-
vironments as different virtual machines can be co-located
in different cores of the same computer. Several works in
the literature successfully demonstrate that it is possible to
co-locate a spy process and cryptographic application in the
same computer and apply a cache-attack [20], [21].

7 CONCLUSION

In this work, we present a variant of Bernstein’s remote
cache attack without a learning phase against AES and
demonstrate that it can be successfully applied in many
experimental settings. The attack assumes a tractable, sim-
plified model of cache timing-behavior, in which the cache
is partitioned into two sets of cache lines: the cache lines in
one set take longer to access due to persistent collisions and
those in the other that are faster to access as the collisions
in them are absent, few or sporadic. By exhaustively trying
all possible simplified models and correlating them to the
real timing measurements of AES taken in the attack phase,
the proposed method is used to recover secret key of AES.
We demonstrate the effectiveness of the method by using
Bernstein’s attack on the last round of AES. The attack is
implemented in several settings featuring different hard-
ware, software and client-server deployments. The results
prove that the method can be used to extract realistic timing
models. The experimental results show that the proposed at-
tack outperforms the original attack by Bernstein in majority
of the cases. In summary, the new method allows to apply
Bernstein’s attack in more realistic and practical settings by
eliminating the learning phase.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO, ser. Lecture Notes in Computer Science, M. J. Wiener,
Ed., vol. 1666. Springer, 1999, pp. 388–397.

[2] D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel,” Department of Computer Science,University of
Bristol, Tech. Rep. CSTR-02-03, June 2002.

[3] O. Aciiçmez, Çetin Kaya Koç, and J.-P. Seifert, “Predicting secret
keys via branch prediction,” in CT-RSA, ser. Lecture Notes in
Computer Science, M. Abe, Ed., vol. 4377. Springer, 2007, pp.
225–242.

[4] K. Mowery, S. Keelveedhi, and H. Shacham, “Are aes x86 cache
timing attacks still feasible?” in Proceedings of the 2012 ACM
Workshop on Cloud computing security workshop, ser. CCSW ’12.
New York, NY, USA: ACM, 2012, pp. 19–24. [Online]. Available:
http://doi.acm.org/10.1145/2381913.2381917

[5] C. Rebeiro and D. Mukhopadhyay, “Micro-architectural analysis
of time-driven cache attacks: Quest for the ideal implementation,”
IEEE Trans. Computers, vol. 64, no. 3, pp. 778–790, 2015.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
TC.2013.212

[6] D. J. Bernstein, “Cache Timing Attacks on AES,”
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[7] “AES Standard,” csrc.nist.gov/publications/fips/fips197/fips-
197.pdf, 2001.

[8] M. Neve, “Cache-based vulnerabilities and spam analysis,” Ph.D.
dissertation, Universite catholique de Louvain, 2006.

[9] A. C. Atici, C. Yilmaz, and E. Savas, “An approach for isolating
the sources of information leakage exploited in cache-based side-
channel attacks,” in Seventh International Conference on Software
Security and Reliability, SERE 2012, Gaithersburg, Maryland, USA,
18-20 June 2013 - Companion Volume, 2013, pp. 74–83.

[10] J. Bonneau and I. Mironov, “Cache-Collison Timing Attacks
Against AES,” in CHES 2006 LNCS, L. Goubuin and M. Matsui,
Ed., vol. 4249.

[11] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks
and Countermeasures: the Case of AES (extended version),”
http://tau.ac.il/ tromer/, 2005.

[12] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Proceedings of the
16th Annual International Cryptology Conference on Advances in
Cryptology, ser. CRYPTO ’96. London, UK, UK: Springer-Verlag,
1996, pp. 104–113. [Online]. Available: http://dl.acm.org/citation.
cfm?id=646761.706156

[13] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side
channel cryptanalysis of product ciphers,” J. Comput. Secur.,
vol. 8, no. 2,3, pp. 141–158, Aug. 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1297828.1297833

[14] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
aes, and countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp.
37–71, 2009.

[15] O. Aciiçmez and Çetin Kaya Koç, “Trace-driven cache attacks
on aes (short paper),” in ICICS, ser. Lecture Notes in Computer
Science, P. Ning, S. Qing, and N. Li, Eds., vol. 4307. Springer,
2006, pp. 112–121.

[16] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeria, and H. Miyauchi1,
“Cryptanalysis of DES Implemented on Computers with Cache,”
in CHES 2003 LNCS, C.D. Walter et al., Ed., vol. 2279.

[17] O. Aciiçmez, W. Schindler, and Çetin Kaya Koç, “Cache based
remote timing attack on the aes,” in CT-RSA, ser. Lecture Notes
in Computer Science, M. Abe, Ed., vol. 4377. Springer, 2007, pp.
271–286.

[18] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design, The Hardware/Software Interface. Morgan Kaufmann Pub-
lishers, 2009.

[19] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and A. Rupp, “Crypt-
analysis with copacobana,” IEEE Trans. Computers, vol. 57, no. 11,
pp. 1498–1513, 2008.

[20] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: exploring information leakage in third-party
compute clouds,” in Proceedings of the 2009 ACM Conference
on Computer and Communications Security, CCS 2009, Chicago,
Illinois, USA, November 9-13, 2009, E. Al-Shaer, S. Jha, and A. D.
Keromytis, Eds. ACM, 2009, pp. 199–212. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653687

[21] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth, and
B. Sunar, “A faster and more realistic flush+reload attack on
AES,” in Constructive Side-Channel Analysis and Secure Design
- 6th International Workshop, COSADE 2015, Berlin, Germany,

9

April 13-14, 2015. Revised Selected Papers, ser. Lecture Notes in
Computer Science, S. Mangard and A. Y. Poschmann, Eds.,
vol. 9064. Springer, 2015, pp. 111–126. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-21476-4 8

[22] M. Abe, Ed., Topics in Cryptology - CT-RSA 2007, The Cryptographers’
Track at the RSA Conference 2007, San Francisco, CA, USA, February
5-9, 2007, Proceedings, ser. Lecture Notes in Computer Science, vol.
4377. Springer, 2006.

