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1 Introduction

Reduction algorithms for bases of lattices play an important role in algorithmic number
theory, cryptography, and integer programming; see, e.g., Nguyen & Vallée [22] and the
references given there.

Most existing basis reduction algorithms (see, e.g., [7, 9, 10, 12, 16, 18, 19, 21, 25, 26, 27,
28, 31, 17, 33]) proceed by progressively updating the basis. These updates are derived
from a Gram–Schmidt orthogonalization or QR factorization, equivalent to the Cholesky
factorization of the Gram matrix. Analysing these updates, proving the polynomial com-
plexity of the resulting algorithms, and proving bounds on the quality of the final reduced
basis are nontrivial tasks.

Early work by Lagrange [15] in two dimension and byHermite [13] in general dimensions
culminated in the LLL algorithm by Lenstra et al. [16], which produces in polynomial
time in the bit size of an input basis a reduced basis whose basis vectors have bit sizes
bounded by a fixed multiple of the dimension. Many variants of the original LLL algorithm
exist, so we have in fact a whole class of LLL algorithms. These are characterized by
working at any time on 2-dimensional projected subspaces only, and are sufficient for many
applications.

Stronger basis reduction algorithms are needed in case the LLL reduced basis is still not
short enough. Korkine & Zolotareff [14] introduced what are today (after them and
Hermite) called HKZ reduced bases with excellent theoretical properties. But their com-
putation is feasible at present only for low-dimensional lattices (up to dimensions around
75). Thus one uses in practice block algorithms; they apply strong and expensive reduc-
tion techniques on low-dimensional projected subspaces only. Currently the best practical
algorithms are the BKZ algorithm (Schnorr & Euchner [27]) and the recent self-dual
SDBKZ variant by Micciancio & Walter [19] (called DBKZ there). On the other hand,
the best theoretical guarantees for block algorithms are provided by the (at currently prac-
tical block sizes apparently inferior) slide reduction algorithm of Gama & Nguyen [9].

In this paper, the approaches of Hanrot et al. [12] (used also in Micciancio & Walter

[19]), Schnorr [26], and Gama & Nguyen [9] for the asymptotic worst-case analysis of
LLL, BKZ, and SDBKZ are improved. The first improvement replaces the complicated
dynamical system arguments of [12] by simple (and sharper) induction arguments on a
bound on the bit sizes. The second improvement is an analysis of a greedy variant of LLL
that is quasilinear in the bit sizes and has a guarantee on the approximation factor.

To make the paper self-contained, we present the relevant background on lattices and basis
reduction in a novel way, namely in terms of bit sizes and linear inequalities relating these.
This form was inspired by Hanrot et al. [12] who reduced most of the complexity analysis
of basis reduction methods to a study of linear equations and inequalities. Before their
work, this underlying linear structure was invisible since the analysis was – with the single
exception of Schönhage [28, Lemma 4.1] – always done in a multiplicative way.
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2 Basic notions

This section provides basic definitions together with a collection of mostly well-known
results put together in a form useful for the subsequent development. In view of further
applications to be reported elsewhere, some of the results are presented in slightly greater
generality than needed in this paper.

2.1 The bit profile

A lattice of dimension n is a nonempty subset L of the space R
m of m-dimensional

column vectors with real entries (for some m) that is closed under subtraction and has a
basis, i.e., a matrix B = [b1, . . . , bn] with n linearly independent columns bi generating L.
Given the basis,

L = {Bz | z ∈ Z
n}; (1)

conversely, if B ∈ R
m×n has rank n then (1) defines a lattice with basis B. The matrix

G = BTB

is called the Gram matrix of the basis. We call the submatrices Bi:k := [bi, . . . , bk] the
subbases of B; its Gram matrices G1:i := BT

1:iB1:i are the leading submatrices of G. The
bit profile of B is the sequence g0, . . . , gn of determinant bit sizes1

gi := lg detG1:i

of the leading subdeterminants
di := detG1:i

of the Gram matrix. Here
lg x = ln x/ ln 2

denotes binary logarithms, and the determinant of a 0× 0 matrix is taken to be 1, so that
g0 = 0.

The dual lattice L
† consists of the linear combinations y of lattice vectors such that yTx

is integral for all x ∈ L. If B is a basis of L then, with the permutation matrix J defined by

1Strictly speaking, the true bit sizes are the next largest integer of the present bit sizes. But the
real-valued bit sizes introduced here are better adapted to the analysis.

3



(Jx)i := xn+1−i, the reversed dual basis B† = BG−1J is a basis of B† with Gram matrix
G† = JG−1J . Since the leading subdeterminants of G† satisfy detG†

1:i = detG1:n−i/ detG,
its determinant bit sizes are given by

g†i = gn−i − gn. (2)

The kth block Bk:k+s−1 of size s ≤ n (k = 1, . . . , n + 1 − s) of a basis B of dimension
n is the projected basis of dimension s obtained by orthogonalizing the subbasis Bk:k+s−1

against the basis vectors in B1:k−1. (For k = 1, we have B1:s = B1:s.) The corresponding
determinant bit sizes are the numbers

g
(k)
i := gk+i−1 − gk−1 (i = 1, . . . , s). (3)

It is customary to denote the first basis vector of the blocks Bi:n by b∗i ; then

qi := ‖b∗i ‖2 =
di
di−1

= 2ei (4)

with the projected bit sizes

ei := gi − gi−1 = lg ‖b∗i ‖2 for i = 1, . . . , n. (5)

In particular,
n∏

i=1

‖b∗i ‖ = (detG)1/2.

We also use the normalized projected bit sizes

ai := e1 − ei = g1 + gi−1 − gi. (6)

They are invariant under rescaling of the basis by a constant factor, and we have

a1 = 0.

From the ai and g1 we can recover
ei = g1 − ai,

gi = ig1 − a1 − . . .− ai.

We call
σ(g) := max

ℓ>j
(aℓ − aj) (7)

the spread of the basis.

2.1 Proposition. For 0 ≤ i ≤ k ≤ n,

gi
i
− gk

k
≤ k − i

k
max
j<ℓ≤k

(aℓ − aj) ≤ σ(g). (8)
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Proof. We have

kgi − igk = i(a1 + . . .+ ak)− k(a1 + . . .+ ai) =
∑

j=1:i,ℓ=i+1:k

(aℓ − aj)

≤ i(k − i) max
j<ℓ≤k

(aℓ − aj) ≤ ikσ(g).

Division by ik establishes the proposition. ⊓⊔

Daudé & Vallée [7] show that for sufficiently large bit sizes and under reasonable as-
sumptions on the distribution, a basis B of dimension n with random entries, the spread
σ(g) has an expected value of < 5 + lnn. This kind of random basis is relevant in signal
processing. On the other hand, unreduced lattice bases from cryptography typically have
a spread of order n2. LLL-reduced lattice bases have σ(g) = O(n); cf. (37) below.

By definition of the Rankin invariants γni of Gama et al. [8], every lattice has a basis
for which the inequalities

gi
i
− gk

k
≤ log γki

i
(9)

hold. The special cases γn1 = γn are the Hermite constants discussed in more detail below.
Gama et al. give the values γnn = 1, γ42 =

3
2
, the relation γni = γn,n−i, and the inequality

γni ≤ γ
i/k
nk γki for i < k < n.

Sawatani et al. [24] prove that γ62 = 32/3, γ82 = 3, γ83 = γ84 = 4, and 2/
√
3 ≤ γ63 ≤

√
6,

211/7 ≤ γ73 ≤ 24/732/3.

2.2 Primal and dual reduction

The goal of basis reduction is to construct from a given basis B of a lattice L another
basis consisting of shorter vectors. Various criteria for reducedness quantify the extent to
which this is achieved. We say that a basis B is size reduced if

|(b∗i )T b∗k| ≤
1

2
‖b∗k‖2 for i > k.

A basis B is primal reduced if the length of the first basis vector b1 is a shortest nonzero
lattice vector. Every leading block B1:i is then also primal reduced. A basis B is dual

reduced if the reversed dual basis is primal reduced. Every trailing block Bi:n is then also
dual reduced.

The process of size reduction (resp. primal reduction, dual reduction) replaces an
arbitrary basis by one that is size reduced (resp. primal reduced, dual reduced). Size
reduction is achievable by subtracting for i = 2, . . . , n from bi an appropriate integral linear
combination of b1, . . . , bi−1. For block size s = 2, primal and dual reduction are equivalent.
An efficient algorithm for performing the reduction of a block of size s = 2 goes back to
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the 18th century (Lagrange [15]). We therefore call this process Lagrange reduction.
For primal or dual reduction of block size s > 2, one must first solve a shortest vector
problem, then transform the basis accordingly; see Micciancio & Walter [19, Section 7]
for economical procedures. The shortest vector problem (SVP) is the problem to find,
given a basis B, a shortest nonzero vector z of the lattice L spanned by B, thus achieving
the minimum length

λ1(B) := min
06=z∈L

‖z‖

The following result (trivial for m = 1) is implicit in Gama & Nguyen [9, proof of
Theorem 1], who strengthened an observation of Lenstra et al. [16, proof of Proposition
1.11] (the case m = n, where the hypothesis is trivially satisfied) in order to obtain an
improved bound for the approximation factor of slide reduction; cf. (27) below.

2.2 Proposition. If Bm:n is primal reduced then

min
k=1:m

ek ≤ lg λ1(B)2 ≤ e1. (10)

In particular, this always holds for m = n.

Proof. We may write a shortest nonzero vector b as an integral linear combination

b = Bz =
∑

i

zibi (z ∈ Z
n)

of the basis vectors. Let k be the largest index with zk 6= 0. If k < m then

λ1(B) = ‖b‖ ≥ |zk| ‖b∗k‖ ≥ ‖b∗k‖ =
√
ek,

while if i ≥ m then

λ1(B) = ‖b‖ ≥
∥∥∥
∑

i≥m

zibi

∥∥∥ ≥ λ1(B
m:n) = ‖b∗m‖ =

√
em.

⊓⊔

2.3 Proposition.

(i) Upon primal reduction of a block Bk:k+s−1, the modified bit profile g′i of B satisfies
g′i = gi unless k ≤ i ≤ k + s− 2, and we have

min
ℓ=0:s−1

ek+ℓ ≤ e′k ≤ ek, (11)

0 ≤ gk − g′k ≤ max
ℓ=0:s−1

(ak+ℓ − ak). (12)

(ii) Upon dual reduction of a block Bk−s+2:k+1, the modified bit profile g′i of B satisfies
g′i = gi unless k ≤ i ≤ k + s− 2, and we have

ek+1 ≤ e′k+1 ≤ max
ℓ=1:s−1

ek+1−ℓ, (13)

0 ≤ gk − g′k ≤ max
ℓ=1:s−1

(ak+1 − ak+1−ℓ). (14)
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Proof. (i) We apply (10) to the primal reduction of the block Bk:k+s−1 and find (11). As a
consequence,

0 ≤ ek − e′k ≤ ek − min
ℓ=0:s−1

ek+ℓ = max
ℓ=1:s−1

(ek − ek+ℓ) = max
ℓ=1:s−1

(ak+ℓ − ak).

(12) follows since gk−s+1 − g′k−s+1 = ek−s+1 − e′k−s+1.

(ii) follows from (i) applied to the dual basis with n − k in place of k, using (2) which
implies e†i = −en+1−i. ⊓⊔

We shall need the constants

Γn := lg γn, µn :=
Γn

n− 1
, (15)

where the Hermite constant γn is the largest possible value of min
06=z∈Zn

‖Bz‖2 for a matrix

B of rank n with det(BTB) = 1.

2.4 Theorem.

(i) The Hermite constants satisfy the two-sided bounds

1

17.08
<

1

2eπ
<

γn − 1

n− 1
≤ 1

7
for n > 2; (16)

moreover, γ1 = 1 and γ2 = 2/
√
3.

(ii) The upper bound 1
7
in (16) is achieved precisely when n = 8.

Proof. The values for γ1 is trivial and that for γ2 is an old result by Lagrange [15]. The
upper bound in (16) follows by combining the bound2

γn ≤ 2

π
Γ
(
2 +

n

2

)2/n

=
n

eπ
(1 + o(1))

of Blichfeldt [2] with bounds for n ≤ 36 by Cohn & Elkies [4] (cf. the table below).
These bounds are strict unless n = 8. (ii) follows from γ8 = 2.

The lower bound in (16) follows from Ball [1]; note that 17.079 < 2eπ < 17.080. ⊓⊔

The exact value of the Hermite constants is known in dimensions n ≤ 8 (Blichfeldt [3])
and n = 24 (Cohn & Kumar [5]). The following table contains these values and the
corresponding extremal lattices, which, in these dimensions, happen to be unique up to
isomorphism (Vetčinkin [32]).

2The bound γn ≤ n

eπ
stated (in different notation) in Lovász [18, p.16] is violated for small n. Since

eπ > 8.5, the root lattice E8 in dimension n = 8 with γ(B) = γ8 = 2 and
γn − 1

n− 1
=

1

7
and the Leech lattice

Λ24 in dimension n = 24 with γ(B) = γ24 = 4 and
γn − 1

n− 1
=

3

23
≈ 1

7.666
give counterexamples.
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n 1 2 3 4 5 6 7 8 24

L Z A2 D3 D4 D5 E6 E7 E8 Λ24

γn
n 1 4/3 2 4 8 64/3 64 256 248

Γn 0 (2− lg 3)/2 1/3 1/2 3/5 (6− lg 3)/6 6/7 1 2

≤ 0 0.2076 0.3334 0.5 0.6 0.7359 0.8573 1 2

µn − (2− lg 3)/2 1/6 1/6 3/20 (6− lg 3)/30 1/7 1/7 2/23

≤ − 0.2076 0.1667 0.1667 0.15 0.1472 0.1429 0.1429 0.0870

The next table contains for dimension n ≤ 36 the best upper bounds known (apart from
rounding), computed with correct directed rounding from the data in Cohn & Elkies [4].

n
n− 1

γn − 1
≥ Γn ≤ µn ≤ n

n− 1

γn − 1
≥ Γn ≤ µn ≤

1 – – – 19 7.507 1.765 0.099

2 6.464 0.208 0.208 20 7.539 1.816 0.096

3 7.694 0.334 0.167 21 7.569 1.865 0.094

4 7.242 0.500 0.167 22 7.597 1.913 0.092

5 7.756 0.600 0.150 23 7.624 1.959 0.090

6 7.514 0.736 0.148 24 7.666 2.000 0.087

7 7.394 0.858 0.143 25 7.673 2.046 0.086

8 7.000 1.000 0.143 26 7.696 2.087 0.084

9 7.063 1.093 0.137 27 7.718 2.128 0.082

10 7.122 1.179 0.131 28 7.739 2.167 0.081

11 7.176 1.260 0.126 29 7.759 2.205 0.079

12 7.228 1.335 0.122 30 7.777 2.242 0.078

13 7.275 1.406 0.118 31 7.795 2.278 0.076

14 7.320 1.473 0.114 32 7.812 2.318 0.075

15 7.362 1.537 0.110 33 7.828 2.347 0.074

16 7.402 1.598 0.107 34 7.843 2.381 0.073

17 7.439 1.656 0.104 35 7.858 2.414 0.071

18 7.474 1.712 0.101 36 7.871 2.446 0.070

The best asymptotic upper bound in (16) known (according to Conway & Sloane [6,

p.20]) is ≈ 1

9.793
for n → ∞, but this value is approached very slowly.

Rescaling an arbitrary lattice basis B to one whose Gram matrix has determinant 1, the
definition of the Hermite constants gives

γ(B) :=
λ1(B)2

d
1/n
n

≤ γn. (17)
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Clearly, γ(B) is basis-independent and depends only on the lattice generated by B. For a
basis B of a random lattice (drawn uniformly according to the Haar measure; cf. Gold-

stein & Meyer [11]), Rogers [23] (see also Södergren [30]) proved that in the limit
n → ∞, the probability that γ(B) > γ is given by

Pr(γ(B) > γ) = e−
1

2
πnγn/2

for γ ≥ 0,

where

πn :=
πn/2

Γ(n/2 + 1)

denotes the volume of the unit ball in R
n. In particular, the median of γ(B) is

γ∗
n =

(2 log 2
πn

)2/n

= π−1
(
2 log 2 · Γ(n/2 + 1)

)2/n

, (18)

and the median of (n− 1)/(γ(B)− 1) is

n− 1

γ∗
n − 1

≈ 2eπ
(
1 +

2

n
log n

)

with an error of O(n−1). This is monotone decreasing for n ≥ 12 and converges very slowly
to 2eπ ≈ 17.094, and is approximately 20 for n between 60 and 75. The so-called Gaussian
heuristic – obtained by a more informal sphere packing argument – assumes the slightly
simpler formula γ(B) ≈ π−1Γ(1 + n/2)2/n with the same asymptotics. Unless n is large,
both formulas give values that are too small. It may be better to use instead the heuristic

γ(B) ≈ 1 +
n− 1

2eπ(1 + 2
n
log n)

or even γ(B) ≈ 1 +
n− 1

20
. (19)

2.5 Proposition.

(i) If the block Bk:k+s−1 is primal reduced then

gk − gk−1 −
1

s
(gk+s−1 − gk−1) ≤ Γs. (20)

(ii) If the block Bk−s+2:k+1 is dual reduced then

gk − gk+1 −
1

s
(gk−s+1 − gk+1) ≤ Γs. (21)

Proof. Upon scaling the subbasis B1:s, the definition of the Hermite constants implies that
detG1:1 ≤ γs(detG1:s)

1/s. Take logarithms to get

g1 −
gs
s

≤ Γs. (22)

(22) applied to the block Bk:k+s−1 gives (i). (ii) follows by applying (22) to the dual of the
block Bk−s+2:k+1 with bit sizes derived from (2). ⊓⊔

Given a basis of dimension n+1 and determinant 1 (so that g0 = gn+1 = 0), we may alternate
primal reduction of B1:n and dual reduction of B2:n+1 until g1 no longer decreases. This is
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a finite process as there are only finitely many vectors in the lattice shorter than any given
vector. The resulting basis satisfies (20) for i = 1, s = n and (21) for i = s = n,

g1 −
gn
n

≤ Γn, gn −
g1
n

≤ Γn.

Multiplying the first inequality by n and adding the second inequality gives after division

by n2 − 1 the bound
g1
n

≤ Γn

n− 1
= µn. Since Γn+1 is the supremum of the left hand side

over all bases of dimension n+ 1 and determinant 1, we find

µn+1 ≤ µn for n ≥ 2, (23)

which is Mordell’s inequality (Mordell [20]).

2.3 Basis quality

There are a number of indicators that quantify the quality of a reduced basis. Gama &

Nguyen [10] define the Hermite factor

H(B) :=
‖b1‖

(detG)1/(2n)

and the root Hermite factor

R(B) := H(B)1/n

of a basis B. (Using the (n− 1)st root would be more appropriate.) Expressed in terms of
the Hermite exponent

h(g) :=
ng1 − gn
n(n− 1)

=
a1 + . . .+ an
n(n− 1)

(24)

we have
H(B) = 2

n−1

2
h(g), R(B) = 2

n−1

2n
h(g). (25)

If the basis is primal reduced then (17) gives H(B) =
√
γ(B), hence h(g) ≤ µn by (22).

By definition of the Hermite constants, there are lattices of every dimension n for which no
basis can have a better Hermite exponent.

The approximation factor (or length defect) of a basis B is the quotient

A(B) :=
‖b1‖
λ1(B)

≤ 2
n−1

2
a(g),

where

a(g) :=
1

n− 1
max

i
ai (26)

denotes the approximation exponent. If Bm:n is primal reduced then Proposition 2.2
implies the slightly stronger bound

A(B) ≤ 2
m
2
ãm(g) (27)
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with the modified exponent

ãm(g) :=
1

m
max
i≤m

ai.

In a signal processing context,

π(B) :=
λ1(B)2

min
i

qi
≤ q1

min
i

qi
= 2(n−1)a(g)

is called the SIC proximity factor. The effective dimension

neff := max{k | ak > 0} = max{k | ek < e1} = max{k | ‖b∗k‖ < ‖b∗1‖} (28)

is the smallest value of m for which (10) implies that the basis vectors with k > m cannot
contribute to a vector shorter than the first basis vector. We call the vectors bi with i ≤ m
the effective basis vectors, the Hermite exponent h(g1:m) the effective Hermite expo-

nent, and the approximation exponent a(g1:m) the effective approximation exponent.
By definition, we still have

a(B) ≤ 2
n−1

2
a(g1:m), (29)

Of interest is also the normalized spread

c(g) :=
σ(g)

n− 1
; (30)

cf. (7). Note that
h(g) ≤ a(g) ≤ c(g); (31)

thus proving a small bound on c(g) is the strongest form of reduction guarantee. If B is
size reduced then (using QR factors)

‖bi‖2
‖b∗i ‖2

=
1

qi

i∑

j=1

(b∗i )
T b∗j ≤ 1 +

1

4qi

i−1∑

j=1

qj = κi,

where

κi := 1 +
1

4

i−1∑

j=1

2ej−ei = 1 +
1

4

i−1∑

j=1

2ai−aj ≤ 1 +
i− 1

4
2(n−1)c(g) < 2(n−1)c(g) i,

The orthogonality defect is the number

od(B) := (detG)−1/2

n∏

i=1

‖bi‖ =
n∏

i=1

‖bi‖
‖b∗i ‖

≤
( n∏

i=2

κi

)1/2

< 2
1

2
((n−1)2c(g)+lgn!).

Since ‖bi‖ ≥ ‖b∗i ‖ we see that od(B) ≥ 1, which is Hadamard’s inequality. Finally, we
may also consider the mean slope

e1 − en
n− 1

=
an

n− 1

of the sequence e1, . . . , en, which is a mean curvature of the bit profile.
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3 Block reduction

Limiting the size of the quality measures discussed in Subsection 2.3 is a key task to
be achieved by basis reduction. In particular, one would like to have small, dimension-
independent bounds for the numbers in (31).

The most frequently used algorithms for basis reduction are variants of the LLL algorithm
of Lenstra et al. [16] and the BKZ algorithm of Schnorr & Euchner [27]. On the
other hand, when primal or dual reductions are done for blocks of size at most s only (with
fixed s), the currently best guarantees for the reduced basis are given – when s divides
the dimension – by the slide reduction algorithm of Gama & Nguyen [9]. They showed
that slide reduction yields a Hermite exponent bounded by the Mordell constant µs and a
modified approximation exponent (cf. (27)) bounded by 2µs,

h(g) ≤ µs, ãn−s+1(g) ≤ 2µs, (32)

appropriate since for a slide reduced basis B, the block Bn−s+1:n is primal reduced. Similar,
only slightly inferior results were proved by Li & Wei [17] when the maximal block size
does not divide the dimension.

In this section we first discuss a new greedy LLL algorithm that is quasilinear in the bit
sizes (when fast integer multiplication is used) and achieves the same guarantees for the
shortest vector as all LLL algorithms. Previously, the only quasilinear time LLL algorithm
was that of Hanrot et al. [12], who obtained a provable constant bound for the Hermite
exponent but not for the approximation exponent.

We then introduce a simple way to analyze the self-dual SDBKZ variant of the BKZ re-
duction algorithm, recently introduced by Micciancio & Walter [19], improving on
the dynamical system technique of Hanrot et al. [12]. We reprove their bound µs for
the Hermite exponent (matching the first slide inequality in (32)) and prove a polynomial
complexity result conjectured in [19]. The known techniques seem not sufficient to prove a
bound for the approximation exponent of SDBKZ.

3.1 LLL algorithms

An LLL algorithm is a block reduction algorithms that operates only on blocks of size
2. The acronym LLL refers to the initials of Lenstra, Lenstra & Lovász whose paper
[16] contains the first such algorithm in arbitrary dimension and a proof of its polynomial
complexity.

3.1 Proposition. Lagrange reduction of a block Bk:k+1 changes the bit profile to g′i in
place of gi where g′i = gi unless i = k. Moreover,

(i) ε := gk − g′k satisfies (1
2
ck − Γ2

)
+
≤ ε ≤ ck, (33)

12



where
ck := 2gk − gk−1 − gk+1. (34)

and a+ := max(a, 0) denotes the positive part of a real number a.

(ii) For any m, max
ℓ≤m

eℓ cannot increase and min
ℓ≤m

eℓ cannot decrease. In particular, the gk

remain bounded from below.

Proof. ε ≥ 0 since a Lagrange step on the block Bk:k+1 cannot increase gk. By Proposition
2.5 it reduces ck to c′k = ck − 2ε ≤ 2Γk, giving the lower bound in (33). By Proposition 2.3,
the new projected bit size is ek−ε = e′k ≥ ek+1, whence ε ≤ ek−ek+1 = 2gk−gk−1−gk+1 = ck,
giving the upper bound.

The first part of (ii) is an observation of Lenstra et al. [16, argument leading to (1.30)]
that follows directly from (11). If e := max eℓ for the initial basis then this also holds for
all later bases, and by induction, gk ≥ gn − (n − k)e for all k. Since gn remains invariant,
we have bounded all gk from below. ⊓⊔

A possible measure of the quality of a Lagrange reduction step is the amount gk − g′k by
which gk is reduced. If this is too small, there is no point performing the Lagrange reduction.
Except for part (ii), the following bounds are proved along the lines of [16].

3.2 Theorem. Let δ > 0. If we accept a tentative Lagrange reduction step (performed
at first only on the Gram matrix of the block) only when gk − g′k > δ, an LLL reduction
algorithm ends after finitely many successful Lagrange reduction steps.

(i) With Γ∗
2 := Γ2 + δ, the final basis obtained satisfies

ck ≤ 2Γ∗
2 for k = 1, . . . , n− 1, (35)

aℓ − aj ≤ 2Γ∗
2(ℓ− j) for ℓ > j, (36)

h(g) ≤ a(g) ≤ c(g) =
σ(g)

n− 1
≤ 2Γ∗

2, (37)

A(g) :=
n−1∑

k=1

gk ≤
n− 1

2
gn +

(
n+ 1

3

)
Γ∗
2. (38)

(ii) If the final basis has effective dimension neff = n then

A(g) >
n− 1

2
gn −

(
n

3

)
Γ∗
2

2
. (39)

(iii) Given a basis whose components are integers of bit length at most β, an LLL algorithm
performs

Ntot ≤ δ−1n2(lg n+ β) (40)

successful Lagrange reductions.

13



Proof. Proposition 3.1(ii) implies that gk can be reduced only finitely often by at least δ.
Thus the algorithm stops necessarily.

(i) By Proposition 3.1(i), if ck > 2Γ∗
2 for some k, the gain in a Lagrange reduction at

position k is > δ, hence the reduction will be performed. Therefore no such k exists after
convergence. This proves (35). (36) follows since

aℓ − aj = ej − eℓ = cj + cj+1 + . . .+ cℓ−1 ≤ 2Γ∗
2(ℓ− j).

(37) now follows from (31), (30), and (7). Finally, one verifies

A(g) =
n− 1

2
gn +

n−1∑

j=1

j(n− j)cj+1

by substituting the definition of the ci into the sum and simplification. Since

ℓ−1∑

j=1

j(ℓ− j) =

(
ℓ+ 1

3

)
,

this gives the bound (38).

(ii) If neff = n then 0 < an = g1 + gn−1 − gn = c2 + . . .+ cn, hence

A(g) > A(g)− n2

8
an =

n− 1

2
gn +

n−1∑

j=1

j(n− j)cj+1 −
n2

8

n−1∑

j=1

cj+1

=
n− 1

2
gn −

1

8

n−1∑

j=1

(n− 2j)2cj+1

≥ n− 1

2
gn −

n−1∑

j=1

(n− 2j)2
Γ∗
2

4
,

which gives (39).

(iii) Under the stated assumptions, the entries of G are bounded by 22βn. The positive
definiteness of G and Cramer’s rule therefore give

0 ≤ gk ≤ kβk, (41)

where
βk := k−1 lg k! + 2β + lg n ≤ lg(nk) + 2β (42)

since k! ≤ kk. Since gk is nonnegative and decreases by at least δ with each reduction, it
can be reduced at most gk/δ times. Hence the total number Ntot of Lagrange reductions is
bounded by

Ntot ≤ δ−1

n−1∑

k=1

gk ≤ δ−1n2(lg n+ β)
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since
n−1∑

k=1

lg(nk) ≤
∫ n−1

k=2

lg(nk)dk < n2 lg n,
n−1∑

k=1

kβ =

(
n

2

)
β < n2β.

⊓⊔

3.2 Greedy LLL algorithms

To turn the general recipe into an efficient algorithm we must decide upon the order in
which Lagrange steps are performed. Traditionally, these are chosen in a way determined
by a fixed loop structure. In this section we consider greedy choices where in each step some
utility measure is maximized. The measure in which we want to be greedy must be chosen
carefully, in view of the following statement by Lovász on greediness in basis reduction: ”It
seemed that the less greedy you were, the better it worked. So I only swapped neighboring

vectors and only swapped when you really made progress by a constant factor.” (Smeets
[29, p.11])

Storjohann [31, p.13] suggested to perform each Lagrange step on the block Bk:k+1 for
which the lower bound δk from (33) on the amount that gk decreases in a Lagrange reduction
is largest. We shall call an algorithm that completes this description by a tie-breaking rule a
basic greedy LLL algorithm. The basic greedy strategy can be observed experimentally
to outperform many others. It was rediscovered by Zhao et al. [33] in the context of
(low-dimensional) signal processing applications. Another greedy variant of LLL (and of
slide reduction) was considered by Schnorr [26].

When β is large and n is fixed, a basic greedy LLL algorithm typically performs only
O(1+lg β) Lagrange reductions, which is much less than the bound (40). While a complexity
bound of O(1 + lg β) Lagrange reductions was proved by Hanrot et al. [12] for a cyclic

LLL algorithm that performs Lagrange reductions on the blocks Bk:k+1 in increasing
cyclic order, it seems to be impossible to prove for the basic greedy LLL algorithm an
unconditional logarithmic complexity result. Schnorr [26] obtained only partial results,
and had to assume an obscure technical condition with an early termination exit that
endangers the quality of the reduced basis.

The main difficulty in the analysis is the possibility that the bit profile (which in the most
typical cases has – apart from small randomly looking deviations – an essentially concave,
nearly quadratic shape) may exhibit large discontinuities, e.g., when the effective dimension
is less than the full dimension. Although one expects these cases to be reduced even more
quickly than the regularly shaped ones, the tools presently available do not seem to allow
one to demonstrate this.3

3Using A(g) as potential, one could proceed at first as in the proof of Theorem 3.3 below. However, the
difficulty is to find, after the analogue of p∗ has been reached, a bound for the number of iterations that
depends on n only, in order to preserve the logarithmic complexity in β implicit in the log q term of Theorem
3.3. To get this bound one can use Theorem 3.2(ii)– but only when its hypothesis applies. Thus everything
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The technical obstacles can be overcome by changing the measure according to which the
greedy choice is made.

A special greedy LLL algorithm applies Lagrange reductions always to blocks Bk:k+1

that maximize the scaling invariant number

∆k := min{ck − 2Γk, (k + 1)gk − kgk+1}, (43)

where ck is given by (34), until all ∆k < ∆, where ∆ > 0 is a small threshold. We may
analyse the behavior of this greedy rule in terms of the potential

p :=
n−1∑

i=1

(
(k + 1)gk − kgk+1

)
+
. (44)

The proof of Theorem 3.2 shows that (38), which is the area under the bit profile, is a
reasonable measure of how far a basis is from being reduced. If all terms in the sum (44)
are positive then p = 2A(g)− (n−1)gn is, up to a constant shift, twice this area; in general,
p may be larger, accounting for an irregular behavior of the bit profile.

The potential is a convex, nonnegative function of the gi. Therefore it attains its maximum
at a vertex of any convex constraint set. Given only the dimension n and the maximal bit
size β of a basis with integral coefficients, the maximum potential with the constraints (41)
is attained for a profile where all gi ∈ {0, iβi}. Writing K := {i | gi = 0 6= gi−1} we find

that the worst case for the potential has the form p =
∑

i∈K

2i(i − 1)βi−1. This is largest

when K = {n, n− 2, n− 4, . . .}, leading to an initial bound of

pinit ≤ pmax =





n/2∑

j=1

4j(2j − 1)β2j−1 (n even)

(n−1)/2∑

j=1

4j(2j + 1)β2j (n odd)





≤ n(n+ 2)(4n+ 1)

3
(β +O(lg n)).

The following theorem shows that a special greedy LLL algorithm has a marginally better
complexity than the cyclic LLL algorithm of Hanrot et al. [12], and at the same time
gives stronger guarantees for the resulting reduced basis. (Hanrot et al. prove a constant
bound on the Hermite exponent, but their method of analysis is unable to bound the
approximation exponent.)

3.3 Theorem. Let

Γ∗
2 := Γ2 +

1

2
∆, Ln :=

(
n+ 1

3

)
, p∗ := 2LnΓ2, q :=

(pinit − p∗)+
Ln∆

,

is ok with the basic greedy strategy if the effective dimension equals the full dimension. However, if the
effective dimension decreases during the iteration, control is lost, and one has only the general complexity
bound from Theorem 3.2, which is linear in β, not logarithmic. This is counterintuitive since in practice,
a problem with a decreased effective dimension tends to take less work than a ”full” problem.
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where pinit is the potential of the input basis to a special greedy LLL algorithm. Then the
algorithm stops after Ntot ≤ N0 Lagrange reductions, where

N0 :=

{
p∗/∆+ 1 + Ln(1 + ln q) if q > 1,
pinit/∆ otherwise.

It returns a basis such that, for 1 ≤ i ≤ k ≤ n− 1,

ck < 2Γ∗
2 or (k + 1)gk − kgk+1 < ∆, (45)

gi
i
− gk

k
< (k − i)Γ∗

2, (46)

ak+1 < 2kΓ∗
2, (47)

max
{
2h(g), a(g),

an
n− 1

}
< 2Γ∗

2. (48)

Proof. We put
pi := (i+ 1)gi − igi+1, (49)

Γ := Γ2 +
1

2
max

i
∆i.

Then the potential (44) takes the form

p =
n−1∑

i=1

(pi)+, (50)

and we have

min(ci − 2Γ2, pi) = ∆i ≤ 2(Γ− Γ2) for i = 1, . . . , n− 1. (51)

Therefore (34) implies
pi − pi−1 = ici ≤ i(2Γ2 +∆i) ≤ 2iΓ, (52)

and we find by induction that

pi ≤ i(i+ 1)Γ for i = 1, . . . , n− 1. (53)

Summing these bounds for pi gives p ≤ n3 − n

3
Γ = 2LnΓ. We conclude that at every

iteration,
p− p∗ ≤ 2Ln(Γ− Γ2). (54)

By Proposition 3.1, Lagrange reduction of the block Bk:k+1 gives

p′k = pk − (k + 1)ε, p′k−1 = pk−1 + (k − 1)ε.

The special greedy strategy guarantees that

0 ≤ ∆k = max
i

∆i = 2Γ− 2Γ2; (55)
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in particular, pk ≥ 0 by (51). Therefore, the gain in the potential (50) is

p− p′ = pk + (pk−1)+ − (p′k)+ − (p′k−1)+.

To bound this from below we distinguish three cases.
Case 1: Both p′k−1 ≤ 0 and p′k ≤ 0. Then pk−1 ≤ 0, hence

p− p′ = pk.

Case 2: p′k−1 > 0 but p′k ≤ 0. Then, using (52) and (33),

p− p′ ≥ pk − p′k−1 = pk − pk−1 − (k − 1)ε ≥ kck − (k − 1)ck = ck > ck − 2Γk.

Case 3: p′k > 0. Since (p′k−1)+ ≤ (pk−1)+ + (k − 1)ε, we find from (33) that

p− p′ ≥ pk − p′k − (k − 1)ε = 2ε ≥ ck − 2Γk.

This covers all cases, and we conclude from (51), (55), and (53) that always

p− p′ ≥ min(ck − 2Γk, pk) = ∆k = 2Γ− 2Γ2 ≥ L−1
n (p− p∗).

Therefore each Lagrange reduction produces a gain in the potential of at least ∆k, and we
have

p′ − p∗ ≤ p− L−1
n (p− p∗)− p∗ = (1− 1/Ln)(p− p∗) ≤ e−1/Ln(p− p∗)+.

Now suppose first that q > 1. Then after at most L := ⌈Ln ln q⌉ ≤ 1 + Ln ln q Lagrange
reductions,

(p− p∗)+ ≤ e−L/Ln(pinit − p∗)+ ≤ q−1(pinit − p∗)+ = Ln∆,

hence p ≤ Ln∆ + p∗. Therefore the algorithm stops after at most another (Ln∆ + p∗)/∆
Lagrange reductions. It follows that the total number of Lagrange reductions is bounded
by p∗/∆+1+Ln(1+ln q). On the other hand, if q ≤ 1 then there is essentially no geometric
decay, and the algorithm stops after at most pinit/∆ Lagrange reductions. This proves the
complexity bound.

It remains to prove the guarantees (45)–(48) for the final basis. After termination, ∆k < ∆
for all k, hence (55) implies

Γ = Γ2 +
1

2
∆k < Γ2 +

1

2
∆ = Γ∗

2.

This implies (45) by definition (43). We may also rewrite inequality (53) as

gk
k

− gk+1

k + 1
=

pk
k(k + 1)

≤ Γ < Γ∗
2. (56)

Summing these gives (46). (47) follows from (46) since

ak+1 = g1 −
gk
k

+
pk
k

< (k − 1)Γ∗
2 + (k + 1)Γ∗

2 = 2kΓ∗
2.
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Finally, (48) follows from the definitions, (47), and the particular case i = 1, k = n of (46),
which gives

h(g) =
1

n− 1

(
g1 −

gn
n

)
< Γ∗

2.

⊓⊔

For example, if we start with a basis in Hermite normal form then g1 = . . . = gn = β, hence
p2 = . . . = pn = β, hence pinit = (n− 1)β, and we find Ntot = O(n3 log(1 + β/n2)).

A basis is LLL reduced in the traditional sense if the second alternative in (45) holds for
all k. This is guaranteed by our theorem only when no final pk is tiny or negative. In view
of (43), tiny or negative pk indicate a temporary barrier for reduction, which may or may
not be lifted in later iterations. The final reduced basis is LLL reduced only in case all
such barriers are ultimately lifted. However, the greedy LLL reduction guarantees for the
most important key quality measures the same bounds (48) as a fully LLL reduced basis.
(If needed, a fully LLL reduced basis can be obtained by continuing the LLL reduction as
long as at least one of the reductions improves some gk by > 1

2
∆.)

If a basis B is greedy LLL reduced, the mean slope an/(n−1) is bounded by the dimension-
independent constant 2Γ2 = 2−lg 3 ≈ 0.415 obtained from (48). For random reduced bases,

the factor is better. A Lagrange reduced and size reduced Cholesky factor

(
r1 sr1
0 r2

)
has

r21/r
2
2 ≤ 1/(1− s2), hence a2 = lg(r21/r

2
2) ≤ − lg(1− s2). Thus the expectation 〈a2〉 of a2 is

bounded by
〈a2〉 ≤ a2 := 〈− lg(1− s2)〉 = −〈ln(1− s2)〉/ ln 2.

For example,

a2 =





(
2− ln

27

4

)
/ ln 2 ≈ 0.1305 if s is uniformly distributed in

[
− 1

2
,
1

2

]
,

(
1 + 3 ln

3

4

)
/ ln 2 ≈ 0.1976 if s2 is uniformly distributed in

[
0,

1

4

]
.

The empirical bound 0.16 for LLL-reduced bases of random lattices, calculated from remarks
in Nguyen & Stehlé [21], is somewhere in between.

3.3 SDBKZ reduction

In 2011, Hanrot et al. [12] introduced a variant of the BKZ algorithm of Schnorr &

Euchner [27] that organized individual primal reduction steps into tours, in a way that
the effect of a whole tour can be quantified. Hanrot et al. showed that exploiting the
bit size inequalities introduced above reduces much of the complexity analysis to a study
of linear equations and inequalities. Before their work, this underlying linear structure was
invisible since the analysis was – with the single exception of Schönhage [28, Lemma 4.1]
– always done in a multiplicative way.
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Micciancio & Walter [19] use this technique to partially analyze a self-dual variant of
the BKZ algorithm called SDBKZ. In this algorithm, given some block size s (2 < s < n),
tours of primal reduction of the blocks Bi:i+s−1 for i = 1, . . . , n − s and tours of dual
reduction of the blocks Bi−s+2:i+1 for i = n − 1, n − 2, , . . . , s alternate until no reduction
gives an improvement.4 Assuming termination of the algorithm (which apparently happens
in practice but was not demonstrated in theory) they proved for the resulting reduced basis
the same bound µs on the Hermite exponent as one has for a slide reduced basis.

In the following, we simplify the complicated analysis of Hanrot et al. [12]. In particular,
we present – as conjectured in [19] – a way to terminate the SDBKZ algorithm in poly-
nomial time while essentially preserving the theoretical guarantees of the original SDBKZ.
Moreover, the analysis suggests a way to skip certain reduction steps in the tours without
compromising the quality of the output, thereby speeding up the algorithm.

Our analysis of the SDBKZ algorithm is based on a new global measure of the quality of a
basis. As we saw in the analysis of the LLL algorithm, basis reduction amounts to shrinking
the bit profile by making the bit sizes gi smaller. This can be done independently when the
block size is s = 2, which allows an elegant analysis of LLL algorithms. However, reducing
one of the gi by primal or dual reduction of a block of size s > 2 has an effect on some of the
neighboring bit sizes that is not easy to quantify. One therefore needs to look for a suitable
quality measure that has a predictable behavior under block primal or dual reduction.

The basic new idea is to consider the tightest parabolic dome that sits above the bit profile
g0, . . . , gn and interpolates the two end points. By setting up the interpolation conditions
one finds that the curvature of the dome is characterized by the bit defect

µ̃ := max
i

1

n− i

(gi
i
− gn

n

)
. (57)

In particular, µ̃ is an upper bound for the Hermite exponent (24). When the bit defect is
large, this dome is highly curved, and one expects to be able to gain a lot through reduction,
while when the bit defect is tiny or even negative, this dome is flat or has a bowl shape,
and only little can be gained.

One may now consider how the bit defect changes when one or more primal or dual reduc-
tions are applied to a basis. It turns out that this indeed works well for the cyclic BKZ
algorithm analyzed in [12]; cf. the remarks further below. However, in order to apply the
idea to the SDBKZ algorithm (which has the better theoretical bound on the Hermite ex-
ponent), we need to take into account that this algorithm does not perform any reductions
of small blocks at the lower and upper end. For optimal results, one therefore needs to
work with truncated versions of the bit defect, defined for a fixed block size s > 2. The
primal bit defect

µ := max
i≤n−s

1

n− i

(gi
i
− gn

n

)
,

4The original SDBKZ algorithm actually does primal reductions until i = n− s+1 and dual reductions
until i = 1, but this has no effect on the provable bounds.
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is the smallest number µ such that

gi
i
− gn

n
≤ (n− i)µ for i = 1, . . . , n− s. (58)

In particular, the case i = 1 says that the Hermite exponent (24) satisfies h(g) ≤ µ. If at
some point µ ≤ µs, this implies the bound µs on the Hermite exponent guaranteed for slide
reduction. Similarly, the dual bit defect

µ† := max
i≥s

1

n− i

(gi
i
− gn

n

)
,

is the smallest number µ† such that

gi
i
− gn

n
≤ (n− i)µ† for i = s, . . . , n. (59)

A small dual bit defect implies a good Hermite exponent of the dual basis.

The following theorem implies that, when started from an LLL reduced basis, the SDBKZ
algorithm comes in polynomial time arbitrarily close to satisfying µ ≤ µs.

3.4 Theorem. Let Ntot(µ
∗) be the number of (primal or dual) tours needed to reach (58)

with µ ≤ µ∗, when starting the SDBKZ algorithm with a dual tour. Then

Ntot(µ
∗) ≤

⌈
N log

µinit

µ∗ − µs

⌉
for µ∗ > µs,

where

N :=





n− 1

s− 1
if n ≤ 2s+ 1,

n2

4s(s− 1)
+ 1 if n ≥ 2s+ 2.

Proof. We first note that Proposition 2.5 gives

g′i − gi−1 −
1

s
(gi+s−1 − gi−1) ≤ Γs (60)

after primal reduction of the block Bi:i+s−1, and

g′i − gi+1 −
1

s
(gi−s+1 − gi+1) ≤ Γs (61)

after dual reduction of the block Bi−s+2:i+1. We put

µ′ := µs +
(
1− 1

N

)
(µ− µs) ≤ µs + e−1/N(µ− µs),

and show by induction that if µ > µs then at the end of the dual tour following the
computation of µ,

g′i
i
− g′n

n
≤ (n− i)µ′ for i = s, . . . , n; (62)
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i.e., the dual bit defect is now bounded by µ′. Indeed, this holds trivially for i = n. Suppose
that i < n and (62) holds with i + 1 in place of i. In step i < n of the dual tour, gi+1 has
already been changed to g′i+1. Noting that g′n = gn, (61) gives

g′i ≤ Γs +
(
1− 1

s

)
g′i+1 +

1

s
gi−s+1

≤ (s− 1)µs +
(
1− 1

s

)
(i+ 1)

(
(n− 1− i)µ′ +

gn

n

)
+

i+ 1− s

s

(
(n− 1− i+ s)µ+

gn

n

)
.

We now put δ := µ− µs > 0, substitute

µ = µ′ +
δ

N
, µs = µ− δ = µ′ + (1−N)

δ

N
,

and simplify to get

g′i ≤ i(n− i)µ′ +
ign
n

+
((i+ 1− s)(n− 1− i+ s)

s(s− 1)
+ 1−N

)(s− 1)δ

N

≤ i(n− i)µ′ +
ign
n

by choice of N . Thus (62) holds for i, and hence in general. If µ′ ≤ µs, the goal is already
achieved. Otherwise, we show that at the end of the subsequent primal tour we have

g′′i
i
− g′′n

n
≤ (n− i)µ′′ for i = 1, . . . , n− s (63)

with

µ′′ := µs +
(
1− 1

N

)
(µ′ − µs) ≤ µs + e−2/N(µ− µs); (64)

i.e., the primal bit defect is now bounded by µ′′. Again, this is proved by induction. Since
g′0 = 0, (60) gives for i = 1 the inequality

g′′1 −
gn
n

≤ Γs +
g′s
s
− gn

n
≤ (s− 1)µs + (n− s)µ′ = (n− 1)µs + (n− s)(µ′ − µs) ≤ (n− 1)µ′′

since, as one easily shows, N ≥ n− 1

s− 1
. This proves (63) for i = 1. Now suppose that (63)

holds with i−1 in place of i. In step i > 1 of the primal tour, g′i−1 has already been changed
to g′′i−1. Hence (60) gives

g′′i ≤ Γs +
(
1− 1

s

)
g′′i−1 +

1

s
g′i+s−1

≤ (s− 1)µs +
(
1− 1

s

)
(i− 1)

(
(n+ 1− i)µ′′ +

gn

n

)
+

i+ s− 1

s

(
(n+ 1− i− s)µ′ +

gn

n

)
.

We now put δ′ := µ′ − µs > 0, substitute

µ′ = µ′′ +
δ′

N
, µs = µ′ − δ′ = µ′′ + (1−N)

δ′

N
,
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and simplify to get

g′′i ≤ i(n− i)µ′′ +
ign
n

+
((i+ s− 1)(n+ 1− i− s)

s(s− 1)
+ 1−N

)(s− 1)δ′

N

≤ i(n− i)µ′′ +
ign
n

by choice of N . Thus (63) holds for i, and hence in general.

As a consequence of (64), as long as the value of µ−µs remains positive, it decreases every
⌈Nt⌉ tours by a factor of at least et. This proves the theorem. ⊓⊔

Without compromising the complexity order, one may run the algorithm in practice for up
to O(n2) additional tours beyond those needed to reach µ ≤ µ∗, where µ∗ is taken slightly
larger than µs. Since the apriori bound derived above is somewhat pessimistic for most
(or even all?) lattice bases, a significantly smaller µ can typically be achieved. It is clear
from the argument that only those reductions must be carried out for which gi does not
yet satisfy the bound guaranteed by the above analysis. Thus only those reductions are
carried out where gi is nearly largest when measured in the correct units. This introduces
an element of laziness into the algorithm and speeds it up without affecting the worst case
bound for the number of tours. For getting the first basis vector small quickly, it is also
beneficial to begin the reduction with a dual rather than a primal tour. The reason is that
a dual tour transports poor basis vectors towards higher indices and thus improves the
quality of the leading blocks, which is then immediately exploited in the first step of the
primal tour.

The cyclic variant of the BKZ algorithm analyzed in Hanrot et al. [12] proceeds by using
primal tours only, but these are extended to shorter blocks towards the end of the basis.
In this case, a similar analysis works, with the same N but using the symmetric bit defect
defined by (57). The resulting new proof (whose details are left to the reader) is far simpler
than that of [12] and results in the same convergence rate as given above for SDBKZ,
which is a factor of approximately 16 better the bound on the rate derived in [12]. The
final bound on µ and hence the Hermite factor resulting for BKZ is slightly weaker than
that for SDBKZ.

Unfortunately, neither the above technique nor the original technique of Hanrot et al. is
able to bound the approximation exponent or the enumeration exponent. In particular,
unlike BKZ (where Schnorr [25] gives bounds on the approximation exponent) and slide
reduction, SDBKZ is (at present) not guaranteed to find a very short vector in case that

λ1(B) is much smaller than the trivial Hermite bound

√
γnd

1/n
n . (One could of course bound

the approximation exponent by performing O(n) runs of SDBKZ according to the recipe
of Lovász [18, p.25].)
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[12] G. Hanrot, X. Pujol, and D. Stehlé, Analyzing blockwise lattice algorithms using dy-
namical systems, pp. 447–464 in: Advances in Cryptology – CRYPTO 2011, Springer,
Berlin 2011. (alternative title, same content: Terminating BKZ) [2, 12, 15, 16, 19, 20,
23]

[13] C. Hermite, Extraits de lettres de M. Ch. Hermite á M. Jacobi sur différents objects
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[21] P.Q. Nguyen and D. Stehlé, LLL on the average, pp. 238–256 in: Algorithmic Number
Theory (F. Hess et al., eds.), Lecture Notes in Computer Science 4076, Springer, Berlin
2006. [2, 19]

[22] P.Q. Nguyen and B. Vallée (eds.), The LLL Algorithm: Survey and Applications,
Springer, Berlin 2010. [2, 25]

[23] C.A. Rogers, The number of lattice points in a set, Proc. London Math. Soc. (3) 6
(1956), 305–320. [9]

[24] K. Sawatani, T. Watanabe and K. Okuda, A note on the HermiteRankin constant, J.
Thorie des Nombres de Bordeaux 22 (2010), 209–217. [5]

[25] C.P. Schnorr, Block reduced lattice bases and successive minima, Combinatorics, Prob-
ability and Computing 3 (1994),507–533. [2, 23]

[26] C.P. Schnorr, Accelerated slide- and LLL-reduction, Electronic Colloqiuium on Com-
putational Complexity, Report TR11-050, Frankfurt 2011. [2, 15]

[27] C.P. Schnorr and M. Euchner, Lattice basis reduction: improved practical algorithms
and solving subset sum problems, Mathematical Programming 66 (1994), 181–199. [2,
12, 19]

[28] A. Schönhage, Factorization of univariate integer polynomials by Diophantine approx-
imation and an improved basis reduction algorithm, pp. 436–447 in: Automata, Lan-
guages and Programming, Springer, Berlin 1984. [2, 19]

[29] I. Smeets, The history of the LLL algorithm, pp. 1–17 in: The LLL Algorithm: Survey
and Applications (P.Q. Nguyen and B. Vallée, eds.), Springer, Berlin 2010 [22]. [15]
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