
Foundations of Hardware-Based Attested Computation and
Application to SGX∗

Manuel Barbosa
haslab, inesc tec, fcup
mbb@dcc.fc.up.pt

Bernardo Portela
haslab, inesc tec, uminho

blfportela@gmail.com

Guillaume Scerri
University of Bristol

guillaume.scerri@bris.ac.uk

Bogdan Warinschi
University of Bristol

csxbw@bristol.ac.uk

Abstract

Exciting new capabilities of modern trusted hardware technologies allow for the ex-
ecution of arbitrary code within environments completely isolated from the rest of the
system and provide cryptographic mechanisms for securely reporting on these executions
to remote parties.

Rigorously proving security of protocols that rely on this type of hardware faces two
obstacles. The first is to develop models appropriate for the induced trust assumptions
(e.g., what is the correct notion of a party when the peer one wishes to communicate with
is a specific instance of an an outsourced program). The second is to develop scalable
analysis methods, as the inherent stateful nature of the platforms precludes the application
of existing modular analysis techniques that require high degrees of independence between
the components.

We give the first steps in this direction by studying three cryptographic tools which
have been commonly associated with this new generation of trusted hardware solutions.
Specifically, we provide formal security definitions, generic constructions and security
analysis for attested computation, key-exchange for attestation and secure outsourced com-
putation. Our approach is incremental: each of the concepts relies on the previous ones
according to an approach that is quasi-modular. For example we show how to build a
secure outsourced computation scheme from an arbitrary attestation protocol combined
together with a key-exchange and an encryption scheme.

1 Introduction

Background. The many applications that routinely manipulate sensitive data require strong
guarantees which ensure i. that adversaries cannot tamper with their execution; and ii. that
no sensitive information is leaked. Yet, satisfying these guarantees on modern execution
platforms rife with vulnerabilities (e.g. in mobile devices, PCs) or inherently not trustworthy
(e.g., cloud infrastructures) is a major challenge.
∗This work was supported by the European Union’s 7th Framework Program (FP7/2007-2013) under grant

agreement n. 609611 (PRACTICE).

mbb@dcc.fc.up.pt
blfportela@gmail.com
guillaume.scerri@bris.ac.uk
csxbw@bristol.ac.uk

A promising starting point for solutions are the remote attestation capabilities offered
by modern trusted hardware: computational platforms equipped with this technology can
guarantee to a remote party various degrees of integrity for the software that it runs. For
example the Trusted Platform Module (TPM) can provide certified measurements on the
state of the platform and can be used to guarantee integrity of BIOS and boot code right
before it is executed. More recent technologies (e.g., ARM’s TrustZone and Intel’s Software
Guard Extension (SGX) [18]) have significantly expanded the scope and guarantees of trusted
hardware. They offer the ability to run applications in “clean-slate" isolated execution envi-
ronments (IEE) completely independent of anything else running on the processor; the desired
attestation guarantees come from reports that are authenticated cryptographically.

A second major challenge is to provide security guarantees that go beyond heuristic ar-
guments. Here, the established methodology is the “provable security" approach, which ad-
vocates carrying out the analysis of systems with respect to rigorously specified models that
clarify the trust relations, the powers of the adversary and what constitutes a security breach.
The approach offers well-established definitional paradigms for all basic primitives and some
of the more used protocols. On the other hand, the success of applying this approach to
new and more complex scenarios fundamentally hinges on one’s ability to tame scalability
problems, as models and proofs, even for moderate size systems, tend to be unwieldy. Some
solutions to this issue exist in the form of compositional principles that, when incorporated
as a native feature in the security abstractions, allow to establish the guarantees of larger
systems from the guarantees on its components [8].

In this paper we take a provable security approach to protocols that rely on the IEE-
capabilities of modern trusted hardware. It may be tempting to assume that, for the analysis
of such protocols, designing security models is a simple matter of overlaying/merging the trust
model induced by the use of such hardware over well-established security abstractions. If this
were true, one could rely on established models and methodologies to perform the analysis.
Unfortunately, this is not the case.

Consider the problem of secure outsourced computation of a program P to a remote
machine. The owner of P wants to ensure that the (potentially malicious) remote platform
does not tamper with the execution of the program and that it learns no information about the
input/output (I/O) behavior of P . For remote machines with IEE capabilities, the following
straightforward design has been informally proposed in the literature and should, intuitively,
provide the desired guarantees. First, execute a key-exchange with a remote instance of an
IEE; after the key exchange finishes, use the key thus established to send encrypted inputs
to the IEE who can decrypt and pass them to P . The output returned by P is encrypted
within the IEE and sent to the user. The construction relies on standard building blocks (key-
exchange, authenticated encryption) so the security of the overall design should be reducible
to that of the key exchange and authenticated encryption, for which we already have widely-
accepted security models and constructions.

We highlight two important issues that show that neither existent models nor existent
techniques are immediately suitable for the analysis of IEE-based protocols in general, and
for the protocol above in particular. The first is the concept of a party which is a key notion
in specifying and reasoning about the security of distributed systems. Traditionally, one
considers security (e.g., of a key-exchange) in a setting where there is a PKI and at least some
of the parties (e.g., the servers) have associated public keys. Parties and their cryptographic
material are then essentially the same thing for the purpose of the security analysis. In the
context that we study, users (who wish to use trusted hardware) are not expected to have

2

long term keys; furthermore, privacy considerations require that the cryptographic operations
performed by the trusted hardware on remote machines should not allow one to track different
instances – which makes long term cryptographic material inadequate as a technical anchor
of a party’s participation in such a protocol. Indeed, the desirable functionality for many
usages of such systems is that the cryptographic material associated with a computation
outsourcing protocol (both for local and remote parties) can be arbitrary and fixed on-the-fly,
when the protocol is executed. An interesting problem is therefore how to define the security
of outsourced computation in this setting, and how to rely on the asymmetry afforded by the
trust model specific to IEE systems to realise it.

The second issue is composability. In the protocol for outsourced computation that we
present above, one might be led to think that security simply follows if the key-exchange is
secure and the channel between the user and the IEE uses authenticated encryption (with
appropriate replay protection): if the only information passed from the key exchange to the
channel is the encryption key, then one can design and analyze the two parts separately. While
in more standard scenarios this may be true, reliance on the IEE breaks the independence
assumption that allows for composability results: what the specification above hides is that
the code run by the IEE (i.e., the program for key-exchange, the one for the secure channels
and the program that they protect) needs to be loaded at once, or else no isolation guarantees
are given by the trusted hardware.1 This means that the execution of the different parts of
the program is not necessarily independent, as they unavoidably share the state of the IEE.
An important question is therefore whether the above intuitive construction is sound, and
under which conditions can one use it to perform IEE-enabled outsourcing of computation.

To summarise the above discussion, two remarks help motivate the work in this paper.
Protocols relying on IEE are likely to be deployed in applications with stringent security
requirements, so ensuring that they fall under the scope of the provable security approach
is important. Moreover, such applications are likely to be complex: inherently, they involve
communication between remote parties, incorporate diverse code executed at different levels of
trust, and rely on multiple cryptographic primitives and protocols as building blocks (see, for
example, the One-time password protocol based on SGX[18]). However, we have concluded
that key aspects of existing cryptographic models do not naturally translate to this new
setting and, perhaps more worryingly, that the type of compositional reasoning enabled by
such cryptographic models is clearly unsuitable for protocols that rely on IEE.
Our approach. We will first outline the high-level decisions that underly our approach,
and then describe our technical contributions more in detail. We use SGX and TrustZone as
inspiration, but we do not hardwire our models to a specific platform, in order to ensure that
the scope of our work encompasses other similar technologies. Instead, we use an abstract
notion of a machine which captures the relevant aspects that such platforms offer: their
capability to run processes with isolation guarantees and the ability to directly use secure

1Intuitively, mechanisms such as SGX and TrustZone are designed to protect and provide attestation
guarantees over monolithic pieces of software, which must be fixed when an IEE is created and are identified
using a fingerprint of the code. To go around this restriction and compose multiple programs, one has two
options: i. to build a single composed program and load it in its entirety into an IEE (this is the approach
we follow in this paper); or ii. to use multiple IEEs to host the various programs, and employ cryptographic
protocols to protect the interactions between them using the (potentially malicious) host operating system as
a communications channel. We note that this latter option would again lead to loading composed programs
into each IEE, since cryptographic code would need to be added to each of the individual programs, and this
would then lead to the same problem that we intend to solve with the framework we propose in this paper.

3

cryptography without going through potentially untrusted software. Additionally, we target
our effort on the combination of remote attestation and key-exchange protocols. The former
is the raison d’être for trusted hardware, while the latter is the natural building block towards
adding secrecy guarantees for code running under the protection of IEEs (per our example
above).

As explained above, one challenge we set out to address is to incorporate into our ap-
proach a new form of compositional reasoning that permits dealing with potentially shared
state between all the code that is loaded into an IEE, which means that a-priori there are
no guarantees of independence between the executions of different cryptographic primitives
that one could incorporate into the same program. Indeed, at the very least, the reporting
mechanisms for the IEE will refer to the code of the full program, which immediately con-
strains modular reasoning — a crucial tool to enable scalability. We sidestep this problem by
providing definitions (for both syntax and security) that are composition-aware: they explic-
itly assume that the code loaded into an IEE may result from the composition of multiple
programs.

Contributions

We focus on the interplay between composition and attestation in hardware-based settings.
In particular, we concentrate on a pervasive use case: attestation is often used to protect a
security-critical part of the code (P ∗ in our setting) whereas the remaining code Q does not
need attestation: it can rely on guarantees established by P ∗ (e.g. an authenticated secret
key), and can therefore be much more efficient. As explained above and in footnote 1 the
stateful nature of the execution environment does not allow for independent analysis of these
two components and new techniques for rigorous validation are needed.

Our starting point is therefore a program Q that a local user wishes to outsource to a
remote machine. Such a program will need to be transformed (compiled in the cryptographic
sense of the word) into another program that, intuitively, will result from the composition of
a handshake/bootstrapping procedure P ∗ that will establish a secure channel with the IEE
in which program Q will be executed, and an instrumented version of Q, say Q∗, that uses
the aforementioned secure channel to ensure that Q is indeed securely executed.

Our approach to formalising and realising this composition pattern has three main stepping-
stones: i. we introduce attested computation as the formalisation of the raw guarantees
provided by IEEs with cryptographic functionalities; ii. we show how a passively secure
key exchange can be efficiently combined with an attested computation scheme to obtain the
bootstrapping procedure P ∗ referred above; and iii. we rely on our composition-aware formal-
isation to show that by instrumenting program Q∗ using standard cryptographic techniques
one achieves secure outsourced computation. Details follow.
Attested computation. Our first contribution is a formal treatment of IEE-based remote
attested computation. We consider a setting where a user wishes to remotely execute a
program P and rely on the cryptographic infrastructure available within the IEE to attest
that some incarnation P ∗ of this program is indeed executing within an IEE of a specific
remote machine (or group of machines). We provide a general solution to this problem in the
form of a new cryptographic concept called an attested computation. We formalize two core
guarantees.

First, we demand that the user’s local view of the execution is “as expected", i.e., that
the I/O behavior that is reconstructed locally corresponds to an honest execution of P . The

4

second guarantee is more subtle and requires that such an execution has actually occurred in
an IEE within a specific remote platform; in other words, the attested computation client is
given the assurance that its code is being run in isolation (and displays a given I/O behaviour)
within a prescribed remote physical machine (or group of machines) associated with some
authenticated public parameters. This latter guarantee is crucial for bootstrapping the secure
outsourcing of code: consider for example P to be a key-exchange protocol, which will be
followed by some other program that relies on the derived key. It must be the case that, at
the end of the key exchange, the remote state of the key-exchange is protected by an IEE.

The second guarantee we demand from attested computation follows easily from the pre-
vious observation. If the attested program keeps sensitive information in its internal state
(which is not revealed by its I/O behaviour as in the case of a key exchange protocol) then
execution within the remote IEE should safeguard its internal state. If this were not the
case, we would again run into problems when trying to compose P ∗ with some program that
relies on the security properties of P . We therefore exclude attested computation schemes
where the instrumented program P ∗ might leak more information in its I/O behaviour than
P itself by introducing the notion of minimal leakage, which essentially states that the I/O
of an attested program does not leak any information beyond what is unavoidably leaked by
an honest execution.

Finally, we provide a scheme for attested computation that relies on a remote machine
offering a combination of symmetric authentication and digital signatures (a capability similar
to what SGX provides) and show that our scheme is secure in the sense that we define.
Key-exchange for attested computation. On its own, attested computation only
provides integrity guarantees: the I/O behavior of the outsourced code is exposed to untrusted
code in the remote machine on which it is run. The natural solution to the problem is to
establish a secure communication channel with the IEE via a key-exchange protocol. It is
unclear, however, how the standard security models for key exchange protocols map into the
attested computation scenario, and how existing constructions for secure key-exchange fare in
the novel scenario that we study. Indeed, for efficiency reasons one should use a key exchange
protocol that is just strong enough to achieve this goal.

To clarify this issue we formalize the notion of key-exchange for attested computation.
The name that we propose is intentional: key-exchange protocols as used in the our context
differ significantly in the syntax and security models from their more traditional counterparts.
For example, our syntax reflects that the code of the key-exchange is not fixed a-priori: a user
can set parameters both for the component to be run locally and for the one to be executed
within the IEE. This allows a user to hardwire in the code to be run remotely a new nonce
(or as in our examples some cryptographic public key for which it knows the secret key).

As explained above, the notion of party in the context of attested computation needs to
be different from that adopted by traditional notions of secure key-exchange. Our solution
is to rely on the trust model specific to IEE settings: we can assign some arbitrary strings
as identifiers for the users of the local machine, and we allow these users to specify arbitrary
strings as identifiers for the remote code (a secure instantiation would require that this iden-
tifier corresponds to some cryptographic material possibly generated on the fly as explained
above). We then adapt the execution model and definitions for key-exchange for the modified
syntax and the new notion of communicating parties to reflect the expected guarantees: dif-
ferent local and remote sessions agree on each other’s identifiers, derive the same key and the
key is unknown to the adversary. One crucial aspect of our security model for key-exchange

5

is that it explicitly accounts for the fact that the remote process will be run under attestation
guarantees, which maps to a semi-active adversarial environment.

To improve usability of our notion of secure key-exchange for attested computation we
provide two results. The first result simplifies the design of such protocols. Here, we show
a generic construction that combines a key-exchange protocol that is passively secure and a
standard signature scheme to derive a (potentially very efficient) key exchange protocol for
attestation. The second result simplifies reasoning about the composition of a key-exchange
for attestation with an arbitrary protocol that relies on the agreed key. Specifically, we
provide a utility theorem which specifically states what composition guarantees one gets for
an arbitrary program Q that is run within a remote IEE and relies on a shared key that was
established via the attested computation of a key exchange protocol that satisfies our tailored
definition.
Secure outsourced computation. The last layer in our framework is a formalisation
of secure outsourced computation, the principal motivating use-case for our approach. We
provide syntax and two security notions for a secure outsourced computation protocol, one
for authenticity and the second one for the privacy of the I/O of the outsourced program.
We then prove that the construction that combines a key-exchange for attested computation
with an authenticated symmetric encryption scheme and replay protection gives rise to a
scheme for secure outsourced computation. We present our result as a general formalisation
(i.e., not application specific) of the intuition that by relying on more powerful hardware
assumption such as those offered by SGX, one can indeed efficiently achieve a well-defined
notion of secure outsourced computation that simultaneously offers verifiability and privacy.
The proof of this result crucially relies on the utility theorem we defined for the combination
of attested computation with key exchange.

2 Other Related work
Work that looks at provable security of realistic protocols that use trusted hardware-based
protocols has developed around the protocols offered by the Trusted Platform Module (TPM)
[5, 28, 6, 12, 11]. However, the functionality and efficiency of the protocols offered by the
TPM makes them more suitable for static attestation (i.e., ensuring integrity of programs
right before they are executed). Run-time guarantees, like those that we study here are in
principle possible but cumbersome to obtain. Linking attestation guarantees provided by the
TPM with those offered by a secure channel onto a remote machine had been studied before
but only informally [16]. Although more rigorous approaches used to analyze attestation
guarantees for protocols based on the TPM exist, they use more abstract models (with weaker
guarantees) [27, 10].

Another related line of research leverages the trusted hardware to bootstrap entire plat-
forms for secure software execution (e.g. Flicker [22], Trusted Virtual Domains [9], Haven [2]).
These are large systems that are currently outside the scope of provable-security techniques.
Smaller protocols which solve specific problems (secure disk encryption [23], one-time pass-
word authentication [18] outsourced Map-Reduce computations [26], Secure Virtual Disk
Images [13], secure embedded devices [24, 21]) are more susceptible to rigorous analysis. Al-
though some protocols (e.g., those of Hoekstra et al. [18]) come only with intuition regarding
their security, others – most notably those by Schuster et. al [26] which uses SGX platforms
to outsource map-reduce computation – come with a proof of security. The constructions in

6

Game AuthΠ,A(1λ):
List← []
key←$ Gen(1λ)
(m, t)←$ AAuth(1λ)
Return Ver(key,m, t) = T ∧m 6∈ List

Oracle Auth(m):
List← (m : List)
t← Mac(key,m)
Return t

Figure 1: Game defining the security of a MAC scheme Π.

that paper are close to those that we abstract and analyze here.
Our construction of secure outsourced computation can be seen as a solution to the prob-

lem of verifiable computation as specified by [14]. That rich line of work concentrates on
the much harder problem of providing crypto-only solutions and usually gives up privacy for
efficiency and verifiability (e.g., [4], [15], [25]). Here, we show how to obtain a reasonably
efficient and secure system with technology that is likely to be deployed in the near future.

3 Preliminaries

3.1 Message Authentication Codes

Syntax. Amessage authentication code scheme Π is a triple of PPT algorithms (Gen,Auth,Ver).
On input 1λ, where λ is the security parameter, the randomized key generation algorithm
returns a fresh key. On input key and message m, the deterministic MAC algorithm Auth
returns a tag t. On input key, m and t, the deterministic verification algorithm Ver returns T
or F indicating whether t is a valid MAC for m relative to key. We require that, for all λ ∈ N,
all key ∈ [Gen(1λ)] and all m, it is the case that Ver(key,m, (Auth(key,m))) = T.
Security. We use the standard notion of existential unforgeability for MACs [3]. We say
that Π is existentially unforgeable if AdvAuth

A,Π (λ) is negligible for every ppt adversary A, where
advantage is defined as the probability that the game in Figure 1 returns T.

3.2 Digital Signature Schemes

Syntax. A signature scheme Σ is a triple of PPT algorithms (Gen,Sign,Vrfy). On input 1λ,
where λ is the security parameter, the randomized key generation algorithm returns a fresh
key pair (pk, sk). On input secret key sk and message m, the possibly randomized signing
algorithm Sign returns a signature σ. On input public key pk, m and σ, the deterministic
verification algorithm Vrfy returns T or F indicating whether σ is a valid signature for m
relative to pk. We require that, for all λ ∈ N, all (pk, sk) ∈ [Gen(1λ)] and all m, it is the case
that Vrfy(pk,m, (Sign(sk,m))) = T.
Security. We use the standard notion of existential unforgeability for signature schemes [17]
. We say that Σ is existentially unforgeable if AdvUF

A,Σ(λ) is negligible for every ppt adversary
A, where advantage is defined as the probability that the game in Figure 2 returns T.

3.3 Passively secure key exchange

We define a form of key exchange protocol that does not rely on long term secret/state or
global setup and for which we require weak security guarantees (essentially security against a
passive adversary); the classical Diffie-Hellman key exchange is a standard example. Later we

7

Game UFΣ,A(1λ):
List← []
(pk, sk)←$ Gen(1λ)
(m, σ)←$ ASign(1λ, pk)
Return Vrfy(pk,m, σ) = T ∧m 6∈ List

Oracle Sign(m):
List← (m : List)
σ ← Sign(sk,m)
Return σ

Figure 2: Game defining the security of a signature scheme Σ.

Game CorrΠ(1λ):
stj ← ε; t← j
(m, sti)←$ Π(ε, i, initiator, ε)
While m 6= ε:

If t = j: t← i; (m, stj)←$ Π(m, j, responder, stj)
Else: t← j; (m, sti)←$ Π(m, i, initiator, sti)

Return δi = δj = accept ∧ keyi = keyj ∧ sidi = sidj ∧
pidj = i ∧ pidi = j

Figure 3: Game defining the correctness of protocol Π.

show how, combined with attestation, such protocols yield secure key-exchange when facing
active adversaries. A key exchange protocol is therefore defined by a single ppt algorithm Π
used by communicating parties. When analysing the security and correctness of the protocol
we will consider that each party with identifier id can execute several instances of the protocol
with different parties. Throughout the paper we let identifiers be arbitrary strings, which will
be given meaning by the higher-level application relying on the protocol under analysis. For
s ∈ N, we write Πs

id for the s instance of party id. We assume that each instance maintains
variables st, δ, key which record respectively, local state information, the state of the key
(derived, accept, reject or ⊥) and the value of the key. In addition, we assume variables for the
role ρ of the session (initiator or responder), the party identifier of the owner of the session
oid and that of its partner pid and a session identifier sid. We require that key =⊥ unless
δ ∈ {derived, accept}, that oid, ρ, sid, key are only assigned once during the entire execution of
the protocol (the first two when the session is initialized). We denote running Π with message
m, role ρ and state st to produce m′ and the updated state st′ by (m′, st′)←$ Π(1λ,m, id, ρ, st),
and will omit the security parameter input throughout the paper for the sake of compactness.
We will use message ε to refer to the empty string. This will be passed to both parties as the
initial state; it will be passed to the initiator as first input message; and it will be returned
as output message by the party that executes last, to denote that no further interaction is
needed. Long term secrets and/or shared initial state between several instances run by the
same identity can be captured by setting their initial state accordingly. Correctness. A
key exchange protocol is correct if, after a complete (honest) run between two participants
with complementary roles, both reach the accept state, both derive the same key and session
identifier, and both obtain correct partner identities. More formally, a protocol Π is correct
if, for any distinct party identities i and j, the experiment in Figure 3 always returns T.
Execution model. We will consider key exchange schemes that are secure against passive
adversaries. Our adopted security notion is a restriction of the scenario considered in [20]
that excludes corruptions.2 The execution model considers an adversary, which is run on

2The trust model we consider for attested computation excludes corruptions for the sake of simplicity, but
all our results can be extended to consider that possibility. Having said that, it seems reasonable to exclude
the possibility of isolated executed environment breach based on a hardware assumption. The possibility of

8

the security parameter, and which can interact with the following oracles whose behaviour
depends on a secret sampled bit b and a shared list of pairs of keys fake, which is initially
empty:

• Execute(i, j) runs a new instance of the protocol between distinct parties i and j. It then
checks if the key derived for the executed session exists in list fake. If not, it generates
a new key∗ uniformly at random, and adds (key, key∗) to the list. Finally, it outputs the
transcript of the protocol execution and the session identifier associated with it.

• Reveal(i, s) outputs the session key key of Πs
i .

• Test(i, s) will return ⊥ if δsi 6= accept (i.e. if no execute query actually created such a
session). Otherwise, if b = 0 it outputs the key associated with Πs

i . If b = 1, it searches
for the key associated with Πs

i in list fake and returns the associated key∗.

When the adversary terminates interacting with the oracles, it will eventually output a bit b′
which represents his guess on what the challenge bit b is.
Partnering relations. We define entity authentication following [7], and observe that in
the case of passively secure key exchange, this is essentially a correctness property. First we
introduce a notion of partnering, which informally states that two oracles which have derived
keys are partners if they share the same session identifier. The definition makes use of the
following predicate on two instances Πs

i and Πt
j holding states (stsi , δsi , ρi, sidsi , pidsi , keysi) and

(sttj , δtj , ρj , sidtj , pidtj , keytj), respectively:

P(Πs
i ,Πt

j) =
{

T if sidsi = sidtj ∧ δsi , δ
t
j ∈ {derived, accept}

F otherwise.

Definition 1. [Partner]Two players Πs
i and Πt

j are partnered if P(Πs
i ,Πt

j) = T.

Our authentication notion relies on three further definitions, which demand that partner-
ings will need to be valid, confirmed and unique. In short, these three requirements ensure
that any instance that accepts has a partner, that this partner is unique and that partners
share the same key.

Definition 2 (Valid Partners). A protocol Π ensures valid partners if the bad event notval
does not occur, where notval is defined as follows:

∃Πs
i ,Πt

j s.t. P(Πs
i ,Πt

j) = T∧
(pidsi 6= oidtj ∨ pidtj 6= oidsi ∨ ρi = ρj ∨ keysi 6= keytj).

Definition 3 (Confirmed Partners). A protocol Π ensures confirmed partners if the bad
event notconf does not occur, where notconf is defined as follows:

∃Πs
i s.t. δsi = accept ∧ ∀Πt

j , P(Πs
i ,Πt

j) = F.

Definition 4 (Unique Partners). A protocol Π ensures unique partners if the bad event
notuni does not occur, where notuni is defined as follows:

∃Πs
i ,Πt

j ,Πr
k s.t.

(j, t) 6= (k, r) ∧ P(Πs
i ,Πt

j) = T ∧ P(Πs
i ,Πr

k) = T

local machine corruption should, however, be considered.

9

Intuitively, we will consider that an adversary violates two-sided entity authentication if
he can lead an instance of an honest party running the protocol to accept, and in doing that
cause one of the bad events notval, notconf, notuni.
Security definition. We are now ready to present the security notion we will be using for
key exchange protocols. To exclude breaks via trivial attacks, we define legitimate adversaries
as those who ensure the following freshness criteria is satisfied for his Test(i, s) queries: i.
Reveal(i, s) was not queried; and ii. for all Πt

j such that P(Πs
i ,Πt

j) = T, Reveal(j, t) was not
queried. We only consider experiments in which the adversary is found to be legitimate and
define the winning event guess to be b = b′ at the end of the experiment.
Definition 5. [Passive AKE security] A protocol Π is passively secure if, for any legitimate
ppt adversaryinteracting with the execution environment described above: 1. the adver-
sary violates two-sided entity authentication with negligible probabilityPr[notval ∨ notconf ∨
notuni]; and 2. its key secrecy advantage 2 · Pr[guess]− 1 is negligible.

One-Sided Authentication. We will also consider a weaker form of entity authentica-
tion guarantee, where only some parties are authenticated. To this end, we will distinguish
between Loc and Rem parties, identify the former with responders, and the latter with ini-
tiators. In one-sided authentication, only initiators (i.e., remote parties) are authenticated,
which means that responders (i.e., local parties) do not need to keep any long term secrets.
Again, we follow [7] and give one-sided versions of the definitions for valid partners and con-
firmed partners. Intuitively, on acceptance, a local party will be assured that a valid unique
partnering session exists. Security will still need to ensure that each local (or remote) session
has at most one remote (respectively local) partnered session. However, we no longer confir-
mation for the remote machine: we allow the remote party to accept even if there is no local
matching session that has accepted. This weaker guarantee is sufficient for many applications
and has been used in the context of attested computation, for example, in [18].
Definition 6 (One-Sided Valid Partners). A protocol Π ensures one-sided valid partners if
the bad event os-notval does not occur, where os-notval is defined as follows:

∃Πs
i ,Πt

j s.t. i ∈ Loc ∧ P(Πs
i ,Πt

j) = T ∧
(pidsi 6= j ∨ ρsi 6= initiator ∨ ρj 6= responder ∨ keysi 6= keytj).

Definition 7 (One-Sided Confirmed Partners). A protocol Π ensures one-sided confirmed
partners if the bad event os-notconf does not occur, where os-notconf is defined as follows:

∃Πs
i s.t. i ∈ Loc ∧
δsi = accept ∧ ∀Πt

j , P(Πs
i ,Πt

j) = F.

When one-sided authentication suffices, then the definition of key exchanged security is
weakened by relaxing condition 1 in Definition 5, which is modified to refer to the following
event.

Pr[os-notval ∨ os-notconf ∨ notuni]

4 IEEs, Programs, and Machines

Isolated Execution Environments. At the high-level, an IEE can be seen as an idealised
random access machine running some fixed program P , whose behaviour can only be influ-
enced via a well-specified interface that permits passing inputs to the program, and receiving

10

its outputs. Intuitively, an IEE gives the following security guarantees, which we will formalise
later in this section. The I/O behaviour of a process running in an IEE is determined by the
program it is running, the semantics of the language in which the program is written, and the
inputs it receives. This means, in particular, that there is strict isolation between processes
running in different IEEs (and any other program running on the machine). Furthermore, the
only information that is revealed about a program running within an IEE is contained in its
input-output behaviour (which in most hardware systems is simply shared memory between
the protected code and the untrusted software outside).

We emphasize that our notion of a machine is intended to be inclusive of any hard-
ware platform that supports some form of isolated execution. For this reason, the syntax of
this abstraction is minimalistic, so that it can be restricted/extended to capture the specific
guarantees awarded by different concrete hardware architectures, including TPM, TrustZone,
SGX, etc. As an example, our “vanilla” machine supports an arbitrary number of IEEs,
where programs can be loaded only once, and where multiple input/output interactions are
allowed with the protected code. This is a close match to the SGX/TrustZone functionalities.
However, for something like TPM, one could consider a restricted machine where a limited
number of IEEs exist, with constrained input/output capabilities, and running specific code
(e.g., to provide key storage). Similarly, we consider IEE environments where the underlying
hardware is assumed to only keep benevolent state, i.e., state that cannot be used to intro-
duce destructive correlations between multiple interactions with an IEE. Again, this closely
matches what happens in SGX/Trustzone, but different types of state keeping could be al-
lowed for scenarios where such correlations are not a problem or where they must be dealt
with explicitly.
Programs. Implicit throughout the paper will be a programming language L in which
programs are written. We assume that this language is used by all computational platforms,
but we admit IEE-specific system calls giving access to different cryptographic functionalities.
These are referred as the security module interface. An additional system call rand is also
assumed to be present in all platforms, giving access to fresh random coins sampled uniformly
at random. Language L is assumed to be deterministic modulo the operation of system calls.
As mentioned above, it is important for our results that system calls cannot be used by a
program to store additional implicit state that would escape our control. To this end, we
impose that the results of system calls within an IEE can depend only on: i. an initially
shared state that is defined when a program is loaded (e.g., the cryptographic parameters of
the machine, and the code of the program); ii. the input explicitly passed on that particular
call; and iii. fresh random coins. As a consequence of this, we may assume that system calls
placed by different parts of a program are identically distributed, assuming that the same
input is provided. This is particularly important when we consider program composition
below.

A program P must be written as a transition function, mapping bit-strings to bit-strings.
Such functions take a current state st and an input i, and they will produce a new output o
and an updated state. We will refer to this as an activation and express it as o ← P [st](i).
Unless otherwise stated, st will be assumed to be initially empty. We impose that every output
produced by a program includes a Boolean flag finished that indicates whether the transition
function will accept further input. The transition function may return arbitrary output until
it produces an output where finished = T, at which point it can return no further output or
change its state. We extend our notation as o ← P [st; r](i) to account for the randomness

11

obtained via the rand system call as extra input r; and as (o1, . . . , on) ← P [st; r](i1, . . . , in)
to represent a sequence of activations. We write TraceP [st;r](i1, . . . , in) for the corresponding
I/O trace (i1, o1, . . . , in, on).
Program composition. Given two programs P and Q, and a projection function between
the internal states of the two programs φ, we will refer to the sequential composition of the
two programs as Composeφ〈P,Q〉. This is defined as a transition function R that has two
execution stages, which are signaled in its output via an additional stage bit. In the first
stage, every input to R will activate program P . This will proceed until P ’s last output
indicates it has finished (inclusively). The next activation will trigger the start of the second
stage, at which point R initialises the state of Q using φ(stP) before activating it for the first
time. Additionally we require that a constant indicating the current stage (termination being
counted as a third stage) is appended to any output of a composition. When dealing with
such a composed program, we will denote by ATraceR[st;r](i1, . . . , in) the prefix of the trace
that corresponds to the execution of P . Intuitively, this denotes the attested trace where only
the initial part of the program must be protected via attestation.
Machines. A machine M is an abstract computational device that captures the resources
offered by a real world computer or group of computers, whose hardware security function-
alities are initialised by a specific manufacturer before being deployed, possibly in different
end-users.For example, a machine may represent a single computer produced by a manufac-
turer, configured with a secret signing key for a public key signature scheme, and whose public
key is authenticated via some public key infrastructure, possibly managed by the manufac-
turer itself. Similarly, a machine may represent a group of computers, each configured with
secret signing keys associated with a group signature scheme; again, the public parameters
for the group would then be authenticated by some appropriate infrastructure.3 In this paper
we will restrict ourselves to the simplest case where standard public key signatures are used;
but all our results easily extend to more complex group management schemes.

We will model machines via a simple external interface, which we see as both the func-
tionality that higher-level cryptographic schemes can rely on when using the machine, and
the adversarial interface that will be the basis of our attack models. Loosely speaking, this
interface can be thought of as the ideal functionality that captures a system such as SGX [19].
The interface is as follows:

• Init(1λ) is the global initialisation procedure which, on input the security parameter,
outputs the global parameters prms. This algorithm represents the machine’s hard-
ware initialisation procedure, which is out of the user’s and the adversary’s control.
Intuitively, it initialises the internal security module, the internal state of the remote
machine and returns any public cryptographic parameters that the security module re-
leases. We emphasize that the global parameters of machines are the only pieces of
information that are assumed to be authenticated using external mechanisms such as a
PKI in the entire paper.

• Load(P) is the IEE initialisation procedure. On input a program/transition function P ,
the machine produces a fresh handle hdl, creates a new IEE with handle hdl, loads P
into the new IEE and returns hdl. The machine interface does not provide direct access
to either the internal state of an IEE not to its randomness input. This means that

3If the possibility of removing elements from the group is not needed, then even sharing the same signing
key for a public key encryption scheme between multiple computers could be a possibility.

12

the only information that is leaked about internal state and randomness input is that
revealed (indirectly) via the outputs of the program.

• Run(hdl, i) is the process activation procedure. On input a handle hdl and an input i,
it will activate process running in isolated execution environment with handle hdl with
i as the next input. When the program/transition function produces the next output
o, this is returned to the caller.

We define the I/O trace TraceM(hdl) of a process hdl running in some machine M as the
tuple (i1, o1, . . . , in, on) that includes the entire sequence of n inputs/outputs resulting from
all invocations of the Run procedure on hdl; ProgramM(hdl) is the code (program) running
inside the process with handle hdl; CoinsM(hdl) represents the coins given to the program by
the rand system call; and StateM(hdl) is the internal state of the program. Finally, we will
denote by AM the interaction of some algorithm with a machine M, i.e., having access to
the Load and Run oracles defined above.
Remark. Here, we use hdl as a convenient identifier for the secure environment executing
process P ; in some incarnation the handle could be defined as a tuple containing the identity
of the machine, some identifier for the secure environment and, say, the hash of the program
P . More detailed formalisms are possible. We may consider, for example, different entry/exit
points related to P . We may also explicitly refine P as a program and some initial associated
data.

5 Attested Computation
We now formalise a cryptographic primitive that aims to address the remote execution, i.e.,
outsourcing, of programs as illustrated in Figure 4. In this setting, a user running software in a
trusted local machine wishes to use an untrusted network to access a pool of remote machines
with IEE facilities. The remote machines will be running general-purpose operating systems
and other untrusted software. The goal of the user is to run a specific program P within
an IEE in one of the remote machines, and to obtain assurance that, not only the program
is indeed executing there, but also that it is displaying a particular I/O behaviour.We call
this attested computation, and introduce it as the cryptographic primitive that formalises the
simplest cryptographic application of trusted hardware systems offering IEE functionality,
such as Intel’s SGX architecture. Attested computation will be the lowest of a series of
cryptographic layers that we will be building on top of each other throughout the paper, until
eventually we show how such hardware assumptions permit efficiently realising a strong form
of secure verifiable computation.
Syntax. An Attested Computation (AC) scheme is defined by the following algorithms:

• Compile(prms, P, φ,Q) is the program compilation algorithm. On input global parame-
ters for some machineMR, and programs P and Q, whose composition under projection
function φ will be outsourced, it will output program R∗, together with an initial (pos-
sibly empty) state st for the verification algorithm. This algorithm is run locally. R∗
is the code to be run as an isolated process in the remote machine. Intuitively, P is
the initial part of the remote code that requires attestation guarantees, whereas Q is
any subsequent code that may be remotely executed (generally leveraging the security
guarantees that have been bootstrapped using the initial attested execution).

13

Machine
Machine

Machine

Remote Machine

IEE
IEEIEE

Outsourced
Program

Security
M

odule

Untrusted
Network

Trusted Local Machine

Local Attested
Computation

Software

Remote Attested
Computation

Software

Untrusted code

Operating system

Other
Apps

Figure 4: Attested Computation scenario.

• Attest(prms, hdl, i) is the attestation algorithm. On input global parameters forMR, a
process handle hdl and an input i, it will use the interface of MR to obtain attested
output o∗. This algorithm is run remotely, but in an unprotected environment: it
is responsible for interacting with the isolated process running R∗, providing it with
inputs and recovering the (possibly attested) outputs that should be returned to the
local machine.

• Verify(prms, i, o∗, st) is the (stateful) output verification algorithm. On input global
parameters for MR, an input i, a (possibly attested) output o∗ and some state st, it
will produce an output value o and an updated state, or the failure symbol ⊥. This
failure symbol is encoded so as to be distinguishable from a valid output of a program,
resulting from a successful verification.This algorithm is run locally on claimed outputs
from the Attest algorithm.

In Figure 4, the local attested computation software block corresponds to Compile (one ini-
tial usage per program) and Verify (one usage per incoming attested output), whereas the
remote attested computation software block corresponds to Attest (one usage per remote pro-
gram activation, i.e. per I/O transition). The above syntax can be naturally extended to
accommodate the simultaneous compilation of multiple input programs and/or the possibility
that Compile may generate multiple output programs. This would allow us to capture, e.g.,
map/reduce applications such as those described in [26].
Correctness. Intuitively, an AC scheme is correct if, for any given programs P and Q and
assuming an honest execution of all components in the scheme, both locally and remotely, the
local user is able to accurately reconstruct a view of the I/O sequence that took place in the
remote environment. Furthermore, this I/O sequence must be consistent with the semantics of
Composeφ〈P ;Q〉. In other words, suppose the compiled program is run under handle hdl∗ in
remote machineMR, and the local user uses Verify to reconstruct the remote I/O behaviour
(i1, o1, . . . , in, on). Then, if we define R := Composeφ〈P ;Q〉, we must have

TraceR[st;CoinsMR
(hdl∗)](i1, . . . , in) = (i1, on, . . . , in, on)

The following definition formalizes the notion of a local user correctly remotely executing
program P using attested computation.

14

Definition 8. [Correctness] An Attested Computation scheme AC is correct if, for all λ, and
all adversaries A, the experiment in Figure 5 (top) always returns T.

The adversary in this correctness experiment definition is choosing inputs, hoping to find
a sequence that causes the attestation protocol to behave inconsistently with respect to the
semantics of P (when these are made deterministic by hardwiring the same random coins
used remotely). We use this approach to defining correctness because it makes explicit what
is an honest execution of an attested computation scheme, when compared to the security
experiment introduced next.
Structural preservation. Since we are dealing with composed programs, we extend
the correctness requirements on attested computation schemes to preserve the structure of
the input program (P, φ,Q), and to modify only the part of the code that will be attested.
Formally, we impose that, given any program P , there exists a (unique) compiled program P ∗,
such that, for any mapping function φ and any program Q, we have that Composeφ〈P ∗;Q〉 =
Compile(P, φ,Q) .
Security. Security of an attested computation scheme imposes that an adversary with
absolute control of the remote machine cannot convince the local user that some arbitrary
remote execution of a program P has occurred, when it has not (nothing is said about the
subsequent remote execution of program Q). Formally, we allow the adversary to freely
interact with the remote machine, whilst providing a sequence of (potentially forged) attested
outputs. The adversary wins if the local user reconstructs an execution trace without aborting
(i.e., all attested outputs must be accepted by the verification algorithm) and one of two
conditions occur: i. the execution trace that is validated by Verify is inconsistent with the
semantics of P (in which case an adversary would be able to convince the local user of an I/O
sequence that could not possibly have occurred!); or ii. there does not exist a remote process
hdl∗ exhibiting a consistent execution trace (in which case, the adversary would be able to
convince the local user that a process running P was executing in the remote machine, when
it was not).

Since the adversary is free to interact with the remote machine as it pleases, we can
not hope to prevent it from appending arbitrary inputs to the trace of any remote process,
while refusing to deliver all of the resulting attested outputs to the local user. This justifies
the winning condition in our security game referring to a prefix of the trace in the remote
machine, rather than imposing trace equality. Indeed, the definition’s essence is to impose
that the locally recovered trace and the remote trace share a common prefix (v), which
exactly corresponds to the part of the source program’s behaviour that should be protected
by attestation.

Formally, we need to account for the fact that the actual I/O sequence of the remote
program includes more information than that of R, e.g., to allow for the cryptographic
enforcement of security guarantees. Our definition is parametrised by a Translate algo-
rithm that permits formalising this notion of semantic consistency. Another way to see
Translate(prms,ATraceMR

(hdl∗)) is as a trace translation procedure associated with a given
AC scheme, which maps remote traces into traces at the source level.

Definition 9. [Security] An attested computation scheme is secure if there exists an effi-
cient deterministic algorithm Translate s.t., for all ppt adversaries A, the probability that
experiment in Figure 5 (bottom) returns T is negligible.

15

Game CorrAC,A(1λ):
prms←$ MR.Init(1λ)
(P, φ,Q, n, stA)←$ A1(prms)
(R∗, stV)← Compile(prms, P, φ,Q)
hdl∗ ←MR.Load(R∗)
For k ∈ [1..n]:

(ik, stA)←$ A2(o∗1, . . . , o∗k−1, stA)
o∗k ← AttestMR (prms, hdl∗, ik)
(oR,k, stV)← Verify(prms, ik, o∗k, stV)
If oR,k =⊥:

Return F
Define R := Composeφ〈P ;Q〉
T ← TraceR[st;CoinsMR

(hdl∗)](i1, . . . , in)
T ′ ← (i1, oR,1, . . . , in, oR,n)
Return T = T ′

Game AttAC,A(1λ):
prms←$ MR.Init(1λ)
(P, φ,Q, n, stA)←$ A1(prms)
(R∗, stV)← Compile(prms, P, φ,Q)
For k ∈ [1..n]:

(ik, o∗k, stA)←$ AMR
2 (stA)

(oR,k, stV)← Verify(prms, ik, o∗k, stV)
If oR,k =⊥ Return F

T ′ ← (i1, oR,1, . . . , in, oR,n)
Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramMR

(hdl∗) = R∗:
T ← ATraceR[st;CoinsMR

(hdl∗)](i1, . . . , in)
If T v T ′ ∧ T v Translate(prms,ATraceMR

(hdl∗)):
Return F

Return T

Figure 5: Games defining the correctness (left) and security (right) of an AC scheme.

We note that the adversary loses the game as long as there exists at least one remote
process that matches the locally reconstructed trace. This should be interpreted as the guar-
antee that IEE resources are indeed being allocated in a specific remote machine to run at
least one instance of the remote program (note that if the program is deterministic, many
instances could exist with exactly the same I/O behaviour, which is not seen as a legitimate
attack).Furthermore, our definition essentially imposes that the compiled program uses es-
sentially the same randomness as the source program (except of course for randomness that
the security module internally uses to provide its cryptographic functionality), as otherwise
it will may easy for the adversary to make the (idealized) local trace diverge from the remote.
This is a consequence of our modelling approach, but in no way does it limit the applicability
of the primitive we are proposing: it just makes it explicit that the transformation that is
performed on the code for attestation will typically consist of an instrumentation of the code
by applying cryptographic processing to the inputs and outputs it receives.
Minimum leakage. From the discussion above, an AC scheme should guarantee that the I/O
behaviour of the program in the remote machine includes at least the information required to
reconstruct an hypothetical local execution of the source program. However, it is important to
establish an additional restriction on what AC compilation actually does to a source program,
to ensure that we are able to take advantage of this primitive to achieve more ambitious goals,
namely to perform attestation of the remote execution of cryptographic code.

The following definition imposes that nothing from the internal state of the source pro-
grams (in addition to what is public, i.e. the code and I/O sequence) is leaked in the trace
of the compiled program when it is remotely executed.

Definition 10. [Minimal leakage]Attested Computation scheme AC ensures security with
minimal leakage if it is secure according to Definition 9 and there exists a ppt simulator S
that, for every adversary A, the following distributions are identical:

{ Leak-RealAC,A(1λ) } ≈ { Leak-IdealAC,A,S(1λ) }

where games Leak-RealAC,A and Leak-IdealAC,A,S are shown in Figure 6.

Notice that we allow the simulator to replace the global parameters of the machine with
some value prms for which it can keep some trapdoor information. Intuitively this means that
one can construct a perfect simulation of the remote trace by simply appending cryptographic

16

Game Leak-RealAC,A(1λ):
PrgList← []
prms←$ MR.Init(1λ)
b←$ AO(prms)
Return b

Oracle Compile(P, φ,Q):
(R, stV)← Compile(prms, P, φ,Q)
PrgList← R : PrgList
Return R

Oracle Load(R):
ReturnMR.Load(R)

Oracle Run(hdl, i):
ReturnMR.Run(hdl, i)

Game Leak-IdealAC,A,S(1λ):
PrgList← []
List← []
hdl← 0
(prms, stS)←$ S1(1λ)
b←$ AO(prms)
Return b

Oracle Compile(P, φ,Q):
(R, stV)← Compile(prms, P, φ,Q)
PrgList← (P, φ,Q,R) : PrgList
Return R

Oracle Load(R):
hdl← hdl + 1
List[hdl]← (R, ε)
Return hdl

Oracle Run(hdl, i):
(R, st)← List[hdl]
If (P, φ,Q,R) ∈ PrgList:

R∗ ← Composeφ〈P,Q〉
o∗←$ R∗[st](i)
(o, stS)←$ S2(hdl, P, φ,Q,R, i, o∗, stS)

Else:
(o, st, stS)←$ S3(hdl, R, i, st, stS)

List[hdl]← (R, st)
Return o

Figure 6: Games defining minimum leakage of an AC scheme.

material to the local trace. This property is important when claiming that the security of a
cryptographic primitive is preserved when it is run within an attested computation scheme
(one can simply reduce the advantage of an adversary attacking the attested trace, to the
security of the original scheme using the minimum leakage simulator).

6 Attested Computation à la SGX
The remote attestation protocol we will consider is inspired in the Secure Guard Extensions
(SGX) architecture proposed by Intel [1]. The main feature of this system is that the remote
machine is equipped with a security module that manages both short-term and long-term
cryptographic keys, with which it is capable of producing MACs that enable authenticated
communication between various IEEs and digital signatures that can be publicly verified by
anyone holding the (long-term) public key for that machine (or group of machines). We first
formalise the operation of (a simplified version of) this security module.
Security module. The security module relies on a signature scheme Σ = (Gen,Sign,Vrfy)
and a MAC scheme Π = (Gen,Mac,Ver), and it operates as follows:

• When the host machine is initialised, the security module generates a key pair (pk, sk)
using Σ.Gen and a symmetric key key using Π.Gen. It also creates a special process
running code S∗ (see below for a description of S∗) in an IEE with handle 0. The
security module then securely stores the key material for future use, and outputs the
public key. In this case we will have that the output ofM.Init will be prms = pk.

• The operation of IEE with handle 0 will be different from all other IEEs in the machine.
Program S∗ will permanently reside in this IEE, and it will be the only one with direct
access to both sk and key.

• The code of S∗ is dedicated to transforming messages authenticated with key into mes-
sages signed with sk. On each activation, it expects an input (m, t). It obtains key from
the security module and verifies the tag using Π.Ver(key, t,m). If the previous oper-

17

ation was successful, it obtains sk from the security module, signs the message using
σ←$ Σ.Sign(sk,m) and writes σ to the output. Otherwise, it writes ⊥ in the output.

• The security module exposes a single system call mac(m) to code running in all other
IEEs. On such a request from a process running program P , the security module returns
a MAC tag t computed using key over both the code of P and the input message (m).

We note that the operation of the security module allows any process to produce an authenti-
cated message that can be validated by the special process running S∗ as coming from within
another IEE in the same machine.

We will assume that the message authentication code scheme Π and the signature scheme
Σ satisfy the standard notions of correctness and existential unforgeability, and that the
machine’s public key is authenticated by some external PKI.
Attested Computation scheme. We now define an AC scheme that relies on a remote
machine supporting a security module with the above functionality. The operation of the
various algorithms is intuitive, except for the fact that basic replay protection using a sequence
number does not suffice to bind a remote process to a full trace, since the adversary could
then run multiple copies of the same process and mix and match outputs from various traces.
Instead, the remote process must commit to its entire trace whenever an attested output is
produced. Details follow:

• Compile(prms, P, φ,Q) will generate a new program R∗ = Composeφ〈P ∗, Q〉 and output
it along with the initial state of the verification algorithm (R∗, [], 1), where 1 is an
indicator of the stage in which remote program R∗ is supposed to be executing. Program
P ∗ is instrumented as follows: it keeps a list ios of all the I/O pairs it has previously
received and computed, i.e, its own trace; on each activation with input i, P ∗ first
computes o←$ P [stP](i) and updates the list by adding a new (i, o) pair; it then requests
from the security module a MAC of the updated ios. Due to the operation of the
security module, this will correspond to a tag t on the tuple (R∗, ios); it finally outputs
(o, t, R∗, ios). We note that we include (R∗, ios) explicitly in the outputs of R∗ for clarity
of presentation only. This value would be kept in an insecure environment by a stateful
Attest program.

• Attest(prms, hdl, i) invokes MR.Run(hdl, i) using the handle and input value it has re-
ceived. When the process produces an output o, Attest parses it into (o′, t, R∗, ios). It
may happen that parsing fails, e.g., if Q is already executing, in which case Attest sim-
ply produces o as its own output. Otherwise, it usesMR.Run(0, (R∗, ios, t)) to convert
the tag into a signature σ on the same message. If this conversion fails, then Attest
produces the original output o as its own output. Otherwise, it outputs (o′, σ).

• Verify(prms, i, o∗, (R∗, ios, stage)) returns o∗ if stage = 2. Otherwise, it first parses o∗
into (o, σ), appends (i, o) to ios, and verifies the digital signature σ using prms and
(R∗, ios)). If parsing or verification fails, Verify outputs ⊥. If not, then Verify will check
if output o indicates that program P ∗ has finished. If so, it will update stage to value
2. In any case, it terminates outputting o.

Correctness. It is easy to see that our AC scheme is correct, provided that the underlying
signature and message authentication code schemes are themselves correct. To see this, first
note that, during the execution of P ∗, unless a MAC or signature verification fails, the I/O

18

sequence produced by Verify exactly matches that of Composeφ〈P ;Q〉, and therefore T = T ′ is
always T. This follows from the construction of R∗, the operation of Attest, and the fact that
the associated randomness tapes are established by CoinsMR

(hdl∗) as identical. Furthermore,
if the message authentication code scheme is correct, then the MAC verification will never
fail, and if the message signature scheme is correct, then the signature verification will never
fail. This is because the combined actions of R∗, Attest, the signing process running S∗ and
the security module lead to tags and signatures on tuples (R∗, ios) that exactly match those
input to the verification algorithms Π.Ver and Σ.Verify. Finally, after executing P ∗, given
that the associated randomness tapes are established by CoinsMR

(hdl∗) are identical and that
traces are identical up to that point, so will be φ(stP) in both sides, and all subsequent calls
to Q will display a similar behaviour.
Security.Let Translate be the deterministic function that receives the machine parameters
and a list of tuples of the form (i, (o, t, R∗, ios)) and returns a list of pairs of the form (i, o).

Theorem 1. The AC scheme presented above provides secure attestation if the underlying
MAC scheme Π and signature scheme Σ are existentially unforgeable. Furthermore, it uncon-
ditionally ensures minimum leakage.

The proof of the following theorem can be found in Appendix A. The intuition behind the
proof of secure attestation is straightforward: since all attested outputs (i.e. those processed
by Verify until stP .finished = T) are bound to a full trace of the execution, all accepted
messages that pass AC.Verify must terminate a prefix of a remote trace for some instance of R∗.
The only case in which the adversary could win would be if the signature verification performed
by Verify accepts a message that was never authenticated by an IEE running R∗. However, in
this case, the adversary is either breaking the MAC (to dishonestly execute Attest) or breaking
the signature (and forging attested outputs directly). The minimum leakage property can be
proven by constructing the trivial simulator that generates the machine parameters itself,
simulates the entire machine for non-attested processes, and attaches MACs to the source
I/O traces of attested programs.

7 AKE for Attested Computation
An intermediate step in constructing high-level applications that rely on attested computation
is the establishment of a secure communications channel with a process running a particular
program inside an IEE in the remote machine. After such a channel has been established,
standard cryptographic techniques can be used to ensure (in combination with the isolation
provided by IEEs) the integrity and confidentiality of subsequent computations. In this section
we will see how attested computation, in combination with a specific flavour of key exchange
protocol can be seen as a bootstrapping process for this scenario.

We first formalize the precise requirements for a key exchange protocol that can be used in
this setting (we call this authenticated key exchange for attested computation) and show how
a simple transformation can be used to construct such protocols from any passively secure
key exchange protocol. Later on we present a utility theorem that precisely describes what it
means to use attested computation and a suitable key exchange protocol to establish a secure
channel with an arbitrary remote program.

19

Definitions

Syntax. A Key Exchange for Attested Computation (AttKE) protocol is defined by the
following pair of algorithms.

• Setup(1λ, id) is the remote program generation algorithm, which is run on the local
machine to initialise a fresh instance of the AttKE protocol under party identifier id.
On input the security parameter and id, it will output the code for a program RemKE
and the initial state stL of the LocKE algorithm. This algorithm is run locally.

• RemKE (which is generated dynamically by Setup) is a program that will be run as a
part of an IEE process in the remote machine, and it will keep the entire remote state
of the key exchange protocol in that protected environment.

• LocKE(stL,m) is the algorithm that runs the local end of the AttKE protocol, interacting
with RemKE. On input its current state, and an incoming message m, it will output an
updated state and an outgoing message.

When analysing the security of such a protocol we will impose that the LocKE algorithm and
all RemKE programs that may be produced by Setup keep in their state the same information
that was imposed on general key exchange algorithms in Section 3.3. We will refer to the
instances of local key exchange executions as LocsKE, for s ∈ N. The local identity will be
implicit in our notation since, in the following discussion we will concentrate our attention on
the case where a single local identity id is considered. We do this for the sake of rigour and
clarity of presentation: by looking at this simplified case we can present our security models in
game-based form, whilst taming the complexity of the resulting games. The extension of these
results to the more general case where several local identities are considered is straightforward.
On the remote side, the identity of the remote process will actually be generated on the fly
by the combined actions of the Setup algorithm and possibly the protocol execution itself,
as it may depend for example on the code of the remote program. For this reason we will
enumerate over remote instances as Remi,j

KE for i, j ∈ N, and observe that the value of variable
oid in this case will be set during the execution of the program itself, rather than passed
explicit as an input to one of the algorithms. Correctness. An AttKE is correct if, after
a complete (honest) run between two participants, one local and one remote, and where
the remote program is always the one to initiate the communication, both reach the accept
state, both derive the same key and session identifier and have matching partner identities.
More formally, a protocol P = {Setup, LocKE} is correct if, for any arbitrary identity id, the
experiment in Figure 7 always returns T. We note that our definition of correctness imposes
that remote programs always operate as initiators and local machines as the responders in
the key exchange.
Execution Environment. The specific flavour of key exchange that we will be considering
is clarified by the execution environment in Figure 8. This follows the standard modelling
of active attackers, e.g. [20], when one excludes the possibility of corruption (which we do
only for the sake of simplicity). There are, however, two modifications that attend to the
fact that AttKE remote programs are designed to be executed under attested computation
guarantees. On one hand, the adversary is given the power to create as many remote AttKE
programs as it may need, by using the NewLocal oracle. This reveals the entire code of the
remote AttKE program (and implicitly all of its initial internal state, which is assumed to be

20

Game CorrAttKE(1λ):
(stL,RemKE)←$ Setup(1λ, id)
stR ← ε
m←$ RemKE[stR](ε)
t← T
While m 6= ε:

If t: (stL,m)←$ LocKE(stL,m)
Else: m←$ RemKE[stR](m)
t← ¬t

Return stL.δ = stR.δ = accept ∧ stL.key = stR.key ∧ stL.sid = stR.sid∧
stL.pid = stR.oid ∧ stL.oid = stR.pid ∧ stL.oid = id

Figure 7: Game defining the correctness of an AttKE scheme.

empty)to the adversary. This captures the fact that remote AttKE programs will be loaded
into IEE execution environments in an otherwise untrusted remote machine, and it implies
that remote AttKE programs cannot keep any long term secret information. Intuitively, this
limitation will be compensated by the attested computation protocol. On the other hand,
the adversary is able to freely interact with remote processes, but it is constrained in its
interaction with the local machine. Indeed, the SendLocal oracle filters which messages the
adversary can deliver to the local machine by checking that these are consistent with at least
one remote process that the adversary is interacting with. This captures the fact that AttKE
is designed to interact over a partially authenticated channel from the remote machine to the
local machine, which will be provided by an attested computation protocol.

Game AttAttKE,A(1λ):
InsList← []; fake← []
i← 0
b←$ {0, 1}
b′←$ AO(1λ, id)
Return b = b′

Oracle NewLoc():
i← i+ 1; T iL ← []
(Remi

KE, stiL)←$ Setup(1λ, id)
InsList[i]← 0
Return Remi

KE

Oracle TestLoc(i):
If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key
Return fake(stiL.key)

Oracle SendLoc(m, i):
If @j, (m : T iL) v T i,jR return ⊥
(m′, stiL)←$ LociKE(stiL,m)
T iL ← m′ : m : T iL
If stiL.δ ∈ {accept, derived}:
If (stiL.key, key∗) /∈ fake:

key∗←$ {0, 1}λ
fake← (stiL.key, key∗) : fake

Return (m′, stiL.sid, stiL.δ, stiL.pid)

Oracle RevealLoc(i):
Return stiL.key

Oracle RevealRem(i, j):
Return sti,jR .key

Oracle NewRem(i):
InsList[i]← InsList[i] + 1
j ← InsList[i]
T i,jR ← []; sti,jR ← ε
Return ε

Oracle TestRem(i, j):
If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key
Return fake(sti,jR .key)

Oracle SendRem(m, i, j):
// No restriction
m′←$ RemKE[sti,jR](m)
T i,jR ← m′ : m : T i,jR
If sti,jR .δ ∈ {accept, derived}:
If (sti,jR .key, key∗) /∈ fake:

key∗←$ {0, 1}λ
fake← (sti,jR .key, key∗) : fake

Return (m′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Figure 8: Execution environment for AttKEs.
Partnering. We will consider the natural extension of the partnering properties intro-
duced for passive key exchange in Section 3.3to the AttKE setting. In addition to the

21

syntactic modifications that result from referring to LocsKE and Remi,j
KE, we further restrict

validity so that partnering is only valid when it occurs between local and remote instances,
in which the latter is the initiator. To this end, we will use the following predicate on
two instances LocsKE and Remi,j

KE holding stsL = (sts, δs, ρs, sids, pids, oids, keys) and sti,jR =
(sti,j , δi,j , ρi,j , sidi,j , pidi,j , oidi,j , keyi,j), respectively:

P(Locs
KE,Remi,j

KE) =
{

T if sids = sidi,j ∧ δs, δi,j ∈ {derived, accept}
F otherwise.

The definition of partner is the obvious one, whereas invalid partners now includes an extra
possibility.

Definition 11 (Partner). Two instances LocsKE and Remi,j
KE are partnered if

P(LocsKE,Remi,j
KE) = T .

Definition 12 (Valid Partners). A protocol AttKE ensures valid partners if the bad event
notval does not occur, where notval is defined as one of the following events occurring:

∃LocsKE,Remi,j
KE s.t. P(LocsKE,Remi,j

KE) = T ∧ (pids 6= oidi,j ∨ oids 6= pidi,j ∨
keys 6= keyi,j ∨ ρs 6= responder ∨ ρi,j 6= initiator)

∃LocrKE, LocsKE s.t. r 6= s ∧ P(LocrKE, LocsKE) = T
∃Remi,j

KE,Remk,l
KE s.t. (i, j) 6= (k, l) ∧ P(Remi,j

KE,Remk,l
KE)

For completeness, we present also the adapted definitions of confirmed and unique part-
ners.

Definition 13 (Confirmed Partners). A protocol AttKE ensures confirmed partners if the
bad event notconf does not occur, where notconf is defined as at least one of the following
two events occurring:

∃LocsKE s.t. δs = accept ∧ ∀Remi,j
KE, P(LocsKE,Remi,j

KE) = F
∃Remi,j

KE s.t. δi,j = accept ∧ ∀ LocsKE, P(LocsKE,Remi,j
KE) = F.

Definition 14 (Unique Partners). A protocol AttKE ensures unique partners if the bad
event notuni does not occur, where notuni is defined as at least one of the following two events
occurring:

∃LocsKE, Remi,j
KE,Remi′,j′

KE s.t.
(i, j) 6= (i′, j′) ∧ P(LocsKE,Remi,j

KE) = T ∧ P(LocsKE,Remi′,j′

KE) = T
∃Remi,j

KE, LocsKE, Locs′KE s.t.
s 6= s′ ∧ P(LocsKE,Remi,j

KE) = T ∧ P(Locs′KE,Remi,j
KE) = T .

As before, we will consider that an adversary violates entity authentication if he can
get a session to accept, but there is no unique and confirmed valid session in its intended
partner.More formally, we wish to verify that none of the bad events notval, notconf, notuni
occurs. In the attested computation scenario, it is common to use one-sided authentication
where only the local party receives authentication guarantee. Such definitions can be easily
derived from the ones we have presented above, analogously to what was done in Section 3.3.
Security. Again, the set of TestLoc and TestRem queries must be restricted in order to
exclude trivial attacks. An adversary is legitimate if it respects the following freshness criteria:

22

• For all TestLoc(i) queries, the following holds:
1. RevealLoc(i) was not queried; and

2. for all Remj,k
KE s.t. P(Remj,k

KE, LocsKE) = T, RevealRem(j, k) was not queried.

• For all TestRem(i, j) queries, the following holds:
1. RevealRem(i, j) was not queried; and
2. for all LockKE s.t. P(LockKE,Remi,j

KE) = T, RevealLoc(i) was not queried.

We only consider legitimate adversaries, and say that the winning event guess occurs if b = b′

at the end of the experiment. We define AttKE security by requiring both mutual authenti-
cation of parties and and key secrecy.

Definition 15 (AttKE security). An AttKE protocol is secure if, for any ppt adversary
in Figure 8, and for any local party identifier string id: 1. the adversary violates entity
authentication with negligible probability Pr[notval∨notconf ∨notuni]; and 2. its key secrecy
advantage 2 · Pr[guess]− 1 is negligible.

Generic Construction

We now present a construction of an AttKE scheme from any passively secure key exchange
protocol, relying additionally on a existentially unforgeable signature scheme. The intuition
here is that the attested computation protocol guarantees correct remote execution of a
program, but does not ensure uniqueness, i.e., it does not exclude that potentially many
replicas of the same key exchange protocol instance could be running in the remote machine.
By binding a fresh signature verification key with the identifier for the remote party associated
with the key exchange protocol and generating a fresh nonce at the start of every execution,
we can remotely execute the key exchange code whilst ensuring one-to-one authentication at
the process level. This transformation can be seen as a weaker version of the well-known
passive-to-active compilation process by Katz et al. [20], since our target security model is
not fully active. We now present the details.

Consider a passively-secure authenticated key exchange protocol Π and a signature scheme
Σ = (Gen, Sign,Vrfy). Our construction splits the execution of Π between the local machine
and a remote isolated execution environment: the responder will run locally and the initiator
will run remotely within a program RemKE.4 The code of the remote program will have
hardwired into it a unique verification key for the signature scheme. The first activation of
RemKE initialises an internal state and computes a nonce, together with the first message
in the key exchange protocol. The party identifier string of the remote process will then be
defined to comprise the verification key and the nonce. The local part of the protocol signs
the full communication trace so far. Subsequent activations of remote program RemKE will
simply respond according to the key exchange protocol description, rejecting all inputs that
fail signature verification. The details of our construction are shown in Figure 9.

• Setup first generates a fresh key pair for the signature scheme and constructs program
RemKE, parametrised by algorithm Π and verification key pk, as described in Figure 9
(top). In this program state variables δ, ρ, key, sid and pid are all shared with Π (this

4Setting the remote machine as the initiator of the protocol is the most common scenario. We considered
it for simplicity; the converse can be treated analogously.

23

Program RemKE〈Π, pk〉:
Upon activation with input m and state st:

If st = ε:
δ ←⊥; if m 6= ε then δ ← reject
t← []; r←$ {0, 1}k; oid← pk || r; m′ ← ε

Else:
Parse (m′, σ)← m
If Σ.Vrfy(pk, σ,m′ : t) =⊥ then δ ← reject

(m∗, st)←$ Π(m′, oid, initiator, st)
m← (m∗, r); t← m : m′ : t
If δ = reject return ε
Return m

Algorithm Setup(1λ, id):
(pk, sk)←$ Σ.Gen(1k)
R∗ := RemKE〈Π, pk〉
t← []
stKE ← ε
stL ← (id, stKE, sk, t)
Return (stL, R∗)

Algorithm LocKE(stL,m):
(id, stKE, sk, t)← stL
Parse (m∗, r)← m
(m′, stKE)←$ Π(m∗, id, responder, stKE)
t← m′ : m : t
σ ← Σ.Sign(sk, t)
stL ← (id, stKE, sk, t)
Return ((m′, σ), stL)

Figure 9: Details of the AttKE construction.

is implicit in the figure). The initial value of stL will store id, along with the initially
empty state for the key exchange stKE, the signing key for the signature scheme and
an initially empty trace t log.

• LocKE takes (stL,m) runs Π(m, id, responder, stKE) to compute the next message o, pro-
duces signature σ of the entire updated protocol trace, and returns the updated state
stL and message (o, σ).

The following theorem establishes the correctness and security of the generic construction.

Theorem 2. Given a correct passively secure key exchange protocol Π and an existentially
unforgeable signature scheme Σ, the generic construction above yields a correct and secure
AttKE protocol.

The full proof is given in Appendix BThe intuition behind the proof is that each local
instance of the key exchange protocol is bound to a verification key for the signature scheme
which is hardwired into the party identifier of the associated remote program code. Each
remote instance of the code initialises its own party identifier by attaching a nonce to the
verification key. This nonce is also transmitted along with every remote-to-local message.
These facts combined with the restriction on the SendLoc oracle imply that the adversary is
essentially restricted to function in a passive way, by passing around messages between the
two Send oracles. Therefore the security guarantees can be reduced to the security of the
underlying key exchange protocol.

Utility

As an intermediate result building up to the construction of full-fledged authenticated and
private remote attested computation, we will now present a utility theorem that describes
precisely the guarantees one obtains when combining an attested computation protocol with
an AttKE. Intuitively, this theorem states that attested computation guarantees that the
authentication and secrecy assurance offered by AttKE are retained when we use it to establish

24

session keys with remote IEEs, in the presence of fully active adversaries that control the
remote machine, and when the key exchange is composed with arbitrary programs.

Figure 10 shows an idealised game where an adversary must distinguish between two
remote machines where an AttKE scheme is executed in combination with an AC scheme.
MachineMR is any standard remote machine that is supported by the attested computation
protocol, whereas M′R represents a modification of MR where one can tweak the operation
of RemKE programs. The differences ofM′R with respect toMR are concentrated on the Run
interface, which now operates as follows:

• It takes as additional parameters a list fake of pairs of keys and Boolean flag tweak that,
when activated, identifies a process that is running an instance of RemKE composed
with some program Q. This flag triggers the following modifications with respect to the
operations ofMR.

• When it detects that RemKE has transitioned into derived or accept state, it will check if
the derived key exists in list fake. If not, it generates a new random key∗, and (key, key∗)
is added to the list.

• When it detects that program Q is set to start executing, rather than using the key as
an input to φ, it uses fake(key) instead.

The environment presented to the adversary models a standard attested computation
interaction, where it is given total control over the remote machine using oracles Load and
Run (these oracles will either give access to MR or to M′R, depending on a secret bit b
generated in the beginning of the game). The adversary is also able to obtain challenge
remote programs using a NewSession(Q) oracle that uses the attested computation scheme to
compile RemKE composed with arbitrary program Q of its choice under a mapping function
φkey that reveals the relevant parts of the key exchange state (namely the secret key key, the
party identifiers oid and pid, the state δ and the session identifier sid). We observe that such
arbitrary programs can leak all of the information revealed by φkey to the attacker. If the
adversary chooses to Load a challenge program, and if M′R is being used in the game, then
it will be tweaked as described above. Whenever NewSession(Q) is called, the environment
creates a new local session i that the adversary can interact with using a Send(i,m) oracle. The
Send oracle uses the Verify algorithm of the attested computation scheme to validate attested
outputs and, if they are accepted, feeds them to the LocKE instance (and also ensures that
list fake is updated). Finally, the adversary can explicitly choose to be tested (as opposed
to the implicit testing it may trigger using arbitrary programs Q) by calling Test on a local
instance. This oracle will either return the true key, if b = 0, or the associated random key
that is kept in the fake list. As before, we define the winning event guess to occur when b = b′

in the end of the game.
The proof of the following theorem can be found in Appendix C.

Theorem 3 (AttKE utility). If AttKE is correct and secure and the AC protocol is correct,
secure and ensures minimum leakage, then for all ppt adversaries in the utility experiment: 1.
the probability that the adversary violates AttKE two-sided entity authentication is negligible;
and the key secrecy advantage 2 · Pr[guess]− 1 is negligible.

The intuition behind the proof is that one can use the security of attested computation
to exclude Send queries that do not match a legitimate remote trace. This essentially maps

25

Game AttAttKE,A(1λ):
prms0←$ MR.Init(1λ)
prms1←$ M′R.Init(1λ)
PrgList← []
fake← []
i← 0
b←$ {0, 1}
b′←$ AO(prmsb, id)
Return b = b′

Oracle Load(R∗):
hdl0 ←MR.Load(R∗)
hdl1 ←M′R.Load(R∗)
Return hdlb

Oracle Run(hdl, in):
o0←$ MR.Run(hdl, in)
tweak← F
If ProgramM′

R
(hdl) ∈ PrgList then flag← T

(o1, fake)←$ M′R.Run(hdl, in, tweak, fake)
Return ob

Oracle NewSession(Q):
i← i+ 1
(Remi

KE, stiKE)←$ Setup(1λ, id)
(R∗i , stiL)←$ AC.Compile(prmsb,Remi

KE, φkey, Q)
inilast ← ε
PrgList← R∗i : PrgList
Return R∗i

Oracle Send(m′, i):
(m, stiL)←$ AC.Verify(prmsb, inilast,m

′, stiL)
If m =⊥ then return ⊥
(m∗, stiKE)←$ LociKE(stiKE,m)
inilast ← m∗
If stiKE.δ ∈ {derived, accept} ∧ stiKE.key /∈ fake:

key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Oracle Test(i):
If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key
Return fake(stiKE.key)

Figure 10: Game defining the utility of an AttKE scheme when used in the context of attested
computation.

to the restriction in the AttKE security game imposed on the SendLoc oracle. The proof is
concluded by applying the minimum leakage property of the attested computation protocol to
show that any attack by the adversary against AttKE when it is run inside a remote machine
can be transformed (via trace simulation) to an attack against the original AttKE when it is
run in source code form.

8 Secure Outsourced Computation
In this section we build on the results in previous sections to design and analyze a protocol
for secure outsourced computation. Informally, we require two properties i) that only the
legitimate local user can pass inputs to the outsourced program and ii) that the I/O of the
remote program is secret from any observer (even an actively malicious one).

We first give syntax for the protocols that solve this problem, then propose formal def-
initions for the properties that we outlined above and conclude with a generic construction
that combines a key-exchange for attestation, a scheme for attested computation and an
authenticated encryption scheme.
Syntax. A Secure Outsourced Computation scheme (SOC) for a remote machine MR is
defined by the following algorithms:

• Compile(prms, P, id) is the program compilation algorithm. On input a program P and
a party identifier id, it outputs a compiled program P ∗, together with an initial state stl
for the local side algorithms. We assume that initially stl.accept =⊥. Note that unlike
the AC compilation algorithm, this algorithm only takes one program as input, as this
scheme is intended for providing guarantees for the whole trace and not only an initial
segment.

• BootStrap(prms, o, stl) is the client side initialization algorithm. On input o (presumably

26

the last message from the remote machine) it returns the next message i to be delivered
to the remote machine in the bootstrapping step step, together with the updated local
state. We assume BootStrap sets an accept flag to T when the initialization process
successfully terminates.

• Verify(prms, o∗, stl) is the verification algorithm. It fulfills the same function as the AC
verification algorithm. Note that, as all the inputs are provided by the local machine,
we do not need to feed it the last input as it can be stored in the state. It is expected
to return ⊥ if stl.accept 6= T.

• Encode(prms, i, stl) is the encoding algorithm. On input the local state and the next
intended input for P , it returns the next input i∗ for P ∗ together with the updated local
state. It is expected to return ⊥ if stl.accept 6= T.

• Attest(prms, hdl, i) is, as in an AC scheme, the (untrusted) attestation algorithm.

A party A with identifier id who wants to outsource program P to the remote machine
first compiles P with his id, thus obtaining P ∗ and some secret data stl. He then loads P ∗ on
the remote machine using some untrusted protocol. As it is, the program P ∗ is not ready to
receive inputs intended for P : an initial bootstrapping phase (until BootStrap sets the accept
flag) is necessary to establish some shared secrets between the IEE in which P ∗ is executed
and A. Then when A wants to send an input to the remote execution, he encodes it using
Encode, sends it (using Attest) and verifies the output provided by Attest using Verify.

In this section, for simplicity reasons, we assume that the program P is deterministic.
However, as for an AC scheme it would be easy to extend all the definitions to a non-
deterministic program.
Input Integrity. While security of attested computation aims at ensuring that a trace was
honestly produced on the remote side, it does nothing to restrict the provenance of the inputs
received.

We provide a stronger notion which we call input integrity which, intuitively, ensures that
if a program is compiled by a party with identifier id, then only that party may use the remote
compiled program. We ensure this property by making sure that the local and remote views
coincide (up to the last message exchanged, which may not have yet been delivered). The
following formula Ψ which relates two input/output traces captures this intuition.

Ψ(T, T ′) := T = T ′ ∨ ∃o.
(
T = o :: T ′) ∃i.

(
T ′ = i :: T)

The formalization that we provide in Figure 11 is as follows. The adversary chooses a program
P that is compiled with an honest party’s id yielding P ∗ (which is given to the adversary).
The adversary is given access to two oracles. A bootstrapping oracle that simply executes
BootStrap honestly; and a send oracle that verifies the last (presumed) output of the remote
program and encodes the next input (which is provided by the adversary), while keeping track
of the local view of the trace. The goal of the adversary is then create a mismatch between
the local and remote view of the trace.

Definition 16 (Input Integrity). We say that a SOC scheme satisfies input integrity if there
exists a polynomial time algorithm Translate such that for all ppt A the experiment described
in Figure 11 returns true with probability negligible in the security parameter.

27

Game IntSOC,A(1λ):
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
(P ∗, stl)←$ Compile(prms, P, id)
tr← []
Run AO,MR

2 (stA, P ∗)
If @=1hdl such that

ProgramMR
(hdl) = P ∗ ∧

Translate(prms,TraceMR(hdl)) 6= []
Return F

hdl← Program−1
MR

(P ∗)
T ← Translate(prms,TraceMR(hdl))
T ′ ← tr
Return ¬Ψ(T, T ′)

Oracle Send(o∗, i):
o, stl ← Verify(prms, o∗, stl)
If o =⊥ Return ⊥
i∗, stl ← Encode(prms, i, stl)
tr← i : o : tr
Return o, i∗

Oracle BootStrap(o):
If stl.accept

Return ⊥
i, stl ← BootStrap(prms, o, stl)
Return i

Figure 11: Input integrity of a SOC scheme

Input privacy. We define the privacy of I/O with an indistinguishability game. One
important point here is that we chose to restrict the class of programs we consider to length-
uniform (written lu) programs. A program is length uniform if the length of its outputs
depends only on the length of its inputs. Intuitively, this is because the encryption scheme is
allowed to leak the length of the messages, which in turn would leak information about the
inputs for a non lu program.

The formalization described in Figure 12 is as follows. We start by choosing a bit b that
will determine whether the adversary will be talking with the left send oracle or the right
send oracle (described later). As for input integrity, the adversary then chooses a program
P . We compile it for an honest party’s identifier and give the resulting P ∗ to the adversary.
The adversary is also given access to the bootstrapping oracle. In addition, he is given access
to a left or right send oracle. This oracle, on a request with the last candidate output of the
remote machine and two inputs i0 and i1, verifies the last candidate output and, depending
on the bit b, encodes either i0 or i1 and returns the result. The goal of the adversary is to
guess the bit b with non-negligible bias from 1/2.

Game PrivSOC,A(1λ):
b←$ {0, 1}
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
If ¬ lu(P) Return b′←$ {0, 1}
(P ∗, stl)←$ Compile(prms, P, id)
b′ ← A2(stA, P ∗)O,MR

Return b = b′

Oracle Sendb(o∗, i0, i1):
o, stl ← Verify(prms, o∗, stl)
If |m0| 6= |m1| Return ⊥
i∗, stl ← Encode(prms, ib, stl)
Return i∗

Oracle BootStrap(o):
If stl.accept

Return ⊥ // (1 init max)
i, stl ← BootStrap(prms, o, stl)
Return i

Figure 12: Input privacy of a SOC scheme

Definition 17. We say that a SOC scheme satisfies input privacy if, for all ppt A, the
experiment in Figure 12 returns true with probability 1/2 up to a negligible function.

This definition ensures that there exist no two traces (with messages of the same length)
played by an honest party over a SOC protocol that are distinguishable for an (active) ad-
versary. This means that no adversary can gain information on the inputs sent out by a local
machine using a SOC scheme, besides the length of the messages exchanged, achieving our
goal of hiding the honest party’s inputs.

28

Definition 18. We say that a SOC scheme is secure if it satisfies both input privacy and
input integrity.

An implementation of a secure SOC scheme. Having defined what security we expect
from a SOC scheme, we now define a scheme that satisfies these requirements. We base our
construction on an AttKE, and an AC scheme. The main idea is using the AttKE to establish
a key between the party agent and the IEE, and then communicate with the IEE over the
secure channel established with this key.

Formally, let (Compile,Attest,Verify) be an AC scheme, (Setup, LocKE) be an AttKE and
(E,D,K) be an authenticated encryption scheme. Figure 13 defines a SOC scheme. The most
important part is the compilation part, which uses the AC scheme compilation to compile the
composition of the RemKE program generated by Setup together with program P running over
a secure channel (denoted by C(P)). The initial local state is the union of the state provided
by the AC compilation and the AttKE setup. The program C(P) simply decrypts the message
it receives checks that the sequence number of the message matches its view the passes the
decrypted message to P . It then retrieves the output of P , appends the corresponding next
sequence number and outputs it. This mechanism ensures that all messages received (resp.
sent out) by P ∗ after the bootstrapping phase have the form E(i#m, k) where i is the position
of the message in the trace, m is the message intended to (resp. produced by) P , and k is
the key established by the AttKE.

On the local side, the bootstrapping mechanism simply consists of running the local KE
over the AC protocol as already described in the utility definition. Once the key has been
established, the local state keeps track of the local view of the sequence number. Verifying
an output consists in decrypting it and checking that the sequence number against the local
view of it. Encoding an input, is just appending the correct sequence number and encrypting
it with the shared key.

Program Compilesec(prms, P, id)
RemKE, stKE ← Setup(1λ, id)
P ∗, stAC ← Compile(prms,RemKE, φkey, C(P))
stl ← stKE] stAC
Return P ∗, stl

Program C(P)[st](m)
st.count← st.count + 1

(initialised at 0)
c← D(m, st.key)
If c =⊥ Return ⊥
i#m′ ← c
If i 6= st.count Return ⊥
st.count← st.count + 1
o← P [st](m′)
o∗ ← E(st.count#o, st.key)
Return o∗

Program Encode(prms, i, stl)
stl.c← stl.c+ 1
Return E(i#stl.c, stl.key), stl

Program Verifysec(prms, o∗, stl)
stl.c← stL.c+ 1
m← D(o∗, stl.key)
If m =⊥ Return ⊥
i#o← m
If i 6= stl.c Return ⊥
Return o, stl

Program BootStrap(prms, o, stl)
m← Verify(prms, stlinlast, o, stl)
If m =⊥ Return ⊥
stl, i← LocKE(stl,m)
stl.inlast ← i
Return i

Figure 13: SOC algorithms

Theorem 4. If (Compile,Attest,Verify) is a correct and secure AC scheme, {Setup, LocKE,RemKE}
is a secure AttKE and (E,D,KG) is an secure authenticated encryption scheme, then the SOC
presented in Figure 13 is secure.

29

The proof is provided in Appendix D, we provide here a sketch of proof. We first do a
game hop that consists in replacing the key established by P ∗ and the party using the AttKE
by a “magically” shared fresh key. The utility property of the AttKE provides us with the
fact that we can replace the key shared by the remote machine and the local agent by a
freshly generated key. We are left with showing that this key is shared with an IEE which is
indeed running P ∗ and not Compile(RemKE, φkey, Q) for some other Q, this is provided by the
security of the AC scheme.

We then prove input integrity by remarking that injecting new messages in the trace would
contradict the unforgeability of the authenticated encryption scheme. The sequence number
ensures that the messages are delivered in the right order and that replays are impossible.

We remark that the input integrity property ensures that we know that the only mean-
ingful action the adversary can take is to forward messages between the remote and local
machines. Taking advantage of that fact we can reduce the input privacy game to the IND-
CPA property of the authenticated encryption.

9 Conclusion
This paper offers a set of building blocks for constructing protocols that leverage the guar-
antees of IEEs. First, we define and construct attested computation based on IEEs. In the
process we identify and formalize two key properties that such protocols need to satisfy to be
useful: composition awareness and minimal leakage. Our instantiation of attested computa-
tion relies on SGX.

The next component that we provide are key-exchange protocols between a remote party
and an IEE. Such protocols are components which need to be used in any protocol where
secrecy of data communicated to and from the IEE is important. Our contribution is to adapt
existing models of security for key-exchange to the novel setting where protocol participants do
not necessarily have an a-priori identity – IEEs cannot be uniquely identified before actively
communicating with them. For constructions, we present a modular approach where by
combining a passively secure key exchange protocol with an arbitrary attested computation
protocol we obtain a fully secure key-exchange protocol. As an application, we show how to use
attested computation, key-exchange and symmetric authenticated encryption to generically
construct a secure outsourced computation scheme for arbitrary functionalities.

In terms of follow-up work, the natural next step is to use the building blocks that we pro-
vide to construct other protocols. One interesting target (which generalizes the application in
this paper) is to construct secure multi-party computation based on IEEs and experimentally
compare their efficiency with the existent software-only alternatives.

References
[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu based

attestation and sealing. In Workshop on Hardware and Architectural Support for Security
and Privacy, page 10, 2013.

[2] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. Shielding applications from
an untrusted cloud with haven. In 11th USENIX Symposium on Operating Systems

30

Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages
267–283. USENIX Association, 2014.

[3] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chaining.
In Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings, volume 839
of Lecture Notes in Computer Science, pages 341–358. Springer, 1994.

[4] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of com-
putation over large datasets. In Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, vol-
ume 6841 of Lecture Notes in Computer Science, pages 111–131. Springer, 2011.

[5] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In
Proceedings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, Washington, DC, USA, October 25-29, 2004, pages 132–145. ACM, 2004.

[6] Ernie Brickell, Liqun Chen, and Jiangtao Li. A new direct anonymous attestation scheme
from bilinear maps. In Trusted Computing - Challenges and Applications, First Interna-
tional Conference on Trusted Computing and Trust in Information Technologies, Trust
2008, Villach, Austria, March 11-12, 2008, Proceedings, volume 4968 of Lecture Notes
in Computer Science, pages 166–178. Springer, 2008.

[7] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An anal-
ysis of the EMV channel establishment protocol. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, pages 373–386. ACM, 2013.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001,
14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145. IEEE Computer Society,
2001.

[9] Luigi Catuogno, Alexandra Dmitrienko, Konrad Eriksson, Dirk Kuhlmann, Gianluca Ra-
munno, Ahmad-Reza Sadeghi, Steffen Schulz, Matthias Schunter, Marcel Winandy, and
Jing Zhan. Trusted virtual domains - design, implementation and lessons learned. In
Trusted Systems, First International Conference, INTRUST 2009, Beijing, China, De-
cember 17-19, 2009. Revised Selected Papers, volume 6163 of Lecture Notes in Computer
Science, pages 156–179. Springer, 2009.

[10] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kirli Kaynar. A logic of secure
systems and its application to trusted computing. In 30th IEEE Symposium on Security
and Privacy, SP 2009, 17-20 May 2009, Oakland, California, USA, pages 221–236. IEEE
Computer Society, 2009.

[11] Aurélien Francillon, Quan Nguyen, Kasper Bonne Rasmussen, and Gene Tsudik. A
minimalist approach to remote attestation. In Design, Automation & Test in Europe
Conference & Exhibition, DATE 2014, Dresden, Germany, March 24-28, 2014, pages
1–6. European Design and Automation Association, 2014.

31

[12] He Ge and Stephen R. Tate. A direct anonymous attestation scheme for embedded
devices. In Public Key Cryptography - PKC 2007, 10th International Conference on
Practice and Theory in Public-Key Cryptography, Beijing, China, April 16-20, 2007,
Proceedings, volume 4450 of Lecture Notes in Computer Science, pages 16–30. Springer,
2007.

[13] C. Gebhardt and A. Tomlinson. Secure virtual disk images for grid computing. In Third
Asia-Pacific Trusted Infrastructure Technologies Conference, APTC ’08, pages 19–29,
Washington, DC, USA, 2008. IEEE Computer Society.

[14] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, volume 6223 of Lecture Notes in Computer Science, pages 465–482. Springer,
2010.

[15] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of
Lecture Notes in Computer Science, pages 626–645. Springer, 2013.

[16] Kenneth A. Goldman, Ronald Perez, and Reiner Sailer. Linking remote attestation to
secure tunnel endpoints. In Proceedings of the 1st ACM Workshop on Scalable Trusted
Computing, STC 2006, Alexandria, VA, USA, November 3, 2006, pages 21–24. ACM,
2006.

[17] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[18] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan del
Cuvillo. Using innovative instructions to create trustworthy software solutions. In HASP
2013, The Second Workshop on Hardware and Architectural Support for Security and
Privacy, Tel-Aviv, Israel, June 23-24, 2013, page 11. ACM, 2013.

[19] Intel. Software Guard Extensions Programming Reference, 2014. https://software.
intel.com/sites/default/files/managed/48/88/329298-002.pdf.

[20] Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key exchange.
In Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729
of Lecture Notes in Computer Science, pages 110–125. Springer, 2003.

[21] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
Trustlite: a security architecture for tiny embedded devices. In Ninth Eurosys Con-
ference 2014, EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014, pages
10:1–10:14. ACM, 2014.

[22] J. M. McCune, B. J. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An execution
infrastructure for tcb minimization. SIGOPS Oper. Syst. Rev., 42(4):315–328, April
2008.

32

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[23] Microsoft. BitLocker Drive Encryption: Data Encryption Toolkit for Mobile PCs: Se-
curity Analysis, 2007. https://technet.microsoft.com/en-us/library/cc162804.
aspx.

[24] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege,
Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank Piessens. Sancus:
Low-cost trustworthy extensible networked devices with a zero-software trusted comput-
ing base. In Proceedings of the 22th USENIX Security Symposium, Washington, DC,
USA, August 14-16, 2013, pages 479–494. USENIX Association, 2013.

[25] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pages 238–252. IEEE Computer Society,
2013.

[26] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: trustworthy data analytics in the
cloud using SGX. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015, pages 38–54. IEEE Computer Society, 2015.

[27] Sean W. Smith. Outbound authentication for programmable secure coprocessors. Int.
J. Inf. Sec., 3(1):28–41, 2004.

[28] Ben Smyth, Mark Ryan, and Liqun Chen. Direct anonymous attestation (DAA): ensur-
ing privacy with corrupt administrators. In Security and Privacy in Ad-hoc and Sensor
Networks, 4th European Workshop, ESAS 2007, Cambridge, UK, July 2-3, 2007, Pro-
ceedings, volume 4572 of Lecture Notes in Computer Science, pages 218–231. Springer,
2007.

A Proof of Theorem 1
The proof is a sequence of three games presented in Figure 14 and Figure 15. The first
game is simply the AC security game instantiated with our protocol. In game G1

AC,A(1λ),
the adversary loses whenever a sforge event occurs. Intuitively, this event corresponds to the
adversary producing a signature that was not computed by the signing process with handle
0, and hence constitutes a forgery with respect to Σ. Given that the two games are identical
until this event occurs, we have that

Pr[AttAC,A(1λ)⇒ T]− Pr[G1
AC,A(1λ)⇒ T] ≤ Pr[sforge] .

We upper bound the distance between these two games, by constructing an adversary B
against the existential unforgeability of signature scheme Σ in S∗ such that

Pr[sforge] ≤ AdvUF
Σ,B(λ)

Adversary B simulates the environment of G1
AC,A as follows: the operation of machineMR

is simulated exactly with the caveat that the signing operations performed within the process
loaded by the security module are replaced with calls to the Sign oracle provided in the
existential unforgeability game. More precisely, whenever process 0 in the remote machine is

33

https://technet.microsoft.com/en-us/library/cc162804.aspx
https://technet.microsoft.com/en-us/library/cc162804.aspx

Game G0AC,A(1λ):
prms←$ MR.Init(1λ)
(P, φ,Q, n, stA)←$ A1(prms)

(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)
For k ∈ [1..n]:

(ik, o∗k, stA)←$ AMR
2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o′k) : ios)):
(oR,k, ios)← (o′k, (ik, o

′
k) : ios)

If finished = T: stage′ ← 2
Else: Return F

Else oR,k ← ok
T ′ ← (i1, oR,1, . . . , in, oR,n)
Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramMR

(hdl∗) = R∗:
T ← ATraceR[st;CoinsMR

(hdl∗)](i1, . . . , in)
If T v T ′ ∧ T v Translate(prms,ATraceMR

(hdl∗)):
Return F

Return T

Game G1AC,A(1λ):
prms←$ MR.Init(1λ)
(P, φ,Q, n, stA)←$ A1(prms)
sforge← F
(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)
For k ∈ [1..n]:

(ik, o∗k, stA)←$ AMR
2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o′k) : ios)):
(oR,k, ios)← (o′k, (ik, o

′
k) : ios)

If finished = T: stage′ ← 2
Else: Return F
If (((R∗, (i1, oR,1, . . . , ik, ok)), ?), σ′) 6∈ TraceMR

(0):
sforge← T; Return F

Else oR,k ← ok
T ′ ← (i1, oR,1, . . . , in, oR,n)
Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramMR

(hdl∗) = R∗:
T ← ATraceR[st;CoinsMR

(hdl∗)](i1, . . . , in)
If T v T ′ ∧ T v Translate(prms,ATraceMR

(hdl∗)):
Return F

Return T

Figure 14: First game hop for the proof of security of our AC protocol.

expected to compute a signature on message m, algorithm B calls its own oracle on (R∗,m)
to obtain σ.

When sforge is set, according to the rules of game G1
AC,A, algorithm B outputs message

(R∗, ios) and candidate signature σ. It remains to show that this is a valid forgery. To
see this, first observe that this is indeed a valid signature, as signature verification is per-
formed on these values immediately before sforge occurs. It suffices to establish that message
(R∗, (i1, o′1, . . . , ik, o′k)) could not have been queried from the Sign oracle. Access to the sign-
ing key that allows signatures to be performed is only permitted to the special process with
handle 0. From the construction of S∗, we know that producing such a signature would only
occur via the inclusion of (R∗, (i1, o′1, . . . , ik, o′k)) in its trace. Since we know that this is
not the case, (R∗, ios) could not have been queried from the signature oracle. We conclude
therefore that B outputs a valid forgery whenever sforge occurs.

In game G2
AC,A(1λ), the adversary loses whenever a mforge event occurs. Intuitively, this

event corresponds to the adversary producing a tag that was not computed by the security
module, and hence constitutes a forgery with respect to Π. Given that the two games are
identical until this event occurs, we have that

Pr[G1
AC,A(1λ)⇒ T]− Pr[G2

AC,A(1λ)⇒ T] ≤ Pr[mforge] .

We upper bound the distance between these two games, by constructing an adversary C
against the existential unforgeability of MAC scheme Π in the security module such that

Pr[mforge] ≤ AdvAuth
Π,C (λ)

Adversary C simulates the environment of G2
AC,A as follows: the operation of machine MR

is simulated exactly with the caveat that the MAC operations computed inside the internal
security module are replaced with calls to the Auth oracle provided in the existential un-
forgeability game. More precisely, whenever a process running code R∗ within an IEE in the

34

Game G1AC,A(1λ):
prms←$ MR.Init(1λ)
(P, φ,Q, n, stA)←$ A1(prms)
sforge← F
(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)
For k ∈ [1..n]:

(ik, o∗k, stA)←$ AMR
2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o′k) : ios)):
(oR,k, ios)← (o′k, (ik, o

′
k) : ios)

If finished = T: stage′ ← 2
Else: Return F
If (((R∗, (i1, oR,1, . . . , ik, ok)), ?), σ′) 6∈ TraceMR

(0):
sforge← T; Return F

Else oR,k ← ok
T ′ ← (i1, oR,1, . . . , in, oR,n)
Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramMR

(hdl∗) = R∗:
T ← ATraceR[st;CoinsMR

(hdl∗)](i1, . . . , in)
If T v T ′ ∧ T v Translate(prms,ATraceMR

(hdl∗)):
Return F

Return T

Game G2AC,A(1λ):
prms←$ MR.Init(1λ)
(P, φ,Q, n, stA)←$ A1(prms)
sforge← F; mforge← F
(R∗, (R∗, ios, stage′))← Compile(prms, P, φ,Q)
For k ∈ [1..n]:

(ik, o∗k, stA)←$ AMR
2 (stA)

If stage′ = 1:
Parse (o′k, σ)← o∗k; (ok, finished, stage)← o′k
If Σ.Vrfy(prms, σ, (R∗, (ik, o′k) : ios)):
(oR,k, ios)← (o′k, (ik, o

′
k) : ios)

If finished = T: stage′ ← 2
Else: Return F
If (((R∗, (i1, oR,1, . . . , ik, ok)), ?), σ′) 6∈ TraceMR

(0):
sforge← T; Return F

If 6 ∃ hdl∗. ProgramMR
(hdl∗) = R∗ ∧

(i1, oR,1, . . . , ik, oR,k) v Translate(prms,ATraceMR
(hdl∗)):

Then mforge← T; Return F
Else oR,k ← ok

T ′ ← (i1, oR,1, . . . , in, oR,n)
Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramMR

(hdl∗) = R∗:
T ← ATraceR[st;CoinsMR

(hdl∗)](i1, . . . , in)
If T v T ′ ∧ T v Translate(prms,ATraceMR

(hdl∗)):
Return F

Return T

Figure 15: Second game hop for the proof of security of our AC protocol.

remote machine requests a MAC on message m from the security module, algorithm C calls
its own oracle on (R∗,m) to obtain t.

Let T ← (i1, oR,1, . . . , ik, oR,k). When mforge is set according to the rules of game G2
AC,A,

algorithm C retrieves the trace of the process with handle 0 running S∗, locates the in-
put/output pair (((R∗, T), t), σ′) and outputs message (R∗, T) and candidate tag t. To
see this is a valid forgery, first observe that, having failed the sforge check, we know that
(((R∗, T), t), σ′) is in the trace of the process with handle 0, so by its construction we also
know that the corresponding input ((R∗, T), t) must contain a valid tag. It suffices to establish
that message (R∗, T) could not have been queried from the Auth oracle. Suppose that the
first part of the mforge check failed, i.e., that 6 ∃ hdl∗. ProgramMR

(hdl∗) = R∗. Then, because
the security module signs the code of the processes requesting the signatures, we are sure
that such a query was never placed to the Auth oracle. Furthermore, any MAC query for a
message starting with R∗ must have been caused by the execution of an instance of R∗. Now
suppose some instances of R∗ were indeed running in the remote machine, but that none of
them displayed the property (i1, oR,1, . . . , ik, oR,k) v Translate(prms,ATraceMR

(hdl∗)). Then,
by the construction of R∗, we can also exclude that (R∗, T) was queried from the MAC oracle.
As such, we conclude that C outputs a valid forgery whenever mforge occurs.

To complete the proof, we argue that the adversary never wins in game G2
AC,A. To see

this, observe that when the game reaches the final check, we have the guarantee that

∃ hdl∗. ProgramMR
(hdl∗) = R∗ ∧

(i1, oR,1, i2, oR,2, . . . , ik, oR,k) v Translate(prms,TraceMR
(hdl∗)))

By the construction of R∗, it immediately follows that the final check in the game will
always cause the adversary to lose:

35

• T is fixed by the input sequence, the value of the randomness tape and the semantics
of R, which determines the sequence of outputs (o1,L, . . . , on,L).

• The above existential guarantee for hdl∗ implies that an instance of R∗ in the remote
machine received the same initial k input sequence as that fixed by T .

• Since we have
T ← ATraceR[st;CoinsMR

(hdl∗)](i1, . . . , in)

we also know that the randomness tape used to produce values for T is identical to the
one used in hdl∗.

• One can therefore inductively deduce, by the semantics of R∗, that the same process
has produced an initial sequence of k outputs that (modulo the action of Translate) is
identical to that included in T .

• Subsequent inputs after stage′ ← 2 may produce n− k additional non-attested outputs
that are appended to T ′, and that differ from T . However, the above observation implies
that T v T ′, and our security claim follows.

To finish the proof, we must now show that this scheme also provides security with minimum
leakage. This implies defining a ppt simulator S that provides identical distributions with
respect to experiment in Figure 6. This is easy to ascertain given the simulator behaviour
described in Figure 16: S1 and S3 follow the exact description of the actual machine, modulo
the generation of (pk, sk) and key. S2 takes an external output produced by R[st](i) and
returns an output in accordance to the behaviour of MR, which given our language L may
differ from a real output only by the random coins. As such, the distribution provided by the
simulator is indistinguishable to the one provided by a real machine, and our claim follows.

B Proof for Theorem 2
Our proof will follow the intuition of Katz and Yung for Theorem 1 in [20]. We will start
by bounding the probabilities for the occurrence of bad events (G0AttKE,A to G3AttKE,A), and
then argue that the behaviour of G3AttKE,A towards an adversary is the same as the one of
G4Π,A using a passive adversary for the original protocol Π. At this final stage we show that,
given correctness and security guarantees of Π, we have a correct and secure AttKE protocol.
The proof consists in a sequence of five games presented in Figures 17 to 21.

The first game is simply the AttKE security game in Figure 8 instantiated with our con-
struction in Figure 9.

In the second game G1AttKE,A, the adversary loses whenever a repeat event occurs. Intu-
itively, this event corresponds to the adversary generating two sessions with the same key pair,
and hence constitutes a forgery with respect to Σ. Given that the two games are identical
until this event occurs, we have that

Pr[G0AttKE,A(1λ)⇒ T]− Pr[G1AttKE,A(1λ)⇒ T] ≤ Pr[repeat] .

Let q be the maximum number of calls to NewLocal allowed. We upper bound the distance
between these two games, by constructing an adversary B against the existential unforgeability
of signature scheme Σ such that

36

Simulator S = {S1,S2,S3}

Simulator S will perform according to theMR execution description.

• Upon input 1λ, S1 generates a key pair for process S∗, a MAC key for the security module and initializes
the traces as an empty list. The public key will be the public parameters, while the secret key be stored
in its initial state.

S1(1λ):
key←$ Π.Gen(1λ)
(pk, sk)←$ Σ.Gen(1λ)
Traces← []
Return (pk, (key, sk,Traces))

• S2 maintains a list of traces Traces with the respective list ios and stage stage. Given this, it masks output
o∗ as if produced by an actual machine execution.

S2(hdl, P, φ,Q,R, i, o∗, stS):
Parse (key, sk,Traces)← stS
If 6 ∃ (ios, stage) ∈ Traces[hdl]: ios← []; stage← 1
ios← (i, o∗) : ios
If stage = 1: m← (o∗,Π.Mac(key, R, ios))
Else m← o∗

Parse (o, finished, stage)← o∗

If finished = T: stage← 2
Traces[hdl]← (ios, stage); stS ← (key, sk,Traces)
Return (m, stS)

• S3 standardly computes the next output given input i, program R and state st. The result is afterwards
treated similar to S2.

S3(hdl, R, i, st, stS):
Parse (key, sk,Traces)← stS
If hdl = 0:

Parse (i, t)← i∗

If Π.Ver(key, t, i): Return Σ.Sign(sk, i)
Else Return ⊥

If 6 ∃ (ios, stage) ∈ Traces[hdl]: ios← []; stage← 1
o∗←$ R[st](i)
If stage = 1: m← (o∗,Π.Mac(key, R, st.ios))
Else m← o∗

Parse (o, finished, stage)← o∗

If finished = T: stage← 2
Traces[hdl]← (ios, stage); stS ← (key, sk,Traces)
Return (m, stS)

Figure 16: Description of simulator S

Pr[repeat] ≤
AdvUF

Σ,B(λ) ∗ q
2 .

Adversary B simulates the environment of G1AttKE,A as follows: at the beginning of the game,
B has to try and guess which session will have a duplicate key. As such, it samples uniformly
from [1..q] a session s and replaces the public key generated by Σ.Gen in NewLocal for instance
i = s with the public key pkUF provided by UFΣ,B. Every time instance s has to produce a
signature in SendLocal(m, s), instead of Σ.Sign(sk, t), B calls Oracle Sign(t). Additionally, B
will store all key pairs and session ids generated by NewLocal s.t. i 6= s in a list keys. When

37

G0AttKE,A(1λ):
InsList← []
fake← []
i← 0
b←$ {0, 1}
b′←$ AO(1λ, id)
Return b = b′

Oracle NewLoc():
i← i+ 1
(pk, sk)←$ Σ.Gen(1k)
Ri ← RemKE < Π, pk >
stiL ← (id, ε, sk, [])
InsList[i]← 0
T iL ← []
Return Ri

Oracle SendLoc(m, i):
If @j, (m : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (m∗, r)← m
(m′, stKE)←$ Π(1λ,m∗, id, responder, stKE)
t← m′ : m : t
σ = Σ.Sign(sk, t)
stiL ← (id, stKE, sk, t)
T iL ← m′ : m : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (stiL.key, key∗) : fake

Return (m′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):
If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key
Return fake(stiL.key)

Oracle RevealLoc(i):
Return stiL.key

Oracle NewRem(i):
InsList[i]← InsList[i] + 1
j ← InsList[i]; sti,jR ← ε

T i,jR ← []
Return ε

Oracle SendRem(m, i, j):
m′←$ Ri[sti,jR](m)
T i,jR ← m′ : m : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (sti,jR .key, key∗) : fake

Return (m′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):
If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key
Return fake(sti,jR .key)

Oracle RevealRem(i, j):
Return sti,jR .key

Figure 17: Game defining the execution environment for the security analysis of an AttKE scheme for
an arbitrary local identity id. O denotes all oracles associated with the game.

the game terminates, the adversary looks up on list keys for a key pair with public key pkUF,
extracts the associated secret key sk, executes σ←$ Σ.Sign(sk,m′) for any m′ not yet queried
to Oracle Sign and presents (m′, σ) as a challenge for UFΣ,B. It remains to show that, when
repeat is set, B wins UFΣ,B with probability 2/q

When the game ends and repeat = T, we have at least two duplicate R. This implies that
∃i, j s.t. (pki, ski) = (pkj , skj), i 6= j. If it is the case that i = s ∨ j = s, B has either ski
or skj in keys, and can use that to generate the signature that wins the UFΣ,B game. Since
i, j ∈ [1..q] and s is sampled uniformly from [1..q], we have that this happens with probability
2/q, and we therefore conclude that B outputs a valid forgery with the same probability
whenever repeat occurs.

In game G2AttKE,A, the adversary loses whenever a rnonce event occurs. Intuitively, this
event corresponds to the adversary generating two duplicate nonces. Given that the two
games are identical until this event occurs, we have that

Pr[G1AttKE,A(1λ)⇒ T]− Pr[G2AttKE,A(1λ)⇒ T] ≤ Pr[rnonce] .

Let qR be the number of calls to NewRemote allowed to the adversary. We upper bound the
distance between these two games such that

38

G1AttKE,A(1λ):
InsList← []
fake← []
PrgList← []
repeat← F
i← 0
b←$ {0, 1}
b′←$ AO(1λ, id)
If repeat = T:

b′←$ {0, 1}
Return b = b′

Oracle NewLoc():
i← i+ 1
(pk, sk)←$ Σ.Gen(1k)
Ri ← RemKE < Π, pk >
If Ri ∈ PrgList:

repeat← T
PrgList← (Ri : PrgList)
stiL ← (id, ε, sk, [])
InsList[i]← 0
T iL ← []
Return Ri

Oracle SendLoc(m, i):
If @j, (m : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (m∗, r)← m
(m′, stKE)←$ Π(1λ,m∗, id, responder, stKE)
t← m′ : m : t
σ = Σ.Sign(sk, t)
stiL ← (id, stKE, sk, t)
T iL ← m′ : m : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (stiL.key, key∗) : fake

Return (m′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):
If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key
Return fake(stiL.key)

Oracle RevealLoc(i):
Return stiL.key

Oracle NewRem(i):
InsList[i]← InsList[i] + 1
j ← InsList[i]; sti,jR ← ε

T i,jR ← []
Return ε

Oracle SendRem(m, i, j):
m′←$ Ri[sti,jR](m)
T i,jR ← m′ : m : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (sti,jR .key, key∗) : fake

Return (m′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):
If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key
Return fake(sti,jR .key)

Oracle RevealRem(i, j):
Return sti,jR .key

Figure 18: Game defining the execution environment for the security analysis of an AttKE scheme for
an arbitrary local identity id. O denotes all oracles associated with the game.

Pr[rnonce] ≤ q2
R

2k .

From the rules of G2AttKE,A and the construction of R, we know that a new r is generated at
every query of SendRemote such that T i,jR = []. This only happens at most once for every
new T i,jR , i.e., at most once for every call of NewRemote. Since r is sampled uniformly from
a subset of {0, 1}k, we conclude that the probability of rnonce is q2

R/2k.
In game G3AttKE,A, the adversary loses whenever a forge event occurs. Intuitively, this

event corresponds to the adversary producing a signature that was not computed by SendLocal,
and hence constitutes a forgery with respect to Σ. Given that the two games are identical
until this event occurs, we have that

Pr[G2AttKE,A(1λ)⇒ T]− Pr[G3AttKE,A(1λ)⇒ T] ≤ Pr[forge] .

Let q be the maximum number of calls to NewLocal allowed. We upper bound the distance
between these two games, by constructing an adversary C against the existential unforgeability
of signature scheme Σ such that

39

G2AttKE,A(1λ):
InsList← []
fake← []
PrgList← []
NonList← []
repeat← F
rnonce← F
i← 0
b←$ {0, 1}
b′←$ AO(1λ, id)
If repeat = T:

b′←$ {0, 1}
If rnonce = T:

b′←$ {0, 1}
Return b = b′

Oracle NewLoc():
i← i+ 1
(pk, sk)←$ Σ.Gen(1k)
Ri ← RemKE < Π, pk >
If Ri ∈ PrgList:

repeat← T
PrgList← (Ri : PrgList)
stiL ← (id, ε, sk, [])
InsList[i]← 0
T iL ← []
Return Ri

Oracle SendLoc(m, i):
If @j, (m : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (m∗, r)← m
(m′, stKE)←$ Π(1λ,m∗, id, responder, stKE)
t← m′ : m : t
σ = Σ.Sign(sk, t)
stiL ← (id, stKE, sk, t)
T iL ← m′ : m : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (stiL.key, key∗) : fake

Return (m′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):
If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key
Return fake(stiL.key)

Oracle RevealLoc(i):
Return stiL.key

Oracle NewRem(i):
InsList[i]← InsList[i] + 1
j ← InsList[i]; sti,jR ← ε

T i,jR ← []
Return ε

Oracle SendRem(m, i, j):
m′←$ Ri[sti,jR](m)
If T i,jR = []:

Parse (o, r)← m′
If r ∈ nonList:

rnonce← T
nonList← (r : nonList)

T i,jR ← m′ : m : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (sti,jR .key, key∗) : fake

Return (m′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):
If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key
Return fake(sti,jR .key)

Oracle RevealRem(i, j):
Return sti,jR .key

Figure 19: Game defining the execution environment for the security analysis of an AttKE scheme for
an arbitrary local identity id. O denotes all oracles associated with the game.

Pr[forge] ≤ AdvUF
Σ,C(λ) ∗ q .

Adversary C simulates the environment of G3AttKE,A as follows: at the beginning of the game,
C has to try and guess which session will have a duplicate key. As such, it samples uniformly
from [1..q] a session s and replaces the public key generated by Σ.Gen in NewLocal for instance
i = s with the public key pkUF provided by UFΣ,C . Every time instance s has to produce
a signature in SendLocal(m, s), instead of Σ.Sign(sk, t), C calls Oracle Sign(t). During the
execution of SendRemote(m, i, j) that sets forge = T, C presents ((o : sti,jR .t), σ) as a challenge
for UFΣ,C . It remains to show that, when forge is set, C wins UFΣ,C with probability 1/q.

When forge = T we have that, for some execution of SendRemote(m, i, j), sti,jR .δ 6= reject∧
(o : sti,jR) 6∈ sigList. From the construction of R, we know that sti,jR .δ 6= reject implies that the
provided ((o : sti,jR .t), σ) is a valid message/signature pair for session i. If i = s, this is also a
valid message/signature pair for UFΣ,C . Now observe that (o : sts,jR .t) 6∈ sigList assures us that
(o : sts,jR .t) was not queried to oracle Sign: rnonce establishes that every nonce is unique, and
every execution of SendLocal adds the nonce r to the signed message, so every call to oracle
Sign is unique. From

40

If @j, (m : T sL) v T s,jR then return ⊥

and repeat, we know that if oracle Sign was called for some (m′ : sts,jR .t), then SendLocal of
session s would be responding to the sequence of messages exchanged with the unique instance
j, matching T s,jR that coincides (modulo signatures) with sts,jR .t. However, by the construction
of G3AttKE,A, that would imply sigList ← (sts,jR .t : sigList), and we know that sts,jR .t 6∈ sigList.
We therefore conclude that (sti,jR .t, σ) is a winning output for game UFΣ,C if i = s. That
probability is 1/q.

G3AttKE,A(1λ):
InsList← []
fake← []
PrgList← []
NonList← []
sigList← []
repeat← F
rnonce← F
forge← F
i← 0
b←$ {0, 1}
b′←$ AO(1λ, id)
If repeat = T:

b′←$ {0, 1}
If rnonce = T:

b′←$ {0, 1}
If forge = T:

b′←$ {0, 1}
Return b = b′

Oracle NewLoc():
i← i+ 1
(pk, sk)←$ Σ.Gen(1k)
Ri ← RemKE < Π, pk >
If Ri ∈ PrgList:

repeat← T
PrgList← (Ri : PrgList)
stiL ← (id, ε, sk, [])
InsList[i]← 0
T iL ← []
Return Ri

Oracle SendLoc(m, i):
If @j, (m : T iL) v T i,jR then return ⊥
(id, stKE, sk, t)← stiL
Parse (m∗, r)← m
(m′, stKE)←$ Π(1λ,m∗, id, responder, stKE)
t← m′ : m : t
σ = Σ.Sign(sk, t)
sigList← t : sigList
stiL ← (id, stKE, sk, t)
T iL ← m′ : m : T iL
If stiL.δ ∈ {accept, derived}:

If (stiL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (stiL.key, key∗) : fake

Return (m′, stiL.sid, stiL.δ, stiL.pid)

Oracle TestLoc(i):
If stiL.δ 6= accept return ⊥
If b = 0 return stiL.key
Return fake(stiL.key)

Oracle RevealLoc(i):
Return stiL.key

Oracle NewRem(i):
InsList[i]← InsList[i] + 1
j ← InsList[i]; sti,jR ← ε

T i,jR ← []
Return ε

Oracle SendRem(m, i, j):
m′←$ Ri[sti,jR](m)
If T i,jR = []:

Parse (o, r)← m′
If r ∈ nonList:

rnonce← T
nonList← (r : nonList)

Else:
Parse (o, σ)← m
If sti,jR .δ 6= reject ∧ (o : sti,jR .t) 6∈ sigList

forge← T
T i,jR ← m′ : m : T i,jR
If sti,jR .δ ∈ {accept, derived}:

If (sti,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← (sti,jR .key, key∗) : fake

Return (m′, sti,jR .sid, sti,jR .δ, sti,jR .pid)

Oracle TestRem(i, j):
If sti,jR .δ 6= accept return ⊥
If b = 0 return sti,jR .key
Return fake(sti,jR .key)

Oracle RevealRem(i, j):
Return sti,jR .key

Figure 20: Game defining the execution environment for the security analysis of an AttKE scheme for
an arbitrary local identity id. O denotes all oracles associated with the game.

Finally, in game G4Π,A, we no longer require AttKE, but instead make use of a passive
adversary and its corresponding oracles {Execute(i, j),Reveal(i, s),Test(i, s)}. The intuition
is that, at this fifth game, all calls to the compiled AttKE protocol can be perfectly simulated
using the original protocol Π. More formally, we want to show that

Pr[G3AttKE,A(1λ)⇒ T] = Pr[G4Π,A(1λ)⇒ T].

41

G4Π,A(1λ):
InsList← []
fake← []
PrgList← []
NonList← []
sigList← []
repeat← F
rnonce← F
forge← F
i← 0
b←$ {0, 1}
b′←$ AO(1λ, id)
If repeat = T:

b′←$ {0, 1}
If rnonce = T:

b′←$ {0, 1}
If forge = T:

b′←$ {0, 1}
Return b = b′

Oracle NewLoc():
i← i+ 1
(pk, sk)←$ Σ.Gen(1k)
Ri ← RemKE < Π, pk >
If Ri ∈ PrgList:

repeat← T
PrgList← (Ri : PrgList)
stiL ← (id, (pk, sk),⊥, [], 1)
InsList[i]← 0
T iL ← []
Return Ri

Oracle SendLoc(m, i):
If @j, (m : T iL) v T i,jR then return ⊥
(id, (pk, sk), r, t, n)← stiL
Parse (m∗, r)← m
If t = [] then r ← r′

m∗ ← Ei,r[n]
t← m′ : m : t
σ = Σ.Sign(sk, t)
sigList← t : sigList
stiL ← (id, (pk, sk), r, t, n)
T iL ← m′ : m : T iL
(sid, δ, pid)← Locali
Return ((m∗, σ), sid, δ, pid)

Oracle TestLoc(i):
(sid, δ, pid)← Locali
If δ 6= accept return ⊥
Return Test(id, sid)

Oracle RevealLoc(i):
(sid, δ, pid)← Locali
If δ 6= {derived, accept} then Return ⊥
Return Reveal(id, sid)

Oracle NewRem(i):
InsList[i]← InsList[i] + 1
j ← InsList[i]; sti,jR ← ε

T i,jR ← []
Return ε

Oracle SendRem(m, i, j):
If T i,jR = []:

If m 6= ε then δ ← reject
t← []; n← 0; r←$ {0, 1}k
If r ∈ nonList:

rnonce← T
nonList← (r : nonList)
oid← stiL.pk || r
Ei,r←$ Execute(id, oid); o← ε

Else:
(pk, r, t, n)← sti,jR
Parse (o, σ)← m
If Σ.Vrfy(pk, σ, (o : t)) =⊥: δ ← reject
If δ 6= reject ∧ (o : t) 6∈ sigList

forge← T
m′ ← Ei,r[n]
t← (m′, r) : o : t
sti,jR ← (pk, r, t, n+ 2)
T i,jR ← (m′, r) : m : T i,jR
(sid, δ, pid, oid)← Remotei,j
Return ((m′, r), sid, δ, pid)

Oracle TestRem(i, j):
(sid, δ, pid, oid)← Remotei,j
If δ 6= accept return ⊥
Return Test(oid, sid)

Oracle RevealRem(i, j):
(sid, δ, pid, oid)← Remotei,j
If δ 6= {derived, accept} then Return ⊥
Return Reveal(oid, sid)

Figure 21: Game defining the execution environment for the security analysis of an AttKE scheme for
an arbitrary local identity id. O denotes all oracles associated with the game.

Whenever G4Π,A is required to respond to SendLocal or SendRemote, instead of executing Π
and R (respectively), it will follow a unique Execute(id, oid) that is associated with sessions i
and nonce r. Additionally, G4Π,A tracks when any execution should be rejected, and responds
to Reveal/Test with either ⊥ or with the output of the same oracles from the passive adver-
sary. To help with this, G4Π,A stores a list of Execute transcripts Ei,r. Messages exchanged
from such transcripts will be tracked locally and remotely with a counter n. From the infor-
mation in (stiL, sti,jR) and transcripts Ei,r we assume that it is possible to infer (sid, δ, pid) and
(sid, δ, pid, oid) via Locali and Remotei,j , respectively.

The changes in NewLocal merely reflect additional information stored in existing struc-
tures. In SendLocal, Ei,r[n] is used instead of Π to provide the next message. In SendRemote,
instead of running R, the specification in Figure 9 is followed on the oracle itself, with the

42

exception of calling Ei,j [n] instead of using Π to provide the next message. In Reveal/Test,
either ⊥ is returned or the result of another oracle Reveal/Test is given, instead of directly
providing a key. In these scenarios, handling of fake keys is delegated to Test queries of the
passive adversary. As such, to validate these games as equivalent, we must show that all
calls to Ei,r correspond to the Π replaced, and that Reveal/Test are responding similarly to
G3AttKE,A.

Observe that, by the construction of Ei,r←$ Execute(id, oid),

Ei,r = [o1←$ Π(1λ, ε, oid, initiator, str), o2←$ Π(1λ, o1, id, responder, sti), . . .]

the transcript Ei,r contains a list of specific executions of Π(1λ,m, i, ρ, st). We must show
that every Ei,j [n] matches to the output of Π(1λ,m, i, ρ, st) executed in G3AttKE,A. First
note that, from repeat, we know that every i is associated with a different R. This means
that every SendRemote(m, i, j) will be associated with a unique stiL. Many executions of the
same session i may occur, so the nonce associated cannot be determined at NewLocal (hence
stiL ← (id, (pk, sk),⊥, [], 1)), but we know that every first message of AttKE will fix a unique r,
so Ei,r can be established in the first non-reject call of SendLocal(m, i), and a 1-to-1 relation
with instance j is given by

If @j, (m : T iL) v T i,jR then return ⊥ (1)

and forge. Let SendLocalk and SendRemotek be the k-th execution of these Oracles.

• SendRemote1(m, i, j): If δ 6= reject, r←$ {0, 1}k, [Π(1λ, ε, pk||r, initiator, st), . . .]←$ Execute(id, pk||r)
and we have that Π(1λ, ε, pk||r, initiator, st) = Ei,r[0] = m1; sti,jR .t = [(m1, r), ε]; sti,jR .n =
2.

• SendLocal2(m, i): If stiL.δ 6= reject, we know that ((o, r) : stiL.t) is in the prefix trace of
a unique instance SendRemote1 (from (1)). Since stiL.t = [], m was the first message
produced by SendRemote1, so we can set r as the nonce of the execution, retrieving the
second message from Execute(id, pk||r) in Ei,r, the unique transcript between session i
and the remote j that produced r. As such, we have that Π(1λ,m′, id, responder, st) =
Ei,r[1] = m2. stiL.t = [m2, (m1, r

′), ε]; stiL.n← 3.

• SendRemoten(m, i, j): If δ 6= reject, Parse (o, σ) ← m; Σ.Vrfy(pk, σ, (o : sti,jR .t)) 6=⊥
and (o : sti,jR .t) ∈ sigList means that m was the (n − 1)-th message produced by in-
stance SendLocaln−1(mn−2, i) with stiL.t = [o, . . . , (m1, r), ε], following (o : sti,jR .t) (from
forge). (o : sti,jR .t) was constructed with the first n − 1 messages in the transcript of
Execute(id, pk||r): Ei,r, so given that Ei,r[n] provides the n-th message of Ei,r, we have
that Π(1λ, o, pk||r, initiator, st) = Ei,r[n]. sti,jR .n = n+ 2.

• SendLocaln(m, i): If stiL.δ 6= reject, we know that m was the (n−1)-th message produced
by some instance SendRemoten−1 with ([m, . . . ,m2, (m1, r), ε]) in its trace sti,jR .t (from
(1)). sti,jR .t was also constructed with the first n − 1 messages in the transcript of
Execute(id, pk||r): Ei,r, so given that Ei,r[n] provides the n-th message of Ei,r, we have
that Π(1λ,m′, id, responder, st) = Ei,r[n]. stiL.n = n+ 2.

Regarding Reveal and Test queries, observe that either the instances of i or j have δ 6=
{derived, accept} or δ 6= accept, respectively, which given the previous is the same in both

43

scenarios, or A gets the response from the Oracle of the passive adversary regarding the
unique Execute(id, oid) associated with sessions i and j, and the output is also the same in
both scenarios.

As such, we have that the behaviour of G3AttKE,A towards an adversary A is indistin-
guishable to the one provided in G4Π,A interacting with a passive adversary for the original
protocol. This provides us with the correctness and security guarantees of the passive proto-
col Π modulo any attacks that would also be possible in the passive scenario. Now observe
that, given that rnonce assures unique values for oid, and given that LocalKE and RemoteKE
have ρ = responder and ρ = initiator, respectively, it is trivial to infer that this implies the
correctness and security of AttKE.

To conclude, we have that

AdvAtt
AttKE,A = Pr[GAttKE,A

0 (1λ)]− Pr[GΠ,A
4 (1λ)]

= (
3∑
i=0

Pr[GAttKE,A
i (1λ)]− Pr[GAttKE,A

i+1 (1λ)]) + (Pr[GAttKE,A
3 (1λ)]− Pr[GΠ,A

4 (1λ)])

≤ Pr[repeat] + Pr[rnonce] + Pr[forge] + AdvAtt
Π,A(λ)

≤
3 ∗ AdvUF

Σ,D(λ) ∗ q
2 + q2

R

2k + AdvAtt
Π,A(λ)

and Theorem 2 follows.

C Proof for Theorem 3

G0AttKE,A(1λ):
prms0←$ MR.Init(1λ)
prms1←$ M′R.Init(1λ)
PrgList← []
fake← []
i← 0
b←$ {0, 1}
b′←$ AO(prmsb, id)
Return b = b′

Oracle Load(R∗):
If b = 0

ReturnMR.Load(R∗)
ReturnM′R.Load(R∗)

Oracle NewSession(Q):
i← i+ 1
(Remi

KE, stiKE)←$ Setup(1λ, id)
(R∗i , stiL)←$ AC.Compile(prmsb,Remi

KE, φkey, Q)
inilast ← ε

PrgList← ((R∗i ,Remi
KE, Q) : PrgList)

Return R∗i

Oracle Run(hdl, in):
flag← F
If ProgramM′

R
(hdl) ∈ PrgList then flag← T

If b = 0 returnMR.Run(hdl, in)
(o, fake)←$ M′R.Run(hdl, in, flag, fake)
Return o

Oracle Send(m′, i):
(m, stiL)←$ AC.Verify(prmsb, inilast,m

′, stiL)
(m∗, stiKE)←$ LociKE(stiKE,m)
inilast ← m∗
If stiKE.key /∈ fake ∧ stiKE.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Oracle Test(i):
If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key
Return fake(stiKE.key)

Figure 22: Game defining the utility of an AttKE scheme when used in the context of attested
computation.

In this proof, we will start by bounding the possibility for the occurrence of a bad event
(G0AC,A to G1AC,A). We will then replace the machine execution with the indistinguishable
behavior of the simulator of minimum leakage game in Figure 6 for G2AC,A. Finally, we argue
that, given these circumstances, this scenario is the same as one of G3AttKE,A using the oracles
of key exchange for attested computation in Figure 8 modulo any advantage the adversary
may gain from the AttKE scheme. The proof consists in a sequence of four games presented
in figures 22 to 25. The first game is simply the utility game in Figure 10.

44

G1AttKE,A(1λ):
prms0←$ MR.Init(1λ)
prms1←$ M′R.Init(1λ)
PrgList← []
fake← []
forgeAC← F
i← 0
b←$ {0, 1}
b′←$ AO(prmsb, id)
If forgeAC = T:

b′ ← {0, 1}
Return b = b′

Oracle Load(R∗):
If b = 0

ReturnMR.Load(R∗)
ReturnM′R.Load(R∗)

Oracle NewSession(Q):
i← i+ 1
(Remi

KE, stiKE)←$ Setup(1λ, id)
(R∗i , stiL)←$ AC.Compile(prmsb,Remi

KE, φkey, Q)
inilast ← ε

PrgList← ((R∗i ,Remi
KE, Q) : PrgList)

T iL = []
Return R∗i

Oracle Run(hdl, in):
flag← F
If ProgramM′

R
(hdl) ∈ PrgList then flag← T

If b = 0: o←MR.Run(hdl, in)
Else: (o, fake)←$ M′R.Run(hdl, in, flag, fake)
Return o

Oracle Send(m′, i):
(m, stiL)←$ AC.Verify(prmsb, inilast,m

′, stiL)
If b = 0 thenM←MR elseM←M′R
If m 6=⊥ ∧ 6 ∃hdl s.t. ProgramM(hdl) = R∗i .

Rev(m′ : T iL) v ATraceM(hdl): forgeAC← T
(m∗, stiKE)←$ LociKE(stiKE,m)
inilast ← m∗; T iL ← m∗ : m′ : T iL
If stiKE.key /∈ fake ∧ stiKE.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Oracle Test(i):
If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key
Return fake(stiKE.key)

Figure 23: First hop of the utility proof.

G2AttKE,A(1λ):
(prms, stS)←$ S1(1λ)
PrgList← []
fake← []
List← []
forgeAC← F
i← 0
hdl← 0
b←$ {0, 1}
b′←$ AO(prms, id)
If forgeAC = T:

b′ ← {0, 1}
Return b = b′

Oracle Load(R∗):
hdl← hdl + 1
List[hdl]← (R∗, ε)
T hdl
R ← []

Return hdl

Oracle NewSession(Q):
i← i+ 1
(Remi

KE, stiKE)←$ Setup(1λ, id)
(R∗i , stiL)←$ Compile(Remi

KE, φkey, Q)
inilast ← ε

PrgList← ((Remi
KE, φkey, Q,R

∗
i) : PrgList)

T iL = []
Return R∗i

Oracle Run(hdl, in):
(R∗, st)← List[hdl]
If (P, φ,Q,R) ∈ PrgList:

R← Composeφ[P,Q]
o∗←$ R[st](in)
(o, stS)←$ S2(hdl, P, φ,Q,R∗, in, o∗, stS)
If stP .stage = 1:

If stP .key 6∈ fake ∧ stP .δ ∈ {derived, accept}:
key∗←$ {0, 1}λ
fake← (key, key∗) : fake

If δ = accept ∧ b = 1:
stP .key← fake(key)

T hdl
R ← o : in : T hdl

R
Else:

(o, st, stS)←$ S3(hdl, R∗, in, st, stS)
List[hdl]← (R∗, st)
Return o

Oracle Send(m′, i):
(m, stiL)←$ AC.Verify(prms, inilast,m

′, stiL)
If m 6=⊥ ∧ 6 ∃hdl s.t. List[hdl] = R∗i .

Rev(m′ : T iL) v T hdl
R : forgeAC← T

(m∗, stiKE)←$ LociKE(stiKE,m)
inilast ← m∗; T iL ← m∗ : m′ : T iL
If stiKE.key /∈ fake ∧ stiKE.δ ∈ {derived, accept}:

key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Oracle Test(i):
If stiKE.δ 6= accept return ⊥
If b = 0 then return stiKE.key
Return fake(stiKE.key)

Figure 24: Second hop of the utility proof.

In the second game G1AttKE,A, the adversary loses whenever a forgeAC event occurs. In-
tuitively, this event corresponds to the adversary producing an output that is successfully
validated, but was not computed using Run, and hence constitutes a forgery with respect to
AC. We establish that Rev reverses a list given as input5. Given that the two games are
identical until this event occurs, we have that

Pr[G0AttKE,A(1λ)⇒ T]− Pr[G1AttKE,A(1λ)⇒ T] ≤ Pr[forgeAC] .
5This is for handling a technicality, in which the trace ofM and the constructed T iL are in reverse order.

45

G3AttKE,A(1λ):
(prms, stS)←$ S1(1λ)
PrgList← []
fake← []
List← []
InsList← []
forgeAC← F
i← 0
hdl← 0
b←$ {0, 1}
b′←$ AO(prms, id)
If forgeAC = T:

b′ ← {0, 1}
Return b = b′

Oracle Load(R∗):
hdl← hdl + 1
T hdl
R = []

If 6 ∃(R∗, j) ∈ InsList:
InsList[R∗]← 1

Else: j ← j + 1
InsList[R∗]← j

List[hdl]← (R∗, ε, j, 1)
NewRem()
T hdl
R ← []

Return hdl

Oracle NewSession(Q):
i← i+ 1
Remi

KE←$ NewLoc()
(R∗i , stiL)←$ Compile(Remi

KE, φkey, Q)
inilast ← ε

PrgList← ((Remi
KE, φkey, Q,R

∗
i) : PrgList)

T iL = []
Return R∗i

Oracle Run(hdl, in):
(R∗i , st, j, stage)← List[hdl]
If (P, φ,Q,R) ∈ PrgList:

If stage = 1:
o←$ SendRem(in, i, j)
Parse (o, sid, δ, pid)← o:
(o∗, stS)←$ S2(hdl, P, φ,Q,R∗, in, o, stS)
If δ = accept:

stage← 2
st← TestRem(i, j)

T hdl
R ← o∗ : in : T hdl

R
Else:

o←$ Q[st](in)
(o∗, stS)←$ S2(hdl, P, φ,Q,R∗, in, o, stS)

Else:
(o, st, stS)←$ S3(hdl, R∗, in, st, stS)

List[hdl]← (R∗, st, j, stage)
Return o∗

Oracle Send(m′, i):
(m, stiL)←$ AC.Verify(prms, inilast,m

′, stiL)
If m 6=⊥ ∧ 6 ∃hdl s.t. List[hdl] = R∗i .

Rev(m′ : T iL) v T hdl
R : forgeAC← T

m∗←$ SendLoc(m, i)
Parse (o, sid, δ, pid)← m∗:
inilast ← m∗; T iL ← o : m′ : T iL
Return o

Oracle Test(i):
Return TestLoc(i)

Figure 25: Third hop of the utility proof.

Let q be the maximum number of calls to NewSession allowed, and N the number of messages
exchanged in Remi

KE. We upper bound the distance between these two games, by constructing
an adversary B against the security of AC such that

Pr[forgeAC] ≤ AdvAtt
AC,B(λ) ∗ q ∗ dN/2e .

Adversary B simulates the environment of G1AttKE,A as follows: at the beginning of the game,
B has to try and guess which session will have a forged message, and which message of the
protocol it will be. As such, it samples uniformly from [1..q] a session s and from [1..dN/2e]
a message k. During NewSession such that i = s, B1 will output (Remi

KE, φkey, Q, k,⊥) to
AttAC,B, store the produced R∗ and all hdl output by Load(R∗) from there on. Afterwards, all
calls toMR.Load(R∗) andMR.Run(hdl,m) orM′R.Load(R∗) andM′R.Run(hdl,m, flag, fake)
with the same calls on AttAC,B. Whenever Send(m′, i) is called, i = s and m 6=⊥, let n be the
number of messages sent for session s:

• If n = 0, B2 outputs (⊥,m′,m∗).

• If n > 0 ∧ n < k, B2 outputs (stB,m′,m∗)

It remains to show that, when forgeAC is set, B wins AttAC,B with probability 1/(q ∗ dN/2e).
When the game ends and forgeAC = T, we have that

m 6=⊥ ∧ 6 ∃hdl s.t. ProgramM(hdl) = R∗i . (m′ : T iL) v ATraceM(hdl)

From the construction of Send, m 6=⊥ means that this message has been successfully validated
by AC.Verify. Furthermore, this matches the verifications in AttAC,B, considering that inilast ←

46

m∗ in Send, so we know that all verifications that succeed in G1AttKE,A also do so in AttAC,B.
If forgeAC is set upon receiving message k, we reach the final check. All calls that produce
handles such that ProgramM(hdl) = R∗i are also performed in AttAC,B, so it remains to show
that Rev(m′ : T iL) matches T .

We know that T ← ATraceR[st;CoinsMR
(hdl∗)](i1, . . . , in). From the construction of Send and

the behavior of the adversary, we know that this is constructed with the outputs given by B2.
We will show, inductively, why Rev(m′ : T iL) matches the k outputs of B2.

• Initially, given that (⊥,m′0,m∗0)← B2:

Rev(m′0 : T iL) = Rev[m′0,⊥] = [⊥,m′0]

• For all subsequent messages up to k, (m∗n−1,m′n,m∗n)← B2, so

Rev(m′ : T iL) = Rev[m′n,m∗n−1, . . . ,m′0,⊥] = [⊥,m′0, . . . ,m∗n−1,m′n]

As such, when forgeAC is set on session s, and in the k-th message input on Send, we have
that

6 ∃hdl s.t. ProgramM(hdl) = R∗i . (m′ : T iL) v ATraceM(hdl)

which results in a winning output for AttAC,B with probability 1/(q ∗ dN/2e).
In the third game G2AttKE,A, when the adversary loads and runs code, it is no longer

interacting with machine M, but rather with a simulator that is given the trace of a legit-
imate execution. Furthermore, S handles the different behavior of MR and M′R following
the description in Section 7. Intuitively, this difference corresponds to the indistinguishable
scenario presented in the minimum leakage game of Figure 6. Given the presented differences,
we have that

Pr[G1AttKE,A(1λ)⇒ T]− Pr[G2AttKE,A(1λ)⇒ T] ≤
Pr[Leak-RealAC,A(1λ)⇒ T]− Pr[Leak-IdealAC,A(1λ)⇒ T].

We must now argue that the difference between the games is bound by the adversary’s
advantage of breaking minimal leakage. In both possibilities for the bit b, the transformation
in Load is exactly the same as the one in the minimum leakage game. Furthermore, T hdl

R will
always correspond to the ATraceM(hdl). First, consider b = 0. The behavior of Run is exactly
the same as the one in the minimum leakage game, modulo the generation of the fake key,
which will not be taken into consideration since it is only used in Test when b = 1. Now
consider b = 1. The behavior of Run is exactly the same as the one in the minimum leakage
game, modulo generating and setting the fake key. However, these additional operations
match the described behavior expected fromM′R for establishing the fake key.

As such, the advantage of the adversary in G2AttKE,A with respect to G1AttKE,A is limited
by its advantage of breaking the minimum leakage.

Finally, in game G3AttKE,A, we no longer run the key exchange part of the code, but
rather make use of AttKE and its corresponding oracles {NewRem,NewLoc,SendRem, SendLoc,
TestRem,TestLoc}. The intuition is that, at this fourth game, calls to the attested part of
the protocol can be provided using a key exchange for attested computation AttKE. More
formally, we want to show that

47

Pr[G2AttKE,A(1λ)⇒ T]− Pr[G3AttKE,A(1λ)⇒ T] ≤ AdvAtt
AttKE,A .

Whenever G3AttKE,A creates a local or a remote session (respectively, NewSession or Load),
it will initialize accordingly on the AttKE protocol. On the remote side, a new InsList will also
keep track of how many remote sessions are created (just like oracle NewRem in AttKE). On
the local side, algorithm Setup will be replaced by a call to NewLoc that by its construction
will return the same value as in G2AttKE,A. As such, it must now be argued that, every time
the game is required to produce either an output from the local/remote machine or a key,
the response given by the corresponding oracle is only distinguishable by an adversary that
breaks AttKE security.

• For stage = 1 ∧ δ 6= accept: Locally, SendLoc replaces calling LociKE, which by the oracle
behavior implies the same result. Remotely, instead of producing output via R[st](in),
we now directly execute oracle SendRem, which by construction holds and updates st in
the same way as G2AttKE,A.

• For stage = 1 ∧ δ = accept: In G2AttKE,A, SendLoc would replace the real key with a fake
key according to decision bit b. In G3AttKE,A, the same thing happens, but according
to AttKE decision bit. Remotely, the behavior of st← TestRem also differs in the same
manner.

• For stage = 2: We know by Composeφ[P,Q], that the state st considered for Q only
maintains the key. As such, from thereon, the only difference between G2AttKE,A and
G3AttKE,A is the key depending on the decision bit taken into consideration.

In this final game, the adversary’s decision is based on a bit that is unrelated to any
information obtainable via the oracles. Let

AdvLeak
AC,A = Pr[Leak-RealAC,A(1λ)⇒ T]− Pr[Leak-IdealAC,A(1λ)⇒ T]

we have that

AdvUt
AttKE,A = Pr[GAttKE,A

0 (1λ)]− Pr[GAttKE,A
3 (1λ)]

=
3∑
i=0

Pr[GAttKE,A
i (1λ)]− Pr[GAttKE,A

i+1 (1λ)]

≤ Pr[forgeAC] + AdvLeak
AC,A + AdvAtt

AttKE,A

≤ AdvAtt
AC,B(λ) ∗ q ∗ dN/2e+ AdvLeak

AC,A + AdvAtt
AttKE,A

and Theorem 3 follows.

D Proof of Theorem 4
In this section we provide the proof of security for the scheme defined in Section 8. In all
the Section we assume that the encryption scheme (E,D,K) used is a secure authenticated
encryption scheme. Therefore this encryption scheme satisfies both IND-CPA and INT-
CTXT. In this section, let AttKE be the AttKE scheme used in the construction of our SOC
scheme and AC be the AC scheme used.

48

D.1 Integrity

The proof consists of two game hops described in Figure 26. The first hop from G0 to G1
consists in using the utility of the key exchange to replace the shared key by a magically
shared fresh key. The second game hop from G1 to G2 is simply using sequence numbers and
integrity of the encryption scheme to ensure that the local and remote traces actually match.
Let us now give the details of each game hop.

G0 to G1:

Let A be an adversary against G0 or G1, let us build an adversary B against AttAttKE. The
machine B simulates A giving NewSession(P) as input to A2 instead of Compilesec(prms, P, id),
answering the oracle calls as follows:

BootStrap(o): Return Send(o, 0)

Send(o∗, i): k ← Test(0)
o, c← D(o∗, k)
countl ← countl + 1
If c 6= countl Return ⊥
countl ← countl + 1
i∗ ← E(countl#i, k)
tr← i : o : tr
Return o, i∗

Load(R∗): Return Load(R∗)

Run(hdl, i): Return Run(hdl, i)
We now remark that if the bit b chosen in the utility game is 0, the game being played by

B is exactly the integrity game. On the other hand, if the bit chosen is 1, either B violates
entity authentication or B behaves as A playing against G1. We conclude that

|G0-IntSOC,A(1λ)−G1-IntSOC,A(1λ)| ≤ Advutility
AttKE,B(1λ)

D.1.1 G1 to G2:

First note that the only difference between G1 and G2 occurs when the forge event is raised
(the other differences are simple rewritings). Now let A be an adversary against G2. We
build an adversary B against the INT-CTXT game by simulating A playing G2 using the
encryption/decryption oracles provided by the INT-CTXT game. Note that the event forge
is raised if and only if B wins the INT-CTXT game. Indeed, remarking that the counters
are strictly increasing ensure that no encryption can be accepted twice as input to Run or
Send. This entails the fact that if a message is accepted, it was the last message produced.
We conclude that

|G1-IntSOC,A(1λ)−G2-IntSOC,A(1λ)| ≤ AdvINT-CTXT(E,D,K),B (1λ)

It is now enough to remark that in G2, the Run oracle and the Send oracle agree on inputs
and outputs (unless forge is raised). As G2 always returns true, we conclude

AdvInt
SOC(1λ) ≤ Advutility

AttKE(1λ) + AdvINT-CTXT(E,D,K) (1λ)

49

Game G0-IntSOC,A(1λ):
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
P ∗, stl ← Compilesec(prms, P, id)
Run ABootStrap,Send,Run,Load

2 (stA, P ∗)
If @=1hdl such that

ProgramMR
(hdl) = P ∗ ∧

Translate(prms,TraceMR(hdl)) 6= []
Return F

hdl← Program−1
MR

(P ∗)
T ← Translate(prms,TraceMR(hdl))
T ′ ← tr
Return ¬Ψ(T, T ′)

Oracle BootStrap(i):
If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)
Return i

Oracle Send(o∗, i):
o, c← D(o∗, stl.key)
countl ← countl + 1
If c 6= countl Return ⊥
countl ← countl + 1
i∗ ← E(countl#i, stl.key)
tr← i : o : tr
Return o, i∗

Oracle Load(R∗):
hdl←MR.Load(R∗)
Return hdl

Oracle Run(hdl, i):
o←$ MR.Run(hdl, i)
Return o

Game G1-IntSOC,A(1λ):
k←$ K(1λ)
stP ← ∅
countR ← 0
countl ← 0
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
P ∗, stl ← Compilesec(prms, P, id)
Run ABootStrap,Send,Run,Load

2 (stA, P ∗)
If @=1hdl such that

ProgramMR
(hdl) = P ∗ ∧

Translate(prms,TraceMR(hdl)) 6= []
Return F

hdl← Program−1
MR

(P ∗)
T ← Translate(prms,TraceMR(hdl))
T ′ ← tr
Return ¬Ψ(T, T ′)

Oracle BootStrap(o):
If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)
Return i

Oracle Send(o∗, i):
If ¬stl.accept Return ⊥
o, c← D(o∗, k)
countl ← countl + 1
If c 6= countl Return ⊥
countl ← countl + 1
i∗ ← E(countl#i, k)
tr← i : o : tr
Return o, i∗

Oracle Load(R∗):
hdl←MR.Load(R∗)
Return hdl

Oracle Run(hdl, i∗):
If ProgramMR

(hdl) 6= P ∗

o∗←$ MR.Run(hdl, i∗)
Return o∗

If ¬stMR
(hdl).accept

o←$ MR.Run(hdl, i∗)
Return o∗

If ∃hdl2 6= hdl.ProgramMR
(hdl) = P ∗

∧stMR
(hdl).accept

raise twoPartners
i#c← D(i∗, k)
countR ← countR + 1
If c 6= countR Return ⊥
o← P [stP](i)
countR ← countR + 1
Return E(count#o, k)

Game G2-IntSOC,A(1λ):
k←$ K(1λ)
stP ← ∅
countR ← 0
countl ← 0
trR ← []
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
P ∗, stl ← Compilesec(prms, P, id)
Run ABootStrap,Send,Run,Load

2 (stA, P ∗)
If @=1hdl such that

ProgramMR
(hdl) = P ∗ ∧

Translate(prms,TraceMR(hdl)) 6= []
Return F

hdl← Program−1
MR

(P ∗)
T ← trR
T ′ ← tr
Return ¬Ψ(T, T ′)

Oracle BootStrap(o):
If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)
Return i

Oracle Send(o∗, i):
If ¬stl.accept Return ⊥
o, c← D(o∗, k)
countl ← countl + 1
If c 6= countl Return ⊥
If o 6= lasto Raise forge
countl ← countl + 1
i∗ ← E(countl#i, k)
lasti ← i
tr← i : o : tr
Return o, i∗

Oracle Load(R∗):
hdl←MR.Load(R∗)
Return hdl

Oracle Run(hdl, i∗):
If ProgramMR

(hdl) 6= P ∗

o∗←$ MR.Run(hdl, i∗)
Return o∗

If ¬stMR
(hdl).accept

o←$ MR.Run(hdl, i∗)
Return o∗

If ∃hdl2 6= hdl.ProgramMR
(hdl) = P ∗

∧stMR
(hdl).accept

raise twoPartners
i#c← D(i∗, k)
countR ← countR + 1
If c 6= countR Return ⊥
If i 6= lasti Raise forge
o← P [stP](i)
countR ← countR + 1
lasto ← o
trR ← o : i : trR
Return E(count#o, k)

Figure 26: Game hops for integrity of the SOC scheme

D.2 Privacy

The proof of consists, as previously in replacing the derived key by a magically shared key.
The second game hop, as in the integrity property, makes sure that the inputs received on
both sides coincide. The game G2 obtained reduces then quite simply to IND-CPA of the
encryption scheme. The game hop is presented in Figure 27. The reduction from G0 to G1

50

is exactly the same as the one in the integrity proof, we do not detail it further. We get as
previously (for some PPT B)∣∣∣G0-PrivSOC,A(1λ)−G1-PrivSOC,A(1λ)

∣∣∣ ≤ Advutility
AttKE,B(1λ)

G1 to G2:

Let A be an adversary against G1 or G2. Let us build an adversary B against the INT-CTXT
game for (E,D,K). The machine B simulates A playing the game G1, with the exception
of not drawing k and using the encryption and decryption oracle of the INT-CTXT game.
Remark that G1 and G2 behave differently only if A is able to submit a forged encryption
to either the send or the run oracle. Indeed, if the encryption sunmitted is neither the last
produced encryption nor a forgery, the sequence number makes sure that the corresponding
oracle return ⊥. We get∣∣∣G1-PrivSOC,A(1λ)−G2-PrivSOC,A(1λ)

∣∣∣ ≤ AdvINT-CTXT(E,D,K),B (1λ)

Reducing G2 to IND-CPA:

The key point in the proof is reducing G2 to the security of the authenticated encryption
scheme. Let us call Chal the IND-CPA challenge oracle and Enc the encryption oracle in
the IND-CPA game for (E,D.K). Let A be an adversary against G2-Priv. We build the
following adversary B against the IND-CPA game for (E,D,K). The machine B simu-
lates the game G2, without drawing the key k or the bit b and using the IND-CPA ora-
cles to perform encryptions. In the Send oracle, instead of computing E(countl#ib, k), B calls
Chal(countl#i0, countl#i1). Similarly, in the Run oracle, instead of computing E(count#ob, k),
B calls Chal(count#o0, count#o1). All calls are well formed as at each call of Send, the length
of the two inputs is required to be identical and, in the Run oracle, P is assumed length-
uniform. It is now enough to remark that B wins the IND-CPA game if and only if A wins
G0 to conclude ∣∣∣∣G2-PrivSOC,A(1λ)− 1

2

∣∣∣∣ ≤ AdvIND-CPA
(E,D,K),B(1λ)

From this result, we can sum everything up and obtain the advantage of an adversary
against the privacy game:

AdvPriv
SOC(1λ) ≤ AdvIND-CPA

(E,D,K),B(1λ) + AdvINT-CTXT(E,D,K),B (1λ) + Advutility
AttKE,B(1λ)

51

Game G0-PrivSOC,A(1λ):
k←$ K(1λ)
stP ← ∅
countR ← 0
countl ← 0
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
P ∗, stl ← Compilesec(prms, P, id)
b′ ← AO2 (stA, P ∗)
Return b = b′

Oracle BootStrap(o):
If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)
Return i

Oracle Sendb(o∗, i0, i1):
If |i0| 6= |i1| Return ⊥
o, c← D(o∗, stl.key)
countl ← countl + 1
If c 6= countl Return ⊥
countl ← countl + 1
i∗ ← E(countl#ib, stl.key)
tr← i : o : tr
Return o, i∗

Oracle Load(R∗):
hdl←MR.Load(R∗)
Return hdl

Oracle Run(hdl, i∗):
o∗←$ MR.Run(hdl, i∗)
Return o∗

Game G1-PrivSOC,A(1λ):
k←$ K(1λ)
stP ← ∅
countR ← 0
countl ← 0
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
P ∗, stl ← Compilesec(prms, P, id)
b′ ← AO2 (stA, P ∗)
Return b = b′

Oracle BootStrap(o):
If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)
Return i

Oracle Sendb(o∗, i0, i1):
If |i0| 6= |i1| Return ⊥
If ¬stl.accept Return ⊥
o, c← D(o∗, k)
countl ← countl + 1
If c 6= countl Return ⊥
countl ← countl + 1
i∗ ← E(countl#ib, k)
tr← i : o : tr
Return o, i∗

Oracle Load(R∗):
hdl←MR.Load(R∗)
Return hdl

Oracle Run(hdl, i∗):
If ProgramMR

(hdl) 6= P ∗

o∗←$ MR.Run(hdl, i∗)
Return o∗

If ¬stMR
(hdl).accept

o←$ MR.Run(hdl, i∗)
Return o∗

If ∃hdl2 6= hdl.ProgramMR
(hdl) = P ∗

∧stMR
(hdl).accept

raise twoPartners
i#c← D(i∗, k)
countR ← countR + 1
If c 6= countR Return ⊥
o← P [stP](i)
countR ← countR + 1
Return E(count#o, k)

Game G2-PrivSOC,A(1λ):
k←$ K(1λ)
stP ← ∅
countR ← 0
countl ← 0
prms←$ MR.Init(1λ)
(P, stA)←$ A1(prms)
P ∗, stl ← Compilesec(prms, P, id)
b′ ← AO2 (stA, P ∗)
Return b = b′

Oracle BootStrap(o):
If stl.accept Return ⊥
i, stl ← BootStrap(prms, o, stl)
Return i

Oracle Sendb(o∗, i0, i1):
If |i0| 6= |i1| Return ⊥
If o∗ 6= lasto∗ Return ⊥
i∗ ← E(countl#ib, k)
lasti0 ← i0
lasti0 ← i1
lasti∗ ← i∗

tr← i : o : tr
Return o, i∗

Oracle Load(R∗):
hdl←MR.Load(R∗)
Return hdl

Oracle Runb(hdl, i∗):
If ProgramMR

(hdl) 6= P ∗

o∗←$ MR.Run(hdl, i)
Return o∗

If ¬stMR
(hdl).accept

o←$ MR.Run(hdl, i)
Return o∗

If ∃hdl2 6= hdl.ProgramMR
(hdl) = P ∗

∧stMR
(hdl).accept

raise twoPartners
If i 6= lasti∗ Return ⊥
countR ← countR + 1
o0 ← P [st0P](lasti0)
o1 ← P [st1P](lasti1)
countR ← countR + 1
o∗ ← E(count#ob, k)
lasto∗ ← o∗

Return o∗

Figure 27: Game hops in the privacy proof

52

	Introduction
	Other Related work
	Preliminaries
	Message Authentication Codes
	Digital Signature Schemes
	Passively secure key exchange

	IEEs, Programs, and Machines
	Attested Computation
	Attested Computation à la SGX
	AKE for Attested Computation
	Secure Outsourced Computation
	Conclusion
	References
	Proof of Theorem 1
	Proof for Theorem 2
	Proof for Theorem 3
	Proof of Theorem 4
	Integrity
	Privacy

