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Abstract. We present techniques and protocols for the preprocessing of secure multiparty computation
(MPC), focusing on the so-called SPDZ MPC scheme [19] and its derivatives [16,18,1]. These MPC
schemes consist of a so-called preprocessing or offline phase where correlated randomness is generated
that is independent of the inputs and the evaluated function, and an online phase where such correlated
randomness is consumed to securely and efficiently evaluate circuits. In the recent years, it has been
shown that such protocols (such as [4,31,27] ) turn out to be very efficient in practice.
While much research has been conducted towards optimizing the online phase of the MPC protocols,
there seems to have been less focus on the offline phase of such protocols (except for [16]). With this
work, we want to close this gap and give a toolbox of techniques that aim at optimizing the prepro-
cessing. We support both instantiations over small fields and large rings using somewhat homomorphic
encryption and the Paillier cryptosystem [34], respectively. In the case of small fields, we show how
the preprocessing overhead can basically be made independent of the field characteristic and present
a more efficient (amortized) zero-knowledge proof of plaintext knowledge. In the case of large rings,
we present a protocol based on the Paillier cryptosystem which has a lower message complexity than
previous protocols and employs more efficient zero-knowledge proofs that, to the best of our knowledge,
were not presented in previous work.

Keywords: Efficient Multiparty Computation, Preprocessing, Homomorphic Encryption, Paillier Encryp-
tion

1 Introduction

During the recent years, secure two- and multiparty computation ([24,37]) has evolved from a merely academic
research topic into a practical technique for secure function evaluation (see e.g. [6]). Multiparty computation
(MPC) aims at solving the following problem: How can a set of parties P1, ..., Pn, where each party Pi has
a secret input value xi, compute a function y = f(x1, ..., xn) on their values while not revealing any other
information than the output y? Such function could e.g. compute a statistic on the inputs (to securely
compute a mean or median) or resemble an online auction or election. Ideally, all these parties would give
their secret to a trusted third party (which is incorruptible), that evaluates the function f and reveals the
result y to each participant. Such a solution in particular guarantees two properties:

Privacy: Even if malicious parties collude, as long as they cannot corrupt the trusted third party they
cannot gain any information except y and what they can derive from it using their inputs.

Correctness: After each party sent their input, there is no way how malicious parties can interfere with
the computation of the trusted third party in such a way as to force it to output a specific result y′ to
the parties that are honest.

A secure multiparty computation protocol replaces such a trusted third party by an interactive protocol
among the n parties, while still guaranteeing the above properties. In recent years, it has been shown that
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even if n − 1 of the n parties can be corrupted, the efficiency of secure computation can be dramatically
improved by splitting the protocol into different phases: During a preprocessing or offline phase, raw material
or so-called correlated randomness is generated. This computation is both independent of f and the inputs
xi and can therefore be carried out any time before the actual function evaluation takes place. This way, a
lot of the heavy computation that relies e.g. on public-key primitives (which we need to handle dishonest
majority) will be done beforehand and need not be performed in the later online phase, where one can rely
on cheap information-theoretic primitives.
In the past years, this approach led to a number of very efficient MPC protocols such as [31,19,16,18,27] to
just name a few. In this work, we will primarily focus on variants of the so-called SPDZ protocol [19,16] and
their preprocessing phases. They are secure against up to n − 1 static corruptions, which will also be our
adversarial model. For the preprocessing, they rely on very efficient lattice-based homomorphic cryptosystems
that allow to perform both additions and multiplications on the encrypted ciphertexts and can pack a large
vector of plaintexts into one ciphertext3. Unfortunately, the current implementations of the preprocessing
has several (non-obvious) drawbacks in terms of efficiency which we try to address in this work:

– The complexity of the preprocessing phase depends upon the size of the field over which the function f
will be evaluated, such that it is much less efficient for small fields. This is because SHE schemes have no
efficient reliable distributed decryption algorithm, so since the output from the preprocessing depends
in part on decryption results, it must be checked for correctness. This is done by sacrificing some part of
the computed data to check the remainder, but this approach only yields security inversely proportional
to the field size. Hence, especially for small files, one has to repeat that procedure multiple times which
introduces notable overhead.

– For each ciphertext, one has to prove plaintext knowledge in order ensure that the ciphertext is freshly
generated. In implementations it has turned out that the overhead coming from these proofs dominates
the message complexity and runtime.

– If the goal in the end is to do secure computation over the integers, one needs to use large fields or
rings to avoid overflow. Unfortunately, the parameter sizes of SHE schemes grow very quickly if one
increases the size of the underlying field, rendering them very slow in practice. This makes it interesting
to investigate a preprocessing scheme using Paillier encryption, which comes with a very large ring as
plaintext space.

1.1 Contributions and Technical Overview

In this work, we address the aforementioned problems and show the following results:

(1) We present a novel way of checking the correctness of shared multiplication triples for SHE schemes. In
particular, we need to sacrifice only a constant fraction of the data to do the checking, where existing
methods need to sacrifice a fraction Θ(1− 1/k) for error probability 2−k.

(2) We redesign the zero-knowledge proof used in [16] and show that one can reduce the number of auxiliary
ciphertexts generated for each ciphertext we want to prove knowledge of.

(3) We show how the linearly homomorphic encryption scheme of Paillier and Damg̊ard-Jurik [34,15] can
be used more efficiently to produce multiplication triples by representing the data as polynomials and
thereby reducing the amount of complex zero-knowledge proofs. Moreover, we also present zero-knowledge
proofs for, e.g., plaintext knowledge that only require players to work modulo N even if the ciphertexts
are defined modulo N2. Though the technique may already be known, this did not appear in previous
published work.

We will explain our contributions and techniques in more detail now.

Verifying Multiplicative Relations. Our goal is (somewhat simplified) to produce encrypted vectors
x,y, z such that x � y = z, where � denotes the coordinate-wise product, or Schur product. The SPDZ
protocol for creating such data uses distributed decryption during which errors may be introduced. To counter

3 For more details, see Section 2.2.
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this, we encode the plaintexts in such a way that we can check the result later: we will let x,y be codewords
of a linear code. Those vectors can be put into SIMD ciphertexts of the SPDZ preprocessing scheme. Note
that multiplying x and y coordinate-wise yields a codeword in a related code (namely its so-called Schur
transform). Now we do a protocol to obtain an encryption of z, which, however, uses unreliable decryption
underway. The next step is then to check if z is indeed codeword as expected, This can be done almost only
by linear operations - which are basically free in the SPDZ MPC scheme, because they can all be done as
local operations and do not involve sending messages.
Checking whether the result is a codeword is not sufficient, but we can note that if z is a codeword and not
equal to the codeword x� y, then an adversary would have to have cheated in a large number of positions
(the minimum distance of the code). Thus, given the resulting vector z is a codeword, one checks a small
number of random positions of the vector to see if it contains the product of corresponding positions in x
and y. On a high level, this works because the adversary must have altered the resulting codeword in a
number of positions that is at least the minimum distance of the code. During each check we have a constant
probability of catching the adversary, and this quickly amplifies to our desired security levels.
Note that the only assumption that we have to make on the underlying field is that appropriate codes with
good distance can be defined.

More Efficient Proofs of Plaintext Knowledge. To explain our contribution, we need to be more
specific about the zero-knowledge proofs of plaintext knowledge (ZKPoPK) suggested in earlier work. First,
these are designed for lattice-type cryptosystems that are homomorphic over a finite field, say the field with
p elements for a prime p. Now, the basic step in the protocol is that a player PR chooses a random message
m, encrypts it and gives a ZKPoPK to convince the other players that the ciphertext is well-formed and
that he knows the plaintext and randomness. If PR is honest he will choose m randomly in an interval of size
p centered around 0. However, in all known ZKPoPKs it will be the case that if PR is corrupt, we cannot
guarantee that the message m known to PR will be in this interval. The best we can do is to force PR to
choose m in a somewhat bigger interval. If this interval has size p · s we will say that the ZKPoPK has
soundness slack s. One would like the soundness slack to be as close to 1 as possible, since this allows us to
choose smaller parameters for the underlying cryptosystem and hence improve efficiency.
Protocols are usually designed to prove plaintext knowledge for several input ciphertexts at once and if the
prover needs to generate T auxiliary ciphertexts for t input ciphertexts we say that the ciphertext overhead
of the protocol is T/t. One would of course like this overhead to be as small as possible. We achieve an
improvement by extending the proof technique of [16,32]:

(1) We first run a very simple ZKPoPK on each ciphertext with constant soundness error probability. While
this will not ensure that all ciphertext are honestly generated, it will ensure that almost all of them are
good, except with negligible probability.

(2) In a second step, we randomly assign all ciphertexts into squares of width
√
t, compute the row and

column sums and prove plaintext knowledge of each such row and column sum. From the previous step,
we are guaranteed that most of the ciphertexts are well formed, and can now explain the remaining
plaintexts as the difference of the row or column sum and the plaintexts of the good ciphertexts.

This allows us to reduce the fraction T/t by a factor of 2 for realistic instances (in comparison to the
proof technique of [16]) while keeping the soundness slack s as small as in [16]. Our technique might be of
independent interest.

Paillier-based Preprocessing for SPDZ. Paillier’s encryption scheme is linearly homomorphic, so does
not allow to perform multiplications of the plaintexts of two or more ciphertexts directly. On the other hand,
it has a reliable decryption routine which is what we will make use of. Computing products of encryptions
using linearly homomorphic encryption schemes is a well-known technique and works as follows: Assume P1
published some encryption [a], P2 published [b] and they want to compute values c1, c2 where P1 holds c1
and P2 c2 such that a · b = c1 + c2.
In a protocol, P2 would send an encryption [c1] := b′ · [a] + [−c2] to P1 and prove (among other things) that
this b′ is the same as the plaintext inside [b]. Afterwards, both use the distributed decryption towards P1
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so that she can obtain c1. Both parties’ shares do now individually not reveal any information about the
product.

Our approach is, instead of sampling all a, b independently, to let the factors be evaluations of a polynomial
(that is implicitly defined), and then multiply these factors unreliably : Instead of giving a zero-knowledge
proof that b′ = b, we only need to prove that P2 knows b′, c2 such that the above equation is satisfied, which
reduces the complexity of the proof.

The products computed using unreliable multiplication now all lie on a polynomial as well, and using La-
grange interpolation one can evaluate the polynomial in arbitrary points. This can be used to efficiently (and
almost locally) check if all products are correct.

We want to remark that this approach is asymptotically as efficient as existing techniques, but relies on zero-
knowledge proofs with lower message complexity. It is an interesting open question how these approaches
compare in practice.

1.2 Related Work

In an independent work, Frederiksen et al. showed how to preprocess data for the SPDZ MPC scheme using
oblivious transfer ([22]). Their approach can make use of efficient OT-extension, but does only allow fields
of characteristic 2. While this has some practical applications, it does not generalize (efficiently) to arbitrary
fields. On the contrary, our techniques are particularly efficient for other use-cases when binary fields cannot
be used to compute the desired function efficiently. Therefore, both results complement each other.

Our technique for checking multiplicative relations is related to the work in [3] for secret shared values in
honest majority protocols and in [13] for committed values in 2-party protocols. To the best of our knowledge,
this type of technique has not been used before for dishonest majority MPC.

Paillier Encryption: The Paillier encryption scheme has been used in MPC preprocessing before such as
in [4]. Moreover it was also employed in various MPC schemes such as [12,6,17] to just name a few. The
particular instance of the scheme that we use is from [15] and allows for a simpler presentation.

Proofs for Lattice-based Encryption Schemes: In its simplest case, zero-knowledge proofs for lattice-based
encryption schemes can be constructed using Σ-protocols. Such proofs do only achieve soundness error
1/2 and must therefore be repeated sec times (for sec being the statistical security parameter) to achieve
soundness error negligible in sec. Additional care must also be taken to prevent leakage of the plaintext,
which normally incurs a 2sec factor in the soundness slack. Lyubashevsky [30,29] introduced the use of the
Fiat-Shamir heuristic together with rejection sampling in the context of such encryption schemes, which
allows to drastically reduce the bounds on the plaintexts.

The work by Damg̊ard et al. [19] allows to further reduce the amortized cost of ZK proofs, where the authors
show how to prove knowledge of sec plaintexts in parallel using O(sec) auxiliary ciphertexts. As a drawback,
the technique introduces an additional 2O(sec) overhead on the proven bounds. In contrast, subsequent work
[16] allowed much tighter bounds at the expense of a larger ciphertext overhead of the protocol. In comparison
to all of the above works (which do also apply to arbitrary LWE encryption schemes), Benhamouda et al.
[5] introduced a new technique in the context of Ring-LWE encryption schemes. They expand the size of
the challenge space from 2 to 2 · W where W is the ring dimension, and show that for their fixed set
of challenge polynomials an inverse of small norm always exists. This allows them to obtain proofs with
soundness 1/(2 ·W ) while proving plaintext bounds Õ(W 2σ) where σ is the standard deviation of the noise.
On the downside, they do not actually achieve a proof of plaintext knowledge, but only of a value related to
the plaintext.4 A different approach was taken by Ling et al. in [28]. They use a technique due to Stern and
achieve knowledge error 2/3.
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Notation What it means Notation What it means

W Ring dimension of SHE scheme Pi Player i
L Dimension of noise vector in SHE A Adversary
ρ Bound on honestly generated noise Z Environment
τ Bound on plaintext vector size n Number of parties
p Plaintext modulus PBad Set of bad parties

BP , BR Bound proven by ZK Proofs PR Prover
EncSpk,DecSsk Encryption/Decryption SHE C Challenger

λ, sec Computational/statistical security parameter VE Verifier
N Paillier modulus α MAC key for SPDZ sharing

EncPpk(·, ·), [·],DecPsk(·) Encryption/Decryption Paillier 〈·〉 Value secret shared as in SPDZ
Table 1. List of variables

2 Preliminaries

Throughout this work, we assume that a secure point-to-point channels between the parties exist and that a
broadcast channel is available. Some protocols require commitments, which we abstract as the functionality
FCommit. In addition, in many cases we need a random oracle (that we e.g. use for coin-flipping as in
PProvideRandom

5). We use � for point-wise multiplication of vector entries and (g, h) = d to denote that d is
the greatest common divisor of g, h. Moreover, let [r]1 = {1, ..., r} and [r]0 = {0, ..., r}.
Certain notation will occur repeatedly throughout the paper. To ease readability we provide a list of some
special notation that we use and what they stand for in Table 1.

Functionality FCommit

Assume that Zp is fixed.

Commit:
– On input (commit, v, r, i, j) by Pi, where v, r ∈ Zp ∪ {⊥} and j is a unique identifier, it stores (v, r, i, j)

internally and outputs (i, τv) to all players.
Open:

– On input (open, i, j) by Pi, the ideal functionality outputs (v, r, i, j) to all players if there is a (v, r, i, j)
stored internally.

– If (no open, i, j) is given by the adversary, and Pi is corrupt, the functionality outputs (⊥,⊥, i, j) to all
players.

Fig. 1. The Functionality for Commitments

2.1 The SPDZ Multiparty Computation Protocol

We start out with a short primer on the [19] MPC protocol which we will mostly refer to as SPDZ. Each
value c ∈ Zp of the computation is first MACed using a uniformly random MAC secret MAC key α as α · c
and both of these values are then sum-shared among all parties. This MAC key α is fixed for all such shared
values, and α is also sum-shared among the parties, where party Pi holds share αi such that α =

∑n
i=1 αi.

To make the above more formal, we define the 〈·〉-representation of a shared value as follows:

4 In LWE, one would (generally) like to prove existence of a short vector s such that As = c where c is the
ciphertext and A is some public matrix. What [5] roughly achieve to prove is that there exists an s′ such that
2c = 2As′ mod q. The vector s′ is not guaranteed to be divisible by 2 over Z.

5 In practice, this functionality can be implemented in several ways, e.g. using a pseudorandom function and the
commitment scheme FCommit.
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Procedure PProvideRandom

Even though we do not mention minimum lengths of seeds here, they should be chosen according to a concrete
security parameter. Let Us(·, ·) be a random oracle that for parameters q, l outputs a uniformly random string
v ∈ Zlq.

ProvideRandom(q, l) :
(1) Each party Pi commits to a seed si ∈ {0, 1}∗ using FCommit.
(2) Each party opens its commitment to all parties.
(3) Each party locally computes s = s1 ⊕ · · · ⊕ sn
(4) Each party outputs v ← Us(q, l).

Fig. 2. A protocol to jointly generate random values

Definition 1. Let r, s, e ∈ Zp, then the 〈r〉-representation of r is defined as

〈r〉 := ((r1, ..., rn), (γ(r)1, ..., γ(r)n))

where r =
∑n
i=1 ri and α·r =

∑n
i=1 γ(r)i. Each player Pi will hold his shares ri, γ(r)i of such a representation.

Moreover, we define

〈r〉+ 〈s〉 := ((r1 + s1, ..., rn + sn), (γ(r)1 + γ(s)1, ..., γ(r)n + γ(s)n))

e · 〈r〉 := ((e · r1, ..., e · rn), (e · γ(r)1, ..., e · γ(r)n))

e+ 〈r〉 := ((r1 + e, r2, ..., rn), (γ(r)1 + e · α1, ..., γ(r)n + e · αn))

This representation is closed under linear operations:

Remark 1. Let r, s, e ∈ Zp. We say that 〈r〉 =̂ 〈s〉 if both 〈r〉, 〈s〉 reconstruct to the same value. Then it holds
that

〈r〉+ 〈s〉 =̂ 〈r + s〉, e · 〈r〉 =̂ 〈e · r〉, e+ 〈r〉 =̂ 〈e+ r〉
In order to multiply two representations, we rely on a technique due to Beaver [2]: Let 〈r〉, 〈s〉 be two values
where we want to calculate a representation 〈t〉 such that t = r · s. Assume the availability of a triple6

(〈a〉, 〈b〉, 〈c〉) such that a, b are uniformly random and c = a · b. To obtain 〈t〉, one can use the procedure as
depicted in Figure 3. Correctness and privacy of this procedure were established before, e.g. in [19]. This

Procedure PMult

Multiply(〈r〉, 〈s〉, 〈a〉, 〈b〉, 〈c〉):
(1) The players calculate 〈γ〉 = 〈r〉 − 〈a〉, 〈δ〉 = 〈s〉 − 〈b〉
(2) The players publicly reconstruct γ, δ.
(3) Each player locally calculates 〈t〉 = 〈c〉+ δ〈a〉+ γ〈b〉+ γδ
(4) Return 〈t〉 as the representation of the product.

Fig. 3. Protocol to generate the product of two 〈·〉-shared values

already allows to compute on shared values, and inputting information into such a computation can also
easily be achieved using standard techniques7. Checking that a value was indeed reconstructed correctly will
be done using PCheckMac which allows to check the MAC of the opened value without revealing the key α.
This checking procedure will fail to detect an incorrect reconstruction with probability at most 2/p over
fields of characteristic p, and similarly with probability 2/q over rings ZN where q|N is the smallest prime
factor. This in essence is captured by the following Lemma which we will also need in other cases:

6 We will also refer to those triples as multiplication triples throughout this paper.
7 Open a random value 〈r〉 to a party that wants to input x. That party then broadcasts x−r and the parties jointly

compute (x− r) + 〈r〉 = 〈x〉.

6



Procedure PCheckMac

CheckOutput(v1, ..., vt,m) Here we check whether the MACs hold on t partially opened values.
(1) The parties compute r ← PProvideRandom.ProvideRandom(m, t).
(2) Each party computes v =

∑t
i=1 r[i] · vi.

(3) Each Pi computes γi =
∑t
j=1 r[j] · γ(vj) and σi = γi − αi · v.

(4) Each Pi commits to σi using FCommit as c′i.
(5) Each c′i is opened towards all players using FCommit.
(6) If σ =

∑n
i=1 σi is 0 then return 1, otherwise return 0.

Fig. 4. Procedure to check validity of MACs

Lemma 1. Assume that PCheckMac is executed over the field Zp. The protocol PCheckMac is correct and
sound:

– It returns 1 if all the values vi and their corresponding MACs γ(vi) are correctly computed.
– It rejects except with probability 2/p in the case where at least one value or MAC is not correctly computed.

Its proof is straightforward and can be found e.g. in [16]. For some of our settings we will choose p to be rather
small (i.e. of constant size in the security parameter). In this case, one can extend the 〈·〉−representation as
in Definition 1 by having a larger number of MACs and then check all of these MACs in parallel.

2.2 Somewhat Homomorphic Encryption

In the aforementioned MPC scheme, we left open how to compute the random triples (〈a〉, 〈b〉, 〈c〉) necessary
for the multiplication protocol. In [19,16] this is achieved using Somewhat Homomorphic Encryption(SHE).
In the following, we will give a quick definition of what we mean by an SHE scheme.
LetM = Zlp be the direct product of l Zp-instances, where ’+’ and ’·’ are the ring operations inM implied by

the direct product. Moreover, consider A ≈ ZW for some integer W ∈ N+ as an intermediate space. For A, we
define the ||·||∞-norm in the usual way. Encryption will work as a map from A to some additive abelian group
B that has the additive operation ⊕ and an operation ⊗ that is not necessarily closed, but commutative and
distributive. The operations of A will also be denoted as ’+’,’·’. Addition will be component-wise, whereas
there is no restriction on how the multiplication is realized.
In order to map m ∈M to an element a ∈ A and back, there exist the two functions

encode :M→A and decode : A →M

where encode is injective. The ring operations fromMmust carry over to a certain degree, which is formalized
as follows:

(1) ∀m ∈M : decode(encode(m)) = m
(2) ∀m1,m2 ∈M : decode(encode(m1) + encode(m2)) = m1 +m2

(3) ∀m1,m2 ∈M : decode(encode(m1) · encode(m2)) = m1 ·m2

(4) ∀a ∈ A : decode(a) = decode(a mod p)
(5) ∀m ∈M : || encode(m)||∞ ≤ τ with τ = p/2

Algorithms Assume that M,A,B are defined as above for a fixed parameter set. To sample noise for the
ciphertexts we define the efficient polynomial time algorithm DL

ρ , which outputs vectors r ∈ ZL such that

Pr[||r||∞ ≥ ρ | r ← DL
ρ ] < negl(λ). We let Circ be the set of arithmetic Single Instruction Multiple Data

(SIMD) circuits over Zlp. The SIMD property implies that there exists a function f ∈ Zp[X1, ..., Xn(f)] such

that f̂ ∈ Circ evaluates the function f l times on inputs in Zn(f)p in parallel.
For the specified algebraic structures, define the algorithms KeyGenS ,EncS ,DecS that represent the cryp-
tosystem. The algorithms are probabilistic polynomial time algorithms.
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KeyGenS() : This algorithm samples a public-key/private-key pair (pk, sk).

EncSpk(x, r) : Let x ∈ A and r ∈ ZL then this algorithm creates a g ∈ B deterministically. EncSpk must be
additively homomorphic for at least a small number κ of correctly formed ciphertexts on both plaintexts
and randomness: Let x1, ...,xκ ∈ image(encode), r1, ..., rκ ← DL

ρ . Then it holds that

EncSpk(x1 + ...+ xκ, r1 + ...+ rκ) = EncSpk(x1, r1)⊕ ...⊕ EncSpk(xκ, rκ)

DecSsk(g) : For g ∈ B this algorithm will return an m ∈M∪ {⊥}.

Correctness Let n(f), f ∈ Circ be the number of input values of f and let f̂ be the embedding of f into
B where ’+’ is replaced by ⊕, ’·’ by ⊗ and the constant c ∈ Zp by EncSpk(encode(c · 1),0). For data vectors
x1, ...,xn(f), let f(x1, ...,xn(f)) be the SIMD application of f to this data.

Definition 2 (Correctness). The aforementioned algorithms (KeyGenS ,EncS ,DecS) are called

(BP , BR, Circ)-correct if

Pr

[
DecSsk(c) 6= f

(
decode(x1), ...,decode(xn(f))

) ∣∣∣∣ (pk, sk)← KeyGenS() ∧ f ∈ Circ ∧

(x1, ...,xn(f), r1, ..., rn(f)) ∈ An(f) × (ZL)n(f) ∧ c← f̂(c1, ..., cn(f)) ∧(
decode(xi) ∈M∧ ||xi||∞ ≤ BP ∧ ||ri||∞ ≤ BR ∧ ci ← EncSpk(xi, ri)

)
i∈[n(f)]1

]
≤ negl(λ)

For SPDZ one would additionally require that the encryption scheme has a distributed decryption and
distributed key generation procedure, but we do not specify these here since we will not make use of these
functionalities. With this at hand, we can define our cryptosystem as follows:

Definition 3 (Somewhat Homomorphic Cryptosystem). Let Circ contain formulas of the form(∑n
i=1 xi

)
·
(∑n

i=1 yi
)

+
∑n
i=1 zi for some n ∈ N+. Let K = (KeyGenS ,EncS ,DecS) be an IND-CPA secure

cryptosystem. K is called somewhat homomorphic if it is (BP , BR, Circ)-correct for some fixed BP , BR.

One can easily see that e.g. the Ring-LWE-based BGV scheme [8] or the BGH extension of LWE-based BGV
[7] have the required features. The more recent matrix-based cryptosystems like the GSW scheme [23,9] do
unfortunately have no SIMD property and are in practice outperformed by the above schemes.

2.3 Zero-Knowledge Proofs of Plaintext Knowledge for SHE

Two different flavors of zero-knowledge proofs were used before in the context of the above cryptosystem
and preprocessing for MPC. The first technique was described in [19] and follows a Σ-protocol. While the
challenge space is very small, an amortization technique due to [11] can be applied. Another approach was
introduced in [16] and uses a LEGO-like argument.

The proofs will have statistical security parameter sec. We prove plaintext knowledge of the set SP =
{c1, ..., ct} of ciphertexts. More formally, one shows that the following relation holds:

RPOPK =

{
(a,w) | a = (c1, ..., ct, pk) ∧w = (x1, r1, ...,xt, rt) ∧[

ci = EncSpk(xi, ri) ∧ decode(xi) ∈M∧

||xi||∞ ≤ BP ∧ ||ri||∞ ≤ BR
]
i∈[t]1

}
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Procedure PCutAndChoose

CutAndChoose(T,Bp, Br):
(1) PR calls the RO with seeds f1, ..., f2T . From the output, it generates an si,yi as follows:

(1.1) Choose si uniformly at random with ||si||∞ ≤ BR.
(1.2) Let mi ∈ M be a random element and set yi = encode(mi) + ui where ui is generated such that

each entry is a uniformly random multiple of p subject to the constraint that ||yi||∞ ≤ BP .
(2) For i = 1, ..., 2T PR computes ai = EncSpk(yi, si) and sends a1, ...,a2T to VE.
(3) PR, VE sample V as V ← PProvideRandom.ProvideRandom(2T, T ) such that |V | = T .
(4) For all i ∈ V , PR sends fi to VE who verifies that they induce the ciphertexts ai as generated in step (2)

and that ||yi||∞ ≤ BP and ||si||∞ ≤ BR. If one of the checks does not hold, then VE aborts.
(5) Let [2T ]1 \ V = {i1, ..., iT }. Output (ai1 ,yi1 , si1 , ...,aiT ,yiT , siT ).

Fig. 5. Procedure for generating auxiliary ciphertexts using cut and choose

SPDZ1-like proofs An instance of the proof takes as input t = sec ciphertexts and proves knowledge of
2 · sec−1 linear combinations of a certain form (there are 2sec matrices depicting the linear transformation).
Each such individual proof is done using a Σ protocol. This gives an overhead of 2 auxiliary ciphertexts
per proven ciphertext. On the downside, the soundness argument works by exploiting that the difference of
two differing matrices describing the linear combinations is invertible, but the inverse may have very large
coefficients - in the worst case exponentially in sec. This means that BP , BR are rather large.

SPDZ2-like proofs Another approach, that is reminiscent of the technique from [32] uses a larger number of
auxiliary ciphertexts, but yields provably lower parameters. In order to prove plaintext knowledge, one uses a
set SA of T auxiliary ciphertexts where t divides T . This set is obtained using the procedure PCutAndChoose,
where first 2T auxiliary ciphertexts are generated by PR, among which T are opened. These T opened
ciphertexts are chosen uniformly at random and VE checks that they are all formed correctly. The remaining,
T unopened auxiliary ciphertexts are now the set SA and only a small subset of the remaining ciphertexts may
not be well formed. VE then randomly assigns the T auxiliary ciphertexts into t buckets, and by a standard
argument the probability that all ciphertexts in each bucket are not generated correctly is negligible. PR in
turn, for bucket i and ci ∈ SP , opens the sum ci+ai and VE checks correctness. This proof yields drastically
lower bounds on BP , BR than the one presented before, but unfortunately requires to generate 2T/t auxiliary
ciphertext per proven plaintext. In particular for a practical number of ciphertexts (think t ≈ 40) this large
number makes implementations quite slow (due to the demand in RAM).

2.4 (Reed Solomon) Codes

Let q,m, k ∈ N+,m > k and q be a prime power. Consider the two vector spaces K = Fkq ,D = Fmq and
a monomorphism C : K → D together as a code, i.e. c = C(x) as an encoding of x in D. In addition, it
should be efficiently decidable whether c′ ∈ C (error checking), where c′ ∈ C ⇔ ∃x′ ∈ K : C(x′) = c′ and
the minimum distance d of two codewords x,y ∈ C should be large (meaning that the difference of any two
distinct codewords should be nonzero in as many positions as possible). Such a code is called an [m, k, d]
code. If, for every message x ∈ K, this x reappears directly in C(x) then the code is called systematic.
Without loss of generality, one can assume that the first k positions of a codeword are equal to the encoded
message in that case. The mapping of C can be represented as multiplication with a matrix G (the generator
matrix ), and we can write C : x 7→ Gx where G ∈ Fm×kq . Similarly, we assume the existence of a check

matrix H ∈ F(m−k)×m
q where Hx = 0⇔ x ∈ C.

For a [m, k, d] code C, define the Schur transform C∗ = span({x� y | x,y ∈ C}). C∗ is itself a code where
the message length k′ ≥ k cannot be smaller than k. On the contrary, C∗ has a smaller minimum distance
d′ ≤ d. The actual values k′, d′ depend on the properties of the code C.

A code with small loss d−d′ with respect to the Schur transform (as we shall see later) is the so-called Reed-
Solomon code ([35]), where the encoding C works as follows: Fix pairwise distinct and nonzero z1, ..., zm ∈ Fq
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and define the matrices A1 = V (z1, ..., zk)−1 and A2 = V (z1, ..., zm) where V (·) is the Vandermonde matrix.
Consider the mapping

C : K → D
x 7→ A2A1x

as the encoding procedure. The encoding can be made efficient since the matrices are decomposable for
certain values z1, ..., zm using the Fast Fourier Transform (FFT). The decoding works the same way, where
one computes y>A2

−1A1
−1.

The intuition behind the encoding procedure is as follows: The k values uniquely define a polynomial f of
degree at most k − 1, whose coefficients can be computed using A1 (as an inverse FFT). One evaluates the
polynomial in the remaining m− k positions using A2. The minimum distance d is exactly m− k+ 1, since
two polynomials of degree at most k − 1 are equal if they agree in at least k positions.
Now, by letting A2 be another FFT matrix, the point-wise multiplication of codewords from C yields a
codeword in C∗ which is a polynomial of degree at most 2(k− 1). Hence the code C∗ has minimum distance
d′ = m− 2k + 1.

2.5 The Paillier Cryptosystem

We use the Paillier encryption scheme as defined in [34,15] (with some practical restrictions). Let N = p · q
be the product of two odd, κ-bit safe-primes with (N,φ(N)) = 1 (we choose κ such that the scheme has λ
bit security). Paillier encryption of a message m ∈ Z/NZ with randomness r ∈ Z/NZ∗ is defined as:

EncPpk(m, r) := rN · (N + 1)m mod N2

Knowing the factorization of N allows decryption of ciphertext c ∈ Z/N2Z∗, e.g., by determining the
randomness used,

r = cN
−1 mod φ(N) mod N .

The decryption then proceeds as

m = ((c · r−N mod N2)− 1)/N mod N

The KeyGenP algorithm samples an RSA modulus N = p · q, and we let pk = (N) and sk = (p, q, f = N−1

mod ϕ(N)). The encryption scheme is additively homomorphic and IND-CPA secure given the Composite
Residuosity problem CR[N ] is hard.
During the decryption of a ciphertext as described above one does completely recover the randomness used
during encryption. This gives rise to a reliable distributed decryption algorithm, since the the encryption
function is a bijection. To obtain such a distributed decryption, one can sum-share the value N−1 mod ϕ(N):
For n parties P1, ..., Pn, assume that there exists a sum sharing f1, ..., fn such that f2, ..., fn ← Z/2secNZ
chosen i.i.d. and f1 ∈ Z/2secNZ such that f1 = f − (

∑n
i=2 fi) mod ϕ(N) for some statistical security

parameter sec ∈ N. Each party can then broadcast cfi mod N . This does not leak information about ϕ(N)
and also not about the shares fi as long as the ciphertexts c are randomly chosen. We do not provide the
actual protocol in detail, but just refer to the functionality Figure 6 which will allow distributed decryption
and key generation for it.

3 More Efficient Preprocessing from Somewhat Homomorphic Encryption

In this section, we present an improved preprocessing for the [19] protocol. In a first step, we overhaul the
triple generation in a way that allows more efficient checks of correctness. Moreover, we present a different
proof of plaintext knowledge that is honest-verifier zero-knowledge. This is sufficient to get UC security for
the overall protocol, even though we consider malicious corruption. This is explained in detail in [19] where
they show similar properties for their proofs of plaintext knowledge. The idea is to get the challenge from a
secure coin-flip protocol or use the Fiat-Shamir transform ([20]).
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Functionality FKGD,Paillier

Generate key:
(1) On input (generate key, κ, sec) by all parties, randomly sample two different primes p, q ∈ P of bit length

approximately κ. Let N = p · q and compute f = N−1 mod ϕ(N).
(2) Sample uniformly random f2, ..., fn ∈ Z/2secNZ and choose f1 ∈ Z/2secNN such that f =

∑
i fi mod

ϕ(N).
(3) Output (N, fi) to party Pi.

Distributed decryption:
(1) When receiving (start distributed decryption) from all players, check whether there exists a shared key pair

(N, f). If not, return ⊥.
(2) Upon receiving (decrypt, c) from all honest players, send c and m ← DecPsk(c) to the adversary. Upon

receiving m′ ∈ {m,⊥} from the adversary, send (result,m′) to all players.

Fig. 6. Functionality that provides shared keys and decrypt ciphertexts

3.1 Generating Triples with Lower Overhead

Let C be some [m, k, d] Reed-Solomon code as described in the previous section. Moreover, let C∗ be its
[m, k′, d′] Schur transform. We assume that there exists a protocol to generate triples where the results are
correct if all parties follow the protocol, but triples might be not correct if some party is not behaving
honestly.

Offline Phase Protocol We assume the existence of a functionality that samples faulty correlated ran-
domness and which is depicted in Figure 7. It generates random codewords as the shares of factors a, b of
multiplication triples and also enforces that malicious parties choose such codewords as their shares. The
functionality then computes a product and shares it among all parties, subject to the constraint that A can
arbitrarily modify the sum and the shares of malicious parties.

Functionality FTripleGen

This functionality generates a shared MAC key α and 〈·〉-representations, where the latter ones can be biased by
the adversary. It uses the procedure Angle as depicted in PAngle.

Initialize: On input (init, p, C) from all players, the functionality stores the prime p and the code C. A chooses
the set of parties PBad ⊂ {1, . . . , n} he corrupts.
(1) For all i ∈ PBad, A inputs αi ∈ Zp, while for all i 6∈ PBad, the functionality chooses αi ← Zp at random.
(2) Set they key α =

∑n
i=1 αi and send αi to Pi, i 6∈ PBad.

Triples: On input (triples) from all parties, the functionality does the following to generate triples:
(1) For i 6∈ PBad, the functionality samples ai, bi ∈ C at random.
(2) For i ∈ PBad, A inputs ai, bi, ci, δ,∆γ,a,∆γ,b,∆γ,c ∈ Zmp . If ai, bi 6∈ C then stop.
(3) Define a =

∑n
j=1 aj , b =

∑n
j=1 bj .

(4) Let j 6∈ PBad be the smallest index of an honest player. For all i 6∈ PBad, i 6= j choose ci ∈ Zmp uniformly
at random. For Pj let cj = a� b+ δ −

∑
i∈[n]1,i6=j ci. Send ai, bi, ci to each honest Pi.

(5) Run the macros
〈a〉 ← Angle(a1, . . . ,an, α,∆γ,a,m),
〈b〉 ← Angle(b1, . . . , bn, α,∆γ,b,m),
〈c〉 ← Angle(c1, . . . , cn, α,∆γ,c,m).

(6) Return (〈a〉, 〈b〉, 〈c〉).

Fig. 7. Functionality that generates triples
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Procedure PAngle

We let R be a ring.

Angle(r1, . . . , rn, α,∆γ ,m,R): This procedure will be run by the functionality to create 〈·〉-representations.
(1) Define r =

∑n
i=1 ri

(2) For i ∈ PBad, A inputs γi ∈ Rm, and for i 6∈ PBad, choose γi
$←− Rm at random except for γj , with j being

the smallest index not in PBad.
(3) Set γ = α · r +∆γ and γj = γ −

∑n
j 6=i=1 γi. For every honest party Pi, send γi.

(4) Define 〈r〉 = (r1, ..., rn,γ1, ...,γn). Return 〈r〉.

Fig. 8. Procedure to generate shared MACs on values

Figure 7 can be implemented using a SHE scheme as we defined in Definition 3 which was shown in [19]. As
a twist, the zero-knowledge proofs must be slightly extended to show that the vectors inside the ciphertexts
contain codewords from C.
Based on this available functionality, our goal is to show that one can implement FFullTripleGen as depicted
in Figure 9. It is related to FTripleGen but does ensure that all multiplication triples are correct.

Functionality FFullTripleGen

Let PBad be the set of parties that are controlled by A and u ∈ N+. This functionality generates a shared MAC
key α and 〈·〉-representations. It uses the macro Angle as depicted in PAngle. Observe that it can be initialized for
arbitrary rings R that allow efficient sampling.

Initialize: On input (init, R, u) from all players, the functionality stores the prime p and the vector dimension u.
A chooses the set of parties PBad ⊂ {1, . . . , n} he corrupts.
(1) Store the dimension u and description of the ring R.
(2) For all i ∈ PBad, A inputs αi ∈ R, while for all i 6∈ PBad, the functionality chooses αi ← R at random.
(3) Set they key α =

∑n
i=1 αi and send αi to Pi, i 6∈ PBad.

Triples: On input (triples) the functionality does the following
(1) Let A input ai, bi, ci,∆γ,a,∆γ,b,∆γ,c ∈ Ru for each i ∈ PBad.
(2) Choose ai, bi ∈ Ru for each honest Pi uniformly at random. Set a =

∑
i ai, b =

∑
i bi and define c = a�b.

(3) Let j be the smallest number in [n]1\PBad. Choose uniformly random ci ∈ Ru for each Pi with i ∈
[n]\PBad, i 6= j and set cj = c−

∑
i∈[n]1,i 6=j ci.

(4) Run the macros
〈a〉 ← Angle(a1, . . . ,an, α,∆γ,a, u, R),
〈b〉 ← Angle(b1, . . . , bn, α,∆γ,b, u, R),
〈c〉 ← Angle(c1, . . . , cn, α,∆γ,c, u, R).

(5) Return (〈a〉, 〈b〉, 〈c〉).

Fig. 9. Functionality that generates triples

We will now show how to implement FFullTripleGen in the FTripleGen-hybrid model using the protocol
ΠTripleCheck. It implements the idea that was already sketched in the introduction:

(1) Check that the output vector c is a codeword of C∗. If so, then the error vector δ is also a codeword,
meaning that either it is 0 or it has weight at least d′.

(2) Open a fraction of the triples to check whether they are indeed correct. If so, then δ must be the all-zero
vector with high probability.

Proof of Security To prove the security of our construction, we use the following fact:
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Protocol ΠTripleCheck

Let H be the check matrix of C∗ and t ∈ N+, t < k − 1 be the upper bound on the number of opened triples. We
assume that both C,C∗ are in systematic form, and are over the field Zp.

Initialize:
(1) All parties send (init, p, C) to FTripleGen to receive their shares αi of α.

Triples:
(1) All parties send (triples) to FTripleGen and obtain (〈a〉, 〈b〉, 〈c〉).
(2) Let ci be Pis share of 〈c〉. Each party locally computes σi = Hci and commits to σi using FCommit.
(3) Each party Pi opens its commitments to σi towards all parties. Check if 0 =

∑
i σi. If not, abort.

(4) Let A = [m]1. For j = 1, ..., t all parties do the following
(4.1) Sample the uniformly random value r ← ProvideRandom(m, 1). Set A← A\{r}.
(4.2) Each party Pi commits to its shares ai[r], bi[r], ci[r] using FCommit.
(4.3) Each party opens its commitments towards all other parties.
(4.4) Each party checks that (

∑
i ai[r]) · (

∑
i bi[r]) =

∑
i ci[r]. If not, then they abort.

(5) Let U = [m]1\A, where U = {u1, ..., ul}.
Compute d← PCheckMac.CheckOutput(σ,a[u1], b[u1], c[u1], ...,a[ul], b[ul], c[ul]).
If d 6= 0 the parties return ⊥.

(6) Let O ⊂ A be the smallest k − t− 1 indices from A. The parties output (〈a[O]〉, 〈b[O]〉, 〈c[O]〉)

Fig. 10. Protocol that checks the correctness of triples

Remark 2. Let C be an [m, k, d] code and x ∈ C\{0}. Choose elements t times from [m]1 uniformly at
random - denote this choice as the set S ⊆ [m]1. Define Ex to be the event that x[S] = 0. Then

Pr[Ex] <

(
m− d
m

)t
The statement follows from the fact that the codeword must be nonzero for at least d positions, hence
the probability that we hit one of the (at least) d nonzero elements is m−d

m for each experiment. We now
independently repeat this experiment t times, which yields the bound.

Theorem 1. Let C be a [m, k, d] linear block code, such that its Schur transform forms a [m, k′, d′] linear
block code C∗. Moreover, let t = O(sec), t < k−1 and d′ = O(m) where d′ < m. Then there exists a simulator
STripleCheck such that STripleCheck � FFullTripleGen is statistically indistinguishable from ΠTripleCheck in the
FTripleGen, FCommit-hybrid model with random oracle and a broadcast channel where, for n players, up to
n − 1 can act maliciously. The statistical distance of both executions is negligible in the security parameter
sec.

For the sake of simplicity, we present our protocol for the case where running one instance of PCheckMac

is sufficient (and where we hence only need one MAC). Both the 〈·〉-representation and PCheckMac easily
extend to the case where there are multiple MAC keys, and so does our protocol.

Proof. In order to prove the theorem, we use the simulator as described in Figure 11. The simulator will run
a local copy of the protocol, together with local copies of FTripleGen, FCommit and the random oracle.

Correctness We first observe that the protocol ΠTripleCheck is correct in the sense that, if all parties follow
it without deviations, they obtain outputs as in FFullTripleGen. This trivially follows from the fact that
FTripleGen and FFullTripleGen only deviate in δ, which would never be set if all parties behave honestly. The
introduced redundancy due to the code C is fully discarded, hence the output of the protocol will consist of
correct and randomly distributed multiplication triples with a correct MAC as promised.

Simulatability Neither in FTripleGen,PAngle nor in FFullTripleGen the adversary will ever receive output.
Moreover, in the simulation we follow exactly the protocol for the simulated honest parties and stop whenever
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Simulator STripleCheck

SimulateInitialize:
(1) We start our own instance Π of the protocol ΠTripleCheck which the adversary is communicating with, and

also local instances of FCommit and the random oracle.
(2) Send (init, p, C) on behalf of the simulated honest parties to FTripleGen and obtain the shares αj .
(3) Send the intercepted set PBad to FFullTripleGen.
(4) Send (init,Zp, k − t− 1) in the name of the dishonest parties to FFullTripleGen.
(5) For each dishonest party Pi, send the intercepted share αi to FFullTripleGen.

SimulateTriples:
(1) Set the flag cheated← ⊥.
(2) Send (triples) to FTripleGen in the name of the honest players Pj .
(3) Intercept ai, bi ∈ Fm from each dishonest party Pi. If either of these vectors is not in C, then stop here.
(4) Wait for the adversary to input δ,∆γ,a,∆γ,b,∆γ,c ∈ Fm and ci ∈ Fm for each dishonest Pi.
(5) Wait for the output aj , bj , cj ,γa,j ,γb,j ,γc,j ∈ Fm that the honest parties Pj obtain in Π from FTripleGen.
(6) Commit to the correct value σj = Hcj .
(7) Let {σi}i∈PBad be the commitments A sent to FCommit. If

∑
i∈PBad

σi 6= H(
∑
i∈PBad

ci) then set cheated←
>.

(8) Do step (3) as in the protocol. Abort if the protocol aborts.
(9) Do step (4) with its t iterations. In every iteration, if the sum of the values that A opens does not equal

the expected sum of ai, bi or ci, then set cheated← >.
(10) Do step (5) as in the protocol with the values that should have been used if we followed the protocol

correctly. Abort if Π aborts, if δ 6= 0 or if cheated == >.
(11) Send (triples) to FFullTripleGen in the name of A.
(12) Compute the set O as in Π. Send the adversarial ai[O], bi[O], ci[O] for each dishonest Pi to FFullTripleGen.
(13) For every call of PAngle, send the same values to FFullTripleGen that Pi sent to FTripleGen for the same call.

Fig. 11. Simulator for ΠTripleCheck.

the protocol would stop. In addition, we also abort if the protocol would not abort, but the adversary inserted
a value δ 6= 0 or if he opened values that differ from what he obtained. We now argue that the probability
that the protocol does not abort while the simulator does is negligible.
In the case of cheated == >, this follows the argument of the correctness of the online phase of SPDZ, i.e.
Lemma 1. Therefore, let us assume that cheated == ⊥, but δ 6= 0. Observe that

Pr[Π aborts | δ 6= 0] ≤ Pr[STripleCheck aborts | δ 6= 0]

STripleCheck is constructed such that Pr[STripleCheck aborts | δ 6= 0] = 1. On the other hand, we can either
catch the adversary if δ 6∈ C∗ or if it is indeed a codeword, but not the correct one:

Pr[Π aborts | δ 6= 0] = Pr[Π aborts | δ 6∈ C∗] · Pr[δ 6∈ C
∗]

Pr[δ 6= 0]

+Pr[Π aborts | (δ ∈ C∗ ∧ δ 6= 0)] · Pr[δ ∈ C
∗ ∧ δ 6= 0]

Pr[δ 6= 0]

Since cheated == ⊥ both step (2) and (4) are carried out correctly except with negligible probability i.e. A
did not provide incorrect values.
If δ 6∈ C∗, then

∑n
i=1 σi 6= 0 due to the fact that H is a check matrix. Hence we have that

Pr[Π aborts | δ 6∈ C∗] = 1− negl(sec)

On the other hand, we can use Remark 2 to give a lower bound on the second term, which is

Pr[Π aborts | (δ ∈ C∗ ∧ δ 6= 0)] > 1−
(
m− d′

m

)t
− negl(sec)

Letting t, d′ be chosen as mentioned in the theorem, the statement follows. ut
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Fast and Amortized Checks Until now, we checked each potential code vector separately. Let H ∈ Fl×m
be the check matrix of the Schur transform of the code. Multiplication with a check matrix H can be done
in O(m2) steps - but assuming that this must be carried out for a number of e.g. m vectors this leads to
O(m3) operations, if done trivially.

As a first optimization, let us put all the l input vectors a1, ...,al into a matrix A = [a1||a2||...||al]. If all
vectors are drawn from the code, then HA = 0. Computing this matrix product can be optimized (see e.g.
[36] and the references therein) and be done in O(m2+ν) for some small constant ν > 0. One can do better
using protocol PMatrixMultiplicationCheck as described in Figure 12.

Procedure PMatrixMultiplicationCheck

CheckMultiplication(H,A):
(1) Compute the matrices GH and AG>.
(2) For j = 1, ...,m′ select a pair (xj , yj) ∈ {1, ...,m′}2
(3) For j = 1, ...,m′, compute zj as the inner product of the xjth row of GH and the yjth column of AG>.
(4) If all zi are 0 return accept, otherwise reject.

Fig. 12. Procedure to check whether a matrix product is zero

Here once again codes help out: Consider another generator matrix G ∈ Fm′×l for a Reed Solomon code
of message dimension l, where we denote the redundancy as d ∈ O(m) again (we can easily assume that
m′ ∈ O(m)). Multiplication of each of the matrices H,A with G can be done in time m′2 · log(m′) using the
FFT, and moreover we can precompute GH before the actual computation takes place. GHAG> is a zero
matrix if A only consists of codewords. On the other hand, consider GHA: If one row is not a codeword,
then it will be encoded to a vector with weight at least d due to the distance of the code. Multiplying with

G> will then yield a matrix where at least d2 entries are nonzero. Since both m′, d ∈ O(m), the fraction d2

m′2

is constant. One can compute both GH and AG> in time m′2 · log(m′) using the FFT, and then choose
rows/columns from both product matrices for which one then computes the scale product. In case that
at least one ai is not a codeword, it will be nonzero with constant probability. Repeating this experiment
Ω(m′) times yields 0 in all cases only with probability negligible in m′. We refer to [18] for a more formal
description.

3.2 More Efficient Proofs of Plaintext Knowledge

In the following, we present an amortized ZKPoPK which extends the idea of [16]. The proven upper bounds
on the output ciphertexts will be worse than [16], but only by a factor t. On the other hand, we will be able
to reduce the number of auxiliary ciphertexts by a factor8 of ≈ 2.

The overall strategy of the proof is as follows:

(1) Sample a number of auxiliary ciphertexts 2T , then open a (random) half in a cut and choose process.

(2) For b1 rounds, open the sum of a ciphertext ci and a random auxiliary ciphertext.

(3) Then for b2 rounds, randomly put the t ciphertexts into a matrix of width and height
√
t. Compute all

row and column sums and prove plaintext knowledge of them.

The rationale behind this strategy is that, after the cut and choose, most of the T auxiliary ciphertexts are
generated correctly (except with small probability). Hence most of the sums that are opened in the second
step allow extraction and only a small number of the t ciphertexts could not be extracted after b1 rounds.
The third step works best for a very small number of remaining bad ciphertexts (up to around

√
t/2), but

then allows extraction in a small number of repetitions.
8 This is particularly critical because in implementations, one would try to keep all ciphertexts in the RAM (which

was a particular problem in [16]).
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Protocol ΠNewPracticalZK

The prover inputs x1, r1, . . . ,xt, rt and proves RPOPK for given c1, . . . , ct. Let b1, b2, c ∈ N. For the sake of
simplicity, we assume that

√
t ∈ N. Honestly generated ci will have ||xi||∞ ≤ τ and ||ri||∞ ≤ ρ.

(1) Let v = 1 be a counter. Set T = t · b1 + c · b2 · 2 ·
√
t.

(2) (a1,y1, s1, ...,aT ,yT , sT )← PCutAndChoose(T, (W + L) · τ · δ · T ·
√
t, (W + L) · ρ · δ · T ·

√
t).

(3) PR, VE jointly sample a uniformly random partition V1, ..., Vb1+b2 ⊂ [T ]1 using PProvideRandom, such that

|Vi| =

{
t if i = 1, ..., b1

2 · c ·
√
t if i = b1 + 1, ..., b1 + b2

(4) For z = 1, ..., b1 do the following:
(4.1) Rename Vz = {v1, ..., vt}. PR computes αi = xi + yvi , βi = ri + svi .
(4.2) PR checks that ||αi||∞ ≤ (W + L) · τ · δ · T ·

√
t− τ and ||βi||∞ ≤ (W + L) · τ · δ · T ·

√
t− ρ. If not, then

PR sends ⊥ and starts again.
(4.3) PR sends (αi,βi)i∈[t]1 to VE.
(4.4) VE checks that EncSpk(αi,βi) = ci + avi and ||αi||∞, ||βi||∞ follow the above bounds.
(4.5) If a check does not hold: If v < M , increment v by 1 and go to step (2). If v = M then VE rejects.

(5) PR, VE together sample b2 permutations W1, ...,Wb2 of [t]1 using PProvideRandom. For z = 1, ..., b2 do the follow-
ing:

(5.1) Let u = 2 ·
√
t and Wz = {w1, ..., wt}. For i = 1, ...,

√
t we define

x′i =

√
t∑

k=1

xw
(i−1)

√
t+k

and x′i+
√
t =

√
t∑

k=1

xw
(k−1)

√
t+i

and r′i, c
′
i accordingly.

(5.2) For i = 1, ..., u, k = 1, ..., c and Vb1+z = {v1, ..., vu·c} PR computes αki = x′i + yv
(i−1)

√
t+k

and similarly

βki = r′i + sv
(i−1)

√
t+k

.

(5.3) PR checks that ||αki ||∞ ≤ (W + L) · τ · δ · T ·
√
t−
√
t · τ and ||βki ||∞ ≤ (W + L) · τ · δ · T ·

√
t−
√
t · ρ. If

not, then he sends ⊥ to VE and starts again.
(5.4) PR sends (αki ,β

k
i ) to VE.

(5.5) VE checks that EncSpk(αki ,β
k
i ) = c′i+av(i−1)

√
t+k

and if ||αki ||∞, ||βki ||∞ have the bounds from the previous
step.

(5.6) If a check does not hold: If v < M , increment v by 1 and go to step (2). If v = M then VE rejects.
(6) VE accepts.

Fig. 13. Asymptotically efficient ZKPoPK ΠNewPracticalZK

The Problem of Soundness Whereas the first two steps of our proof are mathematically simple to analyze,
the third step seems somewhat more cumbersome. In Figure 14, we give a graphical description of how the
extractor should work if one abstracts the problem as a bins and balls-game. In a more formal way, we can
describe Figure 14 as an algorithm:

matrixGame(M ,m, n) :
(1) If M ∈ Zm×n2 then continue, otherwise abort.
(2) Let r be the number of ones that are alone in a column of M . Remove all such r ones to form the

matrix M ′.
(3) Let s be the number of ones that are alone in a row of M ′.
(4) Output (r, s).

This one can rephrase into an expression that will turn out helpful in the security proof.

Problem 1 Let m,n, k ∈ N+, k ≤ m · n, c ∈ R+ and

Mm,n,k = {A ∈ Zm×n2 | A has exactly k ones}

16



remove

vertically

horizontally

remove

Fig. 14. Two-dimensional elimination process (strong extraction)

Compute

Pr
[
r + s ≥ bk/cc | M $←−Mm,n,k ∧ (r, s)← matrixGame(M ,m, n)

]
We do not have a formula in closed form to compute the probabilities in the above problem. But a brute-force
approach does also not seem plausible: We observe that

|Mm,n,k| =
(
m · n
k

)
is the total number of ways of arranging k balls on an m×n grid. Sampling all such matrices and computing
the output of matrixGame for each of them for larger values of m,n, k is computationally intractable. In
Appendix A, we describe how to solve the problem efficiently for k < 40 which is sufficient for our application.
Based on this, Table 2 contains some parameter recommendations for the protocol based on our analysis.

sec t b1 b2 c strong extraction? T/t T/t in [16]

40 32 3 1 5 no 9.75 16
40 64 3 1 4 no 8 14
40 64 2 1 6 yes 7 14
40 100 2 1 6 yes 6.4 14
40 256 2 2 4 yes 6 12

Table 2. Example parameter sets for the proof ΠNewPracticalZK

We want to point out that we use matrixGame in two different ways in our analysis: If a plaintext is
extracted in one round of an instance of Problem 1, then we call such a ciphertext strongly extracted. If one
only extracts ciphertexts that, already in M from the problem are either alone in a row or column (that
is, we do not consider rows that, only after step (2) of matrixGame, have exactly one element), then we
call such ciphertexts weakly extracted. Using strong extraction allows to lower the number of rounds and
auxiliary ciphertexts in the protocol, but increases the bound on the size of the extracted ciphertexts.

Theorem 2. Let (KeyGenS ,EncS ,DecS) be a somewhat homomorphic cryptosystem as defined above with
δ > 1, T > sec, then the protocol ΠNewPracticalZK is a honest-verifier zero-knowledge proof of plaintext
knowledge for the relation RPOPK where
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BP = 2 · (W + L) · τ · δ · T · t , BR = 2 · (W + L) · ρ · δ · T · t for weakly extracted ciphertexts.
BP = 2 · (W + L) · τ · δ · T · t3/2 , BR = 2 · (W + L) · ρ · δ · T · t3/2 for strongly extracted ciphertexts.

Before proving the above Theorem, we want to make a few remarks. First of all, the first of the b1 rounds of
step (4) can be avoided if one is ok with random plaintexts. In such a case, one would sample t plaintext/-
ciphertext pairs using PCutAndChoose instead which ensures that, during the soundness argument, one must
only be able to extract at most sec and not all t plaintexts due to the cut-and-choose. Another side effect
of this proof technique is that by setting t very large and b1 = 0 one can end up in a situation where T < t
i.e. one performs less individual proofs than there are ciphertexts. Unfortunately, this behavior only occurs
for very large values of t and is therefore of no practical relevance. A related, more generalized approach
is subject to some ongoing follow-up work. We also want to mention that ΠNewPracticalZK can be used to
implement FTripleGen from the previous subsection. To achieve this, one must sample all the plaintexts of
the (auxiliary) ciphertexts as codewords and check that all opened sums and all opened plaintexts from the
cut-and-choose phase are from the code C. Since all steps in the soundness argument that are used to extract
plaintexts only perform linear operations, this then works out of the box.

Proof (of Theorem 2). This proof is split in two halves. As mentioned above, the soundness of the proof
relies on the solution of Problem 1 which is discussed in more detail in Appendix A.

Completeness Assume that PR follows the protocol correctly and hence c1, ..., ct were generated according
to the correct distributions. Due to the linearity of EncSpk(·, ·), the protocol only aborts if one of the coefficients

of αji ,β
j
i becomes too large and therefore leaks information (which is when it is restarted). Let us focus on

the case where this happens: The probability that a coefficient of any of the αji ,β
j
i in both step (4) or (5)

lies outside of the correct bounds is at most 1/((W + L) · δ · T ). There are W + L such coefficients and T
sums that are computed in total, hence the probability that PR must send ⊥ is 1/δ. For M such rounds, the
chance that PR fails to prove correct values is (1/δ)M .

Honest-Verifier Zero-Knowledge Consider the following algorithm:

(1) Let v = 1 be a counter.
(2) Choose the subset V ⊂ [2T ]1 uniformly at random of size T . Choose the b1 + b2 subsets V1, ..., Vb1+b2 ⊂

[2T ]1 \ V as in step (3) in ΠNewPracticalZK at random according to their size constraints. Moreover,
choose the b2 random permutations W1, ...,Wb2 of [t]1 as in step (5) of the protocol.

(3) Compute all the x′i, r
′
i, c
′
i as in step (5.1) of ΠNewPracticalZK.

(4) For each of the T sums αji , choose for αji each coefficient uniformly at random from the interval [−(W +

L) · δ · τ · T ·
√
t, (W + L) · δ · τ · T ·

√
t]. Moreover, choose for each of the T sums βji each coefficient

uniformly at random from the interval [−(W + L) · δ · ρ · T ·
√
t, (W + L) · δ · ρ · T ·

√
t].

(5) For each of the i ∈ [2T ]1 from PCutAndChoose we do the following:
– If i ∈ V then sample yi, si as in step (1) of PCutAndChoose. Then compute ai ← EncSpk(yi, si).

– If i 6∈ V then set avi = EncSpk(αji ,β
j
i )	 ci if i ∈ V1, ..., Vb1 or (with an obvious reindexing based on

Wz, Vb1+z for z = 1, ..., b2) compute ai = EncSpk(αji ,β
j
i )	 c′j if i ∈ Vb1+1, ..., Vb1+b2 .

(6) For i ∈ V output ai,yi, si and its PRF seeds. For i 6∈ V output ai.
(7) For each j ∈ 1, ..., b1 if it holds that ∀i ∈ Vj the plaintexts and randomness are small enough, i.e.

||αji ||∞ ≤ (W + L) · δ · τ · T ·
√
t− τ and ||βji ||∞ ≤ (W + L) · δ · ρ · T ·

√
t− ρ

then output αji ,β
j
i else output ⊥ and increase v by one. If ⊥ was returned: stop if v == M , otherwise

go to step (2).
(8) For each j ∈ b1, ..., b1 + b2 if it holds that ∀i ∈ Vj the plaintexts and randomness are small enough, i.e.

||αji ||∞ ≤ (W + L) · δ · τ · T ·
√
t−
√
t · τ and ||βji ||∞ ≤ (W + L) · δ · ρ · T ·

√
t−
√
t · ρ

then output αji ,β
j
i else output ⊥ and increase v by one. If ⊥ was returned: stop if v == M , otherwise

go to step (2).
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The above algorithm outputs transcripts that are perfectly indistinguishable from transcripts generated by
ΠNewPracticalZK. This can be seen as follows:

– All the Vi,Wi and V are chosen as in the protocol, and for all i ∈ V the ciphertexts ai are generated as
in the protocol.

– For each honest choice of xi, by adding a uniform vector yi from the given interval the probability that
xi+yi exceeds the bound is the same, which also holds for ri and si. Hence the probability of outputting
⊥ is the same as in ΠNewPracticalZK.

– Let i ∈ [2T ]1\V . For each αji ,β
j
i in ΠNewPracticalZK, if it is given as output to VE by an honest PR then it

holds that ∀xi∃!yi : xi+yi = αji and similarly for x′i, ri, r
′
i, si. Therefore, the probability of outputting

αji ,β
j
i in ΠNewPracticalZK is independent of xi, ri and one can safely choose them in the simulation at

random.

Soundness To establish the bound on the plaintext and randomness size, we first observe that a plaintext
can either be extracted in one of the b1 iterations of step (4) or in the b2 rounds of step (5).

Extraction in Step (4): Assume that the sum of a ciphertext and an extractable auxiliary ciphertext cj +ai
was opened during an iteration of step (4). Using yi, si, for each such cj one can extract the xj , rj from

αji ,β
j
i . Since ||αji ||∞, ||yi||∞ ≤ (W +L) · τ · δ ·T ·

√
t it must hold that ||xj ||∞ ≤ 2 · (W +L) · τ · δ ·T ·

√
t. By

the same argument, the extracted randomness rj has coefficients of size at most 2 · (W + L) · ρ · δ · T ·
√
t.

In order to obtain the yi, si that are necessary in the above reasoning we observe that each auxiliary ci-
phertext ai was generated in step (1) of PCutAndChoose. It is therefore computed from an expanded seed fi
which was fed into the random oracle. One can extract the RO queries that PR makes, and in particular the
fi seeds (more precisely, one can extract T − sec of them except with probability 2−sec).

Extraction in Step (5): For the sake of simplicity, let b2 = 1. In the case of weak extraction, each plaintext
in question can be computed as a sum of an auxiliary ciphertext (of norm (W + L) · δ · τ · T ·

√
t) and at

most
√
t− 1 plaintexts from step (4), which yields a total bound of 2 · (W + L) · δ · τ · T · t. The bound on

the randomness can be established the same way. For strong extraction, we first observe that the process
now exactly follows matrixGame as defined above. The plaintexts extracted during step (2) of matrixGame
will once again have norm at most 2 · (W + L) · δ · τ · T · t by the same argument as before. In step (3),
it might happen that all the

√
t − 1 plaintexts that one uses in the extraction were only just computed in

step (2) of matrixGame. Therefore, the bound on the plaintexts extracted during step (3) can be as high as
2 ·(W +L) ·δ ·τ ·T · t3/2 which proves the claim. Once again, the norm on the randomness follows accordingly.
For arbitrary b2, the above argument also holds because we then just extract all plaintexts at once in one of
the b2 rounds, given this is in fact possible.
It remains to show for which choice of parameters b1, b2, c the above procedure works except with with
negligible probability. This is a mere computational problem and will be answered in Appendix A.2.

4 Improved Preprocessing from Paillier Encryption

In this section we will give a novel approach on preprocessing for e.g. [19] using Paillier’s cryptosystem. Before
doing so, we present two certain ZK proofs which we will make heavy use of. In comparison to previous work,
they will require to send less bits per ZK proof instance.

4.1 Proving Statements about Paillier Ciphertexts

The first statement that we want to prove is a regular proof of plaintext knowledge. For Paillier encryption,
this can be phrased as follows:

RZKPoPKPaillier = {(a,w) | a = (c, pk), w = (x, r), x ∈ Z/NZ ∧ r ∈ Z/NZ∗ ∧
c ∈ Z/N2Z∗ ∧ c = EncPpk(x, r)}

19



In addition, we let our parties compute linear relations. We do not force them directly to do the right
computation, but instead just make sure that they know what they multiplied in.

RLinearPaillier = {(a,w) | a = (z, ẑ, pk), w = (b, c, r), b, c ∈ Z/NZ ∧ r ∈ Z/NZ∗ ∧
z, ẑ ∈ Z/N2Z∗ ∧ ẑ = zb · EncPpk(c, r) mod N2}

In the following, we present honest-verifier perfect zero-knowledge proofs for bothRZKPoPKPaillier, RLinearPaillier.
In order to use them in the preprocessing protocol, one can either make them non-interactive using the Fiat-
Shamir transformation in the Random Oracle Model, or use the secure coin-flip protocol PProvideRandom to
sample the challenge e. Since during a protocol instance, many proofs are executed in parallel, one can use
the same challenge for all instances and so the complexity of doing the coin-flip is not a significant cost.
It is worth mentioning that, for efficiency reasons, one can choose the random value e from a smaller
interval like e.g. [0, 2sec] where sec is the statistical security parameter. This also yields negligible cheating
probability9.

Proof of Plaintext Knowledge We first make an observation about the Paillier encryption scheme,
namely that EncSpk is a bijection:

EncSpk : Z/NZ∗ × Z/NZ → Z/N2Z∗

(x, r) 7→ rN (N + 1)x

This follows directly from [34] and ordZ/N2Z∗(N + 1) = N .

Protocol ΠZKPoPKPaillier

PR proves the relation RZKPoPKPaillier.

(1) PR chooses s← Z/NZ∗ and sends t = sN mod N to VE.
(2) VE chooses e← Z/NZ and sends it to PR.
(3) PR sends k = s · re mod N to VE.
(4) VE accepts if kN = ce · t mod N and otherwise rejects.

Fig. 15. Protocol ΠZKPoPKPaillier to prove knowledge of plaintexts of Paillier encryptions

In the preliminaries, we discussed decryption as recovering the noise first, and then using the noise to decrypt
the ciphertext. Observe that the second part can be done locally and without knowledge of the secret key.
This allows one to optimize the proof of plaintext knowledge from [15] to work mostly mod N and use the
same proof technique.

Lemma 2. The protocol ΠZKPoPKPaillier is an an interactive honest-verifier proof for the relation RZKPoPKPaillier.

Proof.

Completeness Let c = EncPpk(x, r) ∈ Z/N2Z∗, and observe that c = rN mod N . If both parties follow the
protocol, then

kN = (s · re)N mod N

= sN · (rN )e mod N

= t · ce mod N

which proves correctness.9 For the soundness of the proof, we rely on the fact that (e− e′, N) = 1 which indeed is always true if e, e′ �
√
N

and N is a safe RSA modulus.
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Soundness Assume that VE obtains two protocol transcripts (t, e, k), (t, e′, k′) such that e 6= e′ mod N and
e > e′, from which one can deduce that also k 6= k′ mod N . This claim follows, since c = rN mod N and
we can write 1 = ce−e

′
= rN ·(e−e

′) mod N where (N,ϕ(N)) = 1. Both e, e′ are chosen uniformly at random
from Z/NZ and with overwhelming probability e−e′ 6= 1 which means that ord(r)|(e−e′). So e−e′ is either
a factor of ϕ(N) (remember that N is a safe RSA prime) or it is a multiple of ϕ(N), both of which allows
to break the CR[N ] assumption.
We obtain

kN = ce · t mod N and k′N = ce
′
· t mod N (1)

By dividing the first by the second equation in (1) we yield

(k/k′)N = ce−e
′

mod N

Now we observe that, with high probability, (e− e′, N) = 1 (otherwise we could efficiently break the security
of the underlying encryption scheme). Using the extended euclidean algorithm, there exist values α, β ∈ Z
such that αN + β(e− e′) = 1. One can use the randomness v = (c mod N)α · (k/k′)β mod N to decrypt c
and obtain the plaintext pair (u, v). This must be the correct plaintext, because EncSpk is a bijection and

vN = (c)αN · (k/k′)βN mod N

= (c)αN · (c)β(e−e
′) mod N

= c mod N

Honest-Verifier Zero-Knowledge The simulator works as follows

(1) Choose k ← Z/NZ∗, e← Z/NZ uniformly at random.
(2) Set t = kN · c−e mod N .
(3) Output (t, e, k).

The algorithm terminates because (c mod N) ∈ Z/NZ∗ and hence c−e mod N is well defined. One can
easily verify that this is a correct transcript for ΠZKPoPKPaillier. Since the setup of the encryption scheme
comes from a CRS, we have that N−1 mod ϕ(N) is well defined and

φ : Z/NZ∗ → Z/NZ∗

x 7→ xN mod N

is bijective. Hence, for t coming from the simulation, an Nth root s must exist in Z/NZ∗. In the protocol,
we choose s uniformly at random whereas we do this for k in the simulator. Since (for a fixed k, e) raising to
the Nth power or computing the Nth root is a bijection, the distributions are perfectly indistinguishable.

ut

Protocol ΠRelPaillier

PR proves the relation RLinearPaillier.

(1) PR generates u, v ∈ Z/NZ, w ∈ Z/NZ∗. He then sends f = zu · EncPpk(v, w) mod N2 to VE.
(2) VE chooses a uniformly random e ∈ Z/NZ and sends it to PR.
(3) PR computes α = u+ e · b mod N,h = v + e · c mod N, i = w · re mod N and and sends (g, h, i) to VE.
(4) VE accepts if zg · EncPpk(h, i) = ẑe · f mod N2, and rejects otherwise.

Fig. 16. Protocol ΠRelPaillier to prove linear relation on ciphertexts

Proof of Linear Relation

Lemma 3. The protocol ΠRelPaillier is an an interactive honest-verifier proof for the relation RLinearPaillier.

Proof.
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Completeness Let ẑ = zb ·EncPpk(c, r) mod N2, then the elements are in the right group i.e. z, ẑ ∈ Z/N2Z∗
as required. Choose g, h, i as in the protocol, and observe that

zg · EncPpk(h, i) = zuze·b · EncPpk(h, i) mod N2

= zu · ze·b · EncPpk(v, w) · EncPpk(e · c, re) mod N2

= f · ze·b · EncPpk(c, r)e mod N2

= f · ẑe mod N2

Soundness Assume that VE obtains two protocol transcripts (f, e, (g, h, i)), (f, e′, (g′, h′, i′)) such that e 6=
e′ mod N . We require that (g, h, i) 6= (g′, h′, i′) (1-2 of the coordinates might agree) which is true if PR were
honest as it could otherwise break the security assumption in a similar way as in the proof of Lemma 2.
We obtain

zg · EncPpk(h, i) = ẑe · f mod N2 and zg
′
· EncPpk(h′, i′) = ẑe

′
· f mod N2

If we divide the first by the second equation, we yield

zg−g
′
· EncPpk(h− h′, i · i′−1) = ẑe−e

′
mod N2

Because e 6= e′ mod N we can compute the multiplicative inverse and raise both sides to that power. Let
ω = (e− e′)−1 mod N

z(g−g
′)·ω · EncPpk(h− h′, i · i′−1)ω = ẑ1+tN mod N2

for some t ∈ Z that we can compute. Now divide both sides by ẑtN , then

ĉ = (N + 1)ω·(h−h
′)
(
(ii′−1)ω

)N
z(g−g

′)ω · ẑ−tN mod N2

= (N + 1)ω·(h−h
′)
(
(ii′−1)ω · ẑ−t

)N
z(g−g

′)ω mod N2

By setting b = (g − g′)ω mod N , r = (ii′−1)ω · ẑ−t mod N and c = ω(h − h′) mod N we obtain a witness
for RLinearPaillier.

Honest-Verifier Zero-Knowledge To simulate ΠRelPaillier, we use the following algorithm:

(1) Choose e← Z/NZ uniformly at random.
(2) Choose g, h← Z/NZ, i← Z/NZ∗ uniformly at random.
(3) Compute f ← zg · EncPpk(h, i)/ẑ−e.
(4) Output (f, e, (g, h, i)).

Observe that the algorithm terminates, because ẑ−e mod N2 is well defined. Moreover, the algorithm outputs
a transcript that is correct.
Let (f, e, (g, h, i)) be a transcript generated by the simulator, then e is chosen as in the protocol. Moreover, we
choose g, h, i from the same distribution that they have in the protocol, and the bijection property uniquely
determines f (as argued already in the previous lemma).

ut

4.2 Computing and Checking Triples

With the above tools, we are now ready to construct our protocol ΠPaillierTripleGen, which we prove to be
correct with respect to FFullTripleGen. In the following, [m] will denote an encryption of message m ∈ Z/NZ,
where the randomness is left implicit. E
In comparison to the preprocessing protocol in the preceding section, the protocol ΠPaillierTripleGen as
depicted in Figure 17 and Figure 18 is rather lengthy. To ease understanding, let us outline the main phases
of it:
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(1) In a first step, every party encrypts uniformly random values.

(2) Take k+ 2 values which define a polynomial A of degree k+ 1 uniquely (when considered as evaluations
in the points 1, ..., k + 2). Interpolate this polynomial A in the next k + 2 points locally, encrypt them
and prove that the resulting points indeed lie on A. Do the same for a polynomial B.

(3) Do an unreliable point-wise multiplication of A,B. The resulting polynomial C is interpolated in a
random point β, and it is checked whether the multiplicative relation holds. This is enough to check
correctness of all triples due to the size of N .

(4) Share the points of C among all parties as random shares.

(5) For all of the shares of A,B,C that were generated in the protocol, products with the MAC key α are
computed. Correctness of the multiplication with α is checked and if the check is passed, the MACs are
reshared among the parties in the same way as the points of C.

The proof of security of the protocol ΠPaillierTripleGen will be given in this section. It relies on the following

Remark 3. Let N = p · q being an RSA modulus with p < q and f, g ∈ (Z/NZ)[X], f 6= g with

max{deg(f), deg(g)} = d. Let moreover x
$←− Z/NZ. Then

Pr[(f − g)(x) = 0 mod N ] <
2 · d
p

Proof. The polynomial f − g is non-zero modulo N , hence non-zero modulo p or q (or both). Moreover,

(f − g)(x) = 0 mod N ⇔ (f − g)(x) = 0 mod p ∧ (f − g)(x) = 0 mod q

If f − g 6= 0 mod p then it will be zero in at most d− 1 positions by the fundamental law of algebra. Since
x is uniformly random modN , it is also uniformly random modp and therefore

Pr [(f − g)(x) = 0 mod p | f − g 6= 0 mod p] <
d

p

The same reasoning goes for the case modq where d/q < d/p. Hence whenever f − g is 0 either modulo p
or q then the above bound holds. By a union bound, this then applies to the case where f − g is non-zero
modulo both p, q.

ut

We make use of the above remark three times in our protocol. First in step (6), where we use it to establish
that the polynomial defined has only degree k. Second, we also use it in step (13) to check that the triples are
indeed multiplicative and also in step (21) implicitly to establish that all MACs are correct (we can consider
multiplication with the MAC α as multiplication with the constant polynomial α).

Theorem 3. The protocol ΠPaillierTripleGen securely implements the functionality FFullTripleGen using a
random oracle and a broadcast channel in the FKGD,Paillier hybrid model with security against every malicious
static PPT adversary controlling at most n− 1 parties if the CR[N ]-problem is hard.

We use a standard proof technique for UC secure MPC protocols with encryption, which goes as follows:
Allow the simulator to decrypt the ciphertexts that it obtains from the dishonest parties. This itself is not
UC secure, but assume that there exists an environment Z that can distinguish the transcript from such a
simulator from a protocol transcript. Then we can use such an Z as a subroutine to break the IND-CPA
security. Such a subroutine can rewind Z and thereby avoid decryption altogether.

The functionality FFullTripleGen that our protocol implements is weaker than whatΠPaillierTripleGen achieves,
because it does not allow the adversary to introduce errors into the MACs (which is in fact possible in
ΠTripleCheck and hence allowed in FFullTripleGen).
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Protocol ΠPaillierTripleGen

In each call of ΠZKPoPKPaillier, ΠRelPaillier the parties sample the challenge e either together using PProvideRandom

or individually using the Fiat-Shamir transform.

Initialize: On input (init,Z/NZ, k) the parties do the following:
(1) Each party Pi picks αi ∈ Z/NZ uniformly at random, broadcasts a fresh encryption [αi] and proves

knowledge of plaintext of [αi] using ΠZKPoPKPaillier.
(2) The parties compute [α]←

∏n
i=1[αi].

(3) Each Pi stores [α] as the encrypted MAC key and its share αi of the MAC key.

Triples: On input (triples) the parties do the following:
(1) For j = 1, . . . , k+2 each Pi picks Ai(j), Bi(j) ∈ Z/NZ uniformly at random, computes [Ai(j)], [Bi(j)] and

broadcasts ([Ai(j)], [Bi(j)])j∈{1,...,k+2} together with proofs of ΠZKPoPKPaillier.
(2) For j = 1, ..., k+2 every party Pi defines the polynomials Ai(·), Bi(·) using Ai(j), Bi(j) as evaluations. Each

party computes and broadcasts ([Ai(l)], [Bi(l)])l=k+3,...,2k+2 together with proofs of plaintext knowledge
using ΠZKPoPKPaillier.

(3) The parties locally compute

[A(l)] =

n∏
i=1

[Ai(l)] and [B(l)] =

n∏
i=1

[Bi(l)]

(4) The parties sample β ← PProvideRandom.ProvideRandom(N − 2k − 3, 1) + 2k + 3 so that β ∈ Z/NZ \
{0, ..., 2k + 2}.

(5) Define A>(β) to be the value A(β) computed using Lagrange interpolation and the values A(1), ..., A(k+2)
and similarly A⊥(β) to be A(β) computed using A(1), ...., A(2k + 2). Every Pi locally computes

[A†(β)] = [A>(β)]/[A⊥(β)] and [B†(β)] = [B>(β)]/[B⊥(β)]

(6) The parties decrypt [A†(β)], [B†(β)] and check whether A†(β) = B†(β) = 0 mod N . Otherwise they abort.
(7) For j = 1, . . . , 2k + 2 each Pi chooses ri,j ← Z/NZ∗, computes encryptions

[ĉi,j ]← [A(j)]Bi(j) EncPpk(0, ri,j)

broadcasts the [ĉi,j ] and proves the relation using ΠRelPaillier.
(8) For j = 1, . . . , 2k + 2 each Pi picks c̃i,j ∈ Z/NZ uniformly at random, computes [c̃i,j ] and broadcasts

([c̃i,j ])j∈{0,...,2k+3} together with proofs of ΠZKPoPKPaillier.

(9) For j = 1, . . . , 2k + 2 the parties locally compute [ĉj ] =
∏n
i=1 [ĉi,j ]/

∏n
i=1 [c̃i,j ] and publicly decrypt ĉj .

(10) For j = 1, . . . , 2k + 2 each party Pi sets [C1(j)] = [c̃1,j ] · [ĉj ], [Ci(j)] = [c̃t,j ] for t ∈ [n]1, t 6= 1 and
[C(j)] =

∏n
i=1 [Ci(j)] and its share of C(j) as

Ci(j) =

{
c̃1,j + ĉj if i = 1

c̃i,j else

(11) The parties sample β ← PProvideRandom.ProvideRandom(N − k, 1) + k so that β ← Z/NZ \ {1, ..., k}.
(12) The parties compute [A(β)], [B(β)], [C(β)] locally using Lagrange interpolation and then decrypt these

values.
(13) If A(β) ·B(β) 6= C(β) mod N then abort.

Fig. 17. Protocol ΠPaillierTripleGen to generate correct random triples out of random single values

Proof (of Theorem 3). For the proof, we use the simulator SPaillierTripleGen as depicted in Figure 19. This
simulator uses decryption since it has the secret key for the encryption scheme. For the sake of contra-
diction, assume that there exists an environment Z that can distinguish between protocol transcripts of
ΠPaillierTripleGen and simulated transcripts of SPaillierTripleGen with non-negligible probability σ in poly-
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Protocol ΠPaillierTripleGen (part 2)

In this part of the protocol, we will now compute MACs for all triples.

Triples:
(14) Each Pi picks si ∈ Z/NZ uniformly at random, computes [si] and broadcasts [si] together with a proof of

ΠZKPoPKPaillier. Let s =
∑
i si

(15) We define the following abbreviation:

ti,j ←


si for j = 0

Ai(j) for j = 1, ..., k

Bi(j) for j = k + 1, ..., 2k

Ci(j) for j = 2k + 1, ..., 3k

and tj ←


s for j = 0

A(j) for j = 1, ..., k

B(j) for j = k + 1, ..., 2k

C(j) for j = 2k + 1, ..., 3k

(16) For j = 0, . . . , 3k each Pi picks ri,j ∈ Z/NZ∗ uniformly at random and computes

[ti,j · α]← [α]ti,j · EncPpk(0, ri,j)

then broadcasts ([ti,j · α]) and proves the relation using ΠRelPaillier.
(17) For j = 0, . . . , 3k, P1, . . . , Pn compute

[tj · α]←
∏n

i=1
[ti,j · α].

(18) The parties sample β ← PProvideRandom.ProvideRandom(N, 1).
(19) All parties compute

[v]←
∏3k

j=0
[tj ]

βj

and [v′]←
∏3k

j=0
[tj · α]β

j

(20) The parties jointly decrypt [v] to v and check that the decryption was correct.
(21) The parties jointly decrypt

[M ]← [α]v/[v′]

and verify that M == 0. All parties verify correctness of decryption.
(22) For j = 1, . . . , 3k each Pi picks mi,j ∈ Z/NZ uniformly at random, computes [mi,j ] and broadcasts

([mi,j ])j∈{1,...,3k} together with proofs of ΠZKPoPKPaillier.
(23) For each j = 1, . . . , 3k, the parties compute

[Oj ]← [tj · α]/
∏n

i=1
[mi,j ]

and publicly decrypt [Oj ]. All parties verify correctness of decryption.
(24) For each j = 1, . . . , 3k, each Pi determines its share γ(tj)i, of the MAC γ(tj) = tj · α of tj as

γ(tj)i ←

{
Oj +mi,j for i = 1

mi,j for 1 < i ≤ n

(25) Each party Pi uses ti,j , γ(tj)i as its shares of 〈tj〉.

Fig. 18. Protocol ΠPaillierTripleGen to generate correct random triples out of random single values

nomial time. Now, we show how to use the distinguisher to break the IND-CPA property of the encryption
scheme.

Let ΠReal be the distribution of a real protocol execution, and ΠSim be the distribution that SPaillierTripleGen
outputs. We first define ΠReal,ZK to be the distribution of a real protocol execution where the zero-knowledge
proofs are replaced with simulations of the proofs. The simulations of the proofs are perfectly indistinguish-
able from real proofs, and therefore ΠReal ≈perf ΠReal,ZK . Defining ΠSim,ZK for ΠSim in the same way, it
also holds that ΠSim ≈perf ΠSim,ZK .
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Simulator SPaillierTripleGen

In this simulator, we make the assumption that the secret key is known. Let PBad be the malicious parties. Let k
be the number of triples.

SimulateInitialize:
(1) For each simulated honest party Pi, i ∈ [n]1 \ PBad, provide a fresh encryption of the random value

ri ← Z/NZ which is sent to the dishonest parties as ci = [ri]. Then prove plaintext knowledge using
ΠZKPoPK.

(2) Decrypt the ciphertexts ci that are obtained from the malicious parties Pi, i ∈ PBad. Send (init,Z/NZ, k)
and the plaintexts in the name of the malicious parties to FFullTripleGen.

(3) Locally compute [α] =
∏n
i=1 [ci] and α =

∏n
i=1 ci.

SimulateTriples:
(1) Perform step (1) as in the protocol. Decrypt the ciphertexts of Pi, i ∈ PBad after step (1). Then compute

the polynomials Ai(·), Bi(·) as defined in step (2).
(2) Perform step (2) as in the protocol. Decrypt the ciphertexts of Pi, i ∈ PBad after step (2) as A′i(l), B

′
i(l).

Now set cheated as

cheated =

{
⊥ if ∀i, l : Ai(l) = A′i(l) mod N and Bi(l) = B′i(l) mod N

> else

(3) Perform step (3)− (6) as in the protocol. Abort if cheated == >.
(4) Perform step (7) as in the protocol. Decrypt the ciphertexts of Pi, i ∈ PBad as ĉ′i,j . Set cheated as

cheated =

{
⊥ if ∀i, j : ĉ′i,j = A(j) ·Bi(j)
> else

(5) Perform step (8)− (13) as in the protocol. Abort in step (13) if cheated == >.
(6) Send (triples) to FFullTripleGen. Let Ai[j] = Ai(j),Ci[j] = Ci(j),Ci[j] = Ci(j) from the protocol. Then

send Ai,Bi,Ci to FFullTripleGen for each i ∈ PBad and also ∆γ,A = ∆γ,B = ∆γ,C = 0.
(7) Perform step (14)− (16) as in the protocol, and decrypt all values obtained from players controlled by A.

If in one of the ciphertexts [ti,j · α] of the dishonest parties is not of the form α · ti,j for the respective
encrypted value [ti,j ] then set cheated = >, otherwise cheated = ⊥.

(8) Perform step (17)− (21) as in the protocol. In step (21) the simulator aborts if cheated == >.
(9) Perform step (22)− (25) as in the protocol.

(10) Set γ(t)[j] = γ(tj)i from the protocol. For each i ∈ PBad send γ(A)i,γ(B)i,γ(C)i to FFullTripleGen

during the procedure PAngle.

Fig. 19. Simulator SPaillierTripleGen for the protocol ΠPaillierTripleGen

In a next step, we replace the checks for correctness of statements as they are done in the protocol
ΠPaillierTripleGen, with checks as in SPaillierTripleGen. That is, instead of choosing a random element, then
evaluating the polynomial at that position, and then decrypting the result and comparing, we abort if the
statement is not true. Formally, we do the following

(1) In step (6) of ΠPaillierTripleGen, abort under the same conditions as in SPaillierTripleGen in step (3).

(2) In step (13) of ΠPaillierTripleGen, abort under the same conditions as in SPaillierTripleGen in step (5).

(3) In step (21) of ΠPaillierTripleGen, abort under the same conditions as in SPaillierTripleGen in step (8).

Let us denote the resulting distribution as ΠReal,ZK,Correct, AΠ be the event that a check in the protocol
fails and AS be the event that the check fails in SPaillierTripleGen. We first observe that, if the statement is
true, the check will never fail. Thereby, AΠ ⊆ AS . Conversely, by letting the degree of the polynomials be
polynomial in the security parameter λ and by Remark 3, we conclude that Pr[AS ]−Pr[AΠ ] < negl(λ) and
thereby ΠReal,ZK,Correct ≈stat ΠReal,ZK .
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Now consider an environment Z that can distinguish between ΠReal and ΠSim. Since Z runs in polynomial
time and by the above reasoning, it will distinguish ΠReal,ZK,Correct and ΠSim,ZK with essentially the same
advantage σ.
We now run the following algorithm B with Z as a a subroutine, which is used to generate all the interactions
of the malicious parties. On a high level, B will run both ΠPaillierTripleGen,SPaillierTripleGen synchronously
and combine the messages to Z from both instances so that they are consistent with exactly one of them.

(1) Obtain the public-key N from the challenger C. Start simulation for FKGD,Paillier and the random oracle.
We simulate FKGD,Paillier as follows:

(1.1) If FKGD,Paillier is queried to generate a key by all parties, then first sample n uniformly random
values r1, ..., rn from the same domain as in FKGD,Paillier. Then output (N, ri) to each party Pi.

(1.2) If FKGD,Paillier is queried to decrypt a ciphertext c, then we instead send c,m′ to A where m′ is
chosen by this modified algorithm. We will later describe how each such m′ is chosen.

(2) Send the plaintexts m0 = 0,m1 = 1 to C and obtain the challenge cq. Set c0 = cq, c1 = [1]/cq.
(3) Simulate how messages would be generated in the real protocol and in the simulator. Whenever a

simulated honest party would send an encrypted message, there are now two choices m0 for the message
as in the protocol and m1 as in the simulated case. We send the encrypted value cm0

0 · cm1
1 · [0] instead,

unless stated otherwise below.
(4) For every zero-knowledge proof to be given, use the simulator of the proof and the programmable random

oracle to simulate the proof.
(5) For every encrypted value that an adversarial party sends, extract the input from the zero-knowledge

proofs by rewinding Z.
(6) To simulate the decryption in FKGD,Paillier, we will provide the decrypted message m′ as follows:

(6.1) If we decrypt in step (6), (13), (21) in ΠPaillierTripleGen or step (3), (5), (8) in SPaillierTripleGen then
we output 0 for FKGD,Paillier if cheated == ⊥ or a random nonzero10 number if cheated == >.

(6.2) In step (8), let Pi be an honest party. For all other honest parties, generate encryptions as described
above. For Pi, sample a random δj ∈ Z/NZ and compute [c̃i,j ] = cx0

0 c
x1
1 · [0], where

x0 =
∑
r∈[n]1

ĉr,j − δj −
∑

r∈[n]1\PBad∪{i}

c̃r,j and x1 =
∑
r∈[n]1

ĉ′r,j − δj −
∑

r∈[n]\PBad∪{i}

c̃′r,j

where the values ĉr,j , c̃r,j come from the real protocol and ĉ′r,j , c̃
′
r,j from the modified

SPaillierTripleGen. Then in step (9), output ĉj = δj −
∑
i∈PBad

c̃i,j .
(6.3) In step (22), let Pi be an honest party. For all other honest parties, generate encryptions as described

above. For Pi, sample a random δj ∈ Z/NZ and compute [mi,j ] = cx0
0 c

x1
1 · [0], where

x0 = tj · α− δj −
∑

r∈[n]1\PBad∪{i}

mr,j and x1 = t′j · α′ − δj −
∑

r∈[n]\PBad∪{i}

m′r,j

where the values tj · α,mr,j come from the real protocol and t′j · α′,m′r,j from the modified
SPaillierTripleGen. Then in step (23), output Oj = δj −

∑
i∈PBad

mi,j .
(6.4) In step (14), first choose a random value β and set PProvideRandom to output β in step (18). Let

Pi be an honest party. For all other honest parties, generate encryptions as described above for
[sr], r ∈ [n]1\PBad∪{i} in step (14). For Pi, sample a random δ ∈ Z/NZ and compute [si] = cx0

0 c
x1
1 ·[0],

where

x0 = δ −
∑

r∈[n]1\PBad∪{i}

sr −
3k∑
j=1

 ∑
r∈PBad

tβ
j

r,j +
∑

r∈[n]1\PBad

tβ
j

r,j


x1 = δ −

∑
r∈[n]1\PBad∪{i}

s′r −
3k∑
j=1

 ∑
r∈PBad

tβ
j

r,j +
∑

r∈[n]1\PBad

t′β
j

r,j


10 We can also just abort since the adversary has cheated.
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where the values sr, t
βj

r,j come from the real protocol and s′r, t
′βj

r,j from the modified SPaillierTripleGen.
Then in step (20), output the value δ +

∑
i∈PBad

si for the decryption of [v].
(7) Finally, after obtaining the guess bg from Z, send bg to C.

The correctness of steps (6.2), (6.3), (6.4) follows by combining the values in both cases with the equations
in the protocol, which is left out here.
Let C choose to encrypt cq = [0] with probability ρ and hence cq = [1] with probability 1−ρ. If cq = [0], then
the distribution of B is exactly the same as ΠReal,ZK,Correct, which will happen with probability ρ. If, on the
other hand, cq = [1], then the distribution will be ΠSim,ZK which will happen with probability 1− ρ. Since
Z can distinguish both ΠReal,ZK,Correct, ΠSim,ZK with advantage at least σ, the output to C will be correct
with non-negligible advantage at least σ, contradicting that the encryption scheme is IND-CPA secure. ut
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26. Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261(4):515–534, 1982.

27. Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. Efficient constant round multi-party compu-
tation combining bmr and spdz. In Advances in Cryptology–CRYPTO 2015, pages 319–338. Springer, 2015.
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A Concluding the Proof of Theorem 2

In this section, we will provide the material necessary to conclude the proof of Theorem 2. To do so, we
will first show how to solve matrixGame instances efficiently. Our algorithmic approach allows for k to be
as large as ≈ 40, while the runtime of the solver is mostly independent of m,n. After establishing a high-
level intuition of a potential algorithm, we conclude the proof of the Theorem which crucially relies on the
quantities our algorithm outputs. We implemented a solver for matrixGame and plan to make it available
to the public.

A.1 Computing matrixGame Efficiently

First, let us describe how computing the problem can be simplified by putting it into a normal form. This
is depicted in Figure 20.

sort

columns

sort

rows

2 1 3 0 1 2 0 1 1 2 2 3

0

1

2

2

2

2

1

2

2

2

2

0

Fig. 20. Normal Form, Part 1

Here we reorder the rows such that for rows i, j and row sums ri, rj it must hold that i < j ⇒ ri ≤ rj (note
that if ri = rj then we leave their order relative to each other untouched). A similar permutation is then
applied to the columns with column sums ci. It must hold that

∑
ri =

∑
ci = k, hence we can conversely start

by sampling all such possible sequences (ri)i∈[n]1 , (ci)i∈[m]1 (that are monotone, have non-zero coefficients
and add up to k), then consider how many variations of the k balls fit such a pair of sequences, and multiply
it with the number of possible row and column permutations that are described above.11. To obtain the
number of row permutations R we have to consider that for each such permutation π rows of equal weight
keep relative order, i.e. i < j, ri = rj ⇒ π(i) < π(j). Now define rai = |{t | rt = i}| then the number of
permutations equals the multinomial coefficient

R =

(
n

ra0 , r
a
1 , ..., r

a
k

)
Similarly, one can obtain the number of column permutations C. Using R,C, (ri)i∈[n]1 , (ci)i∈[m]1 and the
number of solutions for each possible pair (ri)i∈[n]1 , (ci)i∈[m]1 one can cover the whole solution space while
only enumerating only a small subspace.

A First Attempt - Lattice Enumeration In a first solution attempt, we will show how the problem
reduces to a special case of lattice point enumeration. This can best be seen by an example: Let n = 3,m = 2.
At each point (i, j) of the grid, there is either a ball or not. Hence we can model each such point as a variable
xi,j ∈ {0, 1}, which looks as follows:

r1 x1,1 x1,2
r2 x2,1 x2,2
r3 x3,1 x3,2

c1 c2

11 One can additionally prune the search tree by the following observation: If a column contains ci elements, then
there must be at least ci nonzero rows. More formally, max{ci} ≤

∑
ri 6=0 1 and max{ri} ≤

∑
ci 6=0 1.
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It must hold that ri =
∑
j xi,j , ci =

∑
j xj,i. We can write this in homogeneous form as

−r1 +x1,1 +x1,2 = 0
−r2 +x2,1 +x2,2 = 0
−r3 +x3,1 +x3,2 = 0

−c1 +x1,1 +x2,1 +x3,1 = 0
−c2 +x1,2 +x2,2 +x3,2 = 0

Finding solutions to the above system of equations is equivalent to finding all x ∈ kerT \ {0},x ∈
{0, 1}7,x[1] = 1, where

T =


−r1 1 1 0 0 0 0
−r2 0 0 1 1 0 0
−r3 0 0 0 0 1 1
−c1 1 0 1 0 1 0
−c2 0 1 0 1 0 1


which can be solved by enumerating all vectors of norm l∞ = 1 from the lattice Λ(kerT ). Obtaining a basis
B of Λ(kerT ) is computationally cheap. This basis can then be LLL-reduced ([26]) and the short vectors
be enumerated with the algorithm from [21] due to Fincke and Pohst12. A drawback of the above approach
is that all short vectors are enumerated, which includes vectors that have −1, 0, 1-coefficients which we do
not consider. For large dimensions, the fraction of vectors that have only 0, 1-coefficients is negligible and
the above lattice-based approach infeasible. In addition, even the number of such binary vectors can already
be exponential13, so enumerating the whole kernel will not lead to an efficient solution. We also want to
mention that using the Gaussian heuristic to approximate | kerT | does not work.

Directly Solving the Problem We will now describe a different approach to compute the number of
binary solutions to the system of equations as described above. To algorithmically tackle the problem, we
use a mixture of dynamic programming, additional normal forms and tricks for efficient computation of
binomial/multinomial coefficients.

(1) We first observe that the problem is recursive, which we depict in Figure 21. What is shown there is that,
for each assignment of balls to a certain column, to find all solutions with this assignment in that specific
column one has to find all remaining assignments for the other columns which reduces to solving the
exact same problem, but for a smaller number of balls. One can hence precompute a table of solutions for
a smaller number of balls and thereby drastically prune the recursion tree. This approach is somewhat
similar to a dynamic programming solution (we avoid using actual dynamic programming as such a
solver would compute too many configurations that will never be reached).
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Fig. 21. Recursive elimination

12 See [25] for a good explanation of the algorithm.
13 Think about the case where m = n, ri = ci = 1. Then there are mn possible solutions.
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(2) Moreover, certain assignments of balls to a column can imply solving the same subproblem multiple
times, as depicted in Figure 22. After eliminating the rightmost column, the computational subproblem
that has to be solved is the same in all three cases. Hence it is efficient to consider each such assignment
only once and multiply it with a correction factor.
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Grey area = same number of possible assignments

Fig. 22. Equivalent assignments

(3) We need to evaluate a large number of binomial and multinomial coefficients to solve the above problem.
To do this efficiently, we observe that multiplication and division for large factorial numbers can be done
efficiently as follows:
Let x ∈ N be the largest value whose factorial we have to compute. Let pl11 · ... · plnn = x! such that
i 6= j ⇒ pi 6= pj and ∀i ∈ [n]1 : li ≥ 1, pi ∈ P i.e. be the prime factorization of x!. We observe that for

each 1 ≤ y ≤ x we can write y! as y! = p
l′1
1 · ... · p

l′n
n for different l′1, ..., l

′
n. In particular, it holds that

x! · y! = p
l1+l

′
1

1 · ... · pln+l
′
n

n and x!/y! = p
l1−l′1
1 · ... · pln−l

′
n

n

where all of the exponents are nonnegative. Hence in this representation one can efficiently compute
multinomial coefficients. Conversion into the above form and back to integers can be efficiently precom-
puted (as long as an upper bound on x is known).

A.2 Proof of Theorem 2, continued

We first assume that T > sec. To argue soundness, we have to show that an extractor will fail to obtain all
xi, ri with probability at most 2−sec. We denote the event where the extractor fails as AExErr. Moreover,
we denote with Si the event that that i bad ciphertexts survived the initial cut and choose and with Ci that
the adversary initially chose i bad ciphertexts. We can write

Pr[AExErr] ≤ max
i
Pr[AExErr | Si,Ci] · Pr[Si | Ci] · Pr[Ci]

= max
i
Pr[AExErr | Si,Ci] · 2−i · Pr[Ci]

= max
i
Pr[AExErr | Si] · 2−i

because Si ⊃ Ci. Since, for i > sec we have that Pr[AExErr|Si,Ci] ·2−i < 2−sec we can ignore all i > sec and
simply focus on the case i ∈ [1, sec]. In the following, we will describe how to upper-bound Pr[AExErr | Si]
for any such i.
For the extractor not being able to extract a certain plaintext xj , rj it is necessary that, for all sums that
were opened in ΠNewPracticalZK and that include cj , either another ciphertext ck that was not extracted yet
is part of the sum or a sum including cj ,ak was opened where ak is one of the i non-extractable auxiliary
ciphertexts. We denote with Vi,k the event that, in set Vi ⊂ T there are k bad auxiliary ciphertexts. Moreover,
let U1,k be the event that k ciphertexts could not be extracted after step (4), U2,k be the event that not all
k ciphertexts end up alone in a sum x′, r′ in step (5.1) (for all b2 repetitions) and Fi,k be the event that,
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in step (5.1) for z = i, for some of the u sums xj all the α1
j , ...,α

c
j will be paired up with one of the k bad

ciphertexts. We can now model Pr[AExErr | Sb] as

Pr[AExErr | Sb] ≤ Pr

[ i1+...+iℵ=b⋃
i1,...iℵ∈N+

⋃
x∈[sec]1

(
V1,i1 , ...,Vℵ,iℵ ,U1,x,

(
U2,x ∪ F1,ib1+1

∪ ... ∪ Fb2,ℵ
))]

≤
i1+...+iℵ=b∑
i1,...iℵ∈N+

∑
x∈[sec]1

Pr

[(
V1,i1 , ...,Vℵ,iℵ ,U1,x,

(
U2,x ∪ F1,ib1+1

∪ ... ∪ Fb2,ℵ
))]

≤
i1+...+iℵ=b∑
i1,...iℵ∈N+

∑
x∈[sec]1

(
Pr
[
V1,i1 , ...,Vℵ,iℵ ,U1,x,U2,x

]
+

Pr
[
V1,i1 , ...,Vℵ,iℵ ,U1,x,

(
F1,ib1+1

∪ ... ∪ Fb2,ℵ
)])

where ℵ = b1 + b2. Using the chain rule, we can write

Pr
[
V1,i1 , ...,Vℵ,iℵ ,U1,x,U2,x

]
= Pr

[
U2,x | V1,i1 , ...,Vℵ,iℵ ,U1,x

]
·

Pr
[
U1,x | V1,i1 , ...,Vℵ,iℵ

]
·

Pr
[
Vℵ,iℵ | V1,i1 , ...,Vℵ−1,iℵ−1

]
· · ·Pr

[
V1,i1

]
An easy calculation using the hypergeometric distribution shows that

Pr
[
Vℵ,iℵ | V1,i1 , ...,Vℵ−1,iℵ−1

]
· · ·Pr

[
V1,i1

]
=

∏
k∈[ℵ−1]0

(b−∑k−1
j=0 ij
ik

)
·
(T−∑k−1

j=0 |Vj |−(b−
∑k−1

j=0 ij)

|Vk|−ik

)
(T−∑k−1

j=0 |Vj |
|Vk|

)
The value Pr

[
U1,x | V1,i1 , ...,Vℵ,iℵ

]
can best be computed by modeling each of the b1 rounds of step (4) as

a step in a Markov process. That is, for each ij one can compute the probability distribution that 0, 1, ..., ij
of the original ciphertexts which have not been extracted yet end up in a sum with an auxiliary ciphertext
where the extractor does not have the PRF keys. This can easily be computationally solved. A bound on
Pr
[(
F1,ib1+1

∪ ... ∪ Fb2,ℵ
)
| V1,i1 , ...,Vℵ,iℵ ,U1,x

]
follows from [33] as

Pr
[(
F1,ib1+1

∪ ... ∪ Fb2,ℵ
)
| V1,i1 , ...,Vℵ,iℵ ,U1,x

]
≤

b2∑
j=1

0 if ij < c

2 ·
√
t ·
( ij

2
√
tc

)c
Finally, using Problem 1 we observe that

Pr
[
U2,x

∣∣ V1,i1 , ...,Vℵ,iℵ ,U1,x

]
=(

1− Pr
[
r + s = x |M $←−M√t,√t,x ∧ (r, s)← matrixGame(M ,

√
t,
√
t)
])b2

in the case of strong extraction (for weak extraction, adjust the definition of matrixGame accordingly). We
then solve all of the above quantities computationally to compute Pr[AExErr | Sb].
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B Universal Composability - A Short Introduction

For completeness, we include a short introduction into the UC framework (due to [10]) which follows the
outline of [14]. For all turing machines mentioned here, we assume that sec, λ are an implicit input and
polynomial runtime is defined as being polynomial in both of these parameters.

Parties and Adversaries. We assume that there are n parties P1, ..., Pn that want to participate in
a distributed computation, and these parties are probabilistic polynomial time (PPT) interactive Turing
Machines (iTMs). An adversary A is an iTM which gains certain influence over a subset PBad ⊂ {P1, ..., Pn}.
The size of this subset and the capabilites that A has is described by the adversarial model. In this paper,
we consider security against static,active adversaries that control up to n− 1 parties.
Static in this context means that, at the beginning of a protocol run, A defines a set PBad of at most n− 1
parties he intends to corrupt, but he cannot change his choice adaptively throughout the protocol run. This
information is not given to the honest parties though, i.e. each Pi 6∈ PBad does not know which other parties
they can trust or not.
Active adversaries have full control over PBad. They can choose the inputs to the computation, read all
information these parties obtain and change messages arbitrarily.

Functionalities. One models the capabilities of a protocol and potential runtime-leakage in a so-called ideal
world using a functionality (functionalities are denoted with a F). Such a functionality is a PPT iTM that
P1, ..., Pn and A can communicate with. It resembles an idealized version of a protocol and specifies the goal
in terms of information that A could obtain, the computation that is done and the values that the honest
parties should obtain.

Protocols. In the real world, we state the actual protocol as a collection of PPT iTMs P1, ..., Pn which
communicate according to a given pattern, plus some eventually available resources. A protocol is denoted
with a Π or, if it is a small subroutine, with a P for procedure.
In a protocol it is defined which party at which point sends which message to which other party or resource or
which computation it performs locally. Resources (such as e.g. other protocols) are abstractly made available
as ideal functionalities of them, which are iTMs themselves. Herein lies the strength of UC – if we prove a
protocol to be secure in a hybrid setting (where the resources are ideal functionalities), and prove security
for subprotocols implementing these functionalities separately, then the general protocol instantiated with
the subprotocols will be secure as well.

Defining security. In order to prove security of a protocol, one has to provide a simulator (denoted by S)
that will interact with the ideal functionality in the ideal world. This simulator is a PPT iTM interacting
with A and the dishonest parties (this is one fixed S for each A that is constrained by a fixed adversarial
model). This simulator mimics some P̃i in place of the Pi 6∈ PBad and functionalities available during runtime.
At the same time S replaces the dishonest parties towards the ideal functionality F with which the actual
honest parties Pi communicate.
Now let there be a PPT iTM Z (the environment) which provides inputs to all parties P1, ..., Pn as well as
A (and obtains output from all of them). For the security game, sample a bit b uniformly at random. If
b = 0 then one runs an experiment where Z interacts in the real world (A, Π), whereas we let Z talk in the
ideal world defined by (A,S,F) if b = 1. After the execution of either the ideal world or real world setting,
Z outputs a bit b′ which is a guess of Z about the setting Z currently is in. Depending on the distance of
the distributions of the random variables b, b′ we call a protocol computationally secure(if distinguishing
the distribution reduces to solving a problem conjectured to be computationally hard in λ), statistically
secure (if the distributions are statistically indistinguishable in sec) or perfectly secure(if the distributions
are identical).
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