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Abstract The utilization of private Attribute-based

credentials (ABC) in everyday life could enable citi-

zens to only partially reveal their identity in economic

transactions and communication with public institu-

tions. This means citizens could control in a practi-

cal way the information related to their own life and

identity in many contexts. At the time of writing, the

Identity Mixer (Idemix) by IBM is the only credential

system that offers enough flexibility to proof a con-

siderable variety of properties of the attributes of a

credential. Despite many practitioners have proposed

different strategies for implementing ABCs on smart

cards in the last few years, the complexity of the as-

sumptions these primitives usually rely on, undermines

fast and practical implementations of ABCs. The lack

of smart cards with powerful hardware arithmetic ac-
celerators is not the only problem for speeding up the

computation of these primitives since one need to per-

form fast arithmetic operations with operands stored in

RAM. Moreover, the implementation of complex Zero-

Knowledge Proofs (ZKP) needs a considerable amount

of pseudorandomness. In order to overcome these limi-

tations, we proposed to use a Pseudo-Random Number

Generator (PRNG) for recomputing pseudorandomness

and we use it tandem with variable reconstruction in or-

der to implement complex proofs. The utilization of this

simple technique enable us to compute pseudonyms, do-

main pseudonyms, multi-credential proofs and to rely

on the AND, NOT and OR operators to prove inner

properties of the attributes of the credential whereas

prior art only addressed the selective disclosure of one

attribute on a given credential. Moreover, we show how
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to increase the number of attributes stored on the card

via this construction. Finally, we show how to chain

proofs based on AND, NOT and OR operators in order

to extend the amount of properties of a credential that

can be showed via external and internal commitment

reordering.

Keywords Attribute-based credentials · Smart

Cards · Privacy

1 Introduction

Generally, purchasing adult goods such as alcohol,

cigarettes and require an identification procedure be-

tween the buyer and the seller. We provide our iden-

tity in order to prove this when only our age would be

enough in the majority of the cases. Besides, certain

transactions such as opening a back account require

our full identity whereas a registration number could

be enough. Further, these two real life examples can be

easily translated to on-line transactions.

There is no need to reveal our full identity if a citi-

zen can rely on primitives such as ABCs. The selective

disclosure of attributes is typically the main operation

of ABCs where only a set of attributes of a certain

identity needs to be revealed in order to fulfill an au-

thorization operation whereas the representation of the

others are proved in zero knowledge. This operation is

generally related to a presentation policy i.e. a list of

attributes that a prover must fulfill [8]. This is the main

operation in many schemes proposed in the literature

such as U-Prove [5], ACL [2] and Idemix [11].

However, it can be useful to proof that more than

one credential contains the same attribute, to assert a

certain property of an attribute in relation to others
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such as my credential does not contain a certain at-

tribute or to create multiple pseudonyms for a given

identity so a user can temporary link their identity

to a certain domain. In order to implement this com-

plex procedures we rely on different strategies that we

present in this manuscript. In so doing, we rely on

the only open-source and practical implementation of

Idemix, the I Reveal My Attributes (IRMA) card1.

In the next section, we describe the work of other

practitioners related to the implementation of ABCs on

smart cards and put their performance figures in rela-

tion with our contributions in this manuscript. In Sec-

tion 3 we describe the main building blocks of ABCs:

non-interactive commitment schemes, the Camenisch-

Lysyanskaya (CL) digital signature and the structure

of a private ABC system. In Section 4, we sketch out

the internals of the IRMA card and present two execu-

tion models of the verification and the issuing process

of Idemix that we use to optimize the current imple-

mentation. Section 5 describes the impact of PRNG

in an ABC compact implementation for recomputing

pseudorandomness in proofs of knowledge. This is the

main component together with variable reconstruction

in RAM and commitment reordering that we rely on

for making it possible the execution of complex and

multi-credential proofs on smart cards. Section 6 and

7 include the strategies we utilized for executing com-

plex proofs based on traditional and prime-encoded at-

tributes. In Section 8 we present the open-source frame-

work we developed for obtaining our performance fig-

ures and we end in Section 8 with some conclusions.

2 Related work

ABCs are cryptographic constructions that work over

a credential, a container of attributes, that is signed by

a blind and randomizable signature [17]. By selectively

disclosing these attributes, some of them, ones proves

properties about its identity. The main arithmetic op-

eration behind this schemes is the modular exponenti-

ation2.

The availability of smart cards in the market that

could support the type of arithmetic that ABCs con-

structions relies on, is translated in first implementa-

tions that only supported one credential with one at-

tribute. Thus, most of the proposed implementations

rely on Java Card and MULTOS. In the last few years,

several credential systems have been implemented on

1 https://www.irmacard.org
2 This is the case of Idemix, whose main component, the

Camenisch-Lysyanskaya signature relies on the Strong RSA
assumption.

smart cards such as Idemix [4,28,29], U-Prove [27] and

ACL [23].

For those whose main operation is a modular ex-

ponentiation the main challenge in literature was to

perform this operation which the restrictions applied

to the size of parameters in platforms where modular

arithmetic is not flexible. This is the case of both Java

Card and MULTOS, where the RSA encryption3 oper-

ation is abused [4,28,29] in order to: (1) ease the com-

putation of partial exponentiations (2) make it possible

the exponentiation with large exponents which cannot

be used by the Java Card and MULTOs API.

However, this strategy is still too slow on Java Cards

as the performance of figures Bichsel et al. (1,280-bit

modulus) and Sterckx et al. (1,024-bit modulus) re-

veal [4, 28]. For proving the ownership of a signature

over a credential of only one attribute they required

7.4 and 4.2 seconds respectively.

Practical results for the issuing and selective dis-

closure of attributes on smart cards using Idemix were

not possible till 2013, where Vullers et al. obtained per-

formances figures of 1–1.5 seconds of both operations

relying on credentials on up to 5 attributes. This im-

plementation resulted in the IRMA card [29]. In this

manuscript we rely on that implementation in order

to propose further strategies for computing complex

proofs on smart cards or embedded devices with a small

amount of RAM.

2.1 Our contribution

As we showed in the prior section, the implementation

of credential systems on smart cards in the literature is
usually restricted to proving the ownership of a small

amount of attributes due to the computational com-

plexity of these protocols [4,28,29]. Moreover, the avail-

able amount of RAM is generally limited in smart cards

and relying on it for performing arithmetic operations

is crucial for speeding up the verification process. In

this manuscript we present4:

– The design of a PRNG for reducing the RAM re-

quirements of the execution of proofs of knowledge

on smart cards (Section 5).

3 As described by [28], an exponent e whose length goes
beyond the limits of the smart card API can be split in a set
of l sub-exponents e = el−1||...||e0 of length d so it can be re-

constructed as
∑l−1
i=0 ei · 2l·d. Hence, ae mod n is performed

as
∏l−1
i=0 a

ei·2i·d mod n for l sub-exponents of length d and
base a.

4 Our performance figures have been extracted from a
MULTOS ML3-R3-80K smart card using the SCM Microsys-
tems SCL011 reader in a Intel Core i5-3230M CPU clocked
at 2.60GHz running Debian Linux 3.13.6-1, python 2.7.6,
python-pyscard 1.6.12.1-4 and CHARM 0.43 [1].
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– How to perform proofs involving pseudonyms, do-

main pseudonyms and multi-credential proofs (Sec-

tion 6).

– Idemix can rely on attributes encoded as prime num-

bers. In so doing, proving properties of a credential

relying on the AND, NOT and OR operators is pos-

sible [10]. We describe our implementation options

and present how to combine them through the re-

organization of the commitments involved (Section

7).

3 Preliminaries

In this section we describe the building blocks of Idemix

(non-interactive commitment schemes, blind signatures

and zero-knowledge proofs) as we rely on them for de-

scribing our optimizations across this manuscript.

Non-interactive commitment schemes. Idemix

relies on Fujisaki-Okamoto commitments [22], which

are statistically hiding and computationally binding when

factoring is a hard problem. A user proves the knowl-

edge of a committed value such as an attribute that is

not revealed during the issuing and verification opera-

tion. Given an RSA special modulo n, h ∈ QRn and

g ∈< h >, the commitment function for an input x,

and random value r ∈ Zn is computed as gxhr mod n.

Zero-knowledge proofs. In a proof of knowledge,

a verifier is convinced that a witness w satisfies a poly-

nomial time relation R only known by the prover. If

this is performed in a way that the verifier does not

learn w, this is called a zero-knowledge proof of knowl-

edge. Damg̊ard proved that is possible to generate zero-

knowledge protocols via sigma protocols [19]. In Idemix,

the typical three movement of sigma protocols (com-

mitment, challenge and response5) is transformed into

a Non Interactive Proof of Knowledge (NIZK) via the

Fiat-Shamir heuristic [21] in the random oracle model.

A variety of zero-knowledge protocols are utilized in

Idemix. For instance, proofs of knowledge of discrete

logarithm representation modulo a composite are used

during issuing and verification [22].

A variety of zero-knowledge protocols are utilized

in Idemix. For instance, proofs of knowledge of discrete

logarithm representation modulo a composite are used

during issuing and verification [22]. Besides, it is also

possible to rely on proofs of knowledge of equality of

representation for proving, for instance, that a certain

5 In the first stage, the prover sends to the verifier a com-
mitment message t or t value. In the second move, the verifier
sends to the prover a random challenge message c. Finally, the
last message sent by the prover includes a response value or
s value.

amount of attributes in two credentials share the same

value [14].

The CL digital signature scheme. This prim-

itive is main block of Idemix [13]. It provides multi-

show unlinkability via the randomization of the issued

signature. That means that the cardholder cannot be

traced when proving the ownership a signature over a

certain amount of attributes. A digital signature scheme

is composed of three ppt algorithms: a key generation

algorithm Gen, a signature creation primitive Sign and

a verification technique Verify over a message m. In this

scheme, ∀m ∈M , given a certain public key (PK) and

a secret key (SK), Sign(SK, m) is always accepted by

the Verify algorithm.

This signature is secure under the Strong RSA as-

sumption. A CL signature is generated (Gen) by a cer-

tain issuer according to her public key (S,Z,R0, R1, ...,

R5 ∈ QRn, n) using its secret key (p, q). For instance,

a CL signature over a set of attributes (m0, ...,m5) is

computed by selectingA, e and v s.t.Ae = ZR−m0
0 R−m1

1

R−m2
2 R−m3

3 R−m4
4 R−m5

5 S−v mod n. Then, a third party

can check the validity of the signature by using the is-

suer’s public key and the triple (A, e, v) as Z ≡ AeRm0
0

Rm1
1 Rm2

2 Rm3
3 Rm4

4 Rm5
5 Sv mod n (Verify).

Private ABC systems. They were firstly proposed

by Chaum in [18]. In these systems, users remain anony-

mous and are only known by their pseudonyms. There

are organization that issue and verify credentials so

a user can prove its identity and avoid colluding be-

tween them. In Idemix, this is performed via the multi-

show unlinkability property of the CL digital signature

scheme. Typically, is crucial to avoid the transference

of credentials between users. This is enforced by using

a secret key that is only known to the user and not by

the system (namely, a master secret m0 in Idemix). In

this system, there are two main protocols: issuing (or

GrantCred [12]) and verification (or VerifyCred [12]). In

the first one, a certain cardholder performs a protocol

for signing a committed value, for instance, a set of at-

tributes that represent her identity e.g. m0, ...,ml for

l attributes. At the end of the protocol, she receives a

signature σ whereas the signer did not learn anything

about m0, ...,ml.

On the other hand, the verification operation serves

for proving the knowledge of a signature over a commit-

ted value, for instance a set of attributes and the master

secret m0 of the user for a pair cardholder/verifier. This

protocol enables the possibility of using policies (see for

instance [7]), i.e. a list of attributes or conditions in a

certain credential that must be fulfilled during an au-

thentication operation. Accordingly, an empty proof of

possession over a set of attributes (m0, ...,m5) is repre-

sented using the Camenisch-Staedler notation [16] as:
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NIZK: {(ε′, ν′, α0, ..., α5) : Z ≡ ±Rα0
0 Rα1

1 Rα2
2 Rα3

3 Rα4
4

Rα5
5 Aε

′
Sν
′

mod n} being the Greek letters (ε′, ν′) and

(α0, ..., α5) the values of the signature and the set of

attributes proved in zero knowledge and not revealed

i.e. ∈ Ar̄. The set of revealed attributes is represented

by Ar. Similarly, one can prove the CL signature over a

set of attributes revealing some of them. For instance,

revealing m1 and hiding (m0,m2,m3,m4,m5) would be

represented in zero knowledge as NIZK: {(ε′, ν′, α0, α2,

α3, α4, α5) : ZR−m1
1 ≡ ±Rα0

0 Rα2
2 Rα3

3 Rα4
4 Rα5

5 Aε
′
Sν
′

mod n}.
In Idemix, each credential can be categorized as an

attribute container, protected by a CL signature gen-

erated by an issuer. This signature guarantees the in-

tegrity of the credentials i.e. modification, deletion or

adding new attributes to a credential by the user can be

easily detected by a verifier. Moreover, each credential

is linked to the cardholder by her master secret, securely

stored on the card in IRMA. Finally, other protocols for

generating a pseudonym associated to a credential are

desirable in this type of systems (Section 6.1), as well

as proving properties of attributes within a credential

(Section 7) or across multiple credentials (Section 6.2).

4 The IRMA card

In this section we describe how the issuing and verify-

ing operation of Idemix are implemented on the IRMA

card. For both operations a latency model is created so

we can related to it in the coming sections, where our

optimizations are explained.

IRMA is based on the MULTOS card. Particularly,

the target device is the ML3-80K-R1 version. It is based

on the SLE 78CX1280P chip by Infineon6. This proces-

sor, clocked up to 33 MHz, provides an instruction set

compatible with the Intel 8051 and hardware accelera-

tors for ECC, RSA, 3DES and AES.

4.1 Issuing in IRMA

Issuing in Idemix is related to the generation of a CL

blind signature over the attributes of the cardholder.

In so doing, the issuer cannot extract the master secret

m0 of the cardholder and the generated tuple (A, e, v)

remains hiden too. However, in IRMA the cardholder’s

attributes are never revealed to the issuer.

6 http://www.infineon.com/dgdl/SPO\

_SLE+78CX1280P\_2012-07.pdf?folderId=

db3a304325afd6e00126508d47f72f66&fileId=

db3a30433fcce646013fe3d672214ab8 (Accessed 6 January
2016)

IRMA supports up to 5 attributes by credential

and relies on 1,204-bit special RSA modulus for per-

formance reasons7.

Issuing requires two NIZKs (Table 1). In the first

one, the cardholder proves to the user that she knows

the representation of U , v′ and her master secret m0 as

NIZK: {(ν′, α0) : U ≡ ±Sν′Rα0 mod n}. Afterwards,

the issuer proves the knowledge of 1/e as NIZK: {(1/e) :

A ≡ ±Qe−1

mod n}. Finally, the cardholder verifies

that the signature (A, e, v) blindly generated by the is-

suer is correct as Z ≡ AeRm0
0 Rm1

1 Rm2
2 Rm3

3 Rm4
4 Rm5

5 Sv

mod n.

Table 1 Message flow for issuing a CL signature over a set
of attributes (I: Issuer, C: Cardholder)

Common inputs: The public key of the issuer
(S,Z,R0, R1, ..., R5 ∈ QRn, n), the number of at-
tributes that are issued.
Cardholder inputs: The credential involved and its
set of attributes m0, ...,m5.
Issuer inputs: The private key of the issuer p, q.

Protocol: The cardholder first proves the knowledge
of the representation of U as NIZK: {(ν′, α0) : U ≡
±Sν′Rα0 mod n}. Then, the issuer proves the knowl-
edge of 1/e.

1. I → C: The user chooses a random nonce n1 ∈R
{0, 1}lø and sends it to the cardholder.

2. C → I: The cardholder computes the commitment
U = Sv

′
Rm0 mod n with v′ ∈ ±{0, 1}ln+lo . It

proves in zero knowledge m0 with a randomizer
α0, v′. Then ,it generates the s values for v̂′, r̂
together with the challenge c with the context, U
and the nonce n1. Finally, it sends to the issuer
n2 ∈R {0, 1}lo .

3. I → C: It verifies the NIZK as Û = U−c(Sv̂
′
Rα̂0

0 )
mod n. Then, it proves the knowledge of 1

e
via ran-

dom values e, ṽ, v′′. It computes the commitments
Q = Z U−1S−v

′′
mod n,A = Qe

−1 mod p′q′

mod n. It sends (A, e, v′′) and creates the proof
NIZK: {(1/e) : A ≡ ±Qe−1 mod n}. It computes
Ã = Qr mod n for r ∈R Zp′q′ , and obtains the
challenge c′ as the hash of the context, Q, A, n2

and Ã. It computes Se = r− c′ ·e−1 mod p′q′ and
sends A, e, v′′, Se, c′ to the cardholder.

4. C : Computes v = v′′ + v′ and verifies (A, e, v) as

Q = Z S−vRm0
0 mod n with Q̂ = Ae mod n.

7 The attributes are represented as lm = 256 bits. The
rest of parameters are set as l′e = 120, lø = 80, lH = 256,
le = 504, ln = 1, 024, le = 597, and lv = 1, 604 bits. The term
l′e represents the size of the interval where the e values are
selected, lø is the security parameter of the statistical ZKP,
ln represents the size of the RSA modulus, le is the size of
e values of the certificates, and lH is the domain of the hash
function used in the Fiat-Shamir heuristic (we use SHA-256).
Finally, le and lv are related to the size of e and v parameters
of the CL signature.
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In IRMA, the issuing part of Idemix mimics the

Cardholder-Issuer interaction as a set of states: ISSUE_

CREDENTIAL, ISSUE_PUBLIC_KEY, ISSUE_ATTRIBUTES,

ISSUE_COMMITMENT, ISSUE_COMMITMENT_PROOF, ISSUE

_CHALLENGE, ISSUE_SIGNATURE and ISSUE_VERIFY. The

first, state ISSUE_CREDENTIAL, puts the card in in is-

suance mode, sends the identifier of the credential that

will be issued and the context of the operation. Then,

during the ISSUE_PUBLIC_KEY state, the card accepts

the public key of the issuer: n, S, Z,R0, ..., R5. The at-

tributes to be issued are sent to the card in the ISSUE_

ATTRIBUTES state. The rest of the states are related to

the execution of the two NIZKs.

During ISSUE_COMMITMENT the cardholder receives

the nonce n1, it computes U and returns it. Then,

in ISSUE_COMMITMENT_PROOF, the required values for

proving the knowledge of ms in U : c, v̂′, ŝ are gen-

erated. In ISSUE_CHALLENGE, it sends n2. During the

ISSUE_SIGNATURE mode, the issuer constructs the

blinded CL signature and sends to the card the partial

signature (A, e, v′′). Finally, in ISSUE_VERIFY the card

verifies the signature using the values sent the verifier

(c, Se).

4.1.1 Execution model

We can model the latency of the issuing process in the

IRMA card by representing the time required for per-

forming the operation described in Table 1 as Tissuing(n)

where n is the number of attributes that will be issued

in a certain credential. This latency would be result of

summing up the time required for getting the public key

of the issuer, adding the computation of the involved

proofs and the process of obtaining and verifying the

signature:

Tissuing(n) = Tsel cred +
∑

i=n,S,Z,Ri

Tget PK(i) +

n∑
i=1

Tget attr(i) + Tgen commitment +
∑

i=c,v̂′,ŝ

Tgen proof (i)+

∑
i=A,e,v′′

Tget signature(i) + Tverify(n)

(1)

From this model, we know that there are only two

operations that depends on the number of attributes

issued that are part of a certain credential: Tget attr(i)

and Tverify(n). That would mean that in order to op-

timize the overall latency of Tissuing(n) there are two

strategies: (1) reduce the number of attributes that are

part of the credential (we revisit this aspect in Section

7) and (2) reduce then number of operations in the veri-

fication part of the proof, which is already implemented

on the IRMA card where the second proof is optionally

verified for reducing the computational complexity of

the operation.

4.2 Verification in IRMA

As in the issuing operation, the Idemix prover is mod-

elled in the IRMA card as set of states (PROVE_CREDEN

TIAL, PROVE_COMMITMENT, PROVE_SIGNATURE and PROVE

_ATTRIBUTE) that makes it possible the Prover-Verifier

interaction described in Table 2.

A presentation policy with a list of conditions the

smart card must fulfill is sent during the PROVE_CREDEN

TIAL state. This consists on a list of attributes that will

be revealed ({mi}i∈Ar ) and hidden({mi}i∈Ar̄ ). Subse-

quently, during the PROVE_COMMITMENT state, the card

performs the operations described in Table 2. Finally,

the verifier can request the card both the randomized

tuple (A′, ê, v̂′) and the attributes that are either re-

vealed or hidden (states PROVE_SIGNATURE and PROVE_

ATTRIBUTE respectively).

4.2.1 Execution model

We designed a latency model of the Idemix verification

based on the number of attributes per credential (n)

that are revelaled (r) or hidden so in the worst case

n − r + 1 computations8 are required for generating

each m̂i.

Eq. 2 represents the overall latency of the four states

described above according to the (n, r) parameters.

Tverify(n, r) = Tsel cred + Tgen commit(n, r)

+
∑

i=A,e,v

Tget sig(i) +

n∑
i=1

Tget attr(i)
(2)

The time the state PROVE_CREDENTIAL takes is re-

lated to Tsel cred, PROVE_COMMITMENT is represented by

Tgen commit(n, r). Finally, the time related to the PROVE_

SIGNATURE and PROVE_ATTRIBUTE states (where the ver-

ifier can ask for the randomized triple and the revealed

and hidden attributes) has to do with Tget sig(i) and

Tget attr(i) respectively.

Furthermore, the latency of the PROVE_COMMITMENT

state can be expanded to the following expression:

Tgen commit(n, r) =
∑
i=A,v

Trand sig(i)+

Tgen t values(n− r + 1) + Thash+

Tgen s values(n− r + 1)

(3)

8 One extra computation is always considered since the
master secret is always hidden.
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Table 2 Message flow for proving the ownership of a CL
signature over a set of attributes (V: Verifier, C: Cardholder)

Common inputs: The public key of the issuer
(S,Z,R0, R1, ..., R5 ∈ QRn, n), the presentation pol-
icy i.e. those attributes that must be revealed mi ∈ Ar
w.r.t. to those that can be hidden mi ∈ Ar̄.
Cardholder inputs: The credential involved and its
set of attributes m0, ...,m5, randomizers and the tuple
(A, e, v) over m0, ...,m5.
Verifier inputs: A′, v′,mi ∈ Ar,mi ∈ Ar̄

Protocol: The (cardholder, verifier) pair perform the
following NIZK where the cardholder proves the own-
ership of a CL signature over m0, ...,m5 and reveals,
for instance m1: NIZK: {(ε′, ν′, α0, α2, α3, α4, α5) :

ZR−m1
1 ≡ ±Rα0

0 Rα2
2 Rα3

3 Rα4
4 Rα5

5 Aε
′
Sν
′

mod n}.

1. V → C: The verifier sends a fresh nonce n1 to
the verifier together with a presentation policy that
must be fulfilled.

2. C → V : Using the tuple (A, e, v) over m0, ...,m5,
it randomizes the signature by generating rA ∈R
{0, 1}ln+lø and obtaining the new tuple (A′, e′, v′)
as A′ = ASrA mod n, v′ = v − erA and e′ =
e−2le−1. Afterwards, it generates the randomizers
ẽ ∈R ±{0, 1}l

′
e
+lø+lH , ṽ′ ∈R ±{0, 1}lv+lø+lH , and

m̃i ∈R ±{0, 1}lm+lø+lH (i ∈ Ar̄) and computes the

commitment (t-value) Z̃ = A′ẽ(
∏
i∈Ar̄ R

m̃i

i )Sṽ
′
.

Then, it generates the challenge c by hashing the
context, the t value and the nonce. It generates the
response values (s-values) ê = ẽ+ ce′, v̂′ = ṽ′+ cv′

and m̂i = m̃i + cmi(i ∈ Ar̄). Finally, It sends the
challenge c, the common value A′, the response val-
ues and mi ∈ Ar to the verifier.

3. V : Verifies if the proof is correct via
the issuer public key by computing Ẑ =

(Z A′−2le−1

Πi∈ArR
−mi

i )−c(A′)ê(Πi∈Ar̄R
m̂i

i )Sv̂
′
)

and checking if c equals the hash of A′, Ẑ and n1.

The randomization of the CL signature and the gen-

eration the respective t values, s values and challenge c

of the proofs is represented as:

Tgen s values(n− r + 1) = Tgen ê + Tgen v̂′+
r∑
i=0

Tgen m̂i
(4)

Hence, Tgen t values is related to the computation

of the commitments according to the number of non-

disclosed attributes: Σn−r+1
i=1 Tmul exp(R

m̃i
i ).

In the next section we will rely on the model in order

to extend the number of attributes of the IRMA card.

In Section 7.1.2 we study how to optimize the issuing

operation via the model described in Section 4.1.

5 Performance impact of a PRNG for

regenerating pseudorandomness

Our target device comprises 960 bytes of RAM and ad-

ditional 1,160 bytes of transient memory that can be

abused under certain conditions e.g. when the APDU

does not overlap with the amount of data stored in that

part of the memory. Increasing the number of attributes

as well as performing complex proofs on the smart card

has do to with generating and storing a considerable

amount of pseudornadomnnes. In the case of increasing

the number of attributes, this has to do with generating

and storing m̂i values.

In the current implementation of IRMA, based on

5 + 1 m̂i attributes (taking into account the master

secret, which is always hidden), one verification session

requires 74 · 6 = 444 bytes of RAM, 74 bytes is the re-

quired space for storing one m̂i value. Therefore, any

optimization should be based on rearranging the stor-

age of the pseudorandom data required in the proofs.

5.1 Rationale

If we take a look to Equations 2-4 in Section 4.2.1,

the pseudorandomness used to derive the (ẽ, ṽ′) tuple

and the m̃i values are used in both Tgen t values and

Tgen s values. Besides, time required for verifying a cre-

dential is dominated by the number of non-revealed at-

tributes (n−r) that requires: (1) the modular exponen-

tiations computed during the generation of the t values

and (2), the pseudorandom generation of the m̃i values

and the computation of the correspondent m̂i value as

m̂i = m̃i + cmi. All in all, any possible optimization in

the implementation must be driven by: (1) recomput-

ing the pseudorandomness utilized in the m̃ values and

(2) reducing the overhead of the required computation

for hiding the selected attributes. What we need is to

generate as many m̂i values as needed without being

limited by the current amount of RAM.

Bichsel et al. suggested the utilization of a PRNG

to regenerate the random exponent of the Idemix ver-

ification operation in the case of one credential with

one attribute (i.e. the master secret) [4]. We rely on

this idea as starting point and generate all the involved

pseudorandomness, not only the random exponents for

increasing the number of attributes on card and sup-

porting pseudonyms, domain pseudonyms and prime-

encoded proofs (AND, NOT and OR operators). Be-

sides, with combine that approach with variable recon-

struction in RAM so computing multi-credential proofs

such as equality proofs of representation is also possible.
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5.2 Design

We obtain performance figures of several PRNGs pro-

posed in the literature [3,20] such as Fortuna, HMAC DBRG

and HASH DBRG (Table 3). We restricted ourselves to

these constructions because they rely on block ciphers

and Message Authentication Codes (MACs), primitivites

that are available in the our target device. Relying on

these primitives, conjectured as pseudorandom genera-

tors under the assumption that one-way functions exist

(cf. [24, 26]), we can expect that their output of the

PRNG is indistinguishable from random by any ppt

algorithm or distinguisher.

We have represented the performance figures of com-

puting a m̂i value of 74 bytes together with the respec-

tive number of calls to the GF in each case to gener-

ate |m̂i| bytes. The performance of both using AES-128

in the Fortuna PRNG and SHA-1 is almost equal but

when generating a considerable amount of pseudoran-

domness 3 ms can be significant9.

Our aim is to provide backtracking resistance be-

tween verification sessions. In so doing, in each session

a seed k is generated as the last 128 bits of the SHA-1

hash operation of the concatenation of the MULTOS

PRNG output together with the string “IRMA”. Then,

we feed the seed into the GF (AES-128) as the key. Af-

terward a counter c is initialized to 0 and incremented

in the generation of each pseudorandom block of 128

bits. When the verification process is finished the seed

stored in RAM is erased by the discharge of the ca-

pacitors of the smart card and in the next verification

session, a new seed is generated. Furthermore, predic-

tion resistance is ensured if we rely on the security of

the AES block cipher.

For each primitive where the PRNG is involved, we

describe the sequence of pseudorandom values that are

regenerated as: initPRNG() ⇒ m̃i ⇒ resetPRNG() ⇒
m̃i where mi in this case is the pseudorandomness as-

sociated to the selective disclosure of attributes.

5.3 Overhead

In the current implementation of the IRMA card, 74 · 6
bytes of RAM are reserved for storing all the m̂i in-

volved values. After the inclusion of the PRNG we only

to main in the RAM: the seed/AES key (128/8 = 16

bytes), the counter c (16 bytes) and 74 bytes for the m̂i

values that are generated when required. Thus, when an

9 E.g. the number of required calls in our approach for per-
forming equality proofs of representation (Table 4). If all the
attributes are hidden the generation of the pseudorandom-
ness associated to a (A′, ê, v̂′) triple for one credential of 5
attributes needs 9 + 16 + 4 + 5 · 6 = 59 calls to the PRNG.

m̂ value needs to be generated, we get as many blocks

as needed for filling the 74 random bytes space and the

counter c is incremented after each block is computed.

This requires 74 + 16 + 16 = 106 bytes of RAM instead

of 74 · 6 = 444 bytes. Nonetheless, an extra latency

for computing all the m̂ values at run time is expected

(Table 4)10.

6 Performance evaluation of complex proofs via

traditional attributes

The PRNG we described in Section 5 that enable us

to increase the number of attributes per credential can

be also used for performing complex proofs on embed-

ded devices with a small amount of RAM. In this re-

spect, we show to compute standard pseudonyms, do-

main pseudonyms and equality proofs of representation

using traditional attributes.

6.1 Standard and domain pseudonyms

In an ABC such as Idemix, pseudonyms guarantee a

credential holder to be recognized the next time she

visits a certain service provider (SP). The first type of

pseudonym, that we call standard pseudonym consist of

a randomized commitment to the master secret: Nym
= gm0hr mod Γ . Parameters (g, h) are two generators

that together with the modulo Γ are part of the public

system group parameters.

Besides, an organization can create pseudonyms as-

sociated to its domain. These pseudonyms are derived

computed as dNym = gm0

dom. In this case, gdom =

H(dom)(Γ−1)/ρ and the group Z∗Γ has order Γ−1 = ρ ·b
for a prime ρ [12]. Proving the ownership of both a

standard and domain pseudonyms can be performed

in zero knowledge as NIZK: {(ε′, ν′, α0, ..., α5, ψ) : Z ≡
±Rα0

0 Rα1
1 Rα2

2 Rα3
3 Rα4

4 Rα5
5 Aε

′
Sν
′

mod n ∧ Nym≡ gα0hψ

mod Γ ∧ dNym ≡ gα0

dom mod Γ} without revealing any

attribute.

6.2 Equality proofs of representation

A cardholder with several credentials can need to prove

that all the credentials are of his own i.e. that every

master secret is the same. This can be performed using

equality proofs of representation [14]. For instance, if

we have two credentials signed by two different issuers

10 We use the notation RA for the cases where we reveal
every attribute with the exception of the master secret and
HA where every attribute is hidden.
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Table 3 Performance of PRNG candidates in the IRMA card for generating an m̂i value of 74 bytes

Work PRNG GF Block size (bytes) No. calls (GF) Delay (ms)

[3] HMAC DBRG SHA-1 20 12 48.64
[3] HASH DBRG SHA-1 20 5 26.33
[3] HMAC DBRG SHA-256 32 10 106.78
[3] HASH DBRG SHA-256 32 4 47.47
[20] Fortuna AES-256 16 5 29.32
This work Fortuna AES-128 16 5 24.76

Table 4 Performance figures of complex proofs via traditional attributes

Implementation Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr Total (ms)

Selective disclosure [29] RA 104.12 826.25 45.14 69.55 1,045.10
Selective disclosure [29] HA 105.20 1,259.24 47.07 72.78 1,484.32

Selective disclosure (this work) RA 103.10 840.73 45.18 95.87 1,084.91
Selective disclosure (this work) HA 104.95 1,307.35 46.08 229.80 1,688.20

Nym RA 103.10 1,176.02 46.28 161.11 1,486.51
Nym HA 103.15 1,647.33 46.46 293.51 2,065.42

Nym ∧ dNym RA 103.01 1,373.37 46.04 221.05 1,743.54
Nym ∧ dNym HA 104.23 1,836.00 46.02 351.70 2,338.01

Eq. proof (n cred.) RA 104.12 1,805.24 702.10 133.07 2,744.51
Eq. proof (n cred.) HA 105.23 2,738.78 695.14 344.65 3,883.83

Eq. proof (2 cred.) RA 103.99 1,743.37 273.60 137.15 2,261.19
Eq. proof (2 cred.) HA 103.47 2,673.60 266.80 347.11 3,390.60

(w.r.t. (A1, e1, v1) and (A2, e2, v2)) over our master se-

cret m0 we can describe an equality proof of representa-

tion without hiding every attribute as NIZK: {(ε′1, ν′1, ε′2,
ν′2, µ, (α1, ..., α5), (β1, ..., β5)) : Z(1) ≡ ±R(1)µ

0 R
(1)α1

1

R
(1)α2

2 R
(1)α3

3 R
(1)α4

4 R
(1)α5

5 A(1)ε′1S(1)ν′1 mod n1∧Z(2) ≡
±R(2)µ

0 R
(2)β1

1 R
(2)β2

2 R
(2)β3

3 R
(2)β4

4 R
(2)β5

5 A(2)ε′2S(2)ν′2

mod n2}. In that proof, µ represents the non-disclosed

master secret11 and the two public keys of the issuers

consists of (S(1), Z(1), R
(1)
0 , R

(1)
1 , ..., R

(1)
5 ∈ QRn1

, n1)

and (S(2), Z(2), R
(2)
0 , R

(2)
1 , ..., R

(2)
5 ∈ QRn2 , n2).

6.2.1 Design and implementation

In the case of standard and domain pseudonyms, the

associated pseudorandomness to r and m0 must be re-

computed by the PRNG that we presented in Section 4.

Therefore, the PRNG would follow the initPRNG() ⇒
m̃i ⇒ r̃ ⇒ m̃0 ⇒ r ⇒ resetPRNG() ⇒ m̃i ⇒ r̃ ⇒ m̃0

sequence in order to recompute the required pseudo-

random values during the generation of both t- and

s values in the case of proving the ownership of a stan-

dard pseudonym and a domain pseudonym.

Any strategy for computing equality proofs of rep-

resentation must take into account that we need to

11 In this case α0 = β0 if both credentials belongs to the
same cardholder. We represent the non-disclosed master se-
cret as µ following the Camenisch-Staedler notation [16].

main in RAM two or more (A, e, v) tuples in order to

generate each t value and maintain a reasonable per-

formance figure. Besides a hash function is needed for

computing a challenge c that relies on multiple blocks

of data (t values) and common values. The MULTOS

hash function for obtaining a SHA-256 digest requires

the full input in memory, and that resource is limited

in our target device, we must find an alternative func-

tion that can compute hashes with partial inputs in a

subsequent manner.

We combined the PRNG we presented in Section 5

with variable reconstruction in RAM. First The (ê, v̂′)

values only depend on the (ẽ, ṽ) pseudorandom vari-

ables. They do not depend on m̃, the same space re-

served in RAM for such value (74 bytes as described

in Section 5) can be reused for (ê, v̂′) if their size is

adapted to the largest value (i.e. 255 bytes in the case

of ṽ). This approach, makes it possible to sequentially

reconstruct via PRNG ê and v̂′ (i.e. as ê = ẽ + ce′

and v̂′ = ṽ + cv′) during the generation of the t- and

s values. Second, the randomized computation of the

signature component A′ requires rA (it can be derived

via PRNG). Since the randomization of this value is

independent from (e, v) and m̂i values, we can com-

pute all these variables in a sequentially. After each

pseudorandom value has been recomputed, the recon-

structed variable is temporary stored in the transac-

tion memory of the card till it is requested by the veri-
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fier. Thus, the PRNG sequence in this case whould be

initPRNG() ⇒ r
(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒

ṽ(2) ⇒ ẽ(2) ⇒ m̃
(2)
i ⇒ resetPRNG() ⇒ r

(1)
A ⇒ ṽ(1) ⇒

ẽ(1) ⇒ m̃
(1)
i ⇒ r

(2)
A ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i .

Table 6 shows the performance figures for recom-

puting the pseudorandomness related to (A′, v̂′, ê, m̂i).

The number of calls to the PRNG is higher in the case

of v̂′ but the overall execution time is preponderant

during the reconstruction of A′ since it requires recom-

puting the SrA modular exponentiation (235.191 ms).

In contrast to the execution model described in Section

3.2, we have rearranged the computation of (A′, ê, v̂′)

to (A′, v̂′, ê) since the computation of v̂′ requires rA. On

the contrary, ê does not depend on other values.

Table 5 Time required for reconstructing A′i, v̂
′
i, êi, and m̂i

in RAM

Variable Operation Size (bytes) Calls to PRNG Delay (ms)

A′i ASrA 138 9 235.191
v̂′i v′ = v − e · rA 255 16 104.365

v̂ = ṽ′ + c · v′
êi ẽ+ c · e′ 57 4 30.710
m̂i m̃i + c ·mi 74 5 36.708

The MULTOS primitive PRIM_SECURE_HASH_IV is

used for hashing each t value in steps so we do not need

to maintain a considerable amount of bytes in RAM in

order to generate the challenge associated to the proof.

Once we have added the last t value to the hash com-

putation, the transaction nonce is hashed and the final

digest is derived. In contrast to Eq. 2, the s values for

each credential signature (ê, v̂′) are now recomputed on

demand when the verifier request them. Consequently,

that latency is added to Tget sig(i).

Finally, we can do additional optimizations if in-

stead of considering equality proofs over n credentials

we restrict ourselves to a pair of them. We can store

both A′(1) and A′(2) in transient memory and avoid

recomputing them two times as described in Table 6.

Moreover, r
(1)
A and r

(2)
A can be stored too in order to

avoid regenerate them via the PRNG. Given that the

transient memory of our target device has a size of 1,016

bytes and the APDU buffer is limited to 256 bytes ac-

cording to the ISO 7816 standard we can use up to

1,016 - 256 = 760 bytes for storing these values12. Hence

the PRNG sequence for this approach is represented by

initPRNG() ⇒ r
(1)
A ⇒ ṽ(1) ⇒ ẽ(1) ⇒ m̃

(1)
i ⇒ r

(2)
A ⇒

ṽ(2) ⇒ ẽ(2) ⇒ m̃
(2)
i ⇒ resetPRNG() ⇒ ṽ(1) ⇒ ẽ(1) ⇒

m̃
(1)
i ⇒ ṽ(2) ⇒ ẽ(2) ⇒ m̃

(2)
i skipping the regenerated

values r
(1)
A , r

(2)
A (stored).

12 We need 2 ·128 bytes for A′(1), A′(2) and 2 ·138 bytes for

r
(1)
A and r

(2)
A

6.2.2 Results

We have depicted in Table 4 the performance figures of

the three primitives described in this section. We must

note that Tget attr is related to Tget attr(m0, ...,m5, nym,

r̂|dNym) when computing standard and standard and

domain pseudonyms combined whereas it is related to

Tget attr(m0, ...,m5) in the case of the equality proofs.

This is also the case of the selective disclosure opera-

tion.

We have also represented the RA/HA case scenar-

ios for each type of pseudonym. In this case, since we

need to perform an extra number of modular exponen-

tiations related to the pseudonyms commitments (e.g.

nym), this proof required 1,176.02 - 840.73 = 335.29 ms

in the best case. Besides, we have compared the first

approach for computing n proofs of equality with the

optimizations carried out for computing only 2, that is,

using two different strategies for 2 credentials. Relying

on the optimizations for 2 credentials, it can be pos-

sible to perform an equality proof of representation in

2,261.19 ms revealing all the attributes, whereas hiding

all the attributes would require 1,129.40 extra ms. This

is possible since we do not need to recompute (ê, v̂′)

for each credential in the generation of each t value, in-

creases the execution time of Tgen commit(n, r). The use

case of two credentials can be interesting where one of

the credentials e.g. root, is related to a certain organi-

zation and contains only data related to it. A second

credential, containing information about the cardholder

where their identity can be partially disclosed can be

used in combination with the root one in order to proof

his membership in different scenarios.

7 Performance evaluation of complex proofs via

prime-encoded attributes

In the prior section we have analyzed the performance

of different operations over a credential based on at-

tributes represented as strings of a certain length. In

this case, the number of modular exponentiations when

proving the ownership of attributes is linear with the

credential size. On the other hand, Camenisch et al.

proposed to encode each attribute as a prime number in

order to the reduce the number of modular exponenti-

ations to 2 with independence of the credential size [9].

This makes it possible to selective disclose attributes

using the co-prime property (AND operator), to prove

the absence of an attribute in a credential (NOT op-

erator) and to prove that one or more attributes can

be present (OR operator). The only based utilized e.g.

R1 encodes all the credential attributes as a product

mt =
∏l
i=1mi for l attributes.
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We rely on the PRNG we described in Section 5 for

making it possible the execution of these proofs and

operators and introduce two techniques (internal and

external commitment reorganizations) for chaining the

three operators.

7.0.1 Issuing prime-encoded attributes

First, we analyze the issuing operations of prime-encoded

attributes and compare it with the current implemen-

tation of the IRMA card [29]. It is expected that issuing

prime-encoded attributes could reduce the latency as-

sociated to Tissuing(n) as the number of attributes in-

crease (Section 4). In the IRMA card, only 5 attributes

w.r.t. the bases R0, ..., R5 are used. On the other hand,

we can store any number of prime-encoded attributes

s.t. the only limitation would be the prime size.

Since we wanted to know what is the maximum

number of attributes per credential that we can issue

following this scheme we relied on the following method-

ology. We set a limit of 50 attributes per credential re-

stricted in size so |mt| cannot be greater than the lm
= 256 bit limitation according to the Idemix specifi-

cation. Then, we created the following cases: (1) one

possibility per attribute: we rely on the first 50 primes,

(2) 10 possibilities per attribute: we rely on the first 500

primes, (3) 100 possibilities per attribute, we rely on the

first 5,000 primes, (4) 1,000 possibilities per attribute,

we rely on the first 50,000 primes. We select attributes

from the list of the first 50 primes, 500 primes, 5,000

primes, 50,000 primes and so on in order to construct

our credentials w.r.t. the mt exponent for the base R1

as
∏l
i=0mi for l = 50− 1.

We can randomly choose prime numbers from that

list and construct our credentials from 1 to 50 attributes,

stopping when |mt| ≥ 256 bits. After repeating this

experiment 100 times for each case, we obtained the

approximate maximum number of attributes: 44 at-

tributes (case 1), 25 attributes (case 2), 18 attributes

(case 3) and 14 attributes (case 4) as depicted in Fig.

1.

As showed, it is possible to not cross the 3 seconds

performance of the IRMA card for issuing 5 attributes

and at the same time issue 44, 22, 18 and 14 attributes

of different lengths with a performance under 2.7 sec-

onds. This means that it would be possible to combine

the issuing operation with another proof such as the

issuance of a pseudonym of several, maintaining at the

same time a similar performance of the IRMA but, in

contrast, issuing from 3 to 8 times more attributes [29].
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Fig. 1 Performance of issuing attributes via prime-encoded
and traditional attributes

7.1 The AND operator

This operator enable the cardholder to selective dis-

closure attributes proving that an attribute mi divides

mt. This is represented in zero knowledge as NIZK:

{(ε′, ν′, α0,Mα1) : Z ≡ ±Rα0
0 (Rm1

1 )α1Aε
′
Sν
′

mod n}.
In addition, the commitments C = ZmtSr mod n, C̃

=M (Zm1)m̃hSrM mod n and C̃0 = Zm̃tS r̃ mod n

must beM computed, where mh = Mmt/mi and mi

consists of the product of attributes that areM revealed

(in this case mi = m1). The PRNG computes the fol-

lowing sequence: initPRNG() ⇒ m̃i ⇒ m̃h ⇒ r̃ ⇒ r ⇒
m̃t ⇒ resetPRNG() ⇒ m̃i ⇒ m̃h ⇒ r̃. Not revealing

any attribute requires two exponentiations with inde-

pendence of the number of attributes hidden.

7.1.1 Internal reorganization of commitments

In the computation of the AND proofs we need to com-

mit to the mt value, i.e. the first attribute of the first

base as C = ZmtSr mod n. However, the next com-

mitment requires the computation of the Sr again as

C̃ = (Zm1)m̃h)Sr. In order to avoid recomputing Sr,

we can proceed by reordering all the computations and

reuse this value from the last commitment. In this case,

the order of computations would be (1) ZmtSr,

(2) [Sr](Zm1)m̃h by leaving the result Sr in RAM and

proceeding with the next multiplication. This resulted

in an speed up of 78 ms per operation.

7.1.2 Selective disclosure

Due to the computation of the C, C̃o and C̃ commit-

ments together with the two extra response values, re-

vealing attributes via the AND operator undermines

any speed up in comparison to the issuing operation

relying on traditional attributes. As depicted in Fig-

ure 2 we notice that what we considered the worst case
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for normal encoding is the opposite here. That is, hid-

ing attributes is computationally more expensive using

traditional attributes in comparison to prime-encoded

ones whereas hiding attributes only has a constant per-

formance related to prove the ownership of m0 and mt

w.r.t. Rm0
0 Rmt1 .

Besides, the cost of this operation is related to the

computation of the Zmr exponentiation w.r.t. of mr

as the product of the cardholder’s attributes that are

revealed together with the product itself (computed

during Tgen commit(n, r), Eq. 3). Therefore, it is ex-

pected that the AND operator increases the compu-

tation time as the number of attributes are revealed

at a speed related to the primes utilized (Figure 2).

In this respect, an alternative for reducing the latency

of Tgen commit(n, r) is to precompute a restricted set

of combinations for revealing attributes Zmr and store

them in ROM so Tgen commit(n, r) is constant w.r.t.

C,C0, C̃.
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Fig. 2 Performance of selective disclosure using both types
of encoding

7.1.3 Standard and domain pseudonyms

In cases where hiding attributes and therefore, maintain

the identity of the cardholder private is possible when

proving the ownership of pseudonyms we can rely on

prime-encoded attributes.

7.1.4 Equality proofs of representation

We can obtain better performance figures of equality

proofs of representation than those obtained in Sec-

tion 6.2.2 using prime-encoded attributes when we hide

them. Proving that 2 credentials share m0 without re-

vealing any attributes would be represented in zero

knowledge as NIZK: {(ε′1, ν′1, ε′2, ν′2, µ, α1, α2) : Z(1) ≡
±R(1)µ

0 R
(1)α1

1 A(1)ε′1S(1)ν′1 mod n1∧Z(2) ≡ ±R(2)µ
0 R

(2)β1

1

A(2)ε′2S(2)ν′2 mod n2}.

However, the computation of C, C̃o and C̃ together

with the two extra s values undermines any possibility

of improving the results from Section 6.2.2.

We have estimated the time that requires comput-

ing equality proofs of up to 8 credentials using the three

alternatives we have presented so far. Within a margin

of 4–5 seconds. Considering 4–5 seconds the acceptable

time for an on-line setting. Hence, performing equal-

ity proofs with 3 and 4 credentials revealing all the

attributes would be possible whereas execution times

beyond 6 seconds (worst cases with 3 credentials and

beyond and best cases with 5 credentials and beyond)

are unrealistic in practical scenarios.
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attributes)

Finally, we notice that it is possible to improve the

performance results of an equality proof of 2 credentials

hiding all the attributes by using this type of encoding.

This approach would be only useful in systems where a

user should prove the ownership of n credentials with-

out revealing her attributes.

7.2 The NOT operator

A cardholder can prove that a certain attribute or group

of attributes (mi) are not in her credential via this oper-

ator s.t. they do not belong to mt. In so doing, we proof

in zero knowledge that two integers x, y exists w.r.t. the

following linear Diophantine equation x·mt+y ·mi = 1:

NIZK: {(ε′, ν′, α0, α1, χ, υ, ρ, ρ
′) : Z ≡ ±Rα0

0 Rα1
1 Aε

′
Sν
′

mod n ∧ C ≡ ±Zα1Sρ mod n ∧ Z ≡ ±Cχ(Zmi)υSρ
′}

mod n. The card must compute the commitments C =

ZmtSr mod n, C̃ = C x̃(Zmi)ỹS r̃
′

mod n and C̃c =

Zm̃tS r̃ mod n where r̃, r̃′, x̃,ỹ are randomizers [9].

We propose two implementations for computing the

(x, y) pairs. The first alternative consists of precomput-

ing them. The equation (x, y) for x ·mi + y ·mt = 1,

mt has always the same value and there are several
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Table 6 Performance of GCD using the proposed algorithms

Case |mi| (bytes) |mt| (bytes) Euclid (ms) Stein (ms) Lehmer (ms) Extended Euclidean Algorithm (Euclid, ms)

1 1 2 17.05 70.62 18.43 21.51
2 1 4 17.52 131.78 18.92 21.76
3 3 6 37.49 254.37 38.86 65.64
4 5 9 68.07 289.58 95.61 131.47

combinations for mi. We can store every possibilities

in EEPROM when using a small number of attributes.

The number of (x, y) pairs is related to the number

of attributes as
l∑
i=1

cin =
l∑
i=1

(
n

i

)
. For instance, for

l = 2 attributes per credential, we store three (x, y)

pairs and for l = 4, we store 15 pairs. The second ap-

proach has to do with the computation of the Extended

Euclidean algorithm on the smart card. We extracted

performance figures via the binary GCD or Stein’s al-

gorithm, Lehmer’s algorithm and an implementation of

the Extended Euclidean algorithm via the PRIMDIVIDEN
13 instruction of the MULTOS card [25].

The length of mi varies according to the number of

attributes that are proved to not belong to mt. We mea-

sured the performance figures of these algorithms via 4

cases14. These cases assumes credentials of 5 attributes

so we can compare our results with those of the IRMA

card [29].

As depicted in Table 6, the Stein’s variant did not

improve the performance figures of the implementa-

tion relying on the traditional Extended Euclidean al-

gorithm. Hence, replacing the arithmetic operations of

the traditional Extended Euclidean algorithm by bit-

wise operations did not improve our performance fig-

ures. We measured the latency of all the operations

involved in both algorithms: Euclidean division (11.852

ms), comparison (11.047 ms), Boolean and (10.411 ms),

right shift (10.634 ms), increment (10.354 ms) and sub-

traction (10.647 ms). That means that these latency’s

make any improvement ill-suited when replacing the

Euclidean division by other type of operations. More-

over, due to the proprietary nature of the the SLE

13 This instruction computes the Euclidean division of two
numbers i.e. q and r.
14 Thus, for one possibility per attribute, we prove the non-
existence of one attribute in mi. In this case, mi = 3 and
mt = 5 · 7 · 11 · 13 (case 1). We consider 10 possibilities per
attribute (50 primes). We prove the non-existence of one at-
tribute in mi. For mi = 3, mt = 179 · 181 · 191 · 193 (case
2). We consider 1,000 possibilities per attribute (i.e. 5,000
primes) and we prove the non-existence of two attributes in
mt for mi = 1, 999·2, 161 and mt = 3, 323·3, 253·2, 897·2, 999
(case 3). Finally, we consider 10,000 possibilities per attribute
(50,000 primes) and we proof the non-existence of two primes
mi = 91, 387 · 91, 393 in mt = 102, 461 · 102, 481 · 102, 497 ·
102, 499 (case 4).

78CX1280P chip we cannot claim that the Euclidean

division is being performed via the hardware accelerator

of the target device. In the case of the Lehmer’s variant,

for single-precision values we obtain similar results as

the Euclidean algorithm. We believe that due to that

when we overcome that value (multi-precision), there

are more calls to the operating system for performing

bit-wise operations, multiplications and divisions that

increase the latency of the algorithm despite this is not

expected, whereas in the traditional Euclidean algo-

rithm we are only performing one Euclidean division

by step.

7.3 The OR operator

A verifier could send a list of attributes to the card so

the cardholder could prove that one or more attributes,

encoded as a product can be found inmt s.t.mt =
∏l
i=0

w.r.t. Rmt1 . Given an attribute mi ∈ mt, an integer x

exists s.t. x ·mi =
∏l
i=1mi = mt. We represent this in

zero knowledge as NIZK: {(ε′, ν′, α0, α1, χ, ρ, ρ
′) : Z ≡

±Rα0
0 Rα1

1 Aε
′
Sν
′

mod n∧C ≡ ±Zα1Sρ mod n∧C ′ ≡
±CχSρ′} mod n15. The card must compute three com-

mitments C = Zmt ·Sr mod n, C̃ = Zm̃t·S
r̃

mod n, T̃ =

C x̃ · S r̃1 w.r.t x = mt
mi

s.t. Rmt1 and r1 = −r0 · x where

r, r0, r̃, r̃0, r̃1, m̃t, x̃ are randomizers.

The computations of parameters such as r1 require

signed arithmetic that is not supported in the card.

That mean that we had to wrap every multiplication

and addition for supporting sign extensions and two’s

complement arithmetic. By using the RAM reductions

achieved thanks to the PRNG described in Section 5 by

executing all the two’s complement operations in RAM,

we cold reduce the computational time of r1 = −ρ0 · χ
from 495.530 ms to 90.260 ms.

7.4 Results

We have represented in Table 7 our performance fig-

ures of measured proofs over prime-encoded credentials.

15 In this manuscript we only address the first version of
this NIZK described in [9] and leave the second one beyond
the scope of this work due the computation limitations of our
target device.
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In this case, Tget attr is Tget attr(m̂0, m̂t|r̂, r̂′, â, b̂, C) for

the NOT and OR proofs. Besides, Tget attr(m0,m1|C, r̂,
m̂h) is for the AND operator where performing the

selective disclosure of attributes. For pseudonyms is

related to Tget attr(m0,m1|C, r̂, m̂h|nym, r̂|dNym) and

Tget attr(m0,mt|C, r̂,Mm̂h) for equality proofs of rep-

resentation.

By performing selective disclosure via the AND op-

erator, only proving the ownership of a CL signature

over a set of attributes requires 1,198.21 ms. However,

to reveal every attribute with the exception of the mas-

ter secret requires the computation of C, C̃ and C̃0.

We can store C in RAM thanks to the optimization

described in section 5. All in all, revealing all the at-

tributes requires 492.20 ms more in comparison to the

utilization of traditional encoding due to the computa-

tion of the of C, C̃ and C̃0 commitments.

When computing pseudonyms via prime-encoded

proofs all the performance figures concerning the worst

cases (i.e. hiding all, HA) were improved i.e. 485.89 ms

(standard pseudonyms) and 499.76 ms (domain

pseudonyms in combination with standard pseudonyms,

Section 6). However, revealing all the attributes re-

quires the computation of three commitments that need

a larger number of modular arithmetic operations in

comparison to normal encoding as we have seen. The

same applies to computing equality proofs of represen-

tation where there is an improvement of 496.59 ms and

989.82 ms respectively in the cases where all the at-

tributes are hidden.

In the case of the NOT operator16, the precompu-

tation strategy shows that increasing the length of the

operand does not alter the result significantly. In con-

trast, the time required for obtaining the (x, y) pairs

during the computation of â sums up to Tget attr(i).

Finally, thanks to the MULTOS PRIMDIVIDEN opera-

tion, we obtained performance figures between 2,015.41

and 2,135.35 ms. Finally, we can compute the OR op-

erator in 1,885.96 ms for credentials of 5 attributes.

7.5 Combination of operators for prime-encoded

credentials

By combining AND, OR and NOT proofs a cardholder

could proof that for attributes (a, b, c, d), a is in mt

s.t. Rmt1 , b is not and c or d could be present. How-

ever, given that the respective proofs for this operators

require the same commitments, it is possible to reorga-

nize the products inside them (thus doing an external

16 We use the following notation: PRE means recomputing,
EUC 1-3 is related to the cases presented in Table 3, RA
means Reveal all the Attributes with the exception of the
master secret and HA to hide every attribute in the credential.

reorganization of them) in order to optimize the overall

performance figure of the combined operators:

1. AND ∧ NOT: In the AND proof we always to com-

mit to mt as C = Zmt · Sr in order to prove that a

certain m1 can divide mt afterward and utilize the

m̃t, r̃ randomizers for proving the ownership of mt

as C̃0 = Zm̃t ·S r̃. The response values m̂t, r̂ are cre-

ated. The NOT operator follows a similar approach

for proving the ownership of mt in the case of the

C and C̃c commitments (Section 7.2). Hence, when

proving both presence an absence of attributes one

can avoid computing these two commitments and

their response values twice. Moreover, in the case of

AND we can apply internal commitment reorgani-

zation as discussed in Section 7.1.1.

2. AND ∧ OR: The OR operator (Section 7.3) proves

the ownership of mt as C = ZmtSr and generates

C̃ as the AND and NOT operator as well as the

response values for m̂t, r̂. This means that it can be

computed only e one time when combined and the

AND proof can be executed with the optimizations

discussed in Section 7.11.

3. NOT ∧ OR: As discussed, both operators compute

the C, C̃ commitments and only need to be obtained

once. However, none of these operators enable the

possibility of performing internal commitment reor-

ganizations.

4. AND ∧ NOT ∧ OR: Finally, this is the combination

that enable us to perform a greater number of opti-

mizations, First, C, C̃, m̂t, r̂ do not need to be per-

formed three times and we can optimize the proof

related to the AND operator as described in Section

7.1.1.

We have depicted in Table 9 the time reductions we

obtained while performing external and internal com-

mitment reorganizations for credentials of 5 attributes.

In so doing, we obtained reductions in performance that

varies between 170.10 ms and 644.60 ms.

8 pIRMA

For extracting our performance figures, we developed

an open-source implementation of Idemix in Python,

pIRMA17. It implements the client-side, that is, the

verifier part of Idemix and enabled us to extract per-

formance figures of the smart card as well to develop

Idemix clients and related applications. We have re-

leased this implementation as GPL together with the

respective MULTOS code.

17 https://github.com/adelapie/irma_phase_2
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Table 7 Performance figures of complex proofs via prime-encoded attributes

Implementation Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr Total (ms)

Selective disclosure (AND) HA 103.12 1,071.1 46.72 65.17 1,286.1
Selective disclosure (AND) RA 103.27 1,562.4 46.87 178.30 1,890.8

Nym RA 103.13 1,720.73 46.10 213.06 2,083.01
Nym HA 104.11 1,288.88 46.40 141.07 1,579.53

Nym ∧ dNym RA 103.17 2,255.31 45.92 272.50 2,676.92
Nym ∧ dNym HA 104.33 1,487.86 46.19 199.85 1,838.25

Equality proof (2 cred.) RA 103.23 3,145.11 703.56 253.01 4,202.74
Equality proof (2 cred.) HA 104.17 2,023.94 703.50 124.76 2,894.01

NOT PRE 15.203 1,590.11 48.72 214.80 1,974.96
NOT EUC (1) 15.503 1,587.93 46.81 259.95 2,016.41
NOT EUC (2) 15.514 1,587.92 47.10 260.53 2,017.23
NOT EUC (3) 15.510 1,587.93 46.87 306.28 2,063.63
NOT EUC (4) 15.511 1,587.91 46.85 376.28 2,135.35

OR - 113.622 1,476.47 46.08 234.53 1,885.96

Table 8 Estimation of the performance obtained by the combination of operators for prime-encoded credentials (5 attributes)

Combination Case Performance (ms) Performance after optimization (ms)

AND ∧ NOT RA, PRE 2,485.3 2,201.9
AND ∧ NOT RA, EUC1 2,506.9 2,223.4
AND ∧ NOT RA, EUC2 2,507.1 2,223.7
AND ∧ NOT RA, EUC3 2,551.0 2,267.5
AND ∧ NOT RA, EUC4 2,616.8 2,333.4
AND ∧ OR RA, C1 2,247.7 1,924.5

NOT ∧ OR PRE, C1 2,292.3 2,122.2
NOT ∧ OR EUC1, C1 2,397.9 2,227.8
NOT ∧ OR EUC2, C1 2,365.2 2,195.1
NOT ∧ OR EUC3, C1 2,409.1 2,238.9
NOT ∧ OR EUC4, C1 2,474.9 2,304.8

AND ∧ NOT ∧ OR RA, PRE, C1 2,897.1 2,252.6
AND ∧ NOT ∧ OR RA, EUC1, C1 2,918.6 2,274.1
AND ∧ NOT ∧ OR RA, EUC2, C1 2,918.9 2,274.3
AND ∧ NOT ∧ OR RA, EUC3, C1 2,962.8 2,318.2
AND ∧ NOT ∧ OR RA, EUC4, C1 3,028.6 2,384.0

9 Conclusions

The Idemix private ABC system consists of a vari-

ety of primitives such as the selective disclosure of at-

tributes, equality proofs, Idemix pseudonyms, domain

pseudonyms, and the AND, OR, NOT operators on prime-

encoded attributes. In this manuscript, we have evalu-

ated the performance of all these operations on a MUL-

TOS card, relying on the IRMA implementation, an

open-source implementation of the issuing and selec-

tive disclosure operations of Idemix for credentials of 5

attributes. This means that we have obtained perfor-

mance figures of the 77% of the Idemix specification,

while in the literature several practitioners restricted

themselves to the selective disclosure of attributes in

credentials of one attribute [4, 28].

Further, by relying on a PRNG and a small amount

of RAM available on card, we were able to extract the

performance figures of the operation describes. In Ta-

ble 9, we have depicted the savings in RAM perform-

ing variable reconstruction and the internal and exter-

nal reorganization of commitments. We note the size

of the variable in RAM that we are using for storing

the required pseudorandomness in each case. For in-

stance, during the execution of an equality proof since

the greater value we have to regenerate is rA, this con-

tainer has a size of 255 byte with independence of the

randomizer that is being generated sequentially. In the

optimized version for performing equality proofs for 2

credentials, since that value is stored in the transient

memory, the size of the container is 138 bytes. We also

must note that when the HA case of the AND operator

is used in combination with other operators, only the

commitments related to the other ones are taken into

account since the only aspect related to this proof is
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Table 9 RAM savings by recomputing the pseudorandomnes in each primitive

Operator PRNG sequence No. of commitments Required RAM (bytes) RAM saved (bytes)

Selective disclosure RA m̃i|m̃i 1 1 · 74 -
Selective disclosure HA m̃i|m̃i 1 5 · 74 4 · 74
Nym RA m̃i, r̃, m̃0, r|m̃i, r̃, m̃0 2 1 · 74 + 1 · 74 1 · 74
Nym HA m̃i, r̃, m̃0, r|m̃i, r̃, m̃0 2 5 · 74 + 1 · 74 4 · 74 + 1 · 74
Nym ∧ dNym RA m̃i, r̃, m̃0, r|m̃i, r̃, m̃0 3 1 · 74 + 1 · 74 1 · 74
Nym ∧ dNym HA m̃i, r̃, m̃0, r|m̃i, r̃, m̃0 3 5 · 74 + 1 · 74 4 · 74 + 1 · 74

Eq. proof (n cred.) RA r
(1)
A , ṽ(1), ẽ(1), m̃

(1)
i , r

(2)
A , ṽ(2), ẽ(2), m̃

(2)
i |r

(1)
A , ṽ(1), ẽ(1), m̃

(1)
i , r

(2)
A , ṽ(2), ẽ(2), m̃

(2)
i 2 2 · 138 + 2 · 255 + 2 · 57 + 2 · 74 2 · 138 + 1 · 255 + 2 · 57 + 2 · 74

Eq. proof (n cred.) HA r
(1)
A , ṽ(1), ẽ(1), m̃

(1)
i , r

(2)
A , ṽ(2), ẽ(2), m̃

(2)
i |r

(1)
A , ṽ(1), ẽ(1), m̃

(1)
i , r

(2)
A , ṽ(2), ẽ(2), m̃

(2)
i 2 2 · 138 + 2 · 255 + 2 · 57 + 10 · 74 2 · 138 + 1 · 255 + 2 · 57 + 10 · 74

Eq. proof (2 cred.) RA r
(1)
A , ṽ(1), ẽ(1), m̃

(1)
i , r

(2)
A , ṽ(2), ẽ(2), m̃

(2)
i |ṽ(1), ẽ(1), m̃

(1)
i , ṽ(2), ẽ(2), m̃

(2)
i 2 2 · 138 + 2 · 57 + 2 · 74 1 · 138 + 2 · 57 + 2 · 74

Eq. proof (2 cred.) HA r
(1)
A , ṽ(1), ẽ(1), m̃

(1)
i , r

(2)
A , ṽ(2), ẽ(2), m̃

(2)
i |ṽ(1), ẽ(1), m̃

(1)
i , ṽ(2), ẽ(2), m̃

(2)
i 2 2 · 138 + 2 · 255 + 2 · 57 + 10 · 74 1 · 138 + 2 · 57 + 10 · 74

Eq. proof (prime-encoded) RA r
(1)
A , ṽ(1), ẽ(1), m̃0, m̃h, r̃, r, m̃t, r

(2)
A , ṽ(2), ẽ(2)|[ ], m̃0, m̃h, r̃, [ ], [ ], m̃t, ṽ(1), ẽ(1), m̃

(1)
i , ṽ(2), ẽ(2), m̃

(2)
i 5 2 · 138 + 2 · 57 + 5 · 74 1 · 138 + 2 · 57 + 5 · 74

Eq. proof (prime-encoded) HA r
(1)
A , ṽ(1), ẽ(1), m̃t, r

(2)
A , ṽ(2), ẽ(2), m̃0|ṽ(1), ẽ(1), m̃t, ṽ(2), ẽ(2), m̃0 2 2 · 138 + 2 · 255 + 2 · 57 + 2 · 74 1 · 138 + 2 · 57 + 2 · 74

AND RA m̃0, m̃h, r̃, r, m̃t|[ ], m̃0, m̃h, r̃, [ ], [ ], m̃t 4 3 · 74 2 · 74
AND HA m̃t, m̃0|m̃t, m̃0 1 1 · 74 1 · 74

AND ∧ Nym RA m̃0, m̃h, r̃, r̃′, r, m̃t|[ ], m̃0, m̃h, r̃′, r̃, [ ], [ ], m̃t 5 5 · 74 4 · 74

AND ∧ Nym HA m̃t, m̃0, r̃′|m̃t, m̃0, r̃′ 2 2 · 74 1 · 74

NOT b̃, ã, r̃′, m̃t, r̃, m̃0, r|b̃, ã, r̃′, m̃t, r̃, m̃0 4 6 · 74 5 · 74
OR r, m̃t, r̃, r̃1, x̃, m̃0|[ ], m̃t, r̃, r̃1, x̃, m̃0 3 5 · 74 4 · 74

AND RA ∧ NOT b̃, ã, r̃′, m̃t, r̃, m̃0, r, m̃h|b̃, ã, [ ], m̃t, m̃0, [ ], m̃h 6 5 · 74 4 · 74

AND HA ∧ NOT b̃, ã, r̃′, m̃t, r̃, m̃0|b̃, ã, [ ], m̃t[ ], m̃0 5 4 · 74 3 · 74
AND RA ∧ OR m̃0, m̃h, r̃, r, m̃t, r̃1, x̃|m̃0, m̃h, r̃, [ ], m̃t, r̃1, x̃ 5 6 · 74 5 · 74
AND HA ∧ OR r, m̃t, r̃, r̃1, x̃, m̃0|[ ], m̃t, r̃, r̃1, x̃, m̃0 3 5 · 74 4 · 74

NOT ∧ OR b̃, ã, r̃′, m̃t, r̃, m̃0, r̃′, r̃, r̃1, x̃|b̃, ã, r̃′, m̃t, r̃, m̃0, r̃′, [ ], r̃1, x̃ 5 9 · 74 8 · 74

AND RA ∧ NOT ∧ OR m̃0, m̃h, r, r̃′, m̃t, b̃, ã, r̃1, x̃|m̃0, m̃h, [ ], [ ], m̃t, b̃, ã, r̃1, x̃ 5 10 · 74 9 · 74

AND HA ∧ NOT ∧ OR b̃, ã, r̃′, m̃t, r̃, m̃0, r̃′, r̃, r̃1, x̃|b̃, ã, r̃′, m̃t, r̃, m̃0, r̃′, [ ], r̃1, x̃ 5 9 · 74 8 · 74

to prove the ownership of a CL signature over m0,mt

which is always performed.

Our conclusions can be summarized as:

– When the number of attributes is large it can be

possible to rely on prime-encoded proofs for improv-

ing the issuing process (Section 7.1.2). Moreover,

this also applies to the verification of a considerable

amount of attributes.

– The selective disclosure operation can be improved

in cases where hiding is needed by relying on prime-

encoded attributes.

– In this respect, this also applies to equality proofs

and pseudonyms relying on prime-encoded attributes.

– By externally and internally reordering the commit-

ments involved in chained AND, OR and NOT op-

erators it can be possible to obtain speed ups of

170.10-644.60 ms.

– By relying on the PRNG in combination of variable

reconstruction in RAM we were able to compute

multi/-credential proofs within 2 seconds in com-

parison to the 4 seconds record in literature for the

selective disclosure of credentials with one attribute.

The same approach was followed for implementing

other complex proofs (Sections 6 and 7).

These conclusions can be utilized as guidance in the

creation of presentation policies when utilizing contem-

porary smart cards, taking into account that these op-

erations are computational optimal in the target device

in comparison to other implementation options. Finally,

other operations used by typical parties in ABC sce-

narios such as a revocation agent or the inspector can

be implemented using the strategies that we have de-

scribed in this manuscript [8]. Furthermore, complex

proofs such as verifiable encryptions and range proofs

could be adapted to smart cards relying on these tech-

niques [6, 15].
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