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Abstract. The use of Physically Unclonable Functions (PUFs) in cryp-
tographic protocols attracted an increased interest over recent years.
Since sound security analysis requires a concise specification of the al-
leged properties of the PUF, there have been numerous trials to provide
formal security models for PUFs. However, all these approaches have
been tailored to specific types of applications or specific PUF instanti-
ations. For the sake of applicability, composability, and comparability,
however, there is a strong need for a unified security model for PUFs (to
satisfy, for example, a need to answer whether a future protocol require-
ments match a new and coming PUF realization properties).
In this work, we propose a PUF model which generalizes various existing
PUF models and includes security properties that have not been modeled
so far. We prove the relation between some of the properties, and also
discuss the relation of our model to existing ones.

Keywords: Physically unclonable function, security model, specifications

1 Introduction

Physically Unclonable Functions (PUFs) are functions represented by physical
objects which are mainly provided by unavoidable arbitrary variations during
the manufacturing process. PUFs can be used to secure secret key generation
and key management as an alternative to achieving this by dedicated (more
expensive) security processors, such as Trusted Platform Module (TPM) and
employing random number generation. Currently, there are three major research
topics regarding PUFs:

1. Hardware: Proposing a new construction of PUF or evaluating existing PUFs
based on implementation (FPGA, ASIC, etc.) [13,14,19,20,23,27].

? The preliminary version of this paper is presented in CT-RSA 2016 [3] and this full
version includes security proofs for implecation and separation results among the
security notions for PUFs.



2. Protocol Design: Considering a PUF as an abstract building block and
proposing new cryptographic primitives or protocols [5,7,8,15,22,24,30,32].

3. Modeling: Investigating theoretical perspectives on PUFs and describing a
security model [1, 2, 7, 13,14,26,27].

In particular, we note that there have been, obviously, multiple attempts to
come up with security models for PUFs, these often aimed for specific types of ap-
plications and/or PUF hardware types. This results in the very unsatisfying situ-
ation that, up to now, there is no one-for-all PUF model (or super-model) which
covers all desired properties. This deficiency has some serious consequences. For
example, protocols where security has been shown under different models can-
not be easily combined without requiring a new security analysis. In the worst
case, formalizations may be even incompatible, which would demand a complete
reevaluation of these parts. Another problem is that protocol designers face the
challenge of choosing the “right” security model among the existing ones, and
mapping models to devices is not often clear. In fact, as we will discuss, there
exist PUF-based protocols which require a selection of security properties that
are not covered by a single model yet.

Contribution

In this work, we aim at closing this gap, by comparing the various existing
models, describing a new security model which unifies and extends them, and
confront its properties against hardware devices and protocols in the field.

First, the new model covers the most relevant security properties of PUFs.
The overall situation is depicted in Table 1. Here, the columns display the con-
sidered security properties. In the upper part of the table, we mark for a variety
of security models, and which of these properties is covered by the respective
model. Each model, indeed, covers some (or all) of the following notions: suffi-
cient min-entropy of the outputs, one-wayness, unforgeability, and unclonability.
To motivate the necessity of a unifying model, in the lower part we give examples
of three previously published protocols, which security properties need to hold
for these protocols to be secure. As one can observe, some models would not be
suitable to analyze the security of some of the protocols. In fact only the model
of Brzuska et al. [7] includes all four properties.

Unfortunately, even this model is not sufficiently comprehensive. For exam-
ple, the RFID authentication scheme described in [30] requires that the PUF
outputs are pseudorandom, a property not included into any of these models.
Thus, our model does not only unify these models but formalizes three novel se-
curity properties: indistinguishability, pseudorandomness, and tamper resilience.

A further extension given by our model is the output distributions of PUFs.
Due to the fact that PUF outputs are noisy, all models include the notion of
intra-distance of outputs. This refers to the distance (with respect to an ac-
cording metric) between several outputs of the same PUF on the same input.
However, we argue that in addition two types of inter-distance should be part of
a comprehensive security model. By inter-distance I we consider the variation of



Table 1. Comparison of several existing PUF security model and overview of required
security properties for different protocol examples. One can analyze other PUF-based
schemes or protocols so that which properties are required with this table.

Security Min- One- Unforge- Unclon- Indistin- Pseudo- Tamper-
Model entropy wayness ability ability guishability randomness resilience

Pappu [27] - X X - - - -

Gassend et al. [13] - - X - - - -

Guajardo et al. [14] - - X - - - -

Armknecht et al. [2] X - - X - - -

Armknecht et al. [1] X - X X - - -

Brzuska et al. [7] X X X X - - -

Maes [21] - X X X - - -

Ours X X X X X X X

Example Min- One- Unforge- Unclon- Indistin- Pseudo- Tamper-
Protocols entropy wayness ability ability guishability randomness resilience

Challenge-Response [27] - - X - - - -

PUF-PRF [2] X - X X - - -

RFID Authentication [30] - - - X - X -

outputs of a single PUFs when queried on multiple input while inter-distance II
is about the distance between the outputs of multiple PUFs on the same input.
So far, inter-distance I has been covered only by the model of Gassend et al. [13],
while inter-distance II is only part of the model by Maes [21].

Since all these properties are covered by our model, it represents the most
comprehensive model so far. We discuss the relation of our model to existing
works in more detail at the end of this paper.

Important note: We have to stress that we do not claim that a single PUF
should meet all these properties. This is clearly not the case. However, each of
the properties covered in our model has been considered in previous work or is
natural to be considered (e.g., tamper resilience). In that sense, we see our model
as the most general (i.e., a super-model) and flexible one, that when given a PUF-
based protocol requirements, allows to express the necessary security properties.

Outline Section 2 summarizes the preliminaries. Section 3 describes our model in
detail, and explains relations between the covered security properties. Section 4
compares our model to related work, while Section 5 concludes the paper.

2 Notations

For a probabilistic machine or algorithm A, the term A(x) denotes the random
variable of the output of A on input x. a ← A(x) indicates the event that A

outputs a on input x the value a. When A is a set, y
U← A means that y is

uniformly selected from A. |A| ≤ poly(x) indicates that the number of elements
in A is polynomially bounded by x. When the parameter x is clear from the



context, we omit it. When a is a value, y := a denotes that y is set as a. For
two values a, a′, the expression Dist(a, a′) denotes the distance between a and
a′ according to some metrics (e.g., Hamming distance, edit distance). H̃∞(A)
indicates the min-entropy of A and H̃∞(A | B) evaluates the conditional min-
entropy of A given B.

3 Security Model: Properties and Their Relationships

In this section, we describe our model. We start with a specification of the overall
system and then formalize various properties of PUFs which are security relevant.
A PUF is a probabilistic mapping f : D → R where D is a domain space and
R is an output range of PUF f . The creation of a PUF is formally expressed by
invoking a manufacturing processMP. That is aMP is a randomized procedure
which takes inputs from a range of parameters and outputs a new PUF. We do
not specify the input range of MP in purpose as it strongly depends on the
concrete PUF but also on the considered attacker model. For example, in the
weakest attacker model the input range ofMP is empty. This would model the
case that there is one legitimate process for creating the PUF and an attacker can
only invoke exactly this procedure. The other extreme is that MP is a kind of
”universal creation process” where for any product an according parameter input
does exist. In general, one may imagine that MP represents a class of creating
processes which is parameterized. Next, we formalize the security properties with
respect to a given security parameter λ and PPT attackers (polynomial in λ).

3.1 Output Distribution

Due to the fact that PUFs have noisy outputs, considering the output distribu-
tion is important. In the following, we specify four different requirements with
respect to different aspects of the output distribution. Depending on the con-
crete application, one would have to choose a PUF where some or all of these
conditions are met. We first give a formal definition and explain its rationale
afterwards. The following definitions are parametrized by some thresholds δi,
the number of iterations t, the number of inputs `, the number of devices n, a
negligible function ε(·), and the security parameter λ.

Intra-Distance Requirement: Whenever a single PUF is repeatedly evalu-
ated with a fixed input, the maximum distance between the corresponding
outputs is at most δ1. That is for any created PUF f ← MP(param) and
any y ∈ D, it holds that

Pr
[
max({Dist(zi, zj)}i6=j) ≤ δ1 | y ∈ D, {zi ← f(y)}1≤i≤t

]
= 1− ε(λ).

Inter-Distance I Requirement: Whenever a single PUF is evaluated on dif-
ferent inputs, the minimum distance among them is at least δ2. That is for
a created PUF f ←MP(param) and for any y1, . . . , y` ∈ D, we have

Pr

[
min({Dist(zi, zj)}i6=j) ≥ δ2

∣∣∣∣ y1, . . . , y` ∈ D,
{zi ← f(yi)}1≤i≤`

]
= 1− ε(λ).



Inter-Distance II Requirement: Whenever multiple PUFs are evaluated on
a single, fixed input, the minimum distance among them is at least δ3. That
is for any created PUF fi ←MP(param) for 1 ≤ i ≤ n and any y ∈ D, we
have

Pr [min({Dist(zi, zj)}i 6=j) ≥ δ3 |y ∈ D, {zi ← fi(y)}1≤i≤n ] = 1− ε(λ).

Min-Entropy Requirement: Whenever multiple PUFs are evaluated on mul-
tiple inputs, the min-entropy of the outputs is at least δ4, even if the other
outputs are observed. Let zi,j ← fi(yj) be the output of a PUF fi on input
yj where fi ←MP(param). Then

Pr

H̃∞(zi,j | Zi,j) ≥ δ4

∣∣∣∣∣∣
y1, . . . , y` ∈ D,

Z := {zi,j ← fi(yj)}1≤i≤n,1≤j≤`,
Zi,j := Z \ {zi,j}

 = 1− ε(λ)

holds for sufficiently large δ4.

Definition 1. A PUF f : D → R has (MP, t, n, `, δ1, δ2, δ3, ε)-variance if the
PUF’s output has inter and intra distances as described above, parameterized by
(MP, t, n, `, δ1, δ2, δ3).

Definition 2. A PUF f : D → R has (MP, n, `, δ4, ε)-min-entropy if the PUF
satisfies the min-entropy requirement explained above.

The intra-distance and the two metrics of inter-distance are very important
notions, crucial to ensure the correctness of schemes built on top of the PUF.
For example, if δ1 ≥ δ2 then outputs from the same inputs may exhibit a higher
distance than outputs coming from different inputs. Similarly, δ1 ≥ δ3 would
result in the situation that outputs of the same PUF have a larger distance than
outputs of other PUFs. This is, for example, critical when PUFs are used as
authenticating devices. Therefore, δ1 < δ2 and δ1 < δ3 are necessary conditions
to allow for a clear distinction between different inputs and different PUFs. These
are fundamental issues to assure the uniqueness for each output.

One popular method to assert the uncertainty of the PUF’s output is the
notion of min-entropy. For example the min-entropy is an important aspects if
combined with a fuzzy extractor [12] to ensure outputs with a sufficient level of
randomness can be reconstructed nonetheless. Consequently, Bzruska et al. [7]
included the notion of min-entropy in their model, but limited their definition to
the case that the inputs have all a certain Hamming distance, which we omit in
our model. Since the restriction of the inputs requires extra cost for the scheme
layer itself, and correlated inputs may influence the min-entropy evaluation,
we define the min-entropy for arbitrary chosen yi ∈ D. Furthermore, our min-
entropy evaluation is more general than [7], so that outputs from other devices
are also included to evaluate the conditional entropy. This is useful when we
consider a multi-party setting where each party holds his own PUF.

Next, we provide formal security definitions for PUF properties that are based
on security notions from “classical” cryptographic primitives. Throughout the



rest of the paper, we assume that the number of PUFs created by a specific
parameter via Create is polynomially bounded in λ and we simply denote the
upper bound as n. Similarly, the Response query issued by a malicious adversary
to obtain the PUF’s response is also polynomially bounded. We also assume
that intra-distance δ1 is strictly smaller than any of the inter-distances (δ2, δ3)
(except with negligible probability ε).

3.2 One-wayness

One of the most basic security requirements in cryptography is one-wayness.
This is formalized by the following game between a challenger and an adversary
A = (A1,A2).

Setup. The challenger selects a manufacturing process MP and initial pa-
rameter param. The challenger sends (1λ,MP, param) to adversary A1.
In addition, the challenger creates a list List which is initially empty and
initializes two counters (c0, c1).

Phase 1. A1 can adaptively issue the following oracle queries.
– WhenA1 issues Create(param′), the challenger checks param′. If param′ =
param, the challenger increments c0 and creates a new PUF fc0 ←
MP(param). If param′ 6= param and param′ is a valid input to the
manufacturing process, the challenger increments c1 and invokes f ′c1 ←
MP(param′). Otherwise, the challenger responds with ⊥.

– When A1 sends Response(b, i, yj) with b ∈ {0, 1}, the challenger proceeds
as follows. If b = 0 (indicating that a correctly constructed PUF shall be
queried) and if i ≤ c0, the challenger responds zi,j ← fi(yj). If b = 1 and
i ≤ c1, the challenger responds z′i,j ← f ′i(yj). Otherwise, the challenger
outputs ⊥.

Challenge. When A1 finishes Phase 1, A1 sends an index i∗ ≤ c0 to the

challenger and outputs state information st. Then the challenger selects y∗
U←

D and responds z∗ ← fi∗(y
∗) to A.

Phase 2. Given z∗ and st, A2 continuously issues the oracle query as Phase 1.
Guess. Finally, A2 outputs y∗1 .

The advantage of the adversary for the above game is defined by

AdvOW
A (λ, δ1) := Pr[y∗ = y∗1 ]− (`+ 1)/|D|

where ` denotes the number of queries the adversary issued to the i∗-th PUF.
The adversary wins the above game if AdvOW

A (λ, δ1) > 0 holds with non-negligible
probability in λ.

In Phase 1 and 2, the adversary can submit Create(param′) to create a new
PUF. If param′ = param, a PUF is created by the default parameter origi-
nally chosen by the challenger. Otherwise, a PUF is created with a different
parameter specified by the adversary to generate a malicious PUF [9,26] or bad
PUF [11, 28]. A malicious PUF may leak extra information to the adversary.



This is necessary as in general, one cannot exclude that an attacker could learn
valuable information from evaluating PUF which are created with (possibly only
slightly) different parameters. The adversary can obtain the output of PUFs via
oracle query regardless of the parameter setting whenever the PUF has been
created. We note that the attack target, chosen in the challenge phase and eval-
uated in the guess phase, is a PUF created by the default parameter param.
As we will see later, the concept of malicious PUFs, i.e., PUFs being created by
different parameters, are also useful to discuss the relationship to the notion of
unclonability. (`+1)/|D| gives the probability that the adversary trivially breaks
the one-wayness with random guess when we faithfully cover the noise from the
PUF; more detailed discussion is appeared in Appendix A.

Definition 3. A PUF provides (MP, n, `, δ1, ε)-one-wayness if for any PPT
adversary A, Pr[AdvOW

A (λ, δ1) > 0] ≤ ε(λ) holds.

3.3 Unforgeability

Many PUF-based protocols base their security on the assumption that estimat-
ing the output of a PUF should not be possible without having access to the
device. While several previous works call this notion as unpredictability, we re-
fer to this property as unforgeability. The main reason is that, as we will show,
it shares many similarities with the typical security notions in the context of
digital signature schemes or MACs, being Universal Unforgeability (UUF) and
Existential Unforgeability (EUF). Both notions are considered in the context of
different attack types: Key Only Attack (KOA), Known Message Attack (KMA),
and Chosen Message Attack (CMA). In some cases, One Time (OT) security is
also considered which refers to the case that the involved oracle can be queried
only once.

In our model, we adopt these established security notions for PUFs. The
EUF-CMA security game against a PUF is described by the following:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A.

Learning. A can adaptively issue oracle queries (Create and Response) as de-
fined in the one-wayness game.

Guess. After the learning phase, A outputs (i∗, y∗, z∗).

We disallow the adversary to submit Response(param, i∗, y∗) in the learning
phase. The advantage of the adversary is defined by

AdvEUF-CMA
A (λ, δ1) := Pr[Dist(z∗, fi∗(y

∗)) ≤ δ1]− |Z ′|/|R|

where f∗i has been produced by a challenger in the learning phase and Z ′ := {z |
zi∗ ← fi∗(y

∗),Dist(zi∗ , z) ≤ δ1}. We say that the adversary wins the unforge-
ability game iff AdvEUF-CMA

A (λ, δ1) > 0 holds with non-negligible probability in
λ.

A similar definition can be found in [1] but their security model considers
only PUFs which are combined with a fuzzy extractor. We do not make any



assumption on a post-processing mechanism and consider the security issue for
the PUFs itself. Therefore, we do not evaluate the equality but (appropriate)
distance between z∗ and fi∗(y

∗) (interestingly, the existing security models ex-
cept [1] only consider the equality against the stand-alone PUFs). Since we adopt
the intra-distance notion here, there are |Z ′| candidates for fi∗(y

∗) in R. Hence,
the advantage is defined as the probability to output a candidate minus the
probability to simply pick a random element of this set.

Definition 4. A PUF provides (MP, n, `, δ1, ε)-EUF-CMA security if for any
PPT adversary A, Pr[AdvEUF-CMA

A (λ, δ1) > 0] ≤ ε(λ) holds.

3.4 Unclonability

As the name physically unclonable function indicates, an important assumption
with respect to a PUF is that it should be hard for an adversary to come up with
two PUFs that exhibit quite similar input-output behavior. We capture this by
an unclonability game, formalized as follows:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A.

Learning. A can adaptively issue the oracle queries (Create and Response) as
defined in the one-wayness game.

Guess. After the learning phase, A outputs a triple of the form (i∗, b, j∗) with
b ∈ {0, 1} and (b, i∗) 6= (b′, j∗).

The goal of the attacker is to create a clone to a PUF which stems from the
set of PUFs that have been created under the parameters param. We refer to
these as the original parameters. The first entry i∗ of the output refers to the
i∗-th PUF within this set. The other two parameters (b, j∗) are interpreted as
follows. If b = 0 then it refers to j∗-th PUF created under the original parameters
param otherwise to the j∗-th PUF created under the modified parameters. Let
fi∗ and f ′j∗ denote these two PUFs. The adversary wins the unclonability game
if PUF f ′j∗ performs sufficiently similar to fi∗ . More formally, the advantage of
the adversary is defined as

AdvCloneA (λ, δ1) := Pr[∀y ∈ D,Dist(fi∗(y), f ′j∗(y)) ≤ δ1].

Definition 5. A PUF provides (MP, n, `, δ1, ε)-unclonability if for any PPT
adversary A, AdvCloneA (λ, δ1) ≤ ε(λ) holds.

Recall that an adversary may use parameters param′ for the manufacturing
process that are different to the originally used parameters param. However,
she is only successful if she can clone a PUF that results from the original
manufacturing process. On the other hand, the clone itself may result from
different parameters params′. This has some fundamental consequences. For
example, when |D| ∈ poly(λ) holds, the adversary can learn all input-output
pairs {(yj , zj)}j in the learning phase and select param′ such that the input-
output behavior includes the complete lookup table provided by {(yj , zj)}j . This



means (MP, n, |D|, δ1, ε)-unclonability cannot be satisfied in such cases. Various
memory-based PUFs belong to this class. We stress, however, that this does not
mean that such PUFs are of no value, but rather that such PUFs need to be
protected by additional measures.

The above definition aims to comprehensively capture the notion of unclon-
ability. To this end, we have to consider two relaxed notions of unclonability. One
approach is that the adversary may only create PUFs according to the original
manufacturing process, i.e., param′ = param in all queries. We call this variant
as target unclonable. Another way to cover a relaxed notion of unclonability is
that we explicitly restrict the upper bound of oracle queries the adversary issues
in the learning phase as ` < |D|. Since |D| ∈ poly(λ) holds for memory-based
PUFs, it is useful to consider this restriction. We call this variant as restricted
unclonable.

Observe that our model covers scenarios like building attacks [29, 31] and
fault injection attacks [25]. The supervised learning in the machine learning
attack analyzes a set of training data as input and estimates an unobserved
output, so it is considered as an attack for the EUF-KMA security.

3.5 Indistinguishability

For many cryptographic schemes and protocols, the notion of indistinguisha-
bility is fundamental to providing security or privacy. Although it is useful for
designers to capture the notion that a PUF’s output is indistinguishable from an-
other output, former models ignored this aspect and mainly concentrate on the
unforgeability. Consider a simple challenge-response authentication performed
by a PUF’s input-output pair. The unforgeability against the PUF provides the
security against impersonation attack, but the privacy aspect cannot be argued
with this notion only. When a PUF satisfies indistinguishability, it means, in
principle, that no one can deduce from observed output which PUF has been
in use. Therefore, the notion of indistinguishability for PUFs is important with
respect to privacy-preserving protocols. The indistinguishability game between
a challenger and adversary A := (A1,A2) is defined as follows:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A.

Phase 1. A1 can adaptively issue the oracle queries (Create and Response) as
defined in the one-wayness game.

Challenge. The adversary submits two tuples (i∗0, y
∗
0) and (i∗1, y

∗
1) which are not

issued as Response(param, i∗0, y
∗
0),Response(param, i∗1, y

∗
1) in Phase 1. Then

the challenger flips a coin b
U← {0, 1} and responds z∗b ← fi∗b (y∗b ) to the

adversary.
Phase 2. A2 receives st and can continuously issue (Create,Response) except

Response(param, i∗0, y
∗
0) and Response(param, i∗1, y

∗
1).

Guess. Finally, the adversary outputs a guess b′.

The adversary wins the indistinguishability game if b′ = b holds with probability
more than 1/2.



While the PUF is not a deterministic function, the adversary can estimate
the challenger’s coin if he can obtain fi∗0 (y∗0) or fi∗1 (y∗1) by checking the distance
from z∗b . Thus we cannot allow the adversary to issue Response(param, i∗0, y

∗
0)

nor Response(param, i∗1, y
∗
1). Instead, A can choose i∗0 = i∗1 to distinguish the

output difference from one device or y∗0 = y∗1 to consider the output variance
between two devices with same input. The advantage of the adversary in the
above indistinguishability-based game is defined by

AdvINDA (λ) := |2 · Pr[b′ = b]− 1|.

Definition 6. A PUF satisfies (MP, n, `, ε)-indistinguishablility if for any PPT
adversary A, AdvINDA (λ) ≤ ε(λ) holds.

3.6 Pseudorandomness

Some protocols consider a PUF as a kind of physical pseudorandom function that
cannot be shared simultaneously by two different parties (e.g., [30]). In fact, de-
pending on how sensitive the PUF behavior is with respect to the physical state,
such assumptions may be justified. In any case, a comprehensive model should
cover a notion of pseudorandomness. Our definition is based on the pseudoran-
domness game described below:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A. In addition, the challenger flips

a coin b
U← {0, 1}, creates a list List which is initially empty and prepares

counter (c0, c1) and truly random function RF, i.e., a random oracle.
Learning. The adversary can issue (Create and Response) queries as defined in

the one-wayness game. When the challenger receives a Response(param′, i, yj)
query, the challenger performs the following :

– If param′ 6= param or b = 1, performs as in the one-wayness game.
When param′ = param and i ≤ c0, responds with zi,j := fi(yj). When
param′ 6= param and i ≤ c1, respond zi,j := f ′i(yj). In other cases,
respond ⊥.

– If param′ = param and b = 0, the challenger inputs (i, yj) to RF and
obtains z′i,j ∈ R. Then he selects some random noise and applies it to
z′i,j to derive zi,j which satisfies Dist(zi,j , z

′
i,j) ≤ δ1. If i ≤ c0, respond

zi,j . Otherwise, output ⊥.

Guess. Finally, A outputs a guess b′.

The adversary wins the pseudorandomness game iff b′ = b.
The main difference from the canonical pseudorandom function is that the

challenger does not directly hands outputs z′i,j which came from the truly ran-
dom function but adds some noise bounded by δ1. This additional procedure is
critical to emulate the actual PUF’s behavior from intra-distance perspective.
Our description is more suitable to minimize the gap between the real output
and ideal output. Even if b = 0, the challenger selects the same value z′i,j for a



fixed input from RF and adds appropriate noise against z′i,j . The advantage of
the adversary in the above pseudorandomness game is defined by

AdvPRA (λ, δ1) := |2 · Pr[b′ = b]− 1|.

Definition 7. A PUF has (MP, n, `, δ1, ε)-pseudorandomness if for any PPT
adversary A, AdvPRA (λ, δ1) ≤ ε(λ) holds.

Sadeghi et al. [30] assumed an ideal PUF which achieves idealized behavior of
PUFs and argued that the ideal PUF must satisfies the same notion. While the
ideal PUF assumes no noise (i.e., δ1 = 0), we carefully defined this notion in a
formal way to capture the intrinsic noise observed in real PUFs.

3.7 Tamper-Resilience

One of the motivations to employ a PUF in cryptographic schemes and protocols
is to provide resilience to physical attacks at cheaper costs compared to other
measures like using a Trusted Platform Module (TPM). Though the existing
security models for PUFs do not formally define this property, physical attack
against the PUF should not leak any internal structure of the device. We con-
sider the following simulation based definition of tamper-resilience. That is, we
consider two parties: an adversary A and a simulator S. The adversary A can is-
sue (Create,Response) queries as in the previous definitions. Moreover, whenever
Create(param) is launched, A receives the produced PUF fi and can analyze it
physically. That is, A can mount arbitrary physical attacks on the PUF (e.g.,
power analysis, probing attack, etc). On the other hand, the algorithm S can
only adaptively issue (Create,Response) but does not get physical access to the
created PUFs. Both of them finally output internal state st. The idea is that if
for any adversary A who has physical access to a PUF, there exists a simula-
tor S which behaves practically the same but without physical access, then the
consequence is that the physical access does not provide any advantage. In this
case, we say that the PUF is tamper resilient. The advantage of A in the above
experiment is defined by

AdvTamp
A,S,B(λ) :=∣∣∣∣Pr[B(1λ, st)→ 1 |st← ACreate,Response(1λ,MP, param, f1, f2, . . .)]
−Pr[B(1λ, st)→ 1 |st← SCreate,Response(1λ,MP, param)]

∣∣∣∣
where B is a distinguisher who tries to distinguish st generated by A/S.

Definition 8. A function f is a (MP, n, `, ε)-tamper resilient PUF if for any
PPT adversary A, there exists a PPT algorithm S, for any PPT distinguisher
B, AdvTamp

A,S,B(λ) ≤ ε(λ) holds.

As explained above, the intuition is that the adversary A actually receives PUFs
themselves and hence can conduct different actions in principle, e.g., see the
structure of the chip and gate-delay, and launch arbitrary side-channel analysis



Fig. 1. Relationship among the security properties and min-entropy. For simplicity, we
exclude several parameters corresponding to the number of devices, oracle queries and
negligible fractions except the amount of min-entropy.

5. These results can be contained in st and B tries to distinguish whether st
is output from A or S. Therefore, if B cannot distinguish A’s output and S’s
output, this means that no additional information which is not trivially derived
from challenge-response pairs is extracted by the physical attack (regardless of
what they are).

3.8 Relationships between the Security Properties

While each of the security properties had its own separate motivation, we show
in the following that these are not completely independent. More precisely, we
point out several relationships between these and show the following statements
as described in Figure 1 (full formal security proofs are in Appendix B):

– Restricted unclonability is equivalent to EUF-CMA security
– Indistinguishability implies EUF-CMA security and one-wayness
– No implication between one-wayness and EUF-CMA security
– Pseudorandomness implies indistinguishability
– (MP, n, |R|, λ, ε)-min-entropy implies (MP, n, `, δ1, ε)-EUF-CMA security
– (MP, n, |R|, log |R|, ε)-min-entropy implies (MP, n, `, ε)-pseudorandomness.

4 Comparison to Existing Security Models

5 We do not limit the number of physical attacks the adversary can mount as defined
in [18]. Instead, the pamter-resilience assures there is no extra information is leaked
by the physical attacks.

2 They do not formally define the intra-distance but their implementation results or
arguments implicitly show the intra-distance.

3 Their definition is not information-theoretical min-entropy but computational ver-
sion of min-entropy called HILL entropy [16].



Table 2. Comparison of output distribution defined in the security models

Intra- Inter- Inter- Min- Number Number
distance distance I distance II entropy of PUFs of queries

Pappu [27] Yes2 - - - 1 1

Gassend et al. [13] Yes Yes - - 1 poly

Guajardo et al. [14] Yes2 - - - 1 1

Armknecht et al. [2] Yes - - Yes3 1 poly

Armknecht et al. [1] Yes - - Yes poly poly

Brzuska et al. [7] Yes - - Yes 1 poly

Maes [21] Yes - Yes - 1 poly

Ours Yes Yes Yes Yes poly poly

Table 3. Comparison of security properties proposed in the security models

one- Unforge- Unclon- Indistin- Pseudo- Tamper- Evaluation
wayness ability ability guishability randomness resilience

Pappu [27] Yes UUF-KOA - - - - Equality

Gassend et al. [13] - UUF-KMA - - - - Equality

Guajardo et al. [14] - UUF-OT-KMA - - - - Equality

Armknecht et al. [2] - - Yes - - - -

Armknecht et al. [1] - UUF-KMA Yes - - - Equality4

EUF-CMA Equality

Brzuska et al. [7] Yes EUF-CMA Yes - - -5 Equality

Maes [21] Yes UUF-CMA Yes - - - Distance

Ours Yes EUF-CMA Yes Yes Yes Yes Distance

In this section, we compare our model to previous models [1, 2, 7, 13, 14, 21, 27].
An overview is given in Tables 2 and 3. We provide the prior security definitions
in Appendix C and discuss here only the differences with our definition.

In all previous models PUF outputs are noisy and hence they consider their
intra-distance of outputs. However, the two metrics of inter-distance which refer
to evaluations on either multiple inputs or multiple devices are not comprehen-
sively discussed but have been considered in [13] and [21], respectively. This
is somewhat surprising, since if the intra-distance is not smaller than the two
inter-distances (see discussion in Section 3.1), many security properties are triv-
ially broken (including the unforgeability defined in each paper). In fact, the
notions of intra-distance and inter-distance are widely known to implementation
designers, but have not been formally captured, e.g., see [14,19,20,23].

As one can see from Table 3 (and as discussed in Section 1), our model cov-
ers more security properties than the previous models. This flexibility allows
us to express more combinations of different security properties which, in turn,
is advantageous for protocol designers to capture needed underlying security
assumptions. A further difference is that previous work hardly discussed the



relation between different security properties (and if, then often only in a heuris-
tic sense, e.g., [7]) while, for reasoning about realization, it is crucial to prove
which notion is stronger/weaker than another.

Another advantage of our definitions from a theoretical view point is that
the intrinsic noise caused by the device is accurately reflected in the definition
of an adversary’s advantage. It is well known for implementation designers that
PUFs output noisy data, and further how to efficiently derive a random but fixed
output with a fuzzy extractor or other techniques; see [4, 17, 23]. On the other
hand, the previous security models except [1] do not cover the noise in evaluating
the advantage of the adversary in their security properties. Estimating the exact
noise is intractable and their models cannot fairly evaluate the adversarial ad-
vantage. We argue that this neglects an important aspect of PUFs. For example,
the higher the noise in the output distribution, the more likely it gets that two
PUFs show indistinguishable behavior, and the easier it may become to create
clones. Similar thoughts regarding noise apply to almost all security properties.
Of course, one possible solution to the above specific issue would be to consider
not the PUF alone but only in combination with an appropriate fuzzy extractor
as in [1]. However, this approach does not capture the actual requirements for
the PUF itself and may fail to cover cases where a PUF is not combined with
a fuzzy extractor. Apart from this, a cryptographic protocol may require dedi-
cated security properties of the deployed fuzzy extractor, e.g., see [6]. Hence, we
think that the security for PUFs should be argued separately from its typically
adjoined building blocks.

Somewhat surprising, we observed that even a seemingly straightforward no-
tion of unforgeability has been treated differently in existing literature. To high-
light these differences, we express them using the canonical terminology used
for digital signatures and MACs (see Table 3). We specifically stress that our
definition of unforgeability covers a stronger attack model compared to other
models, since we allow the adversary to obtain direct PUF responses from mul-
tiple devices and oracle queries.

Finally, we want to point to the work of Delvaux et al. [10] where different
security aspects of PUF-based protocols are discussed. Since their work does
not treat security properties for PUFs formally, we do not compare our security
model with their informal arguments.

5 Conclusion

In this paper, we proposed a new extended security model for PUFs motivated
by existing models, typical demands of cryptographic protocols, but also based
on our own considerations about the nature of PUFs. Compared to the existing
works, our model is more comprehensive, and presents security definitions that

4 As we noted in Section 3.3, this model concentrates on a combination of PUF and
fuzzy extractor and the evaluation with equality is a natural result.

5 They argue the necessity of the tamper-resilience in the full version of [7], but no
formal definition is described.



are either new or stronger, (e.g., by allowing an adversary to query multiple
devices). We also extended these definitions by taking PUF output distributions
directly into account.

Formalizing security definitions with multiple properties, first, helps proto-
col designers to extract the actual requirements for PUF constructions, and,
secondly, helps implementation designers to easily find which security properties
the proposed PUF construction possesses. Moreover, having a unified security
model allows to compare the security of different PUFs and different PUF mod-
els. We see our model as a significant step towards this goal.

In light of our methodology, various open questions remain. For example:
Are all relevant security properties included in the model or are some missing?
Furthermore, due to the physical nature of PUFs, it is often difficult to assess
given a concrete PUF, if and what security properties are met. Thus, for the sake
of applicability, a PUF security model should allow an engineer to evaluate for a
PUF whether certain properties are fulfilled (at least to some extent). While our
model follows common cryptographic considerations and models, one cannot rule
out that adaptations of the definitions (within our methodology) would make
them more applicable for engineers. This clear interdisciplinary task, is a natural
open question.
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A On the Adversarial Advantage in the One-wayness

Recall that we defined the advantage of the adversary as AdvOW
A (λ, δ1) := Pr[y∗ =

y∗1 ] − (` + 1)/|D| in Section 3.2. We intentionally omit to consider the absolute
value of AdvOW

A (λ, δ1) to capture the situation D ⊆ poly. In this case, even if
A does not issue Response, A can guess y∗ with probability 1/|D|. Because A
can adaptively issue Response, each query gives a chance for the adversary to
guess y∗ with probability 1/|D|. Therefore, we remove the absolute value and
the adversarial advantage is proportionally reduced by `. In the case of typical
one-way function, D is assumed as exponentially large and ` = |D| can be a
negligible fraction. However, in the case of PUF, the size of D depends on the
concrete structure of PUF (e.g., the domain space of memory based PUFs is
actually polynomial).

B Security proofs for Relationship among the Security
Definitions

Theorem 1. The (MP, n, `, δ1, ε)-EUF-CMA security is equivalent to the (MP,
n, `, δ1, ε)-restricted unclonability when D ⊆ poly.

Lemma 1. The (MP, n, `, δ1, ε)-EUF-CMA security implies the (MP, n, `, δ1,
ε)-restricted unclonability.

Proof. If an adversary A can break the restricted unclonability of the function f ,
we show there exists an adversary B who breaks the EUF-CMA security. Upon
receiving (1λ,MP, , param) from a challenger against the EUF-CMA security,
B sends them to A and simulates the unclonability game. When A issues the or-
acle query with input (param′, i, yj), B directly transfers it to the challenger and



Fig. 2. Relationship among the security properties and corresponding theorems

responds the output. When A submits (param, i∗, param′, j∗), B selects y∗ ∈ D
which has not been issued as Response(param, i∗, y∗) and issues (param′, j∗, y∗).
Upon receiving z∗ from a challenger, B outputs (i∗, y∗, z∗) and finishes the ex-
periment.

SinceA violates the unclonability and successfully finds a function f ′j∗ created
from param′ which behaves as fi∗ , Dist(f ′j∗(y

∗), z∗) = Dist(fi∗(y
∗), z∗) ≤ δ1

and B can win the EUF-CMA security game. Note that we have at least one
y∗ ∈ D which has not been issued of the form Response(param, i∗, y∗) from the
limitation denoted in the restricted unclonability game. Therefore, EUF-CMA
security implies the restricted unclonability.

Lemma 2. The MP, (n, `, δ1, ε)-restricted unclonability implies the (MP, n, `,
δ1, ε)-EUF-CMA security when D ⊆ poly.

Proof. If an adversary A can break the EUF-CMA security of the function f ,
we show there exists an adversary B who breaks the unclonability. Similar to
the previous security proof, B internally runs A and simulates the EUF-CMA
security game. Upon receiving Response(param′, i, yj) from A, B sends it to the
challenger and responds zi,j . When A finally submits (i∗, y∗, z∗), A performs the
following.

1. Set D′ = D \ {y∗,Y} where Y := {yj}j contains all input messages B issues
the challenger of the form Response(param, i∗, yj). Let zi∗,j = f(xi∗ , yj) be
the output derived from the challenger.

2. Send (param, i∗, yj′) to the challenger (against the unforgeability game) and
obtain zi∗,j′ for any yj′ ∈ D′.



3. Output Create(param∗) where param∗ specifies the following parameter to
create a new PUF. 

f ′j∗(y
∗) = z∗

∀yj ∈ Y, f ′j∗(yj) = zi∗,j

∀yj′ ∈ D′, f ′j∗(yj′) = zi∗,j′

4. Upon receiving j∗, putput (param, i∗, param∗, j∗).

It is clear that f ′j∗ performs as fi∗ for any input in R. Though almost all input-
output pairs are derived from the oracle query, B does not issue Response(param,
i∗, y∗) to the challenger and its corresponding output z∗ is given from A. There-
fore, B can breaks the notion of restricted unforgeability.

Remark that the above proof strategy is valid since we now assume D ⊆ poly. If
D is larger than a polynomial size, B cannot issue the oracle query to construct
MP∗ since ` is polynomially bounded.

Theorem 2. If f is (MP, n, `, ε)-indistinguishable PUF, f is also (MP, n, `, δ1,
ε)-EUF-CMA secure PUF.

Proof. Let A be an adversary against the EUF-CMA security game and B be
an adversary against the indistinguishability game, respectively. We show B can
break the indistinguishability game if the EUF-CMA security is violated by A.
B receives (1λ,MP, param) from the challenger and internally invokes A. When
A issues Response(param′, i, yj) as the learning phase of the EUF-CMA secu-
rity game, B honestly transfers them to the challenger and responds the result.

When A outputs (i∗, y∗, z∗) as a forgery, B randomly selects y∗1
U← D on the con-

dition that Response(param, i∗, y∗1) has not been issued to the oracle query. Then
(i∗, y∗) and (i∗, y∗1) is sent to the challenger to proceed the indistinguishability
game to the challenge phase. Upon receiving z∗b from the challenger, A proceeds
the guess phase and outputs 0 if Dist(z∗b , z

∗) ≤ δ1. Otherwise, A outputs 1 to
the challenger.

When (i∗, y∗, z∗) describes a valid forgery against the PUF, the distance
between z∗ and fi∗(y

∗) is smaller than δ1. Since this holds iff b = 0 in the above
indistinguishability game, B can check and correctly guess the flipped bit b.

Theorem 3. If f is (MP, n, `, ε)-indistinguishable PUF, f is also (MP, n, `, δ1,
ε/|D|2)-one-wayness PUF.

Proof. The proof of this theorem is similar to the proof for Theorem 2. Assume
A is an adversary against one-wayness and B is an adversary against indistin-
guishability. B runs A internally and simulates the one-wayness game. When
A proceeds to the challenge phase and outputs i∗, B chooses y∗0 , y

∗
1 and sends

(i∗, y∗0) and (i∗, y∗1) to the challenger and receives z∗b . B transfers z∗b to A and
continuously answers to the request of oracle query issued by A. When A outputs
y∗ as a guess, B halts the simulation and outputs b′ where y∗ = y∗b′ .



If A violates the security of one-wayness, A has an ability to recover y∗b from
z∗b ← fi∗(y

∗
b ). The oracle query issued by A is correctly answered by B via oracle

query to the challenger (against the indistinguishability game), except the case
that y∗0 or y∗1 is issued by A to the oracle query. Since these inputs are randomly
chosen by B, the probability that B can correctly guess y∗0 , y

∗
1 which is not issued

by A as Response(param, i∗, ·) is at least 1/|D|2 even if D ⊂ poly. We note that
` < |D|− 1 is necessary for A to break the security of one-wayness and there are
at least two messages in D which has not been issued to the oracle query. When
D ⊃ poly holds, this problem does not happen.

Theorem 4. There is no implication between one-wayness and unforgeability
for PUFs.

Proof. We consider two simple (theoretical) instantiations of PUFs to show the
gap between them. Let f be a PUF which performs a traditional one-way func-
tion OWF — e.g., zi,j := fi(yj) = OWF(i‖yj). It is trivial that this function
does not satisfy the unforgeability since anyone can compute OWF with input
arbitrary input. On the other hand, the security of OWF prevents any adversary
to recover yj from zi,j so the one-wayness properties is still preserved in f . Thus
one-wayness does not imply unforgeability.

Another instantiation of PUF f is zi,j ← fi(yj) = yj‖fi′(yj) such that
the output of the PUF is just concatenation of the input message yj and an-
other function fi′ which satisfies the unforgeability. The one-wayness property is
clearly broken since input yj is observed from zi,j , but f keeps the unforgeability
since it is hard to derive a valid forgery against fi′(yj). Therefore, unforgeability
does not imply one-wayness.

We note that the above instantiations also show that both one-wayness and
unforgeability do not imply indistinguishability (indistinguishability does not
hold for these instantiations).

Theorem 5. If a PUF f holds (MP, n, `, δ1, ε)-pseudorandom, f also satisfies
(MP, n, `, 2ε)-indistinguishability.

Proof. Let A be an adversary against indistinguishability game and B be an
adversary against pseudnrandomness experiment. B runs A internally and sim-
ulates the oracle queries. Whenever A asks Response(param, i, yj) as Phase 1 or
Phase 2, B asks the same query to the challenger and transfers the response to

A. When A sends (i∗0, y
∗
0), (i∗1, y

∗
1) for the challenge phase, B selects b′

U← {0, 1}
and asks Response(param, i∗b′ , y

∗
b′) to the challenger. Depend on the flippled coin

b
U← {0, 1}, the challenger responds z∗ to B and it is also forwarded to A by B.

When A finishes the game and outputs b′′, B outputs the same bit and halts the
simulation.

Consider the case that B selects b′ = 0. Then z∗ is determined by the coin
b flipped by the challenger in the pseudorandom game. If A distinguishes the
difference and the output b′′ is changed for b, this means B can break the security
of pseudorandomness. The same argument is also applied for b′ = 1. ON the other



hand, if we concentrate on the situation that b = 1, it is impossible for A to
estimate b′ from z∗ since z∗ is only selected from RF and a small noise is added.
That is, z∗ is completely independent from b′. Thus, if f is (MP, n, `, δ1, ε)-
pseudorandom function, f is also (MP, n, `, 2ε)-indistinguishability.

Theorem 6. (MP, n, `, ε)-indistinguishability does not imply (MP, n, `, δ1, ε)-
pseudorandomness.

Proof. Assume a function f satisfies (MP, n, `, ε)-indistinguishability. Consider
another function f ′ : D → {0, 1}λ ×R which takes as input y ∈ D and outputs
1λ‖f(y) ∈ {0, 1}λ × R. That is, the output of f ′ contains a sufficiently large
prefix for any inputs. It is clear that f ′ cannot satisfy pseudorandomness when
an adversary can count the number of 1’s in the λ-bit prefix of an output. On
the other hand, f still preserves indistinguishability since a prefix is applied for
any input and useless to increase the advantage (the remaining output sequence
from f holds indistinguishability). Thus (MP, n, `, ε)-indistinguishability does
not imply (MP, n, `, δ1, ε)-pseudorandomness.

Theorem 7. (MP, n, |R|, λ, ε)-min-entropy implies (MP, n, `, δ1, ε)-EUF-CMA
security.

Proof. Assume that there is an adversary who breaks the security of EUF-CMA
with non-negligible probability larger than ε := 2−λ. Then we have

AdvEUF-CMA
A (λ, δ1) = Pr[Dist(z∗, fi∗(y

∗)) ≤ δ1]− |Z
′|
|R|

> 2−λ.

Because |Z
′|
|R| denotes the randomly guessing probability, we remove this affect

and obtain Pr[z∗ = fi∗(y
∗)] > 2−λ. This contradicts to the (n, |R|, λ, ε)-min-

entropy which asserts any output has min-entropy λ and its estimation is limited
by 2−λ. Therefore, we obtain that (n, |R|, λ, ε)-min-entropy implies (n, `, δ1, ε)-
EUF-CMA security.

The reason why we require the min-entropy with ` := |R| is that the adver-
sary against the EUF-CMA security can issue the oracle query and obtain
arbitrary input-output pair of the PUF. Therefore, if we concentrate on the
EUF-KMA security, we can easily say that (MP, n, `, λ, ε)-min-entropy implies
(MP, n, `, δ1, ε)-EUF-KMA for arbitrary ` ∈ {1, . . . , |R|}.

Theorem 8. (MP, n, `, δ1, ε)-EUF-CMA security does not imply (MP, n, |R|,
λ, ε)-min-entropy.

Proof. Even (MP, n, `, δ1, ε)-EUF-CMA security holds, this notion is only valid
for computational (probabilistic polynomial time) adversary. Because the tradi-
tional min-entropy implicitly requires an information-theoretical adversary, we
cannot simply say that (MP, n, `, δ1, ε)-EUF-CMA security implies (MP, n, |R|,
λ, ε)-min-entropy. One simple example is fi(yj) := MAC(sk, i‖yj) where MAC

denotes a message authentication code and sk
U← {0, 1}λ is a fixed random



string. It is clear that the PUF holds EUF-CMA security if the MAC function
is securely chosen. On the other hand, the above function is deterministic and
H̃∞(sk | fi(y1), fi(y2)) = H̃∞(fi(y1) | fi(y2)) = 0 for any y1, y2 ∈ R in an
information theoretical setting.

Theorem 9. (MP, n, |R|, log |R|, ε)-min-entropy implies (MP, n, `, ε)-pseudo-
randomness.

Proof. This is clear that (n, `, log |R|, ε)-min-entropy implies that the PUF’s
output has a full entropy and there is no biased bit and correlation with the
other outputs. Therefore the PUF’s output from f is indistinguishable from ran-
domized selection as described in the pseudorandomness. The converse is trivial
because any outputs from a random function have full-entropy (e.g., log |R|-bit
min-entropy) and δ1-bit randomly chosen noise does not decrease the entropy.

Theorem 10. (MP, n, `, ε)-pseudorandomness does not imply (MP, n, `, log |R|,
ε)-min-entropy.

Proof. The difference from the computational complexity and information the-
ory provides the gap between these notions analogous to the proof of Theorem
8. Let fi(yj) := PRF(sk, i, yj) and δ1 = 0 where PRF is a secure pseudorandom
function and sk is a random seed for the pseudorandom function. It is obvious
that f holds (n, `, ε)-pseudorandomness (note that δ1 = 0 means typical pseudo-
randomness). On the other hand, the output is deterministically defined by the
input and f provides no additional min-entropy if we consider the conditional en-
tropy. Analogous as the proof for Theorem 8, we have H̃∞(sk | fi(y1), fi(y2)) =
H̃∞(fi(y1) | fi(y2)) = 0 for any y1, y2 ∈ R in an information theoretical setting.

C Existing Security Models

C.1 Pappu 2001 [27]

The notion of PUF is originally introduced by Pappu [27] and he requires the
following issue. A function f is a PUF if for any adversary A,

Pr

[
y′ = y

∣∣∣∣∣y U← D, z ← f(y),
y ← A(1λ, f, z)

]
≤ ε(λ).

The above probability evaluates whether the adversary can estimate the PUF’s
input for an output z. He gave another issue such that the adversary cannot
estimate the output y such that

Pr

[
z′ = z

∣∣∣∣∣y U← D, z ← f(y),
z′ ← A(1λ, f, y)

]
≤ ε(λ).



C.2 Gassend et al. 2002 [13]

Gassend et al. give another formulation for PUF [13]. A function f is a PUF if
for any adversary A,

Pr

z′ = z

∣∣∣∣∣∣∣
y

U← D, z ← f(y),

{yi
U← D, zi ← f(yi)}i=1,...,`,

z′ ← A(1λ, f, y, {(yi, zi)}i)

 ≤ ε(λ).

Different from the requirement in Section C.1, the adversary can learn input-
output pairs parameterized by ` before estimating the output for the challenge
input y.

C.3 Guajardo et al. 2007 [14]

Guajardo et al. introduced the following issue for PUF to be used in a hardware-
based authentication protocol for IP protection [14].

1. The adversary cannot estimate the output even when a different input-
output pair is given.

Pr

z′ = z2

∣∣∣∣∣∣
x ∈ K, y1, y2

U← D
z1 ← f(y1), z2 ← f(y2),
z′ ← A(1λ, f, y1, z1, y2)

 ≤ ε(λ)

2. The adversary cannot estimate a valid input-output pair on the condition
that no pair can be observed.

Pr

[
z′ = f(y′)

∣∣∣∣ x ∈ K
(y′, z′)← A(1λ, f)

]
≤ ε(λ)

3. When the adversary launches a physical attack against the PUF, the PUF is
broken, e.g., its behavior becomes independent from the original execution.

C.4 Armknecht et al. 2009 [2]

Armknecht et al. [2] provides the following issue.

1. The Hamming distance (HD) between the two outputs for the same input
and fixed device is at most δ. That is,

Pr

[
HD(z1, z2) ≤ δ

∣∣∣∣∣ y
U← D,

z1 ← f(y), z2 ← f(y)

]
= 1.

2. There exists a distribution D such that for arbitrary input y, {zi | zi :=

fi(y)}i is indistinguishable from {zi | zi
U← D}i except with negligible prob-

ability ε. They assume H̃∞(D) > 06.
3. There is no technology to physically clone the device.
4. If a physical attack is executed, the functionality of the PUF is changed or

broken.
6 When H̃∞(D) ≥ q, we can say that the PUF’s distribution has HILL entropy at least
q. The HILL entropy is the computational version of min-entropy measurement [16].



C.5 Armknecht et al. 2011 [1]

Armknecht et al. [1] described a security model for a PUF-enabled system. They
consider a scenario that the output from the PUF is input to the fuzzy extractor.
Their composed system is called as PFS (PUF System) and they provide a
security model for PFS. Let FE = (FE.Gen,FE.Rec) be an algorithm for a fuzzy
extractor. PFS(y, h) outputs (f(y),FE.Gen(f(y))) if h = ∅. Otherwise, PFS(y, h)
outputs (FE.Rec(f(y), h), h).

1. When the PFS is evaluated with the same input and fixed device, the outputs
are the same. That is,

Pr

[
z1 = z2

∣∣∣∣∣ ∀y U← D,
(z1, h)← PFS(y), z2 ← PFS(y, h)

]
= 1.

2. There is no chance for an adversary to find two devices which the correspond-
ing outputs are observed for a subset of the domain. When the adversary
adaptively submit an index i, a challenger gives the adversary device fi(·).
Even when the adversary submits two PUF systems PFS∗1(·) and PFS∗2(·),
we have

Pr

[
z1 = z2

∣∣∣∣ ∃D′ ⊆ D,∀y ∈ D′,
(z1, h)← PFS∗1(y), z2 ← PFS∗2(y, h)

]
≤ ε(λ).

3. The adversary cannot estimate the output for a target input with a lot of
input-output pairs. For any adversary A,

Pr

z′ = z

∣∣∣∣∣∣∣
y

U← D, (z, h)← PFS(y),

{yi
U← D, (zi, hi)← PFS(yi)}i=1,...,`,

z′ ← A(1λ, f, y, h, {(yi, zi, hi)}i)

 ≤ ε(λ).

4. Even if the adversary adaptively obtains the outputs with oracle queries, no
adversary cannot guess a valid input-output pair. This is formalized with
the following game between a challenger and adversary A.

Setup. The challenger gives (1λ, f) to the adversary A.
Evaluation. When A sends a pair of index and input (i, yj , hj), the chal-

lenger responds (zi,j , hj) ← PFSi(yj , hj). The adversary can adaptively
issue the oracle.

Guess. When the adversary finishes the evaluation phase,A outputs (i∗, y∗,
z∗, h∗).

Then, Pr[z∗ = z | (z, h∗) := PFS∗i (y
∗, h∗)] ≤ ε(λ) holds for any adversary A.

C.6 Brzuska et al. 2011 [7]

Brzuska et al. introduced a universal composability framework for PUFs in [7].
They require that the PUF must hold the following properties:



1. If the PUF is computed twice, the Hamming distance between them is at
most δ.

Pr

[
HD(z1, z2) ≤ δ

∣∣∣∣∣ x ∈ K, y U← D,
z1 ← f(y), z2 ← f(y)

]
= 1.

2. When a target input y∗ and other inputs (y1, . . . , y`) have Hamming distance
at least δ′, the target output z∗ ← f(y∗) has sufficient min-entropy δ′′ on
the condition that the results of PUF with input (y1, . . . , y`) are observed.
That is,

Pr

H̃∞(z∗ | z1, . . . , z`) ≥ δ′′

∣∣∣∣∣∣
y∗, y1, . . . , y`

U← D,
HD(y∗, yi) ≥ δ′ (1 ≤ ∀i ≤ `),
z∗ ← f(y∗), {zi ← f(yi)}1≤i≤`

 = 1.

3. PUF satisfies the requirements of the universal composability framework.
The intuition in the UC framework is formalize the gap between the interac-
tion with the actual protocol and idealized protocol behavior. The idealized
behavior is captured by an description called ideal functionality, and it inter-
mediates communication between the protocol participants and adversary.
Brzuska et al. proposed the following ideal functionality FPUF for PUFs.

Intuitively, the above ideal functionality defines the ownership of the PUF. Only
if a party has the ownership of the PUF ((sid, id, Pi, notrans) ∈ L), ideal func-
tionality responds the output of the PUF with input from the party. During the
period between a party requests the ownership transfer and a malicious adver-
sary declares to finish the transmission, the adversary can interact to the PUF
with the oracle query.

While this ideal functionality may be a candidate of ideal behavior of the
PUFs, we cannot identify this is actually related to concrete security properties
to provide provable security in a cryptographic protocol. Thus we do not argue
the relationship against the security issues we defined.

C.7 Maes 2013 [21]

Maes provided several properties for PUFs [21, Chapter 3.2]. In his model, each
PUF fi is produced by a creation procedure f.Create. He described the following
issues to the PUF.

1. The provability that the noise caused from the two responses derived from
the same PUF instance and the same challenge is small is high. Define δ1 :=
{Dist(z1, z2) | y ∈ D, z1 ← f(y), z2 ← f(y)}. Then Pr[δ1 is low] is high for
any f and y.

2. The provability that the distance between the other output is large is high.
Define δ2 := {Dist(z1, z2) | y ∈ D, z1 ← f1(y), z2 ← f2(y)}. Then Pr[δ2 is large]
is high for any f(x, ·) and y.



FPUF interacts with protocol participants P1, . . . , Pn and adversary S.
– Upon receiving (initPUF, sid, Pi) from Pi, check a list L (which is initially

empty) whether L contains (sid, ·, ·, ·). If so, FPUF ignores the message. Oth-
erwise, record (sid, id, Pi, notrans) to L where id := f(x, ·) is randomly chosen
from PUF family and send (initializedPUF, sid) to Pi.

– Upon receiving (evalPUF, sid, Pi, y) from Pi, check whether
(sid, id, Pi, ·, notrans) is recorded in L. If so, evaluate z ← f(y) and
send (eval′edPUF, sid, y, z) to Pi. Otherwise, ignore the request.

– Upon receiving (handoverPUF, sid, Pi, Pj) from Pi, check whether
(sid, ·, Pi, notrans) is recorded in L. If so, update the tuple to
(sid, id,⊥, trans(Pj)) and send (invokePUF, sid, Pi, Pj) to S. Otherwise,
ignore the request.

– Upon receiving (evalPUF, sid,S, y) from S, check whether (sid, id,⊥, trans(Pj))
is recorded in L. If so, evaluate z ← f(x, y) and send (eval′edPUF, sid, y, z) to
S. Otherwise, ignore the request.

– Upon receiving (readyPUF, sid,S) from S, check whether (sid, id,⊥, trans(Pj))
is recorded in L. If so, update the tuple to (sid, id, Pj , notrans), store
(receivedPUF, sid, Pi) and send (handoversPUF , sid, Pi) to Pj . Otherwise, ig-
nore the request.

– Upon receiving (receivedPUF, sid, Pi) from S, check whether this tuple is
stored. If so, send this tuple to Pi. Otherwise, ignore the request.

Fig. 3. Ideal functionality FPUF proposed by Brzuska et al. [7]

3. There is no efficient invert algorithm to the PUF. For a given z ← f(y), no
algorithm finds y∗ such that Pr[Dist(z∗, z) ≤ δ1 | z∗ ← f(y∗)] is low.

4. For any influence to the creation procedure f.Create, it is hard to provide two
PUFs f1, f2 such that Pr[Dist(z1, z2) ≤ δ1 | y ∈ D, z1 ← f1(y), z2 ← f2(y)]
is high.

5. Upon receiving multiple responses from a PUF with adaptively chosen inputs
and target input y, an adversary tries to estimate the output as z∗. Then we
have Pr[Dist(z∗, z) ≤ xx | z ← f(y)] is low. Depend on the security level, the
adversary learns a limited number of input-output pairs (unpredictability)
or unbounded numbers of them (mathematical unclonability).

6. Any physical transformation from PUF f1 to f2 causes the effect. That is,
Pr[Dist(z∗, z) ≥ δ2 | y ∈ D, z ← f1(y), z∗ ← f2(y)] is high.


