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Abstract

Brakerski showed that linearly decryptable fully homomorphic encryp-
tion (FHE) schemes cannot be secure in the chosen plaintext attack (CPA)
model. In this paper, we show that linearly decryptable FHE schemes can-
not be secure even in the ciphertext only security model. Then we con-
sider the maximum security that a linearly decryptable FHE scheme could
achieve. This paper designs fully homomorphic symmetric key encryption
(FHE) schemes without bootstrapping (that is, noise-free FHE schemes).
The proposed FHE schemes are based on quaternion/octonion algebra and
Jordan algebra over finite rings Zq and are secure in the weak ciphertext-
only security model assuming the hardness of solving multivariate quadratic
equation systems and solving univariate high degree polynomial equation
systems in Zq . It is up to our knowledge that this is the first noise-free FHE
scheme that has ever been designed with a security proof (even in the weak
ciphertext-only security model). It is argued that the weak ciphertext-only
security model is sufficient for various applications such as privacy preserv-
ing computation in cloud. As an example, the proposed FHE schemes are
used to construct obfuscated programs. This example could be further used
to show that the scheme presented in this paper could be combined with exist-
ing FHE schemes with bootstrapping to obtain more efficient FHE schemes
with bootstrapping in the fully CPA model. At the end of the paper, we point
out the insecurity of several recently proposed noise-free FHE schemes.

1 Introduction

It had been an open question to design fully homomorphic encryption schemes
(FHE) until Gentry [15] proposed a framework for FHE design using two phases:
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first design a somewhat-homomorphic encryption scheme and then use bootstrap-
ping techniques to convert it to a fully homomorphic encryption scheme. Since
Gentry’s initial FHE design, the performance of FHE scheme has improved a lot
though it is still slow for various practical applications.

In the past few years, numerous works have been done to analyze the security
and performance of FHE schemes (due to the space limit, we are unable to list
these important works here). Brakerski [5] investigated the relationship between
decryption circuit complexity and FHE scheme security. In particular, Brakerski
showed that if a scheme can homomorphically evaluate the majority function, then
its decryption cannot be weakly-learnable. A corollary of this result is that linearly
decryptable FHE schemes cannot be secure in the CPA (chosen plaintext attacks)
security model. In this paper, we show that linearly decryptable FHE schemes
cannot be secure even in the ciphertext-only security model. With these impossi-
bility results, one may wonder what kind of maximum security an FHE scheme
with simple decryption circuit could achieve? By relaxing the definition of the
ciphertext-only attacks to the weak ciphertext-only attacks, this paper is able to
design efficient secure FHE schemes with linear decryption circuits.

The main performance bottleneck for Gentry’s approach is the “noise” reduc-
tion process since the homomorphic operations increase the noise in ciphertexts.
After a homomorphic operation (e.g., a circuit gate evaluation) is performed on
the ciphertexts, Gentry’s [15] bootstrapping technique is used to refresh the ci-
phertexts by homomorphically computing the decryption function and bringing
the noise of the ciphertexts back to acceptable levels. The bootstrapping opera-
tion accounts for the major performance cost in FHE implementations. The per-
formance of FHE schemes would be significantly improved if one could design
noise-free FHE schemes. Using quaternion/octonion/Jordan algebra based coding
techniques, this paper introduces noise-free fully homomorphic symmetric key en-
cryption schemes. The proposed FHE schemes are provable secure in the weak
ciphertext-only security model with the assumption that it is computationally in-
feasible to solve multivariate quadratic equation systems and it is computationally
infeasible to solve univariate high degree polynomial equation systems in the un-
derlying rings Zq. The hardness assumption for the security is reasonable for large
enough Zq (e.g., |Zq|≥ 21000) since it is known that finding square roots modulo
a composite number is equivalent to factoring. This fact has been used in the lit-
erature to show the security of Rabin cryptosystem. It is expected that the weak
ciphertext-only security model for FHE is sufficient for various applications such as
outsourcing of private algorithm implementations. Furthermore, for a given CPA
secure FHE scheme noiseFHE with bootstraping, one can obtain a CPA secure
FHE scheme with bootstrapping by combing the scheme noiseFHE with the prop-
soed scheme in this paper. The combined FHE scheme requires smaller parameters
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for noiseFHE. Thus the combined scheme could be much more efficient.
The reader may ask whether it is possible to implement the proposed FHE

scheme over finite field Fq with q = pm for a prime p? The answer is no. The
problem of recovering a secret message for the proposed FHE scheme can be re-
duced to the problem of solving univariate polynomial equations. In a small size
finite field Fq, a univariate polynomial equation can be solved using the Berlekamp
algorithm. For a large size finite field Fq, efficient algorithms for factoring poly-
nomials over finite fields (see [14] for a survey) could be used to solve univariate
polynomial equations. For example, one may use the extended version of Tonelli-
Shanks randomized algorithm and Cipolla’s randomized algorithm.

The structure of paper is as follows. Section 2 shows that linearly decryptable
FHE schemes cannot be secure in the ciphertext-only security model. Section 3
reviews octonion algebra and proves some basic results that will be used through-
out the paper. Section 4 discusses octonions over finite fields Fq and finite rings
Zq. Section 5 reviews the basic results regarding the automorphism group for octo-
nions. Section 6 describes the fully homomorphic encryption scheme OctoM based
on octonions. Section 7 discusses several facts regarding OctoM. Section 8 shows
that the scheme OctoM is secure in the weak ciphertext-only security model assum-
ing the hardness of solving quadratic multivariate equation systems in Zq. Section
9 introduces the fully homomorphic encryption scheme JordanM based on Jordan
(Alberta) algebra. Section 10 describes the application of proposed FHE schemes
to software obfuscation problems. Section 11 recommends some practical strate-
gies for the FHE scheme implementation, presents sample security parameters for
the proposed FHE schemes, and compares the performance of the schemes against
the RSA encryption scheme. Section 12 shows that several FHE schemes (claimed
as “noise-free”) in the literature are insecure.

We conclude this section by introducing some notations. The schemes in this
paper will be based on finite rings Zq = Z/qZ with q = pr11 · · · prmm for some
primes p1, · · · , pm and non-negative integers r1, · · · , rm. Let Zq

∗ denote of the set
of invertible elements in Zq. Bold face letters such as a,b, e, f ,g are used to denote
row vectors over Zq. For a vector subset V = {ai : i ≤ k − 1} ⊂ Zq

n, the span of
V is defined as all linear combinations of vectors in V . That is, we have

span(V ) =

{
k−1∑
i=0

viai : vi ∈ Zq,ai ∈ V

}
.

2 Security of linearly decryptable encryption schemes

Brakerski [5] called an encryption scheme to be linearly decryptable if the decryp-
tion circuit can be described as an inner product calculation. In the following, we
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formally define the Inner Product Encryption Scheme IPE = (IPE.Setup, IPE.Enc, IPE.Dec)
over finite rings Zq. The definition remains the same for the IPE scheme over fi-
nite fields Fq. It should be noted that our Inner Product Encryption Scheme IPE is
different from various Inner Product Encryption Schemes used in the construction
of Attribute Based Encryption (ABE) schemes in the literature.
Setup IPE.Setup(n, κ): For the given security parameter κ and the dimension
n ≥ 3, choose a finite ring Zq and a random k = [k0, · · · , kn−1] ∈ Zq

n such that
ki ∈ Zq

∗ for at least one i < n. Let k be the private key.
Encryption IPE.Enc: For a message m ∈ Zq, select a random c ∈ Zq

n such that
m = ckT where ckT is the inner product of c and k. Let IPE.Enc(k,m) = c.
Decryption IPE.Dec: For a ciphertext c, let m = IPE.Dec(k, c) = kcT .

The definition of ciphertext-only security for an encryption scheme is closely
related to the perfect secrecy definition for one-time pad encryption schemes. The
commonly used security definition for one-time pad encryption scheme includes
indistinguishability based IND-onetime and simulation based SIM-onetime secu-
rity. We will use the indistinguishability based security definition for ciphertext-
only security.

Definition 2.1 (Ciphertext-only security model) Let xx = (KeySetup, Enc, Dec)
be a symmetric key encryption scheme over a message space M. For a pair of
probabilistic polynomial time (PPT) algorithms A = (A0, A1), define the follow-
ing experiments:

• A0 generates the secret key by running key ← xx.KeySetup(κ) where κ is
the security parameter.

• A0 chooses t messages p0, · · · , pt−1 according to the distribution ofM and
outputs t ciphertexts Cp0 , · · · , Cpt−1 by running Cpi = xx.Enc(key, pi).

• A1 selects 2 messages m0,m1 ∈M and gives them to A0.

• A0 selects a random bit b ∈ {0, 1} and outputs Cmb
= xx.Enc(key,mb).

• A1 outputs a bit b′.

The output of the above experiment is defined to be 1 if b′ = b, and 0 otherwise.
We write COA(A0,A1)(κ) = 1 if the output is 1 and in this case we say that A1

succeeded. The encryption scheme xx is said to be (t, ε)-secure in the ciphertext-
only attack (COA) security model for ε = negl(κ) if for all PPT algorithms A =
(A0, A1), we have

Prob[COA(A0,A1)(κ) = 1] ≤ 1

2
+ ε.
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The following theorem shows that an IPE encryption scheme cannot be fully
homomorphic and secure in the ciphertext-only security model at the same time.

Theorem 2.2 Let xx = (KeySetup, Enc, Dec) be a fully homomorphic symmetric
key encryption scheme over Zq such that the decryption process xx.Dec is equiv-
alent to IPE.Dec of dimension n. Then xx is not secure in the ciphertext-only
security model.

Proof. Let k ∈ Zq
n be the private key and xx.Dec(c) = kcT for ciphertexts c ∈ Zq

n.
Without loss of generality, we may assume that the messages selected by the PPT
algorithm A1 during the experiment is m0 = 0 and m1 = 1. Let cb ∈ Zq

n be the
ciphertext output by the algorithm A0 during the experiment where b = 0, 1.

By using the multiplicative homomorphism property of xx, the algorithm A1

can calculate ciphertexts cb,i ∈ Zq
n of bi = b for i ≥ 1. It is straightforward that

for d = n+ 1 the ciphertexts cb,1, . . . , cb,d are linearly dependent. In other words,
there exist a1, · · · , ad ∈ Zq such that a1cb,1 + a2cb,2 + · · · + adcb,d = 0. This
implies that

a1b+ a2b
2 + · · ·+ adb

d = 0 (1)

If a1 + · · ·+ad = 0, the algorithmA1 outputs b′ = 1. Otherwise, it outputs b′ = 0.
The algorithm A1 may repeat the above process for ciphertexts cb,i+1, . . . , cb,i+d

with different i > 1 to get more accurate prediction b′ of the value b. Thus it can
be shown that b′ = b with a non-negligible probability. The theorem is proved. 2

After proving Theorem 2.2, we wonder whether it is possible at all to design
a linearly decryptable FHE scheme that is secure in some relaxed security model?
Alternatively we may ask: what is the maximum security one can achieve with
linearly decryptable FHE schemes? In next sections, we show that it is possible
to design linearly decryptable FHE schemes that are secure in the following weak
ciphertext-only security model.

Definition 2.3 (Weak ciphertext-only security model) Let xx = (KeySetup, Enc, Dec)
be a symmetric key encryption scheme over a message spaceM. For a pair of PPT
algorithms A = (A0, A1), define the following experiments:

• A0 generates the secret key by running key ← xx.KeySetup(κ) where κ is
the security parameter.

• A0 chooses t messages p0, · · · , pt−1 according to the distribution ofM and
outputs t ciphertexts Cp0 , · · · , Cpt−1 by running Cpi = xx.Enc(key, pi).

• A1 outputs a message m′ ∈M.
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The output of the above experiment is defined to be 1 if m′ ∈ {p0, · · · , pt−1},
and 0 otherwise. We write wCOA(A0,A1)(κ) = 1 if the output is 1 and in this case
we say that A1 succeeded. The scheme xx is said to be (t, ε)-secure in the weak
ciphertext-only attack (wCOA) security model for ε = negl(κ) if for all PPT
algorithms A = (A0, A1), we have

Prob[wCOA(A0,A1)(κ) = 1] ≤ ε.

3 Octonions

Octonion (see, e.g., Baez [2]) is the largest among the four normed division alge-
bras: real numbers R, complex numbers C, quaternions H, and octonions O. The
real numbers have a complete order while the complex numbers are not ordered.
The quaternions are not commutative and the octonions are neither commutative
nor associative. Quaternions were invented by Hamilton in 1843. Octonions were
invented by Graves (1844) and Cayley (1845) independently.

In mathematics, a vector space commonly refers to a finite-dimensional module
over the real number field R. An algebraA refers to a vector space that is equipped
with a multiplication map × : A2 → A and a nonzero unit 1 ∈ A such that
1× a = a× 1 = a. The multiplication a× b is usually abbreviated as a · b or ab.
An algebra A is a division algebra if, for any a, b ∈ A, ab = 0 implies either a = 0
or b = 0. Equivalently, A is a division algebra if and only if the operations of left
and right multiplication by any nonzero element are invertible. A normed division
algebra is an algebra that is also a normed vector space with ‖ab‖= ‖a‖‖b‖.

An algebra is power-associative if the sub-algebra generated by any single el-
ement is associative and an algebra is alternative if the sub-algebra generated by
any two elements is associative. It is straightforward to show that if the sub-algebra
generated by any three elements is associative, then the algebra itself is associative.
Artin’s theorem states that an algebra is alternative if and only if for all a, b ∈ A,
we have

(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa).

It is well known that R, C, H, O are the only normed division algebras and O is an
alternative division algebra. It is also known that division algebras can only have
dimension 1, 2, 4, or 8.

Using the same approach of interpreting a complex number a + bi as a pair
[a, b] of real numbers, quaternions H (respectively, octonions O) can be constructed
from C (respectively, from H) using the Cayley-Dickson construction formula
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[a, b] where a, b ∈ C (respectively, a, b ∈ H). The addition and multiplication
are defined as follows.

[a, b] + [c, d] = [a+ c, b+ d], [a, b][c, d] = [ac− db∗, a∗d+ cb] (2)

where a, b, c, d ∈ C (respectively, a, b, c, d ∈ H) and a∗ is the conjugate of a.
Specifically, the conjugate of a real number a is defined as a∗ = a and the conjugate
of a complex number or a quaternion number [a, b] is defined by [a, b]∗ = [a∗,−b].
Throughout the paper, we will use the following notations for real and imaginary
part of an octonion a ∈ O,

Re(a) = (a + a∗)/2 ∈ R, Im(a) = (a− a∗)/2.

It is straightforward to check that for a complex number (or a quaternion or an
octonion), we have

[a, b][a, b]∗ = [a, b]∗[a, b] = ‖[a, b]‖2[1, 0].

Thus all of R, C, H, O are division algebras (that is, each non-zero element has a
multiplicative inverse). Though Cayley-Dickson construction provides a nice ap-
proach to study normed division algebras systematically, it is more intuitive to use
vectors in R4 to denote quaternion numbers and vectors in R8 to denote octonion
numbers.

Each octonion number is a vector a = [a0, · · · , a7] ∈ R8. The norm of
an octonion a = [a0, · · · , a7] is defined as ‖a‖=

√
a20 + · · ·+ a27. By the in-

ductive Cayley-Dickson construction, the conjugate of an octonion a is a∗ =
[a0,−a1, · · · ,−a7] and the inverse is a−1 = a∗/‖a‖2.

For each octonion number a = [a0, · · · , a7], let α = [a1, · · · , a7] and

Ba =



a0 a4 a7 −a2 a6 −a5 −a3
−a4 a0 a5 a1 −a3 a7 −a6
−a7 −a5 a0 a6 a2 −a4 a1
a2 −a1 −a6 a0 a7 a3 −a5
−a6 a3 −a2 −a7 a0 a1 a4
a5 −a7 a4 −a3 −a1 a0 a2
a3 a6 −a1 a5 −a4 −a2 a0


Using the matrix Ba, we can define two associated 8× 8 matrices

Al
a =

(
a0 α
−αT Ba

)
and Ar

a =

(
a0 α
−αT BT

a

)
(3)
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Then for two octonions a = [a0, · · · , a7] and b = [b0, · · · , b7], we can add them as
a + b = [a0 + b0, · · · , a7 + b7] and multiply them as ab = bAl

a = aAr
b. We also

note that

Al
a−1 =

1

‖a‖2

(
a0 −α
αT BT

a

)
and Ar

a−1 =
1

‖a‖2

(
a0 −α
αT Ba

)
(4)

In the following, we first present some properties of the two associate matrices.
For any octonion a = [a0, · · · , a7], it is straightforward to show that

Baα
T = BT

a α
T = a0α

T (5)

and
BaBa = αTα− ‖a‖2I7×7 + 2a0Ba

BT
aB

T
a = αTα− ‖a‖2I7×7 + 2a0B

T
a

BaB
T
a = −αTα+ ‖a‖2I7×7

BT
aBa = −αTα+ ‖a‖2I7×7

(6)

Thus we have

Al
aA

r
a =

(
a20 − ααT a0α+ αBT

a

−a0αT −Baα
T −αTα+BaB

T
a

)

=

(
a20 − ααT a0α+ αBT

a

−a0αT −BT
a α

T −αTα+BT
aBa

)
= Ar

aA
l
a

=

(
a20 − ααT 2a0α

−2a0α
T −αTα+BaB

T
a

)
(7)

By substituting (6) into (7), we get

Al
aA

r
a = Ar

aA
l
a

=

(
2a20 − ‖a‖2 2a0α

−2a0α
T −2αTα+ ‖a‖2I7×7

)
(8)

Similarly, we can get

Al
aA

l
a =

(
a20 − ααT a0α+ αBa

−a0αT −Baα
T −αTα+BaBa

)

=

(
2a20 − ‖a‖2 2a0α

−2a0α
T 2a0Ba − ‖a‖2I7×7

)
= 2a0A

l
a − ‖a‖2I8×8

(9)
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and

Ar
aA

r
a =

(
a20 − ααT a0α+ αBa

−a0αT −Baα
T −αTα+BT

aB
T
a

)

=

(
2a20 − ‖a‖2 2a0α

−2a0α
T 2a0B

T
a − ‖a‖2I7×7

)
= 2a0A

r
a − ‖a‖2I8×8

(10)

Finally, it is easy to check that

Al
aA

l
a−1 = Al

a−1A
l
a = Ar

aA
r
a−1 = Ar

a−1A
r
a = I8×8.

But generally, we have Al
aA

r
a−1 6= I8×8. We conclude this section with the follow-

ing theorem that will be used frequently throughout this paper.

Theorem 3.1 For a ∈ O, we have a2 = 2Re(a)a−‖a‖21 where 1 = [1, 0, 0, 0, 0, 0, 0, 0].

Proof. The identity a∗ = 2Re(a)1− a implies ‖a‖2= aa∗ = 2Re(a)a− a2. 2

Theorem 3.2 For all a,b ∈ O, we have (ab)∗ = b∗a∗.

Proof. By the fact that the octonion algebra is alternative, we have

(ab)(b∗a∗) = a(bb∗)a∗ = ‖a‖2‖b‖2.

Thus (ab)−1 = (b∗a∗)/(‖a‖2‖b‖2). Since (ab)−1 = (ab)∗/(‖ab‖2), the theo-
rem is proved. 2

Theorem 3.3 (Moufang identities [7]) Let a,b, c ∈ O. Then we have

c(a(cb)) = ((ca)c)b
a(c(bc)) = ((ac)b)c
(ca)(bc) = (c(ab))c
(ca)(bc) = c((ab)c)

4 Octonions O(Zq) over Zq
In the preceding section, we briefly discussed the properties of octonions. Instead
of using real numbers, one may also construct “octonions” over any field Fq with
q = pm or over any ring Zq with q = pr11 · · · prmm . In this section, we discuss
octonions O(Zq) over Zq. Generally, all theorems except division-related results
for octonions hold in O(Zq). It is straightforward to show that O(Zq) is a normed
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algebra. However, it is not a division algebra. In our construction of FHE schemes,
the division operation is not used.

An octonion z ∈ O(Zq) is isotropic if ‖z‖= 0. By Theorem 6.26 in Lidl and
Niederreiter [20, page 282], there are q7 +q4−q3 = (q4−1)(q3 +1)+1 isotropic
vectors in Fq

8. A slightly modified proof of the Theorem 6.26 in [20] could be used
to show that the number of isotropic vectors in Zq

8 is approximately in the same
order of q7 + q4 − q3 (the exact number is not important for our construction of
the FHE scheme and the details are omitted here). A subspace V of Zq

8 is called
totally singular or totally isotropic if all vectors in V are isotropic.

For an odd q and even n, the number of totally isotropic subspaces of dimension
k ≤ n/2 in Fq

n is given by the formula (see Pless [23] or Dembowski [9, Page 47])

(qn−k − qn/2−k + qn/2 − 1)
∏k−1

i=1 (qn−2i − 1)∏k
i=1(q

i − 1)
, (11)

and totally isotropic subspaces of dimension k > n/2 in Fq
n do not exist. It follows

that the number of dimension 4 totally isotropic subspaces of Fq
8 is given by

2(q + 1)(q2 + 1)(q3 + 1) (12)

Similar results for the number of totally isotropic subspaces of dimension k over
Zq

n could be obtained and the details are omitted in this paper.
Let a ∈ O(Zq) be a non-zero isotropic octonion. Then aa∗ = ‖a‖2= 0. That

is, a has no multiplicative inverse. It follows that O(Zq) is not a division algebra.
This also shows that O(Zq) is not nicely normed. Note that an algebra over Zq is
nicely normed if a + a∗ ∈ Zq and aa∗ = a∗a > 0 for all non zero a ∈ O(Zq).

It is straightforward that Theorem 3.1 holds for O(Zq). We use an alterna-
tive proof to show that Theorem 3.2 holds for O(Zq) also. Note that the proof of
Theorem 3.2 is not valid for O(Zq) since it uses octonion inverse properties.

Theorem 4.1 For all a,b ∈ O(Zq), we have (ab)∗ = b∗a∗.

Proof. By the definition in (3), we have Ar
a∗ = (Ar

a)T . First, the identity 1b∗a∗ =
1(Ar

b)T (Ar
a)T = 1(Ar

aA
r
b)T implies that b∗a∗ is the first column of Ar

aA
r
b. Sec-

ondly, the identity 1ab = 1(Ar
aA

r
b) implies that (ab)∗ is also the first column of

Ar
aA

r
b. It follows that (ab)∗ = b∗a∗. 2

Finally, Theorem 3.1 implies the following result.

Theorem 4.2 For an isotropic octonion a ∈ O(Zq), we have a2 = 2Re(a)a.
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5 The exceptional Lie group G2 and its finite version G2(q)

A Lie algebra g over a field F is a vector space over F with a bilinear map (called
a bracket or a commutator) [·, ·] : g× g→ g with the following properties:

• Anti-commutativity: [y, x] = −[x, y] for all x, y ∈ F

• Jordan identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ F.

The classical example of Lie algebra is the special linear algebra sln of n × n
matrices of trace 0 with [x, y] = xy − yx. The Lie algebra sln corresponds to the
Lie group SLn of determinant 1 matrices.

The automorphism group G2 of octonions O (over R) has dimension 14 and
is the smallest among the ten families of exceptional Lie groups (G2, F4, E6, E7,
E8, 2E6, 3D4, 2B2, 2G2, and 2F4). The corresponding Lie algebra g2 for G2 is the
derivations Der(O) of the octonions O. We will use G2(q) to denote the finite
automorphism group of octonions O(Zq). It should be noted that in the literature,
the notation G2(q) is generally used to denote the finite automorphism group of
octonions O(Fq) over a finite field Fq. However, for the finite automorphism group
related results that we will use in this paper, they hold for G2(q) over O(Zq) as
well as for G2(q) over O(Fq).

In the following, we describe some useful properties of G2(q) for the proposed
homomorphic encryption scheme design. Since an automorphism group must fix
the identity element 1, it needs to fix its orthogonal complement (that is, the purely
imaginary octonions spanned by i1, · · · , i7). Thus G2(q) is a subgroup of the or-
thogonal group O(7,Zq) of 7× 7 orthogonal matrices over Zq. On the other hand,
given the images of two octonions e1, e2 ∈ Im(O(Zq)), the image of e1e2 is fixed.
ThusG2(q) is a proper subgroup of the special orthogonal group SO(7,Zq) of 7×7
orthogonal matrices of determinant 1 over Zq.

Given vector spaces V1, V2, V3 over Zq, a triality is a trilinear map

t : V1 × V2 × V3 → Zq

that is non-degenerate (see, e.g., Lounesto [22]). That is, if we fix two arguments
to non-zero values, then the linear map induced on the third vector space is non-
zero. A normed triality is a collection of inner product spaces V1, V2, V3 over Zq

with a triality map t having the property |t(v1, v2, v3)|≤ ‖v1‖‖v2‖‖v3‖ and for
all v1, v2, there exists v3 6= 0 for which the bound is attained. An automorphism
of a normed triality t is a triple of norm-preserving maps fi : Vi → Vi such
that t(f1(v1), f2(v2), f3(v3)) = t(v1, v2, v3). These automorphisms form a group
Aut(t).
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Let V8 be the vector space of Zq
8 and let S+

8 = Zq
8 and S−8 = Zq

8 denote the
right-handed and left-handed spinor representations. Then there is a normed triality
map

t8 : V8 × S+
8 × S

+
8 → Zq

that gives O(Zq) (see, e.g., Baez [2]). In particular, we have

G2(q) ⊂ Aut(t8) = Spin(8,Zq)

where the spin group Spin(8,Zq) consists of all products of an even number unit
vectors in Zq

8 and Spin(8,Zq) is a double cover of the special orthogonal group
SO(8,Zq). Octonions can be constructed from t8 by fixing unit vectors in any of
the two vector spaces. Thus G2(q) can be considered as a subgroup of Spin(8,Zq)
fixing unit vectors in V8 and S+

8 . The subgroup of Spin(8,Zq) fixing a unit vector
in V8 is isomorphic to Spin(7,Zq) and, by restricting the representation S+

8 to
Spin(7,Zq), we get the spinor representation S7. Thus G2(q) is isomorphic to the
subgroup of Spin(7,Zq) fixing a unit vector in S7. That is, Spin(7,Zq)/G2(q) =
S7 where S7 is the sphere with dimension 7. It follows that the dimension ofG2(q)
is

dim(Spin(7,Zq))− dimS7 = 21− 7 = 14.

A subgroup H of a group G is said to be normal if it is the union of whole
conjugacy classes in G. The group G is simple if it has only two trivial normal
subgroups 1 and G. It can be shown that G2(q) is simple for q 6= 2. Generally, the
structure of G2(q) is characterized by the following theorem.

Theorem 5.1 (See e.g., [2]) The compact real form of the Lie algebra g2 is given
by

g2 = Der(O) ⊂ so(Im(O)) ⊂ so(O)

where so(Im(O)) = Der(O)⊕adIm(O) and so(O) = Der(O)⊕LIm(O)⊕RIm(O)

are built from natural bilinear operations on the summands, LIm(O) is the space
of linear transformations of O given by left multiplication by imaginary octonions,
RIm(O) is the space of linear transformations of O given by right multiplication by
imaginary octonions, and ada = La −Ra.

Theorem 5.1 still holds if octonions O over R is replaced by octonions O(Zq) over
Zq. Thus G2(q) has a 7-dimensional representation Im(O(Zq)).

A vector-valued product of two vectors is called a cross product if the vector
is orthogonal to the two vectors and has length equal to the parallelogram formed
by the two vectors. A cross product of two vectors exists only in the 3 dimensional
and 7 dimensional spaces (see, e.g., Lounesto [22]). Though the 3-dimensional
cross product is invariant under all rotations of SO(3), the 7-dimensional cross
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product is not invariant under all rotations of SO(7). Indeed, the 7-dimensional
cross product is only invariant under the proper subgroup G2 of SO(7).

Furthermore, Im(O(Zq)) has three natural structures that are preserved by au-
tomorphisms in G2(q). First, a linear transformation of Im(O(Zq)) preserves the
cross product on Im(O(Zq)) if and only if it is an element of G2(q). Second, let
φ(x, y, z) = 〈x, yz〉 be an alternating trilinear functional over Im(O(Zq)). Then
a linear transformation of Im(O(Zq)) preserves φ if and only if it is an element
of G2(q). Third, let [x, y, z] = (xy)z − x(yz) be the trilinear associator over
Im(O(Zq)). Then a linear transformation T of Im(O(Zq)) preserves the associator
[·, ·, ·] if and only if both T and −T are elements of G2(q).

We conclude this section by showing how to select and represent an element in
G2(q). A basic triple for octonions O(Zq) is three elements e1, e2, e3 of norm −1
such that

• e1e2 = −e2e1, e2e3 = −e3e2, and e1e3 = −e3e1.

• (e1e2)e3 = −e3(e1e2).

It is straightforward to observe that e1 generates a sub-algebra of O(Zq) that is
isomorphic to C(Zq), (e1, e2) generates a sub-algebra of O(Zq) that is isomorphic
to H(Zq), and (e1, e2, e3) generates all O(Zq). In other words, given (e1, e2, e3),
there is a unique way to define the imaginary octonion units i1, · · · , i7. It follows
that given any two basic triples, there exists a unique automorphism in G2(q) that
maps the first triple to the second triple. We can interpret this observation as fol-
lows to determine the size of G2(q). In order to construct an automorphism in
G2(q), one first maps e1 to any point e′1 on the 6-sphere of unit imaginary octo-
nions, then maps e2 to any point e′2 on the 5-sphere of unit imaginary octonions
that are orthogonal to e′1, and finally maps e3 to any point e′3 on the 3-sphere of
unit imaginary octonions that are orthogonal to e′1, e

′
2, and e′1e

′
2. By counting the

number of such kind of triples, one can show that

|G2(q)|= q6(q6 − 1)(q2 − 1).

6 Fully homomorphic encryption scheme OctoM

In this section, we introduce an efficient noise-free symmetric key FHE scheme
OctM. It is shown in the next section that the scheme OctoM is secure in the weak
ciphertext-only security model. A totally isotropic subspace V ⊂ Zq

8 is said to be
closed under octonion multiplications if for any r0, r1 ∈ V , we have both r0r1 ∈ V
and r1r0 ∈ V where r0r1 and r1r0 are the octonion multiplications (based on the
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definition, we may also call such kind of subspaces as “totally isotropic ideal sub-
spaces”). By Theorem 4.2, for any isotropic vector z ∈ Zq

8, we have z2 = 2Re(z)z.
Thus for any nonzero isotropic vector z ∈ Zq

8, span{z} is a dimension one totally
isotropic subspace that is closed under octonion multiplications. The comment 3 in
Section 7 will show that there exist dimension two totally isotropic subspaces that
are closed under octonion multiplications. By formulas (11) and (12) in Section
4, there exist dimension 3 and 4 totally isotropic subspaces for octonions Zq

8. It is
also known that there is no dimension d ≥ 5 totally isotropic subspace for octo-
nions Zq

8. It remains an open question whether there exist dimension 3 or 4 totally
isotropic subspaces in Zq

8 that are closed under octonion multiplications.
It is noted that a totally isotropic subspace V of dimension d is uniquely deter-

mined by d isotropic octonions (that is, a basis of the subspace). For the construc-
tion of FHE scheme OctoM, it suffices to have a dimension one totally isotropic
subspace that is closed under octonion multiplications. In the following, we present
the FHE protocol using the parameter q = p1p2p3p4. The protocol could be imple-
mented over any finite rings Zq with q = pr11 · · · prmm and m ≥ 3.
Key Setup. Select q = p1p2p3p4 according to the given security parameter κ and
let q0 = p1p2. Select a totally isotropic subspace V ⊂ Zq

8 that is closed under
octonion multiplications. Select a random φ ∈ G2(q) and a random invertible
8 × 8 matrix K ∈ Zq

8×8. The private key is (q0,K, φ, V ) and the system public
parameter is Zq.
Encryption. For a message m ∈ Zq0 , choose random r ∈ Zq and z ∈ V with
the property that |Al

m′ |= 0, where m′ = φ ((m+ rq0)1 + z) and Al
m′ is the

associated matrix for the octonion number m′. Note that such kind of r and z
could be chosen in constant rounds since the probability for |Al

m′ |= 0 converges
to a uniform limit (see, e.g., [6]). Let the ciphertext

Cm = OctoM.Enc(key,m) = K−1Al
m′K ∈ Zq

8×8.

Decryption. For a received ciphertext Cm, decrypt the plaintext as

m = OctoM.Dec(key, Cm) = φ−1(1(KCmK
−1)) mod V mod q0.

It should be noted that 1(KCmK
−1) = 1Am′ = m′.

Ciphertext addition. The addition of two ciphertexts Cm0 and Cm1 is defined as
the regular component wise matrix addition Cm0+m1 = Cm0 + Cm1 .
Ciphertext multiplication. The multiplication of two ciphertexts Cm0 and Cm1 is
defined as the regular matrix multiplication

Cm0m1 = Cm1Cm′0
= K−1Al

m′1
KK−1Al

m0
K = K−1Al

m1
Al

m0
K.
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It is straightforward to verify that the above encryption scheme is additive ho-
momorphic. The multiplication homomorphic property follows from the following
equations.

OctoM.Dec(key, Cm0m1)
= φ−1(1(Al

m′1
Al

m′0
)) mod V mod q0

= φ−1(m′0(m
′
11)) mod V mod q0

= φ−1(m′0m
′
1) mod V mod q0

= φ−1(φ (m01 + r0q01 + z0)φ (m11 + r1q01 + z1)) mod V mod q0
= (m01 + r0q01 + z0) (m11 + r1q01 + z1) mod V mod q0
= (m0 + r0q0)(m1 + r1q0)1 mod q0
= m0m11.

We conclude this section by showing that the decryption process of OctoM

is weakly equivalent to the decryption process IPE.Dec of a dimension 64 IPE

scheme of Section 2. Let key = (q0,K, φ, V ) = OctoM.KeySetup(κ) be the
secret key of the encryption scheme OctoM. Let β = [1, b1, · · · , b7] ∈ Zq

8 be a
vector that is orthogonal to φ(V ). Then we have φ((m+ rq0)1 + z)βT = m. For
a ciphertext Cm, let vec(Cm) = [c0,0, · · · , c7,0, · · · , c7,7]T be the vectorization of
Cm. The decryption process OctoM.Dec(key, Cm) could be reformulated as

m+ rq0 = φ((m+ rq0)1 + z)βT

= (1KCmK
−1)βT

=
[∑7

i,j=0 a0,i,jci,j , · · · ,
∑7

i,j=0 a7,i,jci,j

]
βT

=
∑7

i,j=0 ki,jci,j
= k · vec(Cm)
= IPE.Dec(k, vec(Cm))

(13)

for some a0,i,j , · · · , a7,i,j ∈ Zq and k = [k0,0, · · · , k0,7, k1,0, · · · , k7,7] ∈ Zq
64.

From m+ rq0, one still needs the value q0 to recover the plaintext message m.
Given n linearly independent ciphertexts ci with known plaintext messages

mi, one can recover the private key k of a dimension n IPE scheme. However, the
private key K for OctoM could be recovered only if one has n linearly independent
ciphertexts ci together with corresponding values mi + riq0. Thus we say that
OctoM.Dec is weakly equivalent to IPE.Dec. At the end of Section 8, we will show
that one can actually recover the IPE decryption key k for OctoM from plaintext-
ciphertext pairs (mi, ci) without knowing riq0.
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7 Some comments on the design of OctoM

In this section, we present some comments on the design principles of OctoM. The
first time reader may skip this section.
Comment 1: In the scheme OctoM, a message m is encoded to an octonion m′ =
φ((m+rq0)1+z) and m′ is converted to an associated matrix. The associated ma-
trix is further multiplied using private matrices from both sides. The reader may be
curious and ask what happens if we directly encrypt an octonion message m ∈ Zq

8

to K−1Al
mK without employing the first encoding m′ = φ((m + rq0)1 + z)?

That is, the plaintext space is the collection of octonion numbers in O(Zq) in-
stead of numbers in Zq. Though the resulting scheme is additive homomorphic,
it is not multiplicative homomorphic. Let m0,m1,m2 be octonions such that
m0(m1m2) 6= (m0m1)m2. By definition, we have

OctoM.Dec(key, Cm2Cm0m1) = OctoM.Dec(key,K−1Al
m2
Al

m1
Al

m0
K)

= 1Al
m2
Al

m1
Al

m0

= m0(m1m2)
6= (m0m1)m2

(14)
It follows that C(m0m1)m2

6= Cm2Cm0m1 .
Comment 2: In the encryption scheme OctoM, the message m is encoded to
m′ = φ((m + rq0)1 + z) with a randomly selected r ∈ Zq and a randomly
selected octonion z from a totally isotropic subspace that is closed under octo-
nion multiplications. As a special case of the scheme, one can choose a random
isotropic octonion z0 and let V = span{z0}. That is, each message m is encoded
to m′ = φ((m+ rq0)1 + r′z0) for randomly selected r, r′ ∈ Zq.

It is natural to ask whether it is possible to randomly select two independent
isotropic octonions z0, z1 from which a subspace V is constructed for the encoding
process? Generally, the answer is no. In order for the encoding process to be
multiplicative homomorphic, V needs to be closed under octonion multiplications.
By the fact that octonion algebra is alternative, the subspace

V = span{z0, z1, z0z1, z1z0, z1z0z1, z0z1z0}

is closed under octonion multiplications. Though the above V has a basis consist-
ing of isotropic vectors and is closed under octonion multiplications, it may not
be a totally isotropic subspace. That is, there may exist an octonion z ∈ V with
‖z‖6= 0. By Theorem 3.1, we have z2 = 2Re(z)z − ‖z‖21. Since z2 ∈ V and
V is a linear subspace, we have 1 ∈ V . Assume that a message m is encoded as
m′ = φ((m+ rq0)1+ r) where r is randomly selected from V . For any m′ ∈ Zq,
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we have r′ = r−m′1 ∈ V . Thus

(m+ rq0)1 + r = (m+m′ + rq0)1 + r′ mod V.

That is, m′ could not be decoded to m uniquely in case 1 ∈ V .
Comment 3: In order to construct a dimension 2 totally isotropic subspace V ⊂
Zq

8, it suffices to choose linearly independent isotropic octonions z0, z1 (which
forms a basis of V ) in such a way that r0z0 + r1z1 is isotropic for all r0, r1 ∈ Zq.
First we note that

‖r0z0 + r1z1‖2 = (r0z0 + r1z1)(r0z
∗
0 + r1z

∗
1)

= r0r1z0z
∗
1 + r0r1z1z

∗
0

= r0r1(z0z
∗
1 + (z0z

∗
1)
∗)

= 2r0r1Re(z0z
∗
1).

Thus, for any nonzero octonions z0, z1 satisfying

‖z0‖= ‖z1‖= Re(z0z
∗
1) = 0, (15)

the subspace span(z0, z1) is a dimension 2 totally isotropic subspace of Zq
8. In

order to construct a totally isotropic subspace V that is closed under octonion mul-
tiplications, it suffices to choose linearly independent isotropic octonions z0, z1 ∈
Zq

8 such that the identity (15) holds and there exist r0, r1, r2, r3 ∈ Zq satisfying

z0z1 = r0z0 + r1z1
z1z0 = r2z0 + r3z1

(16)

Combing identities (15) and (16), we get 19 equations with 20 unknowns. Thus
there exist dimension 2 totally isotropic subspaces V ⊂ Zq

8 that are closed under
octonion multiplications. For k ≥ 3, we conjecture that there exists no dimension
k totally isotropic subspaces V ⊂ Zq

8 that are closed under octonion multiplication.
Comment 4: In the FHE scheme OctoM, the automorphism φ ∈ G2(q) in the
private key introduces randomness in the message encoding process. That is, the
totally isotropic subspace V is mapped to another totally isotropic subspace φ(V ).
However, the scheme should still be secure if φ is not used.
Comment 5: The scheme OctoM recommends the use of “q = p1p2p3p4 and
q0 = p1p2”. Alternatively, we may also use “q = p1p2p3 and q0 = p1” or “q =
q0 = p1p2” in the parameter selection process. Furthermore, one may also use
q0 = 2 to obtain an FHE scheme that only encrypts binary messages. The security
proof in next sections works for these parameter choices also.
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8 Proof of Security

The preceding section shows that the decryption process of the scheme OctoM is
weakly equivalent to the decryption process of the dimension 64 IPE. Thus the
scheme OctoM is not secure against adversaries who have access to sufficiently
many linearly independent ciphertexts with known plaintexts and session random-
ness (that is, m + rq0). Furthermore, by Theorem 2.2, OctoM is not secure in the
ciphertext only attack (COA) security model. In this section, we show that OctoM
is secure in the weak ciphertext-only (wCOA) security model.

We first show OctoM is secure in the wCOA model assuming that the only at-
tack one could mount on OctoM is to guess the IPE decryption key via ciphertexts
only without using the homomorphic properties and without using other algebraic
attacks. Since the decryption process of OctoM is weakly equivalent to IPE.Dec,
it is sufficient for the adversary to recover the inner product decryption secret k.
Though we think that it is a folklore that the probability for one to recover the
IPE.Dec secret k from IPE ciphertexts only is negligible (without limit on the
number of ciphertexts), we did not find a literature reference for this. For com-
pleteness, we present a proof for this “folklore”.

Theorem 8.1 Let κ be the security parameter, n ≤ t ≤ poly(κ), and assume
that the plaintext messages are uniformly distributed over Zq. Given t ciphertexts
c0, · · · , ct−1 ∈ Zq

n of a dimension n encryption scheme IPE, the probability for
one to guess the correct private key k ∈ Zq

n or for one to guess at least one correct
plaintext for the given ciphertexts is at most 1

qn . In other words, the scheme IPE is
secure in the weak ciphertext-only security model.

Proof. For the given t ciphertexts, one can formulate t linear equations in t+n
variables m = [m0, · · · ,mt−1] and k = [k0, · · · , kn−1]:

k[cT0 , · · · , cTt−1] = m. (17)

Assume that the ciphertexts c0, · · · , cn−1 are linearly independent. Then for any
fixed m0, · · · ,mn−1 ∈ Zq, the equation system (17) has a unique solution. On
the other hand, if no n ciphertexts are linearly independent, then for any fixed
m0, · · · ,mn−1 ∈ Zq, there are more than one solutions for the equation system
(17). In a summary, the probability that the adversary recovers the private key is
less than or equal to the probability that the adversary has a correct guess of the
messages m0, · · · ,mn−1. This probability is at most 1

qn . Thus the Theorem is
proved. 2

Before proving the main theorem, we first prove a Lemma. For a ciphertext
Cm, we use C0

m to denote the identity matrix I .
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Lemma 8.2 Let Cm = OctoM.Enc(key,m) and C2
m, · · · , C8

m be ciphertexts of
m2, · · ·, m8 respectively. Then vec(C0

m) = vec(I), vec(C1
m), · · · , vec(C8

m) are
linearly dependent.

Proof. For an n× n matrix A ∈ Zq
n×n, the minimal polynomial of A is the monic

polynomial µA(x) over Zq of the least degree such that µA(A) = 0. The minimal
polynomial µA(x) is a divisor of A’s characteristic polynomial

pA(x) = det(xI−A) = xn − tr(A)xn−1 + · · ·+ (−1)n det(A).

This implies that the minimal polynomial of Cm has a degree less than or equal to
8. The Claim is proved. 2

It is known that (see, e.g., [12, 13, 27]), with probability (1 − 1/q5)/(1 +
1/q3), the characteristic polynomial of a random matrix over Fq is equal to its
minimal polynomial for large enough q. This implies that with high probability,
vec(C0

m), vec(C1
m), · · ·, vec(C7

m) are linearly independent for a ciphertext Cm.
Furthermore, by the fact that the characteristic polynomial pA(x) is invariant under
matrix equivalence transformations, we have

tr(Cm) = tr(Al
m) = 8(m+ rq0 + Re(z)) (18)

where r and z are randomly chosen in the OctoM encryption process.

Theorem 8.3 Assuming that it is computationally infeasible to solve univariate
polynomial equation systems of degree larger than 2, it is computationally infea-
sible to solve multivariate/univariate quadratic equation systems in Zq, and the
plaintext messages are uniformly distributed over Zq0 . Then the encryption scheme
OctoM over Zq is (t, negl(κ))-secure in the weak ciphertext-only security model for
any t ≤ poly(κ).

Proof. Let Cp0 , · · · , Cpt−1 be the ciphertext output by the PPT algorithm A0. By
Theorem 8.1, if the most efficient attack on OctoM in the weak ciphertext-only
security model is to recover the IPE decryption key from ciphertexts without em-
ploying fully homomorphic or other algebraic properties, then the theorem follows
from Theorem 8.1 already. Thus it is sufficient to show that it is computation-
ally infeasible to use fully homomorphic properties and other algebraic attacks to
recover the secret key or to recover secret messages for OctoM.

In the following, we established two claims to show that the problem of re-
covering OctoM’s secret key (q0,K, φ, V ) from ciphertexts could be reduced to
the problem of solving multivariate quadratic equation systems and the problem
of recovering a secret message from OctoM’s ciphertexts could be reduced to the
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problem of solving univariate high degree equation systems. By the hardness as-
sumption of the theorem, these equation systems are computationally infeasible to
be solved.

Claim 8.4 Given t ciphertexts for the FHE scheme OctoM, the problem of finding
the private key (q0,K, φ, V ) and corresponding private messages could be reduced
to a multivariate quadratic equation system with 64t equations in 64+2t unknown
variables.

Proof. As a warming up exercise, we first show that, given t ciphertexts, one can
obtain 64t equations in 64 + 8t or 64 + 8d + (d + 1)t unknown variables where
d = dim(V ). For each ciphertext Cm, we have the identity KCm = Al

m′K. If
we assign 8 variables for m′ = m+ rq0 + r and 64 variables for K. Then we get
64 equations in 64 + 8 unknowns. For t ciphertexts, we obtain 64t equations in
64 + 8t unknowns. Alternatively, let d be the dimension of V (in our case, d = 1
or d = 2). Then we can assign 8d variables for a basis of V , d variables for r
(note that r is uniquely determined by the d coordinates relative to the basis), and
one variable for each message m + rq0. In other words, each ciphertext could be
converted to 64 equations in 64 + 8d+ d+ 1 unknowns and t ciphertext could be
converted to 64t equations in 64 + 8d+ (d+ 1)t unknowns.

We next reduce the number of unknown variables to 64 + 2t by using the
homomorphic properties of OctoM. Let Cm be the ciphertext and m′ = φ((m +
rq0)1 + r) = [m0, · · · ,m7] where r ∈ V . From the identity KCm = Al

m′K for
the ciphertext Cm and from the identity (9), we have

Cm = K−1Al
m′K

C2
m = K−1(2m0A

l
m′ − ‖m′‖2I8×8)K

C3
m = K−1((4m2

0 − ‖m′‖2)Al
m′ − 2m0‖m′‖2I8×8)K

C4
m = K−1((8m3

0 − 4m0‖m′‖2)Al
m′ − (4m2

0 − ‖m′‖2)‖m′‖2I8×8)K
· · ·

(19)

where Ci
m = OctoM.Enc(K,mi). This implies that

KCm = Al
m′K

KC2
m = (2m0A

l
m′ − ‖m′‖2I8×8)K

KC3
m = ((4m2

0 − ‖m′‖2)Al
m′ − 2m0‖m′‖2I8×8)K

KC4
m = ((8m3

0 − 4m0‖m′‖2)Al
m′ − (4m2

0 − ‖m′‖2)‖m′‖2I8×8)K
· · ·

(20)
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which further implies

KC2
m = 2m0KCm − ‖m′‖2K

KC3
m = (4m2

0 − ‖m′‖2)KCm − 2m0‖m′‖2K
KC4

m = (8m3
0 − 4m0‖m′‖2)KCm − (4m2

0 − ‖m′‖2)‖m′‖2K
· · ·

(21)

It is straightforward to check that the identities in (21) are dependent and the only
independent identity that one can get is KC2

m = 2m0KCm − ‖m′‖2K. In other
words, if we consider ‖m′‖2 as one variable, the identities (21) can be used to de-
rive 64 multivariate quadratic equations in 66 variables (64 for K, one for m0, and
one for ‖m′‖2). For t ciphertexts, one obtains 64t quadratic multivariate polyno-
mial equation in 64 + 2t variables. 2

Claim 8.5 Given one ciphertextC for the FHE scheme OctoM, the problem of find-
ing the secret message m could be reduced to the problem of solving a univariate
polynomial equation of degree at most 8.

Proof. Let C = OctoM.Enc(key,m) ∈ Zq
8×8. By the multiplicative homomorphic

property of OctoM, we have

Ci = OctoM.Enc(key,mi) ∈ Zq
8×8 (22)

for all integers i ≥ 1. Let ci = vec(Ci) and c0 = vec(I). By the identity
(22) and by the relationship between OctoM and IPE, there exists k ∈ Zq

64 such
that (m + rq0)

i = kcTi for i ≥ 1. By the the minimal polynomial arguments in
the proof of Lemma 8.2, the ciphertexts c0, c2, . . . , c8 are linearly dependent. Let
x = m+ rq0. Then we have

a0 + a1x+ a2x
2 + · · ·+ a8x

8 = 0 (23)

for some a0, · · · , a8 ∈ Zq. This completes the proof of the Claim. 2

By Claims 8.4 and 8.5, in order for one to recover the secret key or secret mes-
sages from the ciphertexts, one needs to solve a degree 8 univariate polynomial
equation in Claim 8.5 or to solve the multivariate equation system in Claims 8.4.
By the assumption, it is computationally infeasible to solve univariate nonlinear
polynomial equations over Zq obtained in Claim 8.5. In the following, we show
that it is computationally infeasible to solve the multivariate equation systems ob-
tained in Claims 8.4.

For a system of n(n + 1)/2 homogeneous quadratic equations with n vari-
ables x0, · · · , xn−1, the folklore linearization technique replaces each quadratic
monomial xixj with a new variable yij and obtains n(n + 1)/2 linear equations
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with n(n + 1)/2 variables. The resulting equation system could be efficiently
solved using Gauss elimination algorithm. The value of the original variable xi
can be recovered as one of the square roots of yii. Kipnis and Shamir [18] in-
troduced a relinearization algorithm to solve quadratic equation systems with l ≥
0.09175n2 linearly independent homogeneous quadratic equations in n variables.
This is achieved by adding additional nonlinear equations. In the simplest form,
we have (xi0xi1)(xi2xi3) = (xi0xi2)(xi1xi3) = (xi0xi3)(xi1xi2). Thus we can
add yi0i1yi2i3 = yi0i2yi1i3 = yi0i3yi1i2 .

For the quadratic equation system obtained in Claim 8.4, there are 64t (not
necessarily homogeneous) quadratic equations in 64 + 2t variables. Thus the re-
linearization algorithm in Kipnis and Shamir [18] might be applied to the equation
system in Claim 8.4 only if 11 ≤ t ≤ 100. Note that in order to apply the relin-
earization algorithm, these quadratic equations need to be converted to homoge-
neous quadratic equations first. Furthermore, the last step in the re-linearization
approach is to compute square roots in Zq. By the assumption of the theorem, this
is computationally infeasible over Zq. For t ≤ 10 and t ≥ 101, the lineariza-
tion and re-linearization approaches could not be applied to the equation systems
constructed in Claim 8.4 since there is insufficient number of equations.

The most popular algorithm for solving multivariate polynomial equation sys-
tems over finite fields is Buchberger’s Gröbner basis algorithm based on S-polynomials
(see, e.g., [24]). The Gröbner basis algorithm is designed for polynomials over fi-
nite fields and the algorithm will not work in case any of the required inverses does
not exist during the monomial elimination process. However, the algorithm could
continue for polynomials over the ring Zq in case all of the required inverses do
exist. Indeed, we may assume that the algorithm can always continue since the
probability for finding a non-invertible element is negligible (which is equivalent
to finding a factor of q). In the following, we briefly describe the Gröbner basis
algorithm for the quadratic equation systems constructed in Claim 8.4.

The Gröbner basis eliminates top order monomial (in a given order such as lex-
icographic order) by combining two equations with appropriate coefficients. This
process continues until one obtains a univariate polynomial equation. The resulting
univariate polynomial equation normally has a very high degree and Buchberger’s
algorithm runs in exponential time on average (the worst case complexity is double
exponential time). Thus Buchberger’s algorithm cannot solve quadratic equation
systems with more than 20 variables in practice (see, e.g., Courtois et al [8]). But
it should also be noted that though the worst-case Gröbner basis algorithm is dou-
ble exponential, the generic behavior is generally much better. In particular, if
the algebraic system has only a finite number of common zeros at infinity, then
Gröbner basis algorithm for any ordering stops in a polynomial time in dn where
d = max{di : di is the total degree of fi} and n is the number of variables (see,
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e.g., [3]).
There are a few improved variants of Buchberger’s algorithm. For example,

Faugere introduced the F4 [11] and F5 [10] algorithms. Courtois et al [8] intro-
duced XL (eXtended linearization) techniques which are a combination of bounded
degree Gröbner basis and linearization. Ars [1] showed that XL is a redundant ver-
sion of F4. For a reasonable large size ring Zq, the complexity of F4 and F5 is at
least O(22.7n) for n variables. Thus they are not practical for cryptanalysis of the
encryption scheme OctoM in the ciphertext-only security model with the multivari-
ate equation systems constructed in Claim 8.4 (where n = 64 + 2t). Similarly,
algorithms F4, F5, and XL are not effective for the cryptanalysis of OctoM with the
multivariate quadratic equation systems constructed in Claim 8.4. Furthermore, it
should also be noted that the last essential step for Gröbner basis algorithm family
is to solve a univariate high degree polynomial equation which is computationally
infeasible in Zq by the theorem assumption.

In a summary, with the assumption of the theorem, it is computationally in-
feasible to solve the equation systems constructed in Claim 8.4. The theorem is
proved. 2

We conclude this section by showing that the scheme OctoM is insecure when
sufficiently many plaintext-ciphertext pairs are known.

Theorem 8.6 Given plaintext-ciphertext pairs (m1, c1), · · · , (mt, ct) of the FHE
scheme OctoM, one may recover the equivalent IPE decryption key k for OctoM.Dec
and recover the factor q0 of q.

Proof. For the plaintext-ciphertext pairs (m1, c1), · · · , (mt, ct), one may use
the full homomorphism property to obtain further plaintext-ciphertext pairs

(f(m1, · · · ,mt), cf )

where f is a multivariate polynomial. Without loss of generality, we may assume
that we have obtained 64 linearly independent ciphertext c1, · · · , c64 for the en-
coded messages m1 + r1q0, · · · ,m64 + r64q0 respectively, where r1, · · · , r64, q0
are unknowns. Then the IPE decryption key k could be expressed as polynomials
in (r1, · · · , r64, q0):

k = [m1 + r1q0, . . . ,m64 + r64q0][c
T
1 , . . . , c

T
64]
−1. (24)

That is, for each 1 ≤ i ≤ 64, we have ki = ai + r′iq0 for unknowns r′i, q0 ∈ Zq and
a known value ai. Let c = [c1, · · · , c64] be the ciphertext of a known message m,
then we have

m+ rq0 = kcT = b+ r′q0
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for some r, r′ ∈ Zq and the values of b,m are known. In other words, we have

m− b = (r − r′)q0 mod q,

which implies q0|(m − b). In case that m − b 6= 0 mod q, one can recover q0 as
q0 = gcd(q,m−b). The value of q0 together with the identity ki = ai+r′iq0 could
be used to decrypt any ciphertext. 2

9 FHE over other algebras such as Jordan algebra

The preceding sections propose a fully homomorphic encryption scheme based on
octonion algebra. One may wonder whether it is possible to use other normed finite
algebras corresponding to R, C, H, etc. to design FHE schemes. In this section,
we investigate these possibilities.

There is only one norm preserving automorphism (identity map) for R. There
are two norm preserving automorphisms (the identity map and the dual map) for
C. In addition to these two automorphisms for C, there are infinitely many “wild”
automorphisms for the complex number C (see, Kestelman [17] and Yale [32]). For
H, the norm preserving automorphism is the group of real-linear transformations
of Im(H) preserving the cross product a×b = 1

2(ab−ba). Thus the automorphism
group for H is just the special orthogonal group SO(3). That is, the group of 3× 3
orthogonal matrices of determinant 1.

The corresponding finite algebras for the four division algebras are Fq, C(Fq),
H(Fq), and O(Fq). For Fq with q = pm, there are exactly m Frobenius automor-
phisms for Fq which are given by ϕk : x 7→ xp

k
for 0 ≤ k < m. It should be noted

that all Frobenius automorphism fixes elements in Fq. For C(Fq), the automor-
phisms could be obtained by combining the Frobenius automorphism and the dual
automorphism. The automorphism group for H(Fq) could be obtained by com-
bining the Frobenius automorphism and the special orthogonal group SO(3,Fq).
Based on these facts, it is straightforward to check that it is insecure to use automor-
phism groups of Fq and C(Fq) to design fully homomorphic encryption schemes.

In order to use the automorphism group for H(Zq) to design fully homomor-
phic encryption schemes, it is necessary to guarantee that the size of the auto-
morphism group SO(3) for H(Zq), the number of isotropic vectors in Zq

4, and the
number of totally isotropic dimension 2 subspaces of Zq

4 are sufficiently large. By
Theorem 6.26 of Lidl and Niederreiter [20, page 282], there are q3+q(q−1)η(−1)
isotropic vectors in Fq

4, where η is the quadratic character of Fq. That is, η(−1) = 1
if there is x ∈ Fq such that x2 = −1. Otherwise, η(−1) = −1. By (11), the num-
ber of totally isotropic dimension 2 subspaces of Fq

4 is 2(q + 1). These arguments
could be revised to show that the number of isotropic vectors in Zq

4 and the number
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of totally isotropic dimension 2 subspaces of Zq
4 are large enough for the design

of an FHE scheme QuatM over H(Zq) in the same way that OctoM is designed.
The security analysis for QuatM is the same as that for OctoM. In particular, for
t ciphertexts, the approach in Claim 8.4 could be used to construct a quadratic
equation system of 16t equations in 16 + 2t unknown variables. Similarly, the
security of QuatM depends on the hardness of solving multivariate quadratic equa-
tions in Zq and the hardness of solving high degree univariate polynomial equa-
tions in Zq. Similar to the scheme OctoM, it can be shown that the scheme QuatM
is weakly equivalent to the inner product encryption scheme IPE of dimension 16.
Since quaternion multiplication is associative, for the design of QuatM, one may
also choose the private matrix K ∈ H(Zq)

4×4. Thus the ciphertext is a matrix in
H(Zq)

4×4 also. Consequently, the revised QuatM is weakly equivalent to the inner
product encryption scheme IPE of dimension 64.

One may also use other Lie groups to design fully homomorphic encryption
schemes. For example, one can use the second smallest exceptional Lie group F4

which is the automorphism group for the exceptional Jordan algebra (or Alberta al-
gebra) h3(O) over R. Specifically, h3(O) consists of the following 3×3 Hermitian
matrices (matrices that are equal to their own conjugate transposes):

(a, b, c,a,b, c) =

 a c b
c∗ b a
b∗ a∗ c


where a, b, c ∈ R and a,b, c ∈ O and the Jordan product ◦ is defined by α ◦ β =
1
2(αβ + βα) for α, β ∈ h3(O). It is straightforward that Jordan algebra is of
27-dimension over R. The Lie algebra f4 of F4 is isomorphic to so(O)⊕O3.

For the finite exceptional Jordan algebra h3(O(Zq)), the 52-dimensionF4(q) =
Aut(h3(O(Zq))) is the automorphism group of algebra h3(O(Zq)) which is a col-
lection of the Hermitian 3× 3 matrices restricted to O(Zq). It can be shown that

|F4(q)|= q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1))

and G2(q) ⊂ F4(q).
The determinant of a matrix in h3(O(Zq)) is defined by

det

 a c b
c∗ b a
b∗ a∗ c

 = abc− (a‖a‖2+b‖b‖2+c‖c‖2) + 2Re(abc)

This can be expressed as

det(x) =
1

3
tr(x3)− 1

2
tr(x2)tr(x) +

1

6
tr(x)3
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for x ∈ h3(O(Zq)). Thus the determinant of a Jordan algebra matrix is invariant
under all automorphism F4(q) of h3(O(Zq)). That is, for all φ ∈ F4(q), we have

det(x) = det(φ(x)).

In the following, we first describe the protocol for the FHE symmetric key
encryption scheme JordanM.
Key Setup. Select q = p1p2p3p4 according to the given security parameter κ and
let q0 = p1p2. Randomly select isotropic vectors z1, z2, z3 ∈ O(Zq) satisfying the
following identity

z2z
∗
1 = z3 and Re(z1z2z3) 6= 0 (25)

Note that such kind of z1, z2, z3 could be obtained by solving an equation system
of 11 equations (eight obtained from (25) and three obtained from the identity
‖z1‖= ‖z2‖= ‖z3‖= 0) in 24 variables. Let φ ∈ F4(q) be a randomly selected
automorphism and letK ∈ Zq

3×3 be a randomly selected 3×3 nonsingular matrix.
The private key is key = (q0, φ,K, z1, z2, z3).
Encryption. For a message m ∈ Zq0 , choose random r1, r2, r3, r4, r5, r ∈ Zq

such that det(Em) 6= 0, where Em is the Hermitian matrix

Em = (m+ rq0, r4, r5, r1z1, r2z2, r3z3) =

 m+ rq0 r3z3 r2z2
r3z
∗
3 r4 r1z1

r2z
∗
2 r1z

∗
1 r5

 .
Let the ciphertext

Cm = JordanM.Enc(key,m) = K−1φ(Em)K.

Decryption. For a received ciphertext Cm, decrypt the plaintext as

m = JordanM.Dec(key, Cm) = 1φ−1(KCmK
−1)1T mod q0.

Ciphertext addition. The addition of two ciphertexts Cm0 and Cm1 is defined as
the regular component wise matrix addition Cm0+m1 = Cm0 + Cm1 .
Ciphertext multiplication. The multiplication of two ciphertexts Cm0 and Cm1 is
defined as the Jordan product ◦:

Cm0m1 = Cm1 ◦ Cm0

= (K−1φ(Em0)φ(Em1)K +K−1φ(Em1)φ(Em0)K)/2
= K−1((φ(Em0)φ(Em1) + φ(Em1)φ(Em0))/2)K
= K−1φ(Em0 ◦ Em1)K.

In the encryption process JordanM.Enc, the random numbers are chosen in
such a way that det(Em) 6= 0 no matter whether m = 0 or not.
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By the identity (25), we have z2z
∗
1 = z3. This implies that z3z1 = 0 and

z∗3z2 = 0. By these arguments and by the identity (ab)∗ = b∗a∗ from Theo-
rem 4.1, the multiplication homomorphism of JordanM follows from the following
equations

Em0 ◦ Em1 =


m0 + r0q0 r0,3z3 r0,2z2

r0,3z
∗
3 r0,4 r0,1z1

r0,2z
∗
2 r0,1z

∗
1 r0,5

 ◦

m1 + r1q0 r1,3z3 r1,2z2

r1,3z
∗
3 r1,4 r1,1z1

r1,2z
∗
2 r1,1z

∗
1 r1,5


=


m0m1 + rq0 x1z3 + x2z2z

∗
1 x3z2 + x4z3z1

x1z
∗
3 + x2z1z

∗
2 r0,4r1,4 x5z1 + x6z

∗
3z2

x3z
∗
2 + x4z

∗
1z
∗
3 x5z

∗
1 + x6z

∗
2z3 r0,5r1,5


=


m0m1 + rq0 (x1 + x2)z3 x3z2

(x1 + x2)z
∗
3 r0,4r1,4 x5z1

x3z
∗
2 x5z

∗
1 r0,5r1,5


for some x1, · · · , x6, r ∈ Zq.
Remark. In the key setup process JordanM.KeySetup, it is sufficient to use φ ∈
F4(q) that are represented by the primitive idempotents A ∈ h3(O(Zq)) with A ◦
A = A and tr(A) = 1. That is, φ is defined by

φ : B 7→ B + 4tr(A ◦B)A− 4B ◦A

It is further noted that the primitive idempotents in the Jordan algebra are exactly
the elements (a, b, c,a,b, c) satisfying

a+ b+ c = 1
a2 + ‖b‖2+‖c‖2= a
b∗a = cc∗

and the equations obtained from these by cycling a, b, c and a,b, c.
It should be noted that (see, e.g., Baez [2]), for any (a, b, c,a,b, c) ∈ h3(O(Zq)),

there exists φ ∈ F4(q) such that φ((a, b, c,a,b, c)) is diagonalized. The security
analysis for JordanM is similar to that of OctoM and we have the following theo-
rem.

Theorem 9.1 Assuming that it is computationally infeasible to solve univariate
polynomial equation systems of degree larger than 2, it is computationally infea-
sible to solve multivariate/univariate quadratic equation systems in Zq, and the
plaintext messages are uniformly distributed over Zq0 . Then the encryption scheme
JordanM over Zq is (t, negl(κ))-secure in the weak ciphertext-only security model
for any t ≤ poly(κ).
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Proof. For given t ciphertexts of the scheme JordanM, the approach in the proof of
Claim 8.4 could be used to construct a quadratic equation system of 72t equations
in 9 + 27t (or 25 + 6t) unknown variables. The other parts in the proof of Theorem
8.3 remain the same for the proof of this theorem. 2

Remark In the scheme JordanM, the private keyK is chosen as a 3×3 matrix over
Zq. If K were chosen as a 3× 3 matrix over O(Zq), then the scheme would not be
multiplicative homomorphic since octonion multiplication is not associative. How-
ever, one may use Jordan algebra restricted to quaternions H(Zq) to design an FHE
scheme JordanQuaterM. Then one can use a 3× 3 matrix K ∈ H(Zq)

3×3 as the
private key since quaternion multiplication is associative. Furthermore, one may
also use high dimension Hermitian matrices for the design of JordanM scheme.
For example, one may use the n-dimension Hermitian matrices design JordanM.

10 Applications of FHE schemes in ciphertext-only secu-
rity model

The efficient FHE schemes designed in this paper are expected to have a wide
range of applications. In this section, we show its potential applications in software
obfuscation and outsourced implementation of software with protected algorithms.
Software obfuscation concept has been introduced many years ago. For example,
it has already been presented in Diffie-Hellman (1976) invention of public key
cryptography. In this paper, we consider a special case of the reusable software
obfuscation problem:

The owner has a software (e.g., with a slow but feasible secret algo-
rithm to break RSA when powerful computing resources are avail-
able) and the cloud has a powerful computing resource. The software
owner wants to run his software in the cloud but he does not want to
leak his secret algorithm. The cloud provides computing resources to
the software owner and it does not need to learn the software output.
The actual protocol could work like this: the software owner uploads
his re-usable obfuscated software to the cloud. Each time when the
software owner wants to run the obfuscated software in the cloud, he
provides obfuscated inputs to the cloud. The cloud runs the obfuscated
software and the obfuscated software output is returned to the software
owner. The software owner decrypts the obfuscated output and learns
the actual output.

The essential difference between the above software obfuscation problem and the
general software obfuscation problem in the literature is that the cloud does not
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need to learn the software inputs and outputs in our case. However, for the general
software obfuscation problem, the evaluator should be able to run the obfuscated
software on his own inputs and learn the actual outputs.

In this section, we show how to use FHE schemes proposed in this paper to
solve the above reusable software obfuscation problem. The general one-time pri-
vate software evaluation problem has been solved by Yao [33] using the concept
of garbled circuits. Yao’s garbled circuit allows computing a function f on an in-
put x without leaking any information about the input x or the circuit used for the
computation of f(x). However, Yao’s garbled circuits are not re-usable and a gar-
bled circuit could only be run once. The goal of this section is to design reusable
garbled circuits.

10.1 Straight line programs, arithmetic circuits, and universal cir-
cuits

Arithmetic circuits have been used as a model for computing polynomials. An
arithmetic circuit takes either variables or numbers as inputs. The only allowed
gates in an arithmetic circuits are additions and multiplications. For the Boolean
circuit model, it uses AND, OR, and NOT gates. Since these gates could be
redesigned using NAND gates, we assume that all circuits contain NAND gates
only. Each NAND gate can be converted to two arithmetic gates using the for-
mula “x NAND y = 1 − xy”. Thus each Boolean circuit could be converted to an
arithmetic circuit that computes the same function. By the above discussion, each
Boolean circuit could be converted to a straight line program where a straight-line
program is a sequence of operations that only uses additions and multiplications as
follows.

Input: x0, · · · , xn−1
v0 = w0,0 op w0,1

· · ·
vt−1 = wt−1,0 op wt−1,1

where v0, · · · , vt−1 are temporary variables. Each operator op is either + or ×,
and the variables wi,0, wi,1 are either constants within {1,−1} or variables from
the list x0, · · · , xn−1, v0, · · · , vi−1.

For a universal straight line program U , it takes an input (C, x) where C is an
encoded straight line program and U(C, x) = C(x). The construction of universal
Boolean circuits could be found in [19, 25]. When a universal straight line pro-
gram U (alternatively, a universal arithmetic circuit or a universal circuit) is used,
the structure of U is public knowledge and there is no need to protect the control
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flow within U . It is sufficient to protect the input privacy (that is, both C and x).
It should be noted that this is also sufficient for the protection of keyed programs,
where the obfuscation does not depend on hiding the entire structure of the obfus-
cated program from the adversary and it only hides a short secret key embedded in
the program.

10.2 Efficient FHE applied to software obfuscation and more efficient
FHE scheme in CPA model

For the software obfuscation problem that we have mentioned in the preceding
paragraphs, the cloud does not need to know the software output. Thus an effi-
cient FHE scheme together with a universal straight line program is sufficient for
this kind of software obfuscation. In the proposed obfuscation approach, one only
needs to homomorphically encrypt all input variables (that is, both C and x where
C is the private circuit that the software owner wants to protect). That is, each vari-
able xi is homomorphically encrypted to ci = FHE.Enc(key, xi). Each operator
can then be evaluated homomorphically as c = FHE.Eval(c1, c2; op).

Let U be a universal straight line program and C be the straight line program
that the software owner wants to obfuscate. Then the protocol proceeds as follows:

• The software owner constructs the reusable garbled software as C = FHE.Enc(key, C)
and uploads C to the cloud.

• For each evaluation, the software owner provides the encrypted input FHE.Enc(key,x)
to the cloud.

• The cloud runs the universal straight line programU on (C, FHE.Enc(key,x))
to obtain the encrypted output

FHE.Enc(key,C(x)) = FHE.Eval(C, FHE.Enc(key,x);U)

• The software owner decrypts the actual output:

C(x) = FHE.Dec(key, FHE.Enc(key,C(x))).

10.3 Efficient FHE scheme in the fully secure CPA model

Existing CPA secure FHE schemes with noise generally have very large parameters
to keep the scheme secure. For example, for the FHE scheme FHEint over integers
[26], the module prime p is required to be at least 16000 bits. However, if combined
with our scheme OctoM, one can choose smaller modules and the bootstrapping
process could be much more efficient when the bootstrapping process is considered
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as a software obfuscation problem as we have dicussed in the preceeding section.
The resulting scheme could be shown to be secure in the standard CPA model
(note that the resulting scheme is then a secret key scheme instead of a public key
scheme).

11 Practical considerations

11.1 Dictionary attacks

The preceding sections show that the proposed FHE schemes OctoM, QuatM, JordanM
are secure in the wCOA security mode. Furthermore, we also showed that known
plaintext-ciphertext pairs of these FHE schemes could lead to the complete recov-
ery of the private key. This gives the adversary the possibility of carrying out an
exhaustive search based dictionary attacks in case that the guessable message space
is small. As an example, assume that for given ciphertexts c1, · · · , ct of the scheme
OctoM, one can obtain 64 independent ciphertext vectors from c1, · · · , ct using the
fully homomorphic property. If the corresponding message (m1, · · · ,mt) ∈ M′
for someM′ with |M|≤ N , then the adversary could do an exhaustive search of
M′ to obtain the candidate key space of size N . Furthermore, if the adversary
can guess that some ciphertexts corresponds to the same plaintext, then the adver-
sary can use the additive homomorphism operations to obtain a valid ciphertext for
the message 0. Based on these observations, an implementation of proposed FHE
schemes should always take these factors into consideration. In particular, if pos-
sible, one should apply an appropriate message padding scheme before the FHE
encryption process is used. These padding schemes should be compatible with the
homomorphic operations.

11.2 Bits of Security

The security of the FHE schemes OctoM, QuatM, JordanM depends on the hardness
of solving multivariate quadratic equations and univariate high degree polynomial
equations within Zq. The hardness of these problems are more or less related to the
hardness of factoring q. For example, the problem of solving quadratic equations
in Zq is equivalent to the problem of factoring q. NIST SP 800-57 [4] recommends
the security strength of Zq for q = p1p2. For the FHE schemes proposed in this
paper, we recommend the use of q = p1p2p3p4. Hinek [16] and Wang [28] list
the security strength of Zq when q is a multiplication of more than two primes.
Following [4, 16, 28], we recommend the use of ring sizes for Zq in Table 1.

Table 2 lists the number of ring multiplications for proposed FHE schemes. For
the performance comparison, we also include the number of ring multiplications
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Table 1: Bits of Security and Zq

Bits of Security 80 112 128 192 256
q = p1p2 in bits [4] 1024 2048 3072 7680 15360
q = p1p2p3 in bits [16, 28] 1536 2335 3072 7680 15360
q = p1p2p3p4 in bits [16, 28] 2048 3072 4562 7680 15360

needed for the RSA encryption scheme. In the table, we assume that the RSA pub-
lic key is 3 and the private key size is the same as the modulus length. Furthermore,
we assume that the RSA private key contains around 50% ones and the “square-
and-multiply” algorithm is used for the RSA decryption process. From the table,
it is observed that both the schemes OctoM and QuatM are more efficient than the
RSA decryption process for all parameters. For the scheme JordanM, if the auto-
morphism φ is implemented as a regular Jordan product, then it requires 1734 mul-
tiplications at most. Thus the total number of multiplications for a JordanM.Enc or
JordanM.Dec is 2127 and both JordanM encryption and decryption processes are
more efficient than the RSA decryption process for the security strength of 128-
bits or more. However, if special automorphism φ were chosen and φ were im-
plemented more efficiently than the RSA decryption process, then both JordanM

encryption and decryption processes are more efficient than the RSA decryption
process for all parameters.

Table 2: Performance comparison in terms of field multiplications

OctoM QuatM JordanM RSA
Encryption 1026 130 393+1734 = 2127 3
Decryption 578 82 393+1734 = 2127 1.5|q|

Homo Multi. 512 64 3456

We conclude this section by pointing out ciphertext expansion factors for schemes
OctoM, QuatM, and JordanM. The ciphertext expansion factor for a scheme xx is
defined as max

{
|cm|
|m| : m ∈M

}
where cm = xx(k,m) is the ciphertext of m.

For the scheme OctoM (respectively QuatM and JordanM), the ciphertext cm for
m ∈ Zq0 is a collection of 64 elements (respectively, 16 and 72) from Zq. Thus the
message expansion factors for the schemes OctoM, QuatM, and JordanM are 128,
32, and 144 respectively.

32



12 Insecure FHE without bootstrapping schemes in the
literature

Though it has been a very challenging open question to design noise-free FHE
schemes, several noise-free FHE schemes with or without security proofs have
been posted as IACR ePrint technical reports. In this section, we show that these
schemes do not work.

12.1 Insecure octonion based FHE schemes

Yagisawa [31, 30] proposed a fully homomorphic encryption scheme using octo-
nions. The schemes in [31] and [30] are identical except that the message encoding
approaches are different. In this section, we show that the scheme in [31] does not
decrypt and the scheme in [30] is insecure. First we note that the schemes in both
[31] and [30] are over finite fields Fq and the recommended q is 80 bits. The
protocol proceeds as follows.
Key Setup. Let x be an octonion variable and let z ∈ Fq

8 be a randomly selected
isotropic octonion over the finite field Fq. Choose random invertible octonions
k0, · · ·, kt−1, w0, · · ·, wt−1,u0, · · · ,ut−1 ∈ Fq

8. The private key is

key = {z,k0, · · · ,kt−1,w0, · · · ,wt−1,u0, · · · ,ut−1}.

Encryption. For a message m ∈ Fq, it is first encoded to an octonion in Fq
8. In

Yagisawa [31], m is encoded as follows: choose random r0, r1 ∈ Fq such that
m + r0 + r1 = 0 and let m′ = u0(· · · (ut−1(m1 + r0z + r1z

∗)u−1t−1) · · ·)u
−1
0 .

In Yagisawa [30], m is encoded as follows: choose random a, b, r ∈ Fq such that
m = a+ 2Re(z)b and let m′ = u0(· · · (ut−1(a1 + bz + rz∗)u−1t−1) · · ·)u

−1
0 . The

ciphertext YO.Enc(key,m) in both [31] and [30] is

cm(x) = (k0(· · · ((kt−1(m
′[(k−1t−1(· · · ((k

−1
0 x)w0) · · ·))wt−1]))w

−1
t−1) · · ·))w

−1
0 .

Decryption. Let

g0(x) = k−1t−1((· · · (k
−1
0 (xw0)) · · ·)wt−1)

g1(x) = k0((· · · (kt−1(xw
−1
t−1)) · · ·)w

−1
0 )

For a received ciphertext cm(x), compute m′ = g0(cm(g1(1))). Let

m = YO.Dec(key,cm(x)) = u−1t−1(· · · (u
−1
0 m′u0) · · ·)ut−1.

Yagisawa [31, 30] claims that the original message m can be “recovered” from
m and the scheme YO is secure. We first show that the scheme in [30] is insecure
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in the wCOA security model. Our analysis techniques for the scheme OtcoM in
this paper could be used to show that the problem of recovering a message in the
scheme [30] can be reduced to the problem of solving a univariate polynomial
equation. This problem is trivially solvable for the parameters recommended by
[30]. Furthermore, By the fact that z = 2Re(z)− z∗, we have

a1 + bz + rz∗ = (a+ 2bRe(z))1 + (r − b)z∗ = m1 + (r − b)z∗.

Thus the message m = 0 is encrypted to cm(x) such that cm(1) is an isotropic
octonion while non-zero messagesm are encrypted to cm(x) such that cm(1) have
positive norms. This observation has been pointed out by Wang [29] already.

Next, we show that the scheme in [31] is not multiplicative homomorphic and
the plaintext m could not be recovered from the decrypted m. For the scheme YO

in [31], the addition of two ciphertexts cm0(x) and cm1(x) is defined as the com-
ponent wise addition cm0+m1(x) = cm0(x) + cm1(x). Yagisawa [31] defined the
multiplication of two ciphertexts cm0(x) and cm1(x) as cm1m0 = cm1(cm0(x)).
However, this ciphertext multiplication does not work. Using our matrix based
approach, we have

cm(x) = xAl
k−1
0
Ar

w0
· · ·Al

k−1
t−1
Ar

wt−1
Al

m′A
l
kt−1

Ar
w−1

t−1
· · ·Al

k0
Ar

w−1
0

Thus

cm1(cm0(x)) = xAl
k−1
0

Ar
w0
· · ·Al

k−1
t−1

Ar
wt−1

Al
m′0
Al

kt−1
Ar

w−1
t−1

· · ·Al
k0
Ar

w−1
0

Al
k−1
0

Ar
w0
· · ·Al

k−1
t−1

Ar
wt−1

Al
m′1
Al

kt−1
Ar

w−1
t−1

· · ·Al
k0
Ar

w−1
0

6= cm1m0(x)

For the scheme in [31], even if one can find an approach to revise the above encryp-
tion process so that it is multiplicative homomorphic, the original messagem could
not be decoded from m for the following reasons. For two encoded messages

m′0 = m01 + r0,0z + r0,1z
∗

m′1 = m11 + r1,0z + r1,1z
∗

we have
m′0m

′
1 = m0m11 + r3,0z + r3,1z

∗

for some r3,0, r3,1 ∈ Fq. But generally it does not satisfy the condition m0m1 +
r3,0 + r3,1 = 0 as required in the encryption process. Thus m′0m

′
1 could not

be uniquely decrypted to m0m1. The root cause for this decoding failure is that
1 ∈ span{z, z∗}.
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12.2 Insecure IPE based FHE schemes

Liu [21] proposed a noise-free FHE scheme over a finite field Fq. The design in
[21] is quite sophisticated and we use the simplified description from Wang [29].
Though Wang [29] describes a potential attack on [21], it is not clear whether
the attack in [29] is effective for large enough q. In the following, we present
several efficient attacks on the FHE scheme in [21]. Let a = [a0, · · · , an] and
b = [b0, · · · , bn] be two vectors. Then the tensor (outer) product of a and b is
defined as a length (n+ 1)2 vector a⊗ b = [a0b0, a0b1, · · · , anbn]. Let l ≤ n− 2
be two given integers where Liu [21] recommends the use of n = 5 and l = 3. The
protocol proceeds as follows.
Key Setup.

• The private key is a randomly selected vector k = [k0, · · · , kn] ∈ Fq
n+1.

• The public key (Φ, P ) consists of two random matrices Φ ∈ Fq
(l+1)×(n+1)

and P ∈ Fq
(n+1)2×(n+1) such that ΦkT contains an entry 1 and (k⊗ k)T =

PkT .

Encryption. For a message m ∈ Fq, select a random vector r ∈ Fq
l+1 such that

m = rΦkT . The ciphertext of m is cm = rΦ.
Decryption. For a received ciphertext c, compute m = IPE.Dec(k, c) = ckT .
Ciphertext addition. The addition of two ciphertexts cm0 and cm1 is defined as
the regular component wise vector addition cm0+m1 = cm0 + cm1 .
Ciphertext multiplication. For ciphertexts cm0 = [c0, · · · , cn] and cm1 = [c′0, · · · , c′n],
The multiplication of cm0 and cm1 is defined as cm0m1 = (cm0 ⊗ cm1)P .

The scheme could be further simplified to the plain Inner Product Encryption
IPE scheme with a published public evaluation matrix P by removing the matrix Φ
from the public key since there exists an (n+1)×(l+1) matrixA such that ΦA =
I . The ciphertext can be rewritten as c = cmA = rΦA = r and the private key
can be rewritten as kΦT . Liu [21] recommends the use of q = 100000000000031
as the public parameter.

The correctness of the protocol could be verified by the fact that

mm′ = (c0k0 + · · ·+ cnkn)(c′0k0 + · · ·+ c′nkn) =
n∑

i,j=0

cic
′
jkikj (26)

in case that [c0, · · · , cn] and [c′0, · · · , c′n] are the ciphertexts of m and m′ respec-
tively. However, the protocol is insecure since the private key k could be recovered
from the public evaluation matrix P . In the following, we present various attacks
on the protocol.
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First, Liu [21] requires the public key contains a ciphertext c of the plaintext
1. By the multiplicative homomorphism property, one can get different ciphertext
vectors ci of 1i = 1 for i > 0. Thus the key space could be significantly reduced
by using the linear equation system kcTi = 1. Furthermore, if one can obtain n
independent ciphertext vectors ci for 1i = 1 by the multiplicative homomorphism
property, then one can completely recover the entire key k from the equation sys-
tem kcTi = 1.

Secondly, we note that, for i 6= j, if the rows pi,j and pj,i in P (corresponding
to kikj and kjki respectively) are not identical, then pi,j − pj,i 6= 0 is a ciphertext
of the message 0. By deriving n+ 1 linearly independent ciphertexts for 0 from P ,
one can recover the private key k by solving the linear equation system consisting
of n+1 equations (pi,j−pj,i)k = 0 for i 6= j. Liu [21] does not require pi,j = pj,i

for i 6= j.
Thirdly, even if pi,j = pj,i for all i, j ≤ n, the private key k could still be re-

covered from P using the relinearization algorithm in Kipnis and Shamir [18]. Let
P ′ ∈ Fq

n(n+1)
2
×(n+1) be the matrix obtained from P by taking rows corresponding

to the entries kikj with i ≤ j. Then there exists a matrix M ∈ Fq
n2−n−2

2
×n(n+1)

2

such that MP ′ = 0 and rows of M are linearly independent. It follows that

M [k0k0, · · · , kikj , · · · , knkn]T = MP ′[k0, · · · , kn]T = 0 (27)

is a homogeneous quadratic equation system with n2−n−2
2 equations in n+ 1 vari-

ables. Since n2−n−2
2 > 0.09175(n + 1)2 for n ≥ 3, the relinearization algorithm

in Kipnis and Shamir [18] could be used to efficiently recover the private keys
k0, · · · , kn.

The reader may ask whether the scheme in Liu [21] could be made secure by
using finite rings Zq for large enough q = p1p2 instead of Fq for q = pm since
the quadratic equations could not be efficiently solved in Zq unless one knows the
factorization of the q. The answer is no. In the relinearization attack, one obtains
all values kikj for i, j ≤ n by solving a linear equation. Thus one can use the
equation system (k ⊗ k)T = PkT to obtain the value of k directly by solving a
linear equation system instead of a quadratic equation system. Alternatively, one
can use the identity (26), the ciphertext c1 of the message 1 which is contained in
the rows of Φ (as required by Liu [21]), and the calculated values kikj to decrypt
any ciphertexts directly.

Lastly, by the fact that (k ⊗ k)T = PkT , we can establish n + 1 equation
systems

(kiI − Pi)k = 0 (28)

for i = 0, · · · , n and Pi ∈ Fq
(n+1)×(n+1). From the equation system (k0I−P0)k =
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0, one can obtain univariate polynomials p0,0, · · · , p0,n:

p0,0(k0) = |k0I − P0|= 0, p0,1(k0) = k1, · · · , p0,n(k0) = kn.

The private key k can be recovered from these univariate polynomials efficiently.

13 Conclusion

This paper introduces efficient noise-free FHE schemes in the weak ciphertext-only
security model. The proposed schemes are used to solve a specific type of software
obfuscation problems. It is expected that there is a wide range of applications for
the proposed FHE schemes. For an implementation of the proposed FHE schemes,
if the message space in the application has a small guessable size and an appropriate
padding scheme is not employed, then one may mount a dictionary attack on the
implementation. It will be interesting to investigate FHE compatible “padding”
techniques to defeat the potential dictionary attacks on these implementations. One
potential approach could be to add sufficiently many random decimal bits as postfix
to the plaintext integers and then convert them to elements of Zq.
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