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Abstract. It is a well-known result that homomorphic encryption is not secure against adaptive chosen
ciphertext attacks (CCA2) because of its malleability property. Very recently, however, Gong et al. pro-
posed a construction asserted to be a CCA2-secure additive homomorphic encryption (AHE) scheme;
in their construction, the adversary is not able to obtain a correct answer when querying the decryption
oracle on a ciphertext obtained by modifying the challenge ciphertext (Theoretical Computer Science,
2016). Because their construction is very similar to Paillier’s AHE, it appeared to support an additive
homomorphic property, though they did not specify an evaluation algorithm for the scheme in their
paper.
In this paper, we present a simple CCA2 attack on their construction by re-randomizing the challenge
ciphertext. Furthermore, we look into an additive homomorphic property of their construction. To
do this, we first consider a typical candidate for an addition algorithm on ciphertexts, as provided
for previous AHE constructions, and establish that it does not function correctly. Subsequently, we
provide plausible evidence for the hardness of achieving an additive homomorphic property with their
construction. According to our analysis, it seems hard to preserve additive homomorphic property of
their construction without any modification.
In addition, as a minor contribution, we point out a flaw in the decryption algorithm of their construc-
tion and present a rectified algorithm for correct decryption.
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1 Introduction

Because homomorphic encryption allows computations on encrypted data, it has various applica-
tions, e.g., secure multiparty computation [6, 2], cloud computing [9], and electronic voting [4]. The
security of such applications is directly affected by that of the homomorphic encryption employed,
which has led to the question of what level of security homomorphic encryption can achieve. There
have been several studies [7, 8, 1] demonstrating that encryption schemes with supporting homo-
morphic operations can be secure against non-adaptive chosen ciphertext attacks (CCA1), i.e.,
lunch time attack. On the other hand, Bellare et al. [3] have demonstrated that no homomorphic
encryption scheme can be secure against adaptive chosen ciphertext attacks (CCA2) because of its
malleability property.

Very recently, Gong et al. [5] presented quite a surprising result when they proposed a con-
struction asserted to be an additive homomorphic encryption (AHE) scheme secure against CCA2.
In seeking to achieve CCA2 security, they constructed an encryption scheme such that a message
is located in the exponent to the base gab, where g is a generator of the underlying group, a is
a fixed integer chosen by the key generation algorithm, and b is a random integer chosen by the
encryption algorithm. They maintained that a polynomial-time adversary could not know the exact
value of gab for the challenge ciphertext and therefore could not generate a suitable ciphertext that
contributes to guessing the message corresponding to the challenge ciphertext. Hence, their con-
struction seems secure against CCA2. Furthermore, their construction is very similar to Paillier’s



AHE scheme [10], so it seems to allow additions on encrypted data, though they did not specify an
evaluation algorithm in their paper.

In this paper, however, we present a simple CCA2 attack on their construction. Our attack is
designed as follows: Assume that the challenge ciphertext C = (C1, C2, C) of a hidden message m
is given. Then, C has the form gab(m+a) · A for a generator g of the underlying group G, some
element A ∈ G, and integers a and b. The adversary chooses a random integer s ( 6= 0, 1) and
computes Cs = (Cs1 , C

s
2 , C

s). Then, Cs can be transformed into the form gabs(m+a) · As, and Cs is
still a valid ciphertext of the message m. Hence, when the adversary queries the decryption oracle
on Cs, it returns the message m.

Furthermore, we investigate an additive homomorphic property of their construction. To this
end, we first present a typical candidate for an evaluation algorithm on ciphertexts, which is
defined by component-wise group operations between ciphertexts. That is, for given ciphertexts
Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č = (Č1, Č2, Č), an evaluated ciphertext is defined as C = (Ĉ1 ·Č1, Ĉ2 ·Č2, Ĉ ·Č).
Then, we establish that this computation does not preserve the additive homomorphic property.

Subsequently, we provide plausible evidence that it is impossible to provide an addition algo-
rithm for Gong et al.’s construction. To this end, we first simplify the problem of providing an
addition algorithm for it with Paillier’s AHE scheme P.Enc. As a result, we obtain the following
problem: Denote a ciphertext of Paillier’s scheme of a message m by P.Enc(m). For any hidden
integers m̂, m̌, α, and β and a fixed hidden value a, when P.Enc(α), P.Enc(α(m̂ + a)), P.Enc(β),
and P.Enc(β(m̌ + a)) are given, generate P.Enc(γ(m̂ + m̌ + a)) and P.Enc(γ) for some nonzero
scalar γ.

By using the additive homomorphic property of Paillier’s scheme, we can generate ciphertexts
of the form

P.Enc(αX1(m̂+ a) + αX2 + βY1(m̌+ a) + βY2 + Z) (1)

for some scalars X1, X2, Y1, Y2, and Z. In order that the above ciphertext has the form P.Enc(γ(m̂+
m̌+ a)), an evaluation algorithm should find a solution of the following system of equations:{

αX1 = βY1 6= 0

aαX1 + αX2 + βY2 + Z = 0.

However, because a, α, and β are hidden values, it is impossible to find (X1, X2, Y1, Y2, Z) satisfying
the above system of equations except with a negligible probability. Therefore, it seems hard to
provide an addition algorithm for Gong et al.’s construction.

As a minor contribution, we also point out a flaw in the decryption algorithm of their original
construction and provide a rectified algorithm for correct decryption.

Organization of the Paper. In Section 2, we provide Paillier’s AHE scheme and Gong et al.’s
recent construction. In Section 3, we demonstrate that the decryption algorithm of Gong et al.’s
construction does not work correctly and provide a corrected version to accomplish the decryption.
Section 4 presents our CCA2 attack on Gong et al.’s scheme. Finally, we discuss about an additive
homomorphic property of their construction in Section 5.

2 Gong et al.’s Proposed CCA2-Secure Additive Homomorphic Encryption

In this section, we present some basic definitions related to public-key encryption. Then, we in-
troduce Paillier’s AHE scheme, which is the key foundation of Gong et al.’s construction and will
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be utilized in our discussion about an additive homomorphic property of their construction in
Section 5. We also provide the description of Gong et al.’s scheme.

2.1 Public Key Encryption and CCA2 Security

A public key encryption scheme consists of the following three algorithms:

– KeyGen(κ): This takes a security parameter κ as an input and outputs a public key pk and a
secret key sk.

– Enc(pk,m): This takes the public key pk and a message m as inputs and outputs a ciphertext
C.

– Dec(sk, C): This takes the secret key sk and a ciphertext C as inputs and outputs a message
m′.

We say that a public key encryption scheme is correct if for all messages m and security pa-
rameters κ,

Dec(sk,Enc(pk,m)) = m,

where pk and sk are outputs of KeyGen(κ).
The security of a public key encryption scheme is defined by the following game between a

challenger and an adversary:

– Setup: The challenger obtains the public key pk and the secret key sk by running KeyGen(κ)
for the security parameter κ and sends pk to the adversary.

– Phase 1: The adversary generates ciphertexts and sends them as queries to the decryption
oracle, which outputs the plaintext message corresponding to the input ciphertext.

– Challenge: The adversary sends two messages m0 and m1 of equal length. The challenger
randomly selects β from {0, 1} and sends the adversary Cβ obtained by running Enc(pk,mβ).

– Phase 2: The adversary generates ciphertexts and sends them as queries to the decryption
oracle. Note that he cannot send the challenge ciphertext Cβ as a query.

– Guess: The adversary outputs β′ ∈ {0, 1}.

The advantage of the adversary in the above game is defined to be |Pr[β = β′] − 1
2 |. We say that

a public key encryption scheme is CCA2-secure if there is no polynomial-time adversary whose
advantage in the above game is non-negligible in the security parameter κ.

2.2 Paillier’s Additive Homomorphic Encryption

In 1999, Paillier [10] proposed three public key encryption schemes based on a new assumption,
called the Decisional Composite Residuosity (DCR) assumption. These schemes have been widely
utilized in various applications because they are very efficient and allow additions on encrypted
data.

Here we provide a description of the first scheme among them.

– P.KeyGen(κ): This takes a security parameter κ as an input and performs as follows:

1. Select η(κ)-bit random primes p and q and set n = pq.
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2. Compute λ = lcm(p− 1, q − 1).

3. Select an element g of order n in the multiplicative group Z∗n2 .

4. Output the public key pk = (n, g) and keep the secret key sk = λ private.

– P.Enc(pk,m): Given the public key pk and a message m ∈ Zn, this performs as follows:

1. Select a random integer r from Z∗n.

2. Compute C = gmrn mod n2 and output C.

– P.Dec(sk, C): Given the secret key sk and a ciphertext C, this computes

m =
L(Cλ mod n2)

L(gλ mod n2)
mod n,

where L is a function defined by L(y) =
y − 1

n
for y < n2. Then, it outputs m.

2.3 Gong et al.’s Scheme

Based on Paillier’s encryption scheme, Gong et al. [5] proposed a construction asserted to be a
CCA2-secure AHE scheme. The description of their construction is as follows:

– G.KeyGen(κ): This takes a security parameter κ as an input and performs as follows:

1. Select η(κ)-bit random primes p and q and set n = pq.

2. Compute λ = lcm(p− 1, q − 1).

3. Compute a nontrivial factor t of λ and λ/t.

4. Select random numbers a, k, z1, and z2 from Z∗n.

5. Compute g = 1 + kn, y = ga mod n2, y′ = za1g
a2 mod n2, and y′′ = za1z

tn
2 mod n2. We note

that g has order n in the multiplicative group Z∗n2 .

6. Output the public key pk = (y, y′, y′′, z1, n) and keep the secret key sk = (a, t, λ/t, λ) private.

– G.Enc(pk,m): Given the public key pk and a message m ∈ Zn, this performs as follows:

1. Select random numbers r, r1, and b from Z∗n.

2. Compute Bx = yb mod n2, B′x = (y′)b mod n2, C1 = z
b(r+1)
1 mod n2, C2 = ybrn1 mod n2,

and C = Bm
x B

′
x(y′′)br mod n2.

3. Output a ciphertext C = (C1, C2, C).

– G.Dec(sk, C): Given the secret key sk and a ciphertext C,
1. Parse C as (C1, C2, C).

2. Compute

m =

(
L(C · Ctn−a1 )λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n, (2)

where L is a function defined by L(y) =
y − 1

n
for y < n2.

3. Output m.
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In an effort to achieve CCA2 security, Gong et al. attempted to prevent the adversary from
launching CCA2 by not enabling him to obtain a correct answer when he queries the decryption
oracle on a ciphertext obtained by modifying the challenge ciphertext. More precisely, in their
construction, a message m is defined in the exponent to the base gab, where a is chosen by the
key generation algorithm and b is chosen by the encryption algorithm. Here, each b is changed for
each ciphertext, and they maintained that the adversary cannot succeed in CCA2 unless he finds
gab corresponding to the challenge ciphertext, which is infeasible in polynomial time. However, this
feature not only prevents their construction from supporting an additive homomorphic property,
but is also insufficient for achieving CCA2 security. We will present our CCA2 attack on their
construction in Section 4 and discuss its additive homomorphic property in Section 5.

Before moving on to the next section, we remark on relationships between ciphertexts in Pail-
lier’s AHE scheme and those in Gong et al.’s construction to facilitate the reader’s understanding. In
fact, parts of a ciphertext in Gong et al.’s construction can be interpreted as ciphertexts in Paillier’s
encryption scheme with the public key pk = (n, g = 1 + kn). For a valid ciphertext C = (C1, C2, C)
in Gong et al.’s encryption,

C2 = ybrn1 = gabrn1 mod n2.

Hence, C2 can be regarded as a ciphertext P.Enc(pk, ab) when r1 is a random element chosen in
Paillier’s encryption algorithm. Furthermore,

C = Bm
x B

′
x(y′′)br mod n2

= (yb)m(y′)b(y′′)br mod n2

= (gab)m(za1g
a2)b(za1z

tn
2 )br mod n2

=
(
gab(m+a)(zbrt2 )n

)
· zab+abr1 mod n2, (3)

and hence C can be regarded as a multiplication of ciphertext P.Enc(pk, ab(m + a)) and zab+abr1 ,
where zbrt2 is a corresponding random element to generate a ciphertext P.Enc(pk, ab(m+ a)). That
is,

C = P.Enc(pk, ab(m+ a)) · zab+abr1 mod n2

when zbrt2 is a randomly chosen element in the Paillier encryption algorithm. We will use these
relationships in Section 5 to look into the impossibility of achieving an additive homomorphic
property of Gong et al.’s construction.

3 Correction to the Decryption Algorithm of Gong et al.’s Scheme

In this section, we demonstrate that the decryption algorithm of Gong et al.’s construction does
not function correctly and provide a rectified algorithm for correct decryption.

Incorrect Decryption of Gong et al.’s Scheme. Let C = (C1, C2, C) be a valid ciphertext.
Then, we can represent the components as

C1 = z
b(r+1)
1 mod n2, C2 = ybrn1 mod n2, and C = Bm

x B
′
x(y′′)br mod n2,
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where Bx = yb mod n2, B′x = (y′)b mod n2, and b, r, and r1 are integers randomly chosen from Z∗n
in the encryption phase. Furthermore, the public keys satisfy y = ga mod n2, y′ = za1g

a2 mod n2,
and y′′ = za1z

tn
2 mod n2, where g = 1 + kn for some k ∈ Z∗n and a, z1, and z2 are randomly chosen

integers from Z∗n. Let t be a nontrivial factor of λ in the secret key. Then,

(C · C(tn−a)
1 )λ/t =

(
Bm
x B

′
x(y′′)br(z

b(r+1)
1 )(tn−a)

)λ/t
mod n2

=
(

(yb)m(y′)b(y′′)br(z
b(r+1)
1 )(tn−a)

)λ/t
mod n2

=
(

(gab)m(za1g
a2)b(za1z

tn
2 )br(z

b(r+1)
1 )(tn−a)

)λ/t
mod n2

= (gab)(m+a)λ/t(z
b(r+1)tn
1 ztnbr2 )λ/t mod n2

= (gab)(m+a)λ/t(z
b(r+1)
1 zbr2 )nλ mod n2

= (gab)(m+a)λ/t mod n2

= (1 + kn)ab(m+a)λ/t

= 1 + kab(m+ a)(λ/t)n mod n2 (4)

and

Cλ2 = (ybrn1 )λ = gabλ mod n2

= (1 + kn)abλ = 1 + kabλn mod n2. (5)

We note that the sixth equality in Equation (4) and the second equality in Equation (5) hold
because the multiplicative order of each element in Z∗n2 is a factor of nλ. Hence,(

L((C · Ctn−a1 )λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

=

(
L(1 + kab(m+ a)(λ/t)n mod n2)

L(1 + kabλn mod n2)
mod n

)
− a mod n

=

(
kab(m+ a)(λ/t)

kabλ
mod n

)
− a mod n

= t−1(m+ a) mod n− a mod n.

Therefore, the decryption algorithm does not return the correct message corresponding to the
ciphertext.

Modification for Correct Decryption. We can easily fix the decryption algorithm by multiply-
ing the secret value t and the first term on the right side of Equation (2) as follows: For a ciphertext
C = (C1, C2, C), define a decryption algorithm by

G.Dec′(sk, C) =

(
t · L((C · Ctn−a1 )λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n. (6)
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Then, we do obtain the correct message corresponding to the ciphertext, because(
t · L(C · Ctn−a1 )λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

= t(t−1(m+ a)) mod n− a mod n = ((m+ a)− a) mod n

= m mod n.

4 Adaptive Chosen Ciphertext Attack on Gong et al.’s Scheme

Now, we present our CCA2 attack on Gong et al.’s construction. Our attack is very straightfor-
ward and consists of a simple re-randomization by computing an exponentiation of the challenge
ciphertext using an exponent that is a randomly chosen element in (Zn\{0, 1}). The result of this re-
randomization is still a valid ciphertext of the same message as the challenge ciphertext. Therefore,
the adversary can recover the exact message of the challenge ciphertext by querying the decryption
oracle on the re-randomized ciphertext.

Let us explain our CCA2 attack more precisely. After the challenge phase of the CCA2 security
game in Section 2.1, assume that the adversary receives the challenge ciphertext C = (C1, C2, C)
from the challenger. Then, the challenge ciphertext of the message mβ for β ∈ {0, 1} can be
represented as

C1 = z
b(r+1)
1 mod n2, C2 = ybrn1 mod n2, (7)

and

C = (yb)mβ (y′)b(y′′)br mod n2, (8)

where b, r, and r1 are integers randomly chosen from Z∗n by the encryption algorithm.
At this point, the adversary randomly selects an element s from Zn\{0, 1} and computes Cs :=

(Cs1 , C
s
2 , C

s). Then,

Cs1 = z
(bs)(r+1)
1 mod n2, Cs2 = y(bs)(rs1)n mod n2,

and

C = (y(bs))mβ (y′)(bs)(y′′)(bs)r mod n2.

Hence, we can see that Cs is obtained by substituting b and r1 with bs and rs1 in Equations (7)
and (8), respectively. Thus, Cs is also a valid ciphertext of the message mβ, and the adversary can
obtain the challenge message mβ by querying the decryption oracle on Cs in Phase 2 of the security
game. Therefore, by our attack, Gong et al.’s construction is not CCA2-secure.

5 On the Additive Homomorphic Property of Gong et al.’s Scheme

In this section, we look into Gong et al.’s assertion of an additive homomorphic property for
their scheme. In their original paper [5], the authors did not provide an addition algorithm on
ciphertexts. Hence, we first present a typical candidate for an addition algorithm by considering
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existing AHE schemes defined over multiplicative groups and show that it does not preserve an
additive homomorphic property. Thereafter, we provide plausible evidence for the impossibility that
their construction preserves an additive homomorphic property.

Throughout this section, we assume that two valid ciphertexts Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č =
(Č1, Č2, Č) under the same public key are given and that they satisfy the following relationships: Let
pk be (y, y′, y′′, z1, n), where g = 1+kn, y = ga mod n2, y′ = za1g

a2 mod n2, and y′′ = za1z
tn
2 mod n2

for integers a, k, z1, z2 ∈ Z∗n. Then, there exist b̂, b̌, r̂, ř, r̂1, and ř1 in Z∗n such that

Ĉ1 = z
b̂(r̂+1)
1 mod n2, Ĉ2 = yb̂r̂n1 mod n2, Ĉ = (yb̂)m̂(y′)b̂(y′′)b̂r̂ mod n2

and

Č1 = z
b̌(ř+1)
1 mod n2, Č2 = yb̌řn1 mod n2, Č = (yb̌)m̌(y′)b̌(y′′)b̌ř mod n2.

Typical Candidate for an Addition Algorithm. A typical candidate for an addition algorithm
on ciphertexts of AHE defined over multiplicative groups is to multiply ciphertexts component-wise.
Let us define C = (C1, C2, C) as a component-wise multiplication between two ciphertexts Ĉ and
Č. That is,

C1 = Ĉ1 · Č1, C2 = Ĉ2 · Č2, and C = Ĉ · Č.

Then,

C · Ctn−a1 = (Ĉ · Č) · (Ĉ1 · Č1)tn−a mod n2

=
(

(yb̂m̂+b̌m̌)(y′)b̂+b̌(y′′)b̂r̂+b̌ř
)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1

)tn−a
mod n2

=
(

(ga(b̂m̂+b̌m̌))(za1g
a2)b̂+b̌(za1z

tn
2 )b̂r̂+b̌ř

)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1

)tn−a
mod n2

=
(

(ga(b̂m̂+b̌m̌)) · ga2(b̂+b̌)
)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1 zb̂r̂+b̌ř2

)tn
mod n2

=
(
ga(b̂m̂+b̌m̌)+a2(b̂+b̌)

)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1 zb̂r̂+b̌ř2

)tn
mod n2

and hence

L((C · Ctn−a1 )λ/t mod n2) = L(((1 + kn)a(b̂m̂+b̌m̌)+a2(b̂+b̌))λ/t mod n2)

=
1 + k(a(b̂m̂+ b̌m̌) + a2(b̂+ b̌))(λ/t)n− 1

n
mod n

= k
(
a(b̂m̂+ b̌m̌) + a2(b̂+ b̌)

)
(λ/t) mod n.
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The first equality in the above equation holds because the multiplicative order of each element in
Z∗n2 is a factor of nλ. Moreover, the following holds:

L(Cλ2 mod n2) = L(((yb̂)r̂n1 (yb̌)řn1 )λ mod n2)

= L(((y)b̂+b̌(r̂1ř1)n)λ mod n2)

= L(((g)a(b̂+b̌)(r̂1ř1)n)λ mod n2)

= L((1 + kn)(a(b̂+b̌))λ mod n2)

=
1 + ka(b̂+ b̌)λn− 1

n
mod n

= ka(b̂+ b̌)λ mod n.

Therefore, our modified decryption algorithm in Equation (6) outputs
b̂m̂+ b̌m̌

b̂+ b̌
mod n, not

m̂+ m̌ mod n, by the following computation:

G.Dec′(sk, C) =

(
t
L((C · Ctn−a1 )λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

= t
k
(
a(b̂m̂+ b̌m̌) + a2(b̂+ b̌)

)
(λ/t)

ka(b̂+ b̌)λ
mod n− a mod n

=
b̂m̂+ b̌m̌

b̂+ b̌
mod n.

Furthermore, because b̂ and b̌ are randomly chosen by the encryption algorithm, the receiver
who decrypts ciphertexts cannot know b̂ and b̌ and hence cannot recover m̂ + m̌ mod n from
b̂m̂+ b̌m̌

b̂+ b̌
mod n. Therefore, an additive homomorphic property of Gong et al.’s construction cannot

be preserved by using this typical candidate.

Discussion on the Impossibility of Preserving Additive Homomorphic Property in
Gong et al.’s Scheme. Now, we provide plausible evidence for the impossibility of providing an
addition algorithm for Gong et al.’s construction. To do this, we will first simplify the problem of
providing an addition algorithm for their construction by replacing their ciphertexts with Paillier’s
and then examine the hardness of this simplified problem.

As seen in Section 2.3, parts of the ciphertexts in Gong et al.’s scheme can be regarded as
ciphertexts in the Paillier encryption. Hence, we can replace Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č = (Č1, Č2, Č)
by

(Ĉ1,P.Enc(pk, ab̂),P.Enc(pk, ab̂(m̂+ a)) · zab̂+ab̂r̂1 mod n2) (9)

and

(Č1,P.Enc(pk, ab̌),P.Enc(pk, ab̌(m̌+ a)) · zab̌+ab̌ř1 mod n2), (10)

respectively, where pk is (n, g = 1 +kn). Here, the role of C1 in a ciphertext C = (C1, C2, C), where
C =

(
gab(m+a)(zbrt2 )n

)
· zab+abr1 mod n2 in Equation (3), is to remove zab+abr1 from the value of C
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for correct decryption. Hence, we can regard C1 as having no effect on the message in the case
of a valid ciphertext, and we may ignore the C1 component and zab+abr1 in the C component for
constructing an evaluation algorithm.

Since an evaluation algorithm should take only public parameters and ciphertexts as inputs, by
replacing ab̂ and ab̌ with α and β in Equations (9) and (10), respectively, we can define the problem
of providing an addition algorithm for Gong et al.’s construction as follows: Let P.Enc be Paillier’s
encryption algorithm. For any hidden m̂, m̌, α, β ∈ Zn and a fixed value a ∈ Z∗n, when P.Enc(pk, α),
P.Enc(pk, β), P.Enc(pk, α(m̂ + a)), and P.Enc(pk, β(m̌ + a)) are given, generate P.Enc(pk, γ) and
P.Enc(pk, γ(m̂+ m̌+ a)) for some nonzero integer γ.

Because Paillier’s encryption supports only an additive homomorphic property, a solver of the
above problem allows only scalar multiplications and additions on ciphertexts. Hence, he can only
obtain ciphertexts of the form

P.Enc(pk, αX1(m̂+ a) + αX2 + βY1(m̌+ a) + βY2 + Z)

= P.Enc(pk, αX1(m̂+ a) + βY1(m̌+ a) + αX2 + βY2 + Z), (11)

by computing

P.Enc(pk, α(m̂+ a))X1 × P.Enc(pk, α)X2 × P.Enc(pk, β(m̌+ a))Y1 × P.Enc(pk, β)Y2 × P.Enc(pk, Z)

for some scalars X1, X2, Y1, Y2, and Z.
To generate a ciphertext of the form P.Enc(pk, γ(m̂+ m̌+ a)) from ciphertexts of the form (11)

for any m̂, m̌, a tuple of scalars (X1, X2, Y1, Y2, Z) should be a solution of the following system of
equations: {

αX1 = βY1 = γ 6= 0

aαX1 + αX2 + βY2 + Z = 0
(12)

because if the above satisfies, then the following holds for any m̂, m̌:

(11) = P.Enc(pk, αX1(m̂+ a) + βY1(m̌+ a) + αX2 + βY2 + Z)

= P.Enc(αX1(m̂+ m̌+ a) + aαX1 + αX2 + βY2 + Z)

= P.Enc(γ(m̂+ m̌+ a)).

However, it is infeasible to solve the above system of equations because a, α, and β are hidden.
Therefore, it seems hard to provide an addition algorithm for Gong et al.’s construction without
any modification.

6 Conclusion

Very recently, Gong et al. proposed a construction asserted to be a CCA2-secure AHE scheme [5].
In this paper, we first identified that their decryption algorithm does not function correctly and
provided the rectified algorithm for correct decryption. Subsequently, we provided a simple CCA2
attack on their construction by re-randomizing the challenge ciphertext with a randomly chosen ex-
ponent in Zn\{0, 1}. We also pointed out that their construction seems hard to support an additive
homomorphic property by considering a typical candidate for an addition algorithm and providing
plausible evidence for achieving an additive homomorphic property with their construction. As a
result, we conclude that their construction is in fact not a CCA2-secure homomorphic encryption
scheme.
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