
An abridged version of this paper is under submission. This is the full version.

Downgrade Resilience in Key-Exchange Protocols

Karthikeyan Bhargavan∗ Christina Brzuska†

Cédric Fournet, Markulf Kohlweiss, Santiago Zanella-Béguelin‡

Matthew Green§

January 2016

Abstract

Key-exchange protocols such as TLS, SSH, IPsec, and ZRTP are highly con�gurable, with typical
deployments supporting multiple protocol versions, cryptographic algorithms and parameters. In the
�rst messages of the protocol, the peers negotiate one speci�c combination: the protocol mode, based
on their local con�gurations. With few notable exceptions, most cryptographic analyses of con�gurable
protocols consider a single mode at a time. In contrast, downgrade attacks, where a network adversary
forces peers to use a mode weaker than the one they would normally negotiate, are a recurrent problem
in practice.

How to support con�gurability while at the same time guaranteeing the preferred mode is negotiated?
We set to answer this question by designing a formal framework to study downgrade resilience and its
relation to other security properties of key-exchange protocols. First, we study the causes of downgrade
attacks by dissecting and classifying known and novel attacks against widely used protocols. Second, we
survey what is known about the downgrade resilience of existing standards. Third, we combine these
�ndings to de�ne downgrade security, and analyze the conditions under which several protocols achieve
it. Finally, we discuss patterns that guarantee downgrade security by design, and explain how to use
them to strengthen the security of existing protocols, including a newly proposed draft of TLS 1.3.

∗Inria Paris-Rocquencourt. E-mail: karthikeyan.bhargavan@inria.fr
†Hamburg University of Technology. E-mail: brzuska@tuhh.de
‡Microsoft Research. E-mail: {fournet,markulf,santiago}@microsoft.com
§Johns Hopkins Univeristy. E-mail: mgreen@cs.jhu.de

1

Contents

1 Introduction 3

1.1 Motivating example . 3
1.2 Overview of our approach . 4
1.3 Summary of our results . 6
1.4 Outline of the paper . 6

2 Modeling Multi-Mode Key-Exchanges 7

2.1 Unique identi�ers and partnering . 7
2.2 Multi-mode authentication . 8
2.3 Key-indistinguishability and privacy . 8
2.4 Instantiating our model for SIGMA-N . 9

3 De�ning Downgrade Resilience 9

3.1 Downgrade resilience of SIGMA-N . 11
3.2 Downgrade resilience and multi-mode security . 11
3.3 Downgrade secure sub-protocols . 12
3.4 Downgrade security by whitelisting . 13

4 Secure SHell 14

4.1 SSHv2 is partnering and downgrade secure . 15
4.1.1 Agile hash functions and signatures . 15
4.1.2 Partnering security . 16
4.1.3 Downgrade security . 17

5 Internet Key Exchange 18

5.1 IKEv1 does not prevent downgrades . 18
5.2 IKEv2 does not prevent downgrades . 22

5.2.1 IKEv2 with signatures . 23
5.2.2 IKEv2 with EAP client authentication . 24

5.3 Version downgrades from IKEv2 to IKEv1 . 25

6 Z Real-Time Protocol 25

6.1 ZRTP does not prevent downgrades . 26

7 Transport Layer Security 27

7.1 Negotiation in TLS 1.2 . 28
7.2 TLS 1.2 does not prevent downgrades . 29
7.3 On downgrade protection in Draft 10 of TLS 1.3 . 31

8 Related Work 36

9 Conclusion and Future Work 37

2

1 Introduction

Popular protocols such as TLS, SSH and IPSec as used in practice do not �t a simple textbook de�nition of a
key-exchange protocol, where the state machine, cryptographic algorithms, parameters and message formats
are all �xed in advance. Rather, these modern protocols feature cryptographic agility, which provides for
con�gurable selection of multiple protocol and cipher modes, so that the key exchange actually executed
between two peers depends on a negotiation phase embedded in the exchange.

Agility has proven important in securing real-world protocol implementations. For example, in the wake
of recent vulnerability disclosures in TLS [25, 2�4, 41, 26, 10], network operators reacted by updating client
and server con�gurations to disable weak algorithms and protocol versions. Moreover, experience shows
that when su�cient agility is not present within a single protocol, application developers construct their
own ad hoc negotiation mechanisms, for example, by sequentially attempting connections with di�erent
versions of a protocol and �falling back� to the best one supported [40].

Unfortunately, support for algorithm agility opens up opportunities for downgrade attacks, where an
active network adversary interferes with the negotiation, causing honest peers to complete a key exchange,
albeit using a mode that is weaker than the one they would have used on their own. Such attacks have
been identi�ed in a number of protocols, most famously in the early versions of the SSL protocol [44] and
even in recent versions of TLS [2, 40].

Surprisingly, there has been relatively little formal work around the security of negotiation in modern
cryptographic protocols. Several recent works formally prove the security of di�erent aspects of TLS and
SSH. Some [28, 33] only model a single mode at a time. Some [12, 13] do model negotiation of weak
algorithms, but do not guarantee negotiation of the preferred mode. Some others [9, 23] consider only
interactions where both parties have secure con�gurations. For this reasons, all of these works overlook
certain downgrade attacks that occur when one party supports an insecure mode.

This is concerning because negotiation has proven to be fertile ground for attacks, e.g. [10, 44, 2],
and because recent Internet-wide scans have revealed the prevalence of hosts supporting insecure protocol
modes [43, 2]. In this setting, it is insu�cient to restrict our attention to situations where both parties
support secure con�gurations.

In this work we aim to address this situation by systematically investigating the problem of downgrade
resilience in cryptographic protocols.

1.1 Motivating example

We begin with a simple motivating example: we adapt the SIGMA protocol of Krawczyk [32] by adding
a naïve extension intended to negotiate Di�e-Hellman groups: In the �rst message, A proposes a list of
groups it supports; in the second message, B indicates which of these groups should be used in the exchange.
The modi�ed protocol appears in Fig. 1. The goal of the protocol is to compute session keys (km, ks).

Under normal circumstances, the protocol succeeds in correctly selecting a group. However, consider
a scenario where both participants support both strong and weak groups. B's signature authenticates the
chosen group, but not A's proposal. This leads to a downgrade attack (see Fig. 2) similar to the Logjam
attack on TLS [2], where an attacker can break the session keys at leisure and compromise the connection.

Protocol designers have adopted a number of techniques to prevent such downgrade attacks. Based
on a review of deployed protocols, we identify three common patterns. In the �rst, exempli�ed by SSH,
protocol designers assume the existence of strong signing keys shared between the two parties, and use these
keys to authenticate all negotiation messages, either at the time they are transmitted, or after the fact.

3

A B

[G1, . . . , Gn]

Gi, g
y

(km, ks) = kdf(gxy)

A, gx, sign(skA, (Gi, g
y, gx)),mac(km, A)

(km, ks) = kdf(gxy)

B, sign(skB, (Gi, g
x, gy)),mac(km, B)

Figure 1: SIGMA-N: Basic SIGMA [32] with group negotiation

In a second pattern, exempli�ed by TLS, designers transmit unauthenticated protocol messages, perform
a key exchange, and then subsequently use the resulting shared secrets to retroactively authenticate the
negotiation messages. The �nal approach relies on whitelisting certain modes, and is best exempli�ed by
Google's TLS False Start proposal [34], which is being codi�ed as part of TLS 1.3 [22].

Each approach has various advantages and disadvantages. The devil is often in the details: each protocol
is sensitive to the precise nature of the implementation, e.g. the inputs of authentication functions, or the
speci�cs of what a valid mode is for whitelisting. As a concrete example, modern versions of TLS-DHE fail
to sign the identity of the ciphersuite chosen by a server, leading to cross-protocol attacks [36, 2]. Similarly,
TLS False Start relies solely on ciphersuite identi�er (rather than more detailed information such as key
strength) in its selection of which modes to whitelist, which converts the online attack of Adrian et al. [2]
into an o�ine one.

1.2 Overview of our approach

We give a de�nition and a theorem for downgrade resilience that model the following intuitive and desirable
property for deployed key-exchange protocols:

To prevent an attack on a particular protocol mode, it is su�cient to deactivate the con�gurations

that lead to its negotiation.

Our work builds on the de�nitions of Bhargavan et al. [13], used to model security in miTLS, a reference
implementation of the TLS standard. A fundamental di�erence between these de�nitions and previous work
is that they attempt to model entire deployed protocols. This requires a de�nition of security cognizant
of the fact that some aspects (modes) of the protocol may be insecure. To deal with this, the de�nitions
of [13] incorporate predicates determining modes that are expected to provide security guarantees, e.g., key
indistinguishability. This approach allows to de�ne security when secure modes are chosen, yet tolerates
the existence of insecure modes.

One limitation of these de�nitions is that they do not take into account how modes are chosen. In
a protocol secure under the miTLS framework, two parties under adversarial in�uence may arrive at an

4

A MitM B

[Gstrong , Gweak] [Gweak]

Gweak , g
y

(km, ks) = kdf(gxy)

A, gx, sign(skA, (Gweak , g
y, gx)),mac(km, A)

(km, ks) = kdf(gxy)
B, sign(skB, (Gweak , g

x, gy)),mac(km, B)

y = dlog(Gweak , g
y)

(km, ks) = kdf(gxy)

Figure 2: Man-in-the-Middle downgrade attack on SIGMA-N

insecure mode even when otherwise they would use a secure mode. In theory each party can detect and
react to the negotiation of an insecure mode, e.g., by terminating the protocol execution. Nonetheless, this
does not guarantee that the preferred common mode is selected. Our solution is to incorporate downgrade
resilience in our security de�nitions, to ensure that an adversary cannot force the selection of another mode
than the preferred one.

We consider protocols between an Initiator and a Responder. These two parties each have their own
local static con�gurations, expressing their preferences and their intent to negotiate a shared protocol
mode. To de�ne downgrade resilience formally, we introduce a downgrade protection predicate DP that
operates on pairs of con�gurations (analogous to miTLS predicates on modes), and that identi�es pairs of
con�gurations from which we expect downgrade resilience. We also introduce a function Nego that maps
two opposite-role con�gurations to the protocol mode that should be negotiated in the absence of active
adversaries. Intuitively, our de�nition says that a protocol is downgrade secure if two peers starting from
con�gurations satisfying DP can only negotiate the mode determined by Nego, even in the presence of an
active adversary.

By way of example, a speci�c instantiation of Nego for the TLS protocol might determine that two TLS
peer con�gurations would normally result in the negotiation of TLS 1.2 in combination with a ciphersuite
such as DHE-RSA-AES256-GCM-SHA384 with a 2048-bit Di�e-Hellman modulus. However, if a server supports
an insecure mode, such as a DHE-EXPORT ciphersuite, an adversary might force the pair to downgrade to
this mode [2]. This shows that without additional countermeasures, TLS 1.2 does not meet our de�nition.
On the other hand, protocols with only one possible mode are obviously secure. The challenge we address
in this paper is to consider agile protocols that support multiple modes (e.g., ciphersuites, versions).

To apply our de�nition to real-world protocols, we adopt the following approach. Rather than ana-
lyzing a protocol in its entirety, we �rst extract a core negotiation sub-protocol, which captures the main
downgrade-protection mechanisms of the larger protocol. We next prove that this sub-protocol is complete
for downgrade security, in the sense that an adversary that succeeds in downgrading the full protocol will
also succeed in downgrading the sub-protocol. This technique of lifting security from the sub-protocol to

5

the main protocol was previously employed by Bergsma et al. [9] to prove multi-ciphersuite security.
In our analysis we restrict ourselves to the manual extraction of sub-protocols that only cover speci�c

families of modes, e.g., signature-based modes or pre-shared key modes, while some of our attacks are
cross family attacks. Proving the absence of cross-family attacks requires either to consider more complex
sub-protocols that encompass several families, or to study families independently and prove a composition
theorem similar to that in Bergsma et al. [9]. Our work is a stepping stone in this direction, and our results
are readily applicable in situations where peer con�gurations are from the same family.

In developing our de�nitional approach we did not use any automated protocol analysis tools. We could
have written machine-checked proofs to show that our sub-protocols correctly abstract full protocols, but
doing so requires to write formal descriptions of protocols in excruciating detail, a signi�cant amount of
work on its own. Proving properties such as downgrade security is at the limit of what current tools can
handle [7]. However costly, we think this is a worthwhile endeavor for standards, and we plan to extend
our formalization of TLS in F* to verify our results on downgrade security.

1.3 Summary of our results

Our primary contribution is a novel downgrade security de�nition for key-exchange protocols. We devise
a methodology to analyze the downgrade security of a complex protocol by abstracting away irrelevant
details and studying only the core negotiation sub-protocol.

We demonstrate the relevance of our de�nition and the applicability of our methodology by analyzing
the downgrade security of several exemplary real-world protocols, namely TLS, SSH, IPSec and ZRTP. We
do so by taking in their standard speci�cations and extracting appropriate core negotiation sub-protocols.
Our analysis identi�es known and novel attacks as well as su�cient conditions under which these protocols
achieve downgrade security. These conditions inform users of these protocols as to how to restrict host
con�gurations to best avoid downgrade attacks.

The following are concrete novel contributions:

• We describe two new attacks on protocol standards: 2 on IKEv2 and 2 on ZRTP.

• We con�rm the conclusion evidenced by recent attacks: TLS versions up to 1.2 are not generally
downgrade secure.

• We prove a downgrade security theorem for SSHv2 with publickey client authentication that is
stronger than previous results. This stems from both peers signing all the messages that determine
the protocol mode.

• We show that although TLS 1.3 Draft 10 [22] includes a mandatory server-side message for signing the
handshake transcript, this does not prevent downgrades to earlier versions of TLS or non-preferred
groups. Informed by this analysis, we de�ne and prove two new downgrade protection mechanisms.
The concrete countermeasures, designed jointly with the core TLS 1.3 working group, have been
included in Draft 11.

1.4 Outline of the paper

The remainder of this paper proceeds as follows. In �2 we introduce the terminology used throughout
and we provide a primer on security de�nitions for key exchange protocols. We also introduce downgrade
resilience, formally de�ned in �3. In �4 through �7 we apply these de�nitions to analyze the security of
SSH, IPSec IKE, ZRTP and TLS. We survey related work in �8.

6

2 Modeling Multi-Mode Key-Exchanges

The two main security aspects of popular key-exchange models [13, 9, 24] are entity authentication and
key-indistinguishability [8]. Our focus lies on considering multi-mode protocols and incorporating the
negotiation of the mode into the security model.

A key exchange protocol Π is a two-party protocol with an initiator role I and a responder role R
(sometimes called client and server). The adversary interacts with multiple sessions of the protocol. Each
session π maintains variables in a local state and makes assignments to them before sending or after receiving
a message. We write π.x for the value of variable x in session π. We will consider the following variables:

π.cfg initial con�guration (including the role);

π.uid unique identi�er of the session;

π.mode negotiated mode (including long-term identities);

π.key session key;

π.complete �ag set when the session completes successfully.

Each session assigns a value to each variable only once, typically in the order given above. The con�g-
uration variable π.cfg is assigned when a session is created and contains other variables, including one for
the session role. We use π.role as shorthand for π.cfg.role and let I = R, R = I.

An adversary interacts with sessions via queries to oracles. A query π ← Init(cfg) initializes a session.
Recall that cfg determines role and furthermore, in the setting where we have symmetric or public keys, cfg
will contain handles to those keys. A query mout ← Send(π,min) sends a message min to session π, which
processes it to update its local state and output an ongoing message mout. A query k ← Reveal(π) reveals
the session key of π, i.e., returns the value of π.key. There are several variants for handling long-term keys
and other authentication mechanisms as well as corruption settings, and each of those requires di�erent
variables and oracles. As these settings are mostly standard and orthogonal to our de�nition, we leave
those details deliberately unspeci�ed for now and get back to them in Section 4. Note that our de�nitions
only become complete once we add the speci�cs of long-term keys or other authentication mechanisms.

2.1 Unique identi�ers and partnering

The goal of a key exchange protocol is to match two sessions of two di�erent parties so that they compute
the same key and agree on the algorithms and authentication setting. We say that two sessions match if
and only if they derive the same session key [31]. For de�ning downgrade security, we rely on the weaker
notion of partnering, based on unique identi�ers�at most two sessions may assign the same value to the
session variable uid.

De�nition 1 (Partnering). Sessions π and π′ are partnered if π′.role = π.role (they have opposite roles)

and π′.uid = π.uid. A session π is unpartnered when there is no such π′.

For example, in TLS, a suitable uid is the pair of nonces sent by the client and server in their Hello
messages. To guarantee partnering upon completion, a protocol needs to protect the messages that in�u-
ence the uid against man-in-the-middle attacks. As some con�gurations�in particular those where entity
authentication is optional�do not protect against man-in-the-middle attacks, our de�nition depends on a
predicate PS that indicates con�gurations that provide Partnering Security. Typically, these con�gurations
demand peer authentication.

7

De�nition 2 (Partnering security). The advantage AdvpartneringΠ,PS (A) of adversary A against the partnering

security of Π is the probability that, when A interacts with protocol Π, there is an unpartnered session π
such that π.complete = true and PS(π.cfg) holds.

2.2 Multi-mode authentication

We now de�ne authentication for protocols in which long-term identi�ers (e.g. public keys or pre-shared
key identi�ers) of peers are themselves negotiated. This is also known as the post-speci�ed peer setting [18]
and the type of authentication (e.g. mutual or bilateral) is determined as part of the negotiation [24]. We
incorporate entity identi�ers eidr for r ∈ {I,R} and authentication type, together with the negotiated
cryptographic algorithms in the mode variable. We write eidr as shorthand for mode.eidr. As algorithms
can be weak, keys can be compromised, and authentication can be unilateral, whether participants get
guarantees depends crucially on the outcome of negotiation.

While the predicate PS for partnering is de�ned over con�gurations �xed upon creation of a session,
our authentication de�nition depends on a predicate Auth(mode, r), which holds when mode is expected to
authenticate role r.

Authentication classically guarantees agreement on the variables of authenticated peers.

De�nition 3 (Agreement). A session π agrees with π′ on x when π.x = π′.x or π′.x = ⊥. For agreement
on a set X we require that π agrees with π′ on all x ∈ X.

De�nition 4 (Multi-mode authentication). A session π completes maliciously for X when π.complete =
true but there is no partnered session π′ matching π that agrees with π on X.

The advantage Advmm-authΠ,Auth, X(A) of an adversary A against the multi-mode authentication security with

agreement on X of protocol Π is the probability that, when A interacts with protocol Π, a session π completes

maliciously for X and Auth(π.mode, π.role) holds.

Let r = π.role. Note that Auth(π.mode, r) typically includes the requirement that the long term key
π.eidr of the peer is honest. If, as in SIGMA-N, the mode is secure against key-compromise impersonation
attacks [29] then π.eidr need not be honest. In addition, the predicate Auth models concurrent mixed-mode
authentication. A protocol mode provides mutual-authentication if Auth(π.mode, r) holds regardless of r.
It provides server-only authentication if only Auth(π.mode, I) holds, i.e., only clients get guarantees.

Observe that the authentication mode is itself negotiated. The same long-term keys eidr routinely
appear in di�erent modes and protocols may assign the same key in di�erent modes. Agreement on mode

and other variables may be critical for higher-level protocols; mode may include record algorithms and
using the same keys with di�erent algorithms may lead to agile security problems. In any case it contains
the entity identi�ers that should be in agreement to avoid identity confusion attacks [21]. As we will see,
protocols need to have su�cient downgrade resilience to guarantee that the preferred authentication mode
is negotiated.

2.3 Key-indistinguishability and privacy

Classical de�nitions of key indistinguishability are parameterized by a freshness predicate Fresh that de-
termines the sessions with uncompromised keys. Key indistinguishability requires that for fresh sessions,
an adversary cannot tell apart the real session key from a random one.

For SIGMA-N, a suitable Fresh predicate holds for π when the group in π.mode is strong, A neither
queried Reveal(π) nor Reveal(π′) for a matching session π′, and π.eidr̄ is honest.

8

Identity protection and deniability are other orthogonal security requirements of key-exchange protocols.
We do not formally capture them in this work, but note that many design decisions in real-world key-
exchange protocols are motivated by user privacy in addition to security.

2.4 Instantiating our model for SIGMA-N

Consider the SIGMA-N protocol of Fig. 1. The con�gurations should include su�cient detail to determine
the negotiated mode. We thus include the acceptable groups and a function PK from identities to peer
public keys. The latter would normally be implemented by looking up the public key of the peer in a
certi�cate store. We thus have variables

cfg
4
=

{
(I, A, pkA,PK, groups) for initiator I

(R,B, pkB,PK, groups) for responder R

uid
4
= (gx, gy)

mode
4
= (Gi, pkA, pkB) .

SIGMA-N inherits the security properties of SIGMA [32]. It thus provides authentication and key-
indistinguishability for Auth and Fresh predicates that hold only for modes with strong groups and honest
keys. Since gx and gy are signed, it also provides partnering security, even if the group is weak.

3 De�ning Downgrade Resilience

Downgrade resilience is motivated by protocols such as SIGMA-N that despite satisfying all of the de�nitions
above remain vulnerable to practical attacks. We model the desired outcome of negotiation using a function
Nego that maps two con�gurations with opposite roles to the protocol mode negotiated (if any) in the
absence of active adversaries. Formally, if a session π talking to a session π′ completes, it must be the case
that π.mode = Negor(π.cfg, π

′.cfg), where Negor is an abbreviation de�ned by case:

Negor(cfgr, cfgr̄)
4
=

{
Nego(cfgr, cfgr̄) when r = I

Nego(cfgr̄, cfgr) when r = R .

De�nition 5 (Negotiation correctness). The protocol negotiation is correct if, whenever a session π with role

r and con�guration cfgr completes, there exists a peer con�guration cfgr̄ such that π.mode = Negor(cfgr, cfgr̄).

Although we expect this basic property to hold unconditionally, many implementation errors may break
it. For instance, the FREAK attack stems from TLS clients that do not o�er export ciphersuites but still
accept export-grade RSA keys. An implementation of SIGMA-N in which an initiator accepts groups it did
not propose would also fail to satisfy negotiation correctness.

Downgrade security complements negotiation correctness. Informally, a protocol is downgrade secure

when two sessions of opposite roles with the same unique identi�er uid always negotiate the mode prescribed
by their con�gurations. Hence, downgrade security concerns situations in which one participant can save

the other, even if the latter supports broken cryptography. However, we have to assume that at least
some of the mechanisms of the protocol (e.g., its signature modes) are strong enough. Conversely, if both
participants enable (among others) a mode that is entirely insecure, then there is no cryptographically
sound way to prevent an attacker from downgrading their connection.

Our de�nition is parameterized by a downgrade-protection predicate DP on pairs of con�gurations.

9

DP(cfgr, cfgr̄) indicates the pairs of con�gurations from which we expect downgrade protection; it is not
necessarily symmetric. By convention, cfgr is the local con�guration, cfgr̄ is the peer con�guration, and
when DP(cfgr, cfgr̄) holds, we expect that the local session is protected.

De�nition 6 (Downgrade security). A session π is downgraded when π.complete = true and there is a

partnered session π′ such that DP(π.cfg, π′.cfg), and π.mode 6= Negoπ.role(π.cfg, π
′.cfg).

The advantage AdvdowngradeΠ,DP, X (A) of A against downgrade security with agreement on X is the probability

that, when A terminates after interacting with Π, there exists a session π that either is downgraded or

disagrees with a partnered session π′ on X. We write AdvdowngradeΠ,DP (A) when X = {}.

First observe that protocols that support a single mode are trivially downgrade secure with agreement
on mode. Note also that only partnered sessions get downgrade protection guarantees, so our de�nition is
meaningful only for protocols for which partnering security holds. For role r, if DP(cfgr, cfgr̄) holds for any
peer con�guration cfgr̄, we should also have PS(cfgr); we write this concisely as DP ⊆r PS, and observe that
this property holds in our case studies. Downgrade security is a complementary, but intuitively stronger
property.

Agreement on mode (or some of its parts) is desirable but not essential for downgrade protection.
Conversely, for con�gurations cfgr and cfgr̄ for which both DP(cfgr, cfgr̄) and DP(cfgr̄, cfgr) hold, we do
have downgrade protection with agreement on mode.

The DP predicate for downgrade protection plays a role similar to Auth for authentication, but it
depends only on static con�gurations and on the honesty of long-term credentials. This re�ects that
downgrade protection should depend only on the inputs to the negotiation, and not the negotiation itself,
which may be under the in�uence of an adversary.

Our formal con�gurations are session-speci�c, and do not necessarily coincide with concrete con�gu-
ration in real-world protocol deployments. In particular, each con�guration contains credentials only for
the intended peer (e.g. cached certi�cates, key �ngerprints). As an example, our con�gurations for TLS
include the authentication settings of the session: the client's con�guration expresses its intent to commu-
nicate with a particular server, who may nevertheless support multiple negotiable certi�cates, e.g., those
negotiated using the server name indication extension [15].

Ideally, DP(π.cfg, ·) would hold regardless of the second con�guration. Anticipating on our results, this
is the case for SSH, where DP is de�ned as follows: the con�guration of π must require authentication of
its peer, all peer keys accepted by π must be honest, and all signature algorithms must be (agile) strong.
However, this is not the case e.g. for TLS 1.2 clients, which do not get downgrade protection with servers
that support weak Di�e-Hellman groups.

Generalizing downgrade security For simplicity, our de�nitions above assume there is at most one
correct mode reachable from con�gurations π.cfg and π′.cfg, and consider adversaries that lead sessions to
pick any other mode.

More generally, we may let Nego return a set of equally-acceptable modes and tolerate attacks that
in�uence which of these modes is picked by partnered sessions. In that case, of course, we would still insist
that the two sessions agree on the negotiated mode.

As an example, we may interpret con�gurations as sets of acceptable modes, and let Nego compute their
intersection. As long as the protocol is negotiation-correct and guarantees agreement on mode, it would be
downgrade secure for this generalized de�nition.

10

3.1 Downgrade resilience of SIGMA-N

Recall that SIGMA-N con�gurations are tuples (r, ID, pkID,PK, groups) where PK is a function mapping
identities to public keys. The negotiation function describes the correct mode upon completion. Given a
function nego that selects the preferred common group, Nego is de�ned as

Nego(cfgI , cfgR)
4
=

{
(nego(cfgI .groups, cfgR.groups), cfgI .pkA, cfgR.pkB) if cfgI .pkA = cfgR.PK(A)

⊥ otherwise .

Note that SIGMA-N does not guarantee agreement on mode because the responder R completes �rst
without receiving any con�rmation from I. Thus, Nego is de�ned even when cfgR.pkB 6= cfgI .PK(B).

For such a Nego function, DP can hold only for pairs of con�gurations with at most one group in
common. However, observe that if DP guarantees the honesty of peer public keys, a participant only
accepts groups whitelisted by its partnered peer. Thus, SIGMA-N is downgrade secure if we generalize
Nego to tolerate the negotiation of any mode that uses a group in the intersection of the groups whitelisted
by both participants, i.e.

Nego(cfgI , cfgR)
4
=

{
{(G, cfgI .pkA, cfgR.pkB) | G ∈ cfgI .groups ∩ cfgR.groups} if cfgI .pkA = cfgR.PK(A)

∅ otherwise .

3.2 Downgrade resilience and multi-mode security

Protocol analysts often consider protocols restricted to speci�c modes and con�gurations. For instance it
is common practice to analyze individual protocol modes in isolation. Similarly we can restrict the initial
con�gurations of a protocol to those that provide downgrade protection. Consider sets of con�gurations CI
and CR picked by initiators and responders respectively. We consider restricted protocols in which sessions
abort whenever they are initialized with a con�guration outside of the set CI ∪ CR.

De�nition 7 (Protected con�gurations). Let DP be a downgrade protection predicate. A pair of sets of

con�gurations (Cr,Cr̄) gives downgrade protection to role r if Cr × Cr̄ ⊆ DP.

The following theorem expresses that when downgrade security holds, only the security of modes that
can be negotiated in the absence of an adversary matters. That is, if peers support insecure modes, but with
such a low priority that they never negotiate them on their own, then these modes do not a�ect security in
the presence of an adversary.

Theorem 1 (Downgrade resilience and multi-mode security). Let Π be a protocol, (Cr,Cr̄) sets of con�gu-
rations, DP a downgrade protection predicate, and N = {Negor(cfgr, cfgr̄) | cfgr, cfgr̄ ∈ Cr ×Cr̄} the modes
negotiable without adversary in�uence. If DP ⊆r PS and

• (Cr,Cr̄) gives downgrade protection to r,

• Π is multi-mode authentication secure for Auth, X,

• Π is partnering secure for PS, and

• Π is downgrade secure for DP,

11

then the protocol Π restricted to con�gurations in Cr ∪ Cr̄ is multi-mode authentication secure for a more

lax Auth′ predicate that deems all modes outside of N as �good�, i.e. Auth′(m, role)
4
= Auth(m, role)∨(m /∈

N ∧ role = r). Concretely, given an adversary A against authentication for Auth′, X, we have

AdvauthΠ′,Auth′, X(A) ≤ AdvpartneringΠ,PS (A) + AdvdowngradeΠ,DP (A) + AdvauthΠ,Auth, X(A) ,

where Π′ is Π restricted to con�gurations Cr ∪ Cr̄.

Proof sketch. Consider the multi-mode authentication experiment G0 for Π′. Let S hold when at some
point through G0 a session π completes maliciously on X and Auth(π.mode, π.role) holds (i.e., A succeeds
in breaking authentication i� S holds at the end of G0).

Game G1 behaves as G0 except it aborts just before a session π of role r would complete without being
partnered. Because of the restriction in Π′ and the hypothesis that DP ⊆r PS, it must be the case that
PS(π.cfg). Thus, any time G1 aborts, A succeeds in breaking the partnering security of Π′, and thus that
of Π. Hence, the di�erence in the probability of S between G0 and G1 is at most AdvpartneringΠ,PS (A).

Game G2 behaves as G1 except it aborts just before a session π of role r would complete and there is a
partnered session π′ such that π.mode 6= Negor(π.cfg, π

′.cfg). The di�erence in the probability of S between

G1 and G2 is at most AdvdowngradeΠ,DP (A) since any time G2 aborts but G1 does not, A succeeds in breaking
the downgrade security of Π′, and thus that of Π.

By de�nition of N , G2 never completes with a session of role r assigning a mode outside of N . Conse-
quently, the probability of S in this game is at most

AdvauthΠ′,Auth, X(A) ≤ AdvauthΠ,Auth, X(A) .

Interestingly, partnering security is similar to the aliveness requirement in some (single-mode) security
de�nitions which Krawczyk [32] does not consider as fundamental for key-exchange security. Our second
game transformation however only works if a partnered session π′ with the same uid exists. Otherwise an
abort in G2 cannot be translated into a downgrade security attack.

For key-indistinguishability and a freshness predicate Fresh(π) that requires for matching π′ with
π′.mode 6= ⊥ that π.mode = π′.mode = Negor(π.cfg, π

′.cfg), we have an analogous theorem for

Fresh′(π)
4
= Fresh(π)∨(π.mode /∈ N ∧π.role = r) .

In the context of TLS, Bhargavan et al. [13] observe that this is a su�cient condition for the security
of session keys that are released before the handshake completes.

3.3 Downgrade secure sub-protocols

We are interested in minimal core sub-protocols that guarantee downgrade security. To justify our use of
sub-protocols in further sections as a sound abstraction of the full protocol we use simulation. Our sub-
protocols can take additional input as part of Init and Send queries to allow for an accurate simulation of
the full protocol. This is akin to the sub-protocols of Bergsma et al. [9] which allow for additional signing
oracles (restricted to not break security of the sub-protocol).

For simplicity, the following de�nition leaves out details about handling of long-term keys and corruption
models. When �lling in the details for a particular setting, we require the simulation to be accurate with
respect to e.g. corruption, so that it issues exactly the same corruption queries as in the full protocol.

12

De�nition 8 (Sub-protocol). A protocol Π̃ is a sub-protocol of Π for X if we have an e�cient simulator S
with only oracle access to Π̃ and exposing the same oracles as Π, such that S ◦ Π̃ is indistinguishable from

Π for an information-theoretic distinguisher with access to all session variables in X.

Formally, we model a protocol (and a simulator) as a collection of oracles sharing state, each oracle being
a probabilistic algorithm. We model access to session variables using oracles that just return the value of the
corresponding variable. The composition S ◦ Π̃ of a simulator S and a sub-protocol Π̃ is well-de�ned when
Π̃ includes all algorithms called by the oracles of S. The composition itself is a new collection of algorithms,
one for each oracle of S. Operationally, the oracles of S ◦ Π̃ behave as the algorithmic composition of the
oracles of S and Π̃. Similarly, we model an adversary A as a single probabilistic algorithm with access to
oracles, and the composition A ◦ S (resp. A ◦Π) behaves as the algorithmic composition of this algorithm
with the oracles of S (resp. Π).

As the next theorem shows, simulation allows to lift security properties satis�ed by a sub-protocol to
the full protocol.

Theorem 2 (Downgrade security lifting). Let Π̃ be a sub-protocol of a protocol Π for session variables

{cfg, uid,mode, key, complete} ∪ X, and DP a downgrade protection predicate. Let S be a simulator for Π̃
as in De�nition 8. Then, for any adversary A against the DP-downgrade security of Π with agreement on

X, A ◦ S is an adversary against the downgrade security of Π̃ with agreement on X, and

Advdowngrade
Π̃,DP, X

(A ◦ S) = AdvdowngradeΠ,DP, X (A) .

Proof sketch. If A is successful when interacting with Π through the protocol oracles, then during the down-
grade security experiment there must be a session π partnered with a session π′ such that DP(π.cfg, π′.cfg)
holds and either π.mode 6= Negoπ.role(π.cfg, π

′.cfg) or π and π′ disagree on X. Let E denote this event. Note

that the probability of E in the experiment A ◦Π is exactly AdvdowngradeΠ,DP, X (A).

Now, since the simulation S ◦ Π̃ is accurate with respect to all variables this event depends on, and
S ◦ Π̃ is indistinguishable from Π for A, the probability of E ocurring in the experiment A ◦ (S ◦ Π̃) is the
same as in the experiment A ◦Π.

Because the composition operator ◦ is such that A ◦ (S ◦ Π̃) = (A ◦ S) ◦ Π̃, we conclude by construing
the composition of A and S as an adversary against the downgrade security of Π̃ with agreement on X.

An analogous theorem holds for partnering security.

3.4 Downgrade security by whitelisting

Consider a protocol that is negotiation correct and guarantees multi-mode authentication with agreement
on all variables that in�uence the computation of mode, then we get downgrade protection for

DP(cfg, .)
4
= ∀cfg′. Auth(Negocfg.role(cfg, cfg

′), cfg.role) .

That is, all negotiable modes from downgrade secure con�gurations must provide authentication security.
This generalizes the Negotiation-authentication theorem of [23].

13

Client I Server R

VI
VR

II = KEXINIT(nI , algsI)

IR = KEXINIT(nR, algsR)

KEXDH_INIT(gx)

KEXDH_REPLY(pkR, g
y, sign(skR, hash(log)))

(k1, k2) = kdf(gxy, log)(k1, k2) = kdf(gxy, log)
NEWKEYS

NEWKEYS

{USERAUTH_REQUEST(u, pk I , sign(sk I , hash(log , u, pk I)))}k1
{USERAUTH_SUCCESS}k2

(a) log = H(VI , VR, II , IR, pkR, g
x, gy, gxy)

Client I Server R

m1 = (nI , F (cfgI))

m2 = (nR, F (cfgR))

uid = (nI , nR)
a = nego(F (cfgI), F (cfgR))

uid = (nI , nR)
a = nego(F (cfgI), F (cfgR))

pkR, sign(skR, hash(log))

u, pk I , sign(sk I , hash(log , u, pk I))

mode = (a, u, pk I , pkR)
complete = true

mode = (a, u, pk I , pkR)
complete = true

(b) log = H ′(m1,m2, pkR,−)

Figure 3: SSHv2 mutually-authenticated key exchange: (a) full protocol and (b) sub-protocol SSH-sub.

4 Secure SHell

Figure 3a models a run of the SSHv2 [46] protocol with a client that authenticates using the publickey

method [45]. We analyze the downgrade security of this protocol using the sub-protocol shown on Figure 3b.
The functions H,H ′ in these �gures stand for the composition of a �xed injective formatting function and
a negotiated hash function. Note that there are potential downgrade attacks in SSHv2 from publickey

authentication to other mechanisms like password but the protocol we consider does not model the ne-
gotiation of the authentication mechanism. We stress that our analysis only applies assuming servers are
con�gured to require public key authentication.

We next describe the notation used in Figure 3 and the way the protocol works. We then prove that
SSH-sub is indeed a sub-protocol of the full protocol for the variables they have in common.

Client and server con�gurations include lists algs of key exchange, server signature, encryption and
MAC algorithms ordered by preference. We let F (cfg) = cfg.algs. Each party computes the negotiated
ciphersuite independently, following the rules in the protocol speci�cation [46, Sect. 7.1], which we encode
in a nego function. Roughly, these rules dictate that the �rst algorithm for each category in cfgI that is
also in cfgR be selected. Each session locally assigns nego(F (cfgI), F (cfgR)) to a. In addition, a client
con�guration cfgI includes a user name and a service name u, a function PKI mapping a pair (a, u) to a
public key, and a function PKsR mapping a value a to a set of acceptable server public keys. Conversely, a
server con�guration cfgR includes a function PKR mapping a value a to a public key, and a function PKsI
mapping a pair (a, u) to a set of acceptable client public keys. For instance, in OpenSSH the keys cfgI .PKsR
of acceptable server public keys are taken from the clients known_hosts �le, whereas the keys cfgR.PKsI of
acceptable client public keys are taken from the .ssh/authorized_keys �le in the home directory of the
user on the server.

In terms of the template in Section 2, the sub-protocol uses the following session variables:

cfg
4
=

{
(I, algs, u,PKI ,PKsR) for I

(R, algs,PKR,PKsI) for R

uid
4
= (nI , nR)

mode
4
= (a, u, pk I , pkR) .

Client and server exchange nonces and their algorithmic preferences F (cfgI), F (cfgR). The server then

14

selects a compatible signature key pair (pkR, skR) and signs a hash log that includes the �rst two exchanged
messages. When receiving this message, the client checks that pkR is an acceptable server key in its local
con�guration, computes log locally and veri�es the server signature. If the signature veri�es, it selects a
key pair (pk I , sk I) in its con�guration for authenticating and sends back to the server a signature over
log , u, and pk I . When receiving this message, the server checks that pk I is an acceptable client key in
cfgR.PKsI(a, u). Each party completes the session upon successfully verifying the peer signature, otherwise
aborts. Formally, a client aborts if pkR 6∈ cfgI .PKsR(a); otherwise it assigns the following value to mode:

(nego(F (cfgI), F (cfgR)), cfgI .u, cfgI .PKI(a, u), pkR)

The server's behavior is speci�ed analogously.
We augment the Send oracles of each a session in the sub-protocol with extra parameters that allow to

�ll in the blank (−) used to compute log. This allows a simulator to compute signatures on the same values
as the full protocol, as needed to consistently answer Send queries. Consequently, we allow an adversary
against the downgrade security of the sub-protocol to �ll in − parameters arbitrarily.

We complete our security model with oracles pk ← KeyGen for key generation, sk ← Corrupt(pk) for
adaptive corruption, and Coerce(pk) for adversarial key registration. A public key pk is honest if it was
generated by a query to oracle KeyGen but not corrupted by a Corrupt query.

Theorem 3 (Simulation). SSH-sub (Fig. 3b) is a sub-protocol of SSH (Fig. 3a) for their common variables.

Proof sketch. The sub-protocol is oblivious of the Di�e-Hellman exchange in the full protocol, so the sim-
ulator generates fresh Di�e-Hellman shares of his own for each session. When needed, the simulator S
forwards queries to SSH-sub after applying message parsing and formatting functions. To simulate signa-
tures of honest sessions S uses the Di�e-Hellman shares it has computed and the messages it has received
to �ll in the value of the extra parameter − of oracles of the sub-protocol. Note that the adversary knows
the secret exponents of an instance's Di�e-Hellman shares and so it can always compute the encryption
keys k1, k2 needed to simulate the last two messages of the full protocol.

4.1 SSHv2 is partnering and downgrade secure

A remarkable property of the downgrade protection sub-protocol of mutually-authenticated SSHv2 is that,
because both client and server sign (a hash of) the inputs to the nego function, downgrade protection
security relies only on the honesty of the signature keys, the collision resistance of the hash algorithm, and
the strength of the signature algorithms. Notably, it does not rely on the key exchange algorithm being
strong or contributive, not even on it providing high entropy inputs to H. This means that we can prove
this protocol secure for a predicate DP that only constrains the signature and hash algorithms of cfgr, and
requires honesty of peer public keys in cfgr.PKsr̄, but has no requirements on cfgr̄.

We prove the partnering and downgrade security of SSHv2 with publickey client authentication under
the agile security assumptions on hash functions and signatures that we present next.

4.1.1 Agile hash functions and signatures

As protocol participants may negotiate di�erent hash functions we need to capture collisions across hash
functions.

De�nition 9 (Agile collision resistance). Let h? be a hash function, and H a set of hash functions. Consider

the game:

15

- h, v, v′ ← A()

- Return h?(v) = h(v′) ∧ v 6= v′

The collision resistance advantage of A, AdvCR
h?, P (A) is the probability that the game returns true.

If the ranges of hash functions are disjoint, agile collision resistance reduces to ordinary collision resis-
tance. Bhargavan et al. [13] also de�ne existential unforgeability under chosen-message attacks (EUF-CMA)
for agile hash-then-sign signatures. We here consider such signatures as primitives although typical con-
structions can be proved secure in the random oracle model.

De�nition 10 (Agile EUF-CMA security). Consider an agile signature scheme s = (keygen, sign, verify).
Let p? be an agility parameter, and P a set of parameters. Consider the forgery game:

- Let pk, sk ← keygen()

- Set M := {} and run m,σ ← ASign(pk)

- Return m /∈M ∧ verify(pk, p?,m, σ)

where Sign(p,m) returns ⊥ if p /∈ P and otherwise sets M := M ∪ {m} before returning sign(sk, p,m).
The advantage AdvEUF-CMA

s, p?,P (A) of A in forging a signature for s is the probability that the forgery game
returns true.

Since we proved that SSH-sub soundly abstracts negotiation in the full protocol, any downgrade attack
on the full protocol can be turned into a downgrade attack on the sub-protocol. By virtue of Theorem 2 it
su�ces to prove that SSH-sub is downgrade secure. The same reasoning applies to partnering security.

4.1.2 Partnering security

To state and prove partnering security, we use the following notations.
Let Nego(cfgI , cfgR)

4
= (a, cfgI .u, cfgI .PKI(a, u), pkR) , where a = nego(F (cfgI), F (cfgR)) if pkR =

cfgR.PKR(a), and ⊥ otherwise.
Let M? 4= {Negocfg.role(cfg, cfg′)|PS(cfg)} be the modes negotiated between any pair of con�gurations

for which the �rst guarantees partnering security andM be the set of all supported modes.
Let Ps

4
= {p | s, p = mode.sig ∧ mode ∈ M} be the agility parameters for the signature scheme s of

a peer, H be the set of all hash algorithms supported, and H? 4= {mode.hash | mode ∈ M?} be the hash
algorithms used by partnering secure modes.

Theorem 4 (Partnering security of SSH-sub). Let PS be such that PS(cfg) implies that all public keys in

the range of cfg.PKscfg.role are honest. Given an adversary A against the partnering security of SSH-sub,

we construct adversaries Bs,p,i and Bh running in about the same time as A such that AdvpartneringSSH-sub,PS(A) is
at most ∑

h∈H?

AdvCRh,H(Bh) +
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where ns is the number of keys generated for scheme s.

16

Proof sketch. Let G0 be the original partnering security experiment. Let S hold whenever at some point
during the experiment, a session π for which PS(π.cfg) holds completes without being partnered. Let G1

behave like G0, except it aborts whenever two sessions hash messages (m1,m2) with di�erent (nI ,nR) to the
same value. Using A, we can construct for each h ∈ H? an adversary Bh such that |PrG0 [S]− PrG1 [S]| ≤∑

h∈H? AdvCRh,H(Bh) .
Game G2 behaves as G1, except that sessions with honest peer keys and a peer signature scheme

(s, p) ∈ sig(M?) abort without completing whenever they verify a signature on log that was not signed by
another session.

To bound the di�erence in the probability of S between these games we use a lemma of Bhargavan
et al. [14, Lemma 4]. It shows via a hybrid argument how to construct adversaries Bs,p,i that bound the
probability of a forgery for an agile hash-and-sign scheme (s, p) ∈ sig(M?) in an agile signature library that
generates ns honest keys for signing scheme s, thus

|PrG1 [S]− PrG2 [S]| ≤
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i).

We conclude by con�rming that all sessions hash (nI ,nR) into log and verify a signature on log before
completion. For those sessions for which PS(cfg) holds, pkcfg.role ∈ cfg.PKscfg.role is honest, and we have
that another session in possession of the signing key must have assigned the same uid = (nI ,nR). Finally,
since the signatures computed by initiators and responders cannot be confounded, the other session must
have the opposite role.

4.1.3 Downgrade security

To prove downgrade security, we de�ne Nego, M, Ps, and H as before, but re-de�ne M?, H? to use DP
instead of PS, i.e.M? 4= {Negocfg.role(cfg, cfg′) | DS(cfg, cfg′)}.

Theorem 5 (Downgrade security of SSH sub-protocol). Let DP be such that DP(cfg, ·) implies that all

public keys in the range of cfg.PKcfg.role are honest. Given an adversary A against the downgrade security

of the sub-protocol, we construct adversaries Bs,p,i and Bh running in about the same time as A such that

AdvdowngradeSSH-sub,DP(A) is at most

n2

2|uid|/2
+

∑
h∈H?

AdvCRh,H(Bh) +
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where n is the number of sessions, ns the number of keys generated for scheme s, and |uid| the size of unique
identi�ers.

Proof sketch. Let S be the event that there exists a downgraded session π and let G0 be the original
downgrade security experiment.

Game G1 aborts whenever two sessions of the same role assign the same uid. Let n be the total number
of sessions. The length of the randomness in client and server nonces is |uid|/2 bits. The probability that
n such random values give rise to a collision is approximately n22−|uid|/2−1. As G0 and G1 are equivalent
up to collisions, we have |PrG0 [S]− PrG1 [S]| ≤ n22−|uid|/2−1 .

17

Game G2 behaves as G1, except that it aborts whenever two sessions hash messages (m1,m2,−, pkR,−)
to the same log .

UsingA, we can construct for each h ∈ H? an adversary Bh such that |PrG0 [S]− PrG1 [S]| ≤
∑

h∈H? AdvCRh,H(Bh) .
Observe that in G2, every pair of nonces (nI , nR) = uid in the message pairs (m1,m2) is signed at most

once per role.
Game G3 is the same as Game G2, except that sessions with honest peer keys and (s, p) ∈ sig(M) abort

without completing whenever they verify a signature on log or (log , u, pkI) that was not signed by another
session.

We again bound the di�erence in the success probabilities using the lemma of Bhargavan et al. [14,
Lemma 4] and have

|PrG2 [S]− PrG3 [S]| ≤
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i).

Observe that, since the signatures computed by initiators and responders cannot be confounded, in
Game G3 we never verify a message that was not signed by its unique matching peer.

We now consider initiators and responders separately.
For the initiator we have that message log was signed by its partner, which computed it from the

responders key pkR and messages m1 and m2 containing the contribution of the local and the remote
con�guration respectively. Note that the only missing component of mode is u, pkI which, conditioned on
the responder completing are determined by the initiators con�guration.

For the responder, message (log , u, pkI) authenticates the two public keys and all inputs to nego.
We thus excluded the event S from ever occurring in G3.

5 Internet Key Exchange

The Internet Key Exchange (IKE) protocol is the key exchange component of the IPsec suite of protocols.
Two versions of the protocol are commonly deployed: IKEv1 [27] and IKEv2 [30]. Both variants are inspired
by the SIGMA protocol [32] recalled in the introduction, and are believed to inherit its authentication and
key-indistinguishability guarantees. Next, we study their downgrade protection sub-protocols.

5.1 IKEv1 does not prevent downgrades

We �rst consider the DHE-PSK modes of IKEv1, whose �rst three messages are depicted in Figure 4a. The
protocol presumes that both parties can select the pre-shared key (psk) to use from the negotiated security
association SAR and identi�ers IDI and IDR; it then con�rms that the two parties agree, using a MAC
based on psk. The two parties also exchange Di�e-Hellman shares and use them to derive session keys and
protect application data but, in `aggressive' modes, their authentication and downgrade-protection relies
solely on the pre-shared key.

The corresponding downgrade protection sub-protocol is depicted in Figure 4b. The initiator begins
by extracting a list of supported security associations [SA1, . . . , SAn] from its con�guration, presumably
ordered by preference, formats them (using the function F), and sends them along with a nonce (nI) to the
responder. Each security association speci�es a Di�e-Hellman group (for the key exchange); an encryption
scheme and a hash algorithm (for protecting messages); and a peer authentication method. The responder
chooses one of these associations (SAR), based on its own con�guration, and responds with its own nonce.

18

Init. I Resp. R

HDR1(nI , [SA1, . . . , SAn], gx, IDI)

km = kdf(psk , nI | nR)

HDR2(nR, SAR, g
y, IDR,mac(km,m1))

km = kdf(psk , nI | nR)

HDR3(mac(km,m2))

(a)
m1 = gy | gx | CKYR | CKYI | [SA1, . . . , SAn] | IDR,
m2 = gx | gy | CKYI | CKYR | [SA1, . . . , SAn] | IDI .

Init. I Resp. R

nI , F (cfgI), IDI

uid = (nI , nR)
SAR = nego(F (cfgI), cfgR)
mode = (SAR, IDI , IDR)
km = kdf(psk , nI | nR)

nR, SAR, IDR,mac(km,− | F (cfgI) | IDR)

uid = (nI , nR)
mode = (SAR, IDI , IDR)
check(cfgI ,mode)
km = kdf(psk , nI | nR)

mac(km,− | F (cfgI) | IDI)

complete = true complete = true

(b) F is a formatting function from cfgI to the payload of
the �rst message that encodes the list of proposals.

Figure 4: IKEv1 aggressive DHE-PSK protocol (a) �rst messages (b) downgrade protection sub-protocol.

The initiator checks that this choice is compatible with its proposals, which completes the negotiation.
To authenticate one another, to provide key con�rmation, and to prevent downgrades, the initiator and
responder exchange MACs, optionally signed when using certi�cates for authentication. For simplicity,
Figures 4a and 4b depict the use of just a pre-shared key for authentication. The MACs are computed with
a key derived from the pre-shared key and the nonces, over some important parts of the protocol transcript:
the key shares, the 8 byte ISAKMP cookies taken from the headers, the client's o�ered security associations
and the sender's identity.

Surprisingly, the MAC does not cover the negotiated security association (SAR), and this omission leads
to a downgrade attack. A man-in-the-middle can simply modify the second message to replace the server's
chosen SAR with a di�erent SA′R compatible with the initiator's proposals. If this new SA′R uses an encryption
algorithm that the attacker can break (e.g. DES or NULL), then the attacker can break the con�dentiality
of the �rst messages sent by the initiator. (Similarly, the �rst MAC includes IDR but not IDI , so an attacker
can modify IDI in the �rst message, and yet the initiator will complete the sub-protocol without detecting
the modi�cation; this is less problematic in the full protocol because IKEv1 continues with a con�rmation
message from the responder.)

We instantiate our main de�nitions to IKEv1 to better understand this downgrade-protection failure
and propose �xes. Clearly, the protocol o�ers no authentication guarantees unless the PSKs used by both
parties are honest, so we always make that assumption in the following, which enables us to omit the choice
of PSKs from the negotiation predicates. In IKEv1, the mac and kdf functions are negotiated as part of
SAR. They are e�ectively HMAC-MD5 or HMAC-SHA1. For simplicity, we also restrict our attention to
clients and servers con�gured to use only HMAC-SHA1. (See �4 for an explicit handling of cryptographic
agility.) We use the following notations for the sub-protocol:

• the goal is to agree on a mode (SAR, IDI , IDR);

• cfgI = (IDI , [SA1, . . . ,SAn]).

• cfgR includes IDR and is otherwise unspeci�ed; it would typically also include a list of SAs.

19

• F is a formatting function from cfgI to the payload of the �rst message that encodes the list of
proposals above.

• nego is a partial function, used by the responder to map F (cfgI) and cfgR to some SAR.

• check is used by the initiator to con�rm that the mode is acceptable, checking for instance that SAR
matches one of the initiator's proposals [SA1, . . . ,SAn].

• Nego(cfgI , cfgR), our speci�cation for negotiation, is de�ned as (nego(F (cfgI), cfgR), cfgI .IDI , cfgR.IDR)
when check succeeds, and is otherwise unde�ned.

The de�nitions of F , nego, and check follow from the standard; their details are unimportant in our
presentation.

We �rst prove partnering security (De�nition 2) relying on the security of both kdf (modeled as a PRF
keyed with psk) and mac (modeled as a MAC, relying e.g. on existential unforgeability under chosen-message
attacks).

To simplify our presentation, we assume in our formal theorem statement a universe of con�gurations
M�x with a �xed kdf and mac algorithms. As discussed above in practice this is HMAC-SHA1. Conse-
quently, we can rely on standard pseudo-randomness and chosen message attack unforgeability assumptions
for kdf and mac and thus simplify our theorem and proof. We hope this is useful for a reader accustomed to
traditional non-agile provable security developments. This is still meaningful, as con�gurations may vary
for instance on the choice of groups in the full protocol, moreover the proof acts as a template for a fully
agile theorem analogous to Theorem 4.

We also assume that the protocol rejects runs in which IDI = IDR. This is referred to in the literature as
the self-communication scenario, and in such settings there are well known re�ection attacks on IKEv1 [37,
20]. Positive results in this setting would require an extension of our sub-protocol and assumptions about
the DH groups or the ISAKMP cookies employed in the protocol.

Theorem 6 (Partnering security of IKEv1 sub-protocol). Let M�x be the universe of con�gurations used

by protocol participants and let PS be such that all PSKs referenced by handles in cfg are honest. Given an

adversary A against the partnering security of IKEv1-sub, we construct adversaries Bi and B′ running in

about the same time as A such that AdvpartneringIKEv1-sub,PS(A) is at most

n2

2|uid|/2
+

np∑
i=1

AdvPRF(Bi) + n ·AdvEUF-CMA(B′) ,

where n is the number of sessions and np is the number di�erent psks employed by sessions.

Proof sketch. The proof relies on the honesty of psk.
Let G0 be the original partnering security experiment. Let S hold whenever at some point during the

experiment, a session π for which PS(π.cfg) holds completes without being partnered. Game G1 aborts
whenever two sessions of the same role assign the same uid.

Let n be the total number of sessions. The length of the client and server nonces is |uid|/2 bits. The
probability that n such random values give rise to a collision is approximately n22−|uid|/2−1. As G0 and G1

are equivalent up to collisions, we have |PrG0 [S]− PrG1 [S]| ≤ n22−|uid|/2−1 .
Game G2 behaves like G1, except that it keeps a map from pairs of nonces to MAC keys. Instead of

de�ning km = kdf(psk , nI | nR), game G2 looks up nI , nR in this map to retrieve the corresponding key

20

km when it has been de�ned. Otherwise, it samples a fresh random MAC key km and stores the entry
(nI , nR, km) in the map. We bound |PrG1 [S]− PrG2 [S]| ≤

∑np

i=1 AdvPRF(Bi) : for each of the np pre-shared
secrets pskk we de�ne a hybrid, and bound the probability of A distinguishing between adjacent hybrids
by AdvPRF(Bi).

The keys km are now random and when event S holds for a session with uid = (nI , nR), (nI , nR, km) was
not accessed by any session to generate MACs. Moreover, because IDI 6= IDR MACs cannot be re�ected.
Consequently, any successful adversary in G1 can be turned into a reduction B′ that guess the PSK handle
used by the session for which S holds and returns the MAC received by that session as a forgery.

Therefore PrG2 [S] ≤ n ·AdvEUF-CMA(B′).

On the other hand, the protocol o�ers provable downgrade protection only for very restrictive con�gu-
rations. For example, relying on the unambiguous formatting of IDI and IDR in the MACed payloads, we
have downgrade protection when

1. the client (or the server) uses each PSK only for a �xed SAR, IDI , IDR; or

2. the client proposes only one SA at a time and checks that the server echoes this proposal in SAR,
and moreover SA determines IDI .

Our analysis of the IKEv1 downgrade-protection sub-protocol suggests an obvious �x: include the mode
(SAR, IDI , IDR) in both MACs. We thus have

m1 = gy | gx | CKYR | CKYI | [SA1, . . . , SAn] | SAR, IDR, IDI
m2 = gx | gy | CKYI | CKYR | [SA1, . . . , SAn] | SAR, IDI , IDR.

We then obtain downgrade protection under the same conditions as for partnering: that PSKs be honest
and both kdf and mac be secure.

Theorem 7 (Downgrade security of IKEv1 sub-protocol). LetM�x be the universe of con�gurations used

by protocol participants and let DP be such that DP(cfg, ·) implies that all pre-shared keys referenced by

handles in cfg are honest. Given an adversary A against the downgrade security of the sub-protocol, we

construct adversaries Bi and B′ running in about the same time as A such that AdvdowngradeIKEv1-sub,DP(A) is at

most
n2

2|uid|/2
+

np∑
i=1

AdvPRF(Bi) + n ·AdvEUF-CMA(B′) ,

where n is the number of sessions and np is the number of di�erent pre-shared keys employed by sessions.

Proof sketch. Let G0 be the original downgrade security experiment and let S be the event that there exists
a downgraded session.

Game G1 aborts whenever two sessions of the same role assign the same uid. Let n be the total number
of sessions. The length of client and server nonces is |uid|/2 bits. The probability that n such random
values give rise to a collision is approximately n22−|uid|/2−1. As G0 and G1 are equivalent up to collisions,
we have |PrG0 [S]− PrG1 [S]| ≤ n22−|uid|/2−1 .

Game G2 behaves like G1, except that it keeps a map from pairs of nonces to MAC keys. Instead of
de�ning km = kdf(psk , nI | nR), game G2 looks up nI , nR in this map to retrieve the corresponding key
km when it has been de�ned. Otherwise, it samples a fresh random MAC key km and stores the entry
(nI , nR, km) in the map. We bound |PrG1 [S]− PrG2 [S]| ≤

∑np

i=1 AdvPRF(Bi) : for each of the np pre-shared

21

Init. I Resp. R

m1 = SA_INIT(nI , [SA1, . . . , SAn], gx, infoI)

m2 = SA_INIT(nR, SAR, g
y, infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km, IDI))))]
ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m, IDR))))]k
′
e

(a) IKEv2 protocol with mutual signatures.

Init. I Resp. R

m1 = (nI , F (cfgI))

uid = (nI , nR)
SAR = nego′(F (cfgI), cfgR)

m2 = (nR, SAR)

uid = (nI , nR)
Check(cfgI , SAR)

IDI , sign(sk I , H(m1, nR, IDI ,−))

IDR, sign(skR, H
′(m2, nI , IDR,−))

mode = (SAR, IDI , IDR)
complete = true

mode = (SAR, IDI , IDR)
complete = true

(b) IKEv2 sub-protocol with mutual signatures.

Figure 5: IKEv2 protocol and sub-protocol for signature-based authentication

secrets pski we de�ne a hybrid, and bound the probability of A distinguishing between adjacent hybrids by
AdvPRF(Bi).

Observe that in G2, every pair of nonces (nI , nR) = uid appears at most once per role, and that peer
instances with the same uid and con�gurations that contain only honest pre-shared keys share the same
randomly sampled MAC key.

Game G3 is the same as Game G2, except that sessions with honest pre-shared keys abort without
completing whenever they verify a MAC on m1 or m2 that was not computed by another session. We
bound the di�erence between the probability of S in these games using a reduction B′ to the EUF-CMA
security of mac:

|PrG2 [S]− PrG3 [S]| ≤ n ·AdvEUF-CMA(B′).

Observe that, since the MACs computed by initiators and responders cannot be confounded (because
we assumed sessions abort when detecting IDI = IDR), in Game G3 we never verify a message that was
not authenticated by its unique matching peer.

Note that both m1 and m2 contain the initiators contribution to nego and the responders choice, as
well as all other components of mode. We thus can exclude the event S from ever occurring in G3.

We also considered other modes of IKEv1, based on signatures instead of PSKs (much as in our in-
troductory SIGMA example), and also when the MACs are protected using the keys derived from the
Di�e-Hellman exchange. In those cases, the downgrade-protection sub-protocol is almost the same: SAR
is similarly left unauthenticated and, even if the messages are protected, there is still an attack when the
client proposes a weak group, as explained in the introduction.

5.2 IKEv2 does not prevent downgrades

IKEv2 [30] is a revision of the IKEv1 protocol intended to simplify the speci�cation and extend it to cover
popular authentication methods such as EAP [1].

22

Init. I Resp. R

m1 = SA_INIT(nI , [SA1, . . . , SAn], (G, gx), infoI)

m2 = SA_INIT(nR, SAR, (G, g
y), infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI)]
ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m, IDR))))]k
′
e

[AUTH(eap1(. . .))]ke

[AUTH(eap2(. . .))]k
′
e

msk = EAP shared key msk = EAP shared key

[AUTH(mac(msk ,m1 | nR | mac(km, IDI)))]
ke

[AUTH(mac(msk ,m2 | nI | mac(k′m, IDR)))]k
′
e

(a) IKEv2 protocol with EAP client authentication.

Init. I Resp. R

m1 = (nI , F (cfgI))

uid = (nI , nR)
SAR = nego(F (cfgI), cfgR)

m2 = (nR, SAR)

uid = (nI , nR)
Check(cfgI , SAR)

IDI
IDR, sign(skR, H(m2, nI , IDR,−))

mac(msk , H ′(m1, nR, IDI ,−))

mac(msk , H(m2, nI , IDR,−))

mode = (SAR, IDI , IDR)
complete = true

mode = (SAR, IDI , IDR)
complete = true

(b) IKEv2 sub-protocol with EAP client authentication.

Figure 6: IKEv2 protocol and sub-protocol for EAP-based authentication

5.2.1 IKEv2 with signatures

We �rst consider the plain, signature-based sub-protocol (see Figure 5b). For brevity, we omit a description
of the full protocol (its �rst messages appear in Figure 8) and we reuse the notations introduced for IKEv1.
We also ignore signature agility issues, since in IKEv2 the hash algorithm for signing is not negotiated; it
is chosen by the sender, who almost always picks SHA1.

As in IKEv1, the initiator begins by o�ering a sequence of security associations (extracted from cfgI)
and the responder chooses one of these. In the full protocol, the initiator and responder also exchange
Di�e-Hellman public values and use them to derive session keys, used (in particular) to encrypt and MAC
all messages after m2.

The client and the server then exchange signatures over MACs of their own views of the protocol
(presumably to provide some deniability): their full �rst message, their identity, and the nonce of their
peer. In particular, and in contrast with IKEv1, the server's signature covers its chosen SAR but not the
initiator's o�ered security associations.

The sub-protocol leaves important payloads unauthenticated: the peers do not sign or MAC each other's
DH public keys, and not even each other's identities. It also ignores the fact that, in the full protocol, all
messages after m2 are encrypted and MACed using a derived key. Thus, some attacks against the sub-
protocol may not occur in the full protocol.

Still, there is a downgrade attack against the full protocol as soon as the client tolerates one weak group.
The attack proceeds as follows (see Fig. 7). Suppose an initiator o�ers two security associations, one using
the 1024-bit Di�e-Hellman group 14 and another using the 768-bit group 1. The attacker tampers with the
�rst message to delete the �rst association, so that the responder thinks that the initiator only supports
group 1. The attacker forwards the responder's messages, and now the initiator thinks that the responder
only supports group 1. If the attacker has performed enough pre-computation on group 1 so that he can
compute the discrete log of a key share, he can then compute the session and MAC keys and impersonate
the responder.

In practice, executing this attack requires the MitM to send an extra INVALID_KE message to the client.
This does not present any di�culty since this message is unauthenticated.

The attack described above is reminiscent of Logjam [2] and is arguably feasible with modern computing

23

Init. I MitM Resp. R

SA_INIT(nI , [SA14, SA1], (G14, g
o), infoI)

INVALID_KE(G1)

m1 = SA_INIT(nI , [SA14, SA1], (G1, g
x), infoI) m′1 = SA_INIT(nI , [SA1], (G1, g

x), infoI)

m2 = SA_INIT(nR, SA1, (G1, g
y), infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)y = dlog(G1, g

y)
(km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km, IDI))))]
ke [AUTH(IDM , sign(skM , hash(m′1 | nR | mac(km, IDM))))]ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m, IDR))))]k
′
e

[Data1]ke [Data′1]ke

[Data2]k
′
e[Data′2]k

′
e

Figure 7: Man-in-the-middle downgrade on IKEv2 with mutual signatures and weak Di�e-Hellman groups

Init. I MitM Resp. R

m1 = SA_INIT(nI , [SAstrong , SAnull], (G, g
x), infoI) m′1 = SA_INIT(nI , [SAnull], (G, g

x), infoI)

m2 = SA_INIT(nR, SAnull , (G, g
y), infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)Encryption and Integrity set to null

AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km, IDI)))) AUTH(IDI)

AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m, IDR))))

Data

Figure 8: Man-in-the-middle cross-protocol downgrade on IKEv2 mixing signatures and EAP authentication

power, or will be in the coming years. There are other downgrade attacks with a similar impact on IKEv2:
the man-in-the-middle could downgrade the security association to use weak encryption or authentication
algorithms.

5.2.2 IKEv2 with EAP client authentication

We now consider the downgrade protection sub-protocol in case the initiator is authenticated using some
EAP method, whereas the responder still uses a certi�cate and a signature (see Figure 6b).

In this variant, in the third message, the initiator sends its identity without any signature. Instead,
after verifying the server's signature, it engages in an application-level `embedded' authentication protocol
that generates a shared key. Its use of EAP is asymmetric, in that EAP authenticates the initiator (IDI)
but does not re-authenticate the responder. The resulting shared key is used to MAC the initiator's view
of the negotiation: the full �rst message, including the client's o�ered security associations, the responder's
nonce, and a MAC over the initiator's identity with the session key.

Enabling EAP actually weakens downgrade protection: the responder (still) does not sign the initiator's
proposals, and also does not sign the chosen client AUTH method (signature or EAP), and this opens the
possibility of cross-authentication attacks between di�erent AUTH methods.

For example, consider the attack in Fig. 8. Suppose the initiator disables EAP, but the responder
supports it. The attacker can then replace the initiator's signature message with an EAP authentication
message, forward the responder's signature, and thereby downgrade the SA used by the initiator, to use a

24

weak encryption algorithm, for instance. In comparison with the �rst attack on IKEv2 discussed above,
this attack does not require breaking the Di�e-Hellman exchange to gain control of the key used to MAC
the signature payloads.

This would be a powerful downgrade, and it would allow o�ine decryption of the initiator's subsequent
messages, but it is still di�cult to implement in practice because the authentication messages are them-
selves encrypted-and-MACed. Hence, the attack requires that the attacker should be able to break the
(downgraded) authenticated encryption mechanism in the SA.

For example, it can be mounted if the encryption and integrity algorithms are downgraded to NULL,
an allowed (but not recommended) option in IKEv2. In particular, the speci�cation says: �Though the
security of negotiated Child SAs does not depend on the strength of the encryption and integrity protection
negotiated in the IKE SA, implementations MUST NOT negotiate NONE as the IKE integrity protection
algorithm or ENCR_NULL as the IKE encryption algorithm.� [30, Section 5]. Our attack shows that this
assumption is wrong: the downgrade security of IKEv2 crucially depends on the strength of the encryption
and integrity algorithms, especially when both signatures and EAP are enabled.

We also note that in case the initiator also supports EAP, any subsequent initiator authentication
makes no di�erence since the initiator is now talking to the attacker and does not seek to re-authenticate
the responder.

A simple �x for all these attacks would be for the responder to include the client's �rst message and
authentication mode in its signature (at the cost of losing deniability). We could then obtain downgrade
protection simply by relying on the strength of the responder's signature, irrespective of weak groups and
broken encryption algorithms.

5.3 Version downgrades from IKEv2 to IKEv1

IKE does not include a version negotiation protocol. Initiators �rst try to connect with IKEv2 and if that
fails they fall back to IKEv1. This allows a simple downgrade attack between this versions, since IKEv1 has
no way of authenticating the highest supported version. The IKEv2 speci�cation acknowledges this version
downgrade possibility to IKEv1, but sets up a �ag to prevent future downgrade attacks from IKEv(n > 2)
to IKEv2: �Note that IKEv1 does not follow these rules, because there is no way in v1 of noting that you
are capable of speaking a higher version number. So an active attacker can trick two v2-capable nodes
into speaking v1. When a v2-capable node negotiates down to v1, it should note that fact in its logs� [30,
Section 2.5].

6 Z Real-Time Protocol

ZRTP [47] is a specialized protocol used to establish key material for encrypted voice-over-IP (VoIP) com-
munications. Unlike TLS, ZRTP does not rely on public-key infrastructure or certi�cates for authentication.
Instead, participants authenticate each other by comparing a �short authentication string� derived from the
session key, also known as a SAS, via some trusted channel. For our purposes in this analysis, we assume
in our model that the SAS comparison is conducted via an ideal, trusted channel that is not susceptible to
tampering.

(Formally we model this using a CompareSAS(π, π′) oracle that makes session π compare its own sas to
that of π′, if assigned. Session π must be in a waiting state before this oracle call and continues if the two
match, otherwise aborts. We also provide a LeakSAS(π) oracle that marks π's sas as dishonest and leaks it

25

Initiator I Responder R

m1 = Hello(vI , IDI , [aI,1, . . . , aI,n])

m2 = Hello(vR, IDR, [aR,1, . . . , aR,n])

m3 = Commit(IDI , hash(m5), ai)

m4 = DHPart1(gy)

m5 = DHPart2(gx)

(kmI , k
m
R , k

e
I , k

e
R, sas)

= kdf(gxy, IDI , IDR,
hash(m2,m3,m4,m5))

(kmI , k
m
R , k

e
I , k

e
R, sas)

= kdf(gxy, IDI , IDR,
hash(m2,m3,m4,m5))

m6 = Confirm1(mac(kmR , [flags]k
e
R))

m7 = Confirm2(mac(kmI , [flags]k
e
I))

sas

sas

(a)

Initiator I Responder R

m1 = (IDI , F (cfgI)),mac(kI ,m1), hash(kI)

m2 = (IDR, F (cfgR)),mac(kR,m2), hash(kR)

a = nego(cfgI , F (cfgR))

m3 = (IDI , a, hash(nI)), kI
m4 = (nR), kR
m5 = (nI)

uid = h = H(m2,m3,m4,m5,−)
sas = H ′(IDI , IDR, h,−)

check(cfgR, a)
uid = h = H(m2,m3,m4,m5,−)
sas = H ′(IDI , IDR, h,−)

sas

sas

mode = (a, IDI , IDR)
complete = true

mode = (a, IDI , IDR)
complete = true

(b)

Figure 9: ZRTP (a) protocol (b) downgrade protection sub-protocol

to the adversarym, and a FakeSAS(π, sas′) oracle that let the adversary inject its own sas′ to be compared
with π's sas.)

Because the SAS is short, the protocol o�ers a more limited form of protection. If the SAS length is `
bits, then the probability of an attacker subverting the authentication is at least 2−` with each execution
of the handshake. In most implementations ` is typically a small value, e.g. 16. The use of a short
authentication string presents challenges for both key exchange and downgrade security. For example, if
the SAS employed a full-length collision-resistant hash, it would su�ce for the parties to exchange a hash
of the full protocol transcript. However, even when constructed using a (truncated) collision-resistant hash
function, the SAS is too short to provide the necessary protection, and additional measures must be taken.

6.1 ZRTP does not prevent downgrades

The ZRTP protocol is presented in Figure 9a. The downgrade protection sub-protocol is presented in
Figure9b. The ciphersuite negotiation is conducted within the �rst two (�Hello�) messages exchanged by
the Initiator and the Responder. The chosen ciphersuite ai is determined by selecting a ciphersuite in the
intersection of the available algorithms presented by each party. Ciphersuites consist of a key exchange
algorithm, a cipher and MAC algorithm for subsequent data exchange, and a SAS algorithm determining
the length and format of the SAS string. Additionally, the protocol negotiates options such as a �trusted�
PBX �ag and an optional signature on the SAS.

Following the initial negotiation messages, the parties determine who will play the role of the Initiator,
engage in a key exchange, and derive session keys. Transcript correctness is enforced by incorporating a
hash of most of the transcript into the key derivation function, which produces both session keys and a
SAS. A �nal mechanism tries to authenticate each of the handshake messages by computing a MAC over
each message, using a key that is revealed in the subsequent message. To bind these messages together,
ZRTP uses a hash chain.1

1Speci�cally, each participant computes an initial nonceH0 and hashes it to obtain the sequenceH3 = hash(H2 = hash(H1 =
hash(H0))). At each message in the handshake, the party reveals Hi and uses Hi−1 as a MAC key to authenticate the current

message. Veri�cation is only possible when the next message is received. The initial value H0 is revealed only within the

encrypted con�rmation message at the conclusion of the protocol.

26

Initiator I MitM Responder R

m1 = Hello(vI , oI , IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m1)

m2 = Hello(vR, oR, IDR, [aR,1, . . . , aR,n], h),m

m′1 = Hello(v′I , oI , IDR, [aR,1, . . . , aR,n], $), $

m2 = Hello(v′R, oR, IDR, [aR,1, . . . , aR,n]), hash(KR)),mac(KR,m2)

m′′1 = Hello(v′I , oI , IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m
′′
1)

m3 = Commit(IDI , hash(m5), ai,KI) m′′′1 = Hello(v′I , o
′
I , IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m

′′′
1)

m3

m4 = DHPart1(gy)

m5 = DHPart2(gx)

(kmI , k
m
R , k

e
R, k

e
S , sas) =

kdf(gxy, IDI , IDR, hash(m2,m3,m4,m5))
(kmI , k

m
R , k

e
R, k

e
S , sas) =

kdf(gxy, IDI , IDR, hash(m2,m3,m4,m5))
m6 = Confirm1(mac(kmR , [flags]k

e
R))

m7 = Confirm2(mac(kmI , [flags]k
e
I))

sas

sas

Figure 10: Man-in-the-Middle attack on ZRTP version and option negotiation. We assume that both peers
prefer version vI = vR, but will support an older version v′I = v′R. The attacker additionally modi�es the
options �ags oI transmitted in m1.

Downgrading protocol versions ZRTP includes a negotiation mechanism for protocol versions and
options that is not incorporated into the calculation of the shared secrets and SAS. When the parties support
multiple versions of the protocol and protocol options, a MitM can substitute the protocol versions vI , vR to
downgrade both parties to a previous version of the protocol, as illustrated in Figure 10. Moreover, since the
�rst (Initiator Hello) message is not authenticated, the attacker can also change the options �ags oI . This
second procedure requires the attacker to defeat the hash chain security mechanism. Unfortunately this may
be done by capturing and delaying subsequent messages until the authentication key for earlier messages
has been revealed, allowing the attacker to change messages arbitrarily. The �x for this vulnerability is
straightforward: all negotiation messages should be included in the calculation of the session key and SAS.

Downgrade from DH to PSK ZRTP supports both Di�e-Hellman key exchange and a pre-shared
key mode. The latter is analogous to the session resumption handshake in TLS, in that it provides an
inexpensive (symmetric-key only) handshake, which operates under the assumption that the parties have
previously completed a full Di�e-Hellman handshake to establish a pre-shared key. The corresponding
negotiation sub-protocol is shown in Fig. 11. The limitation of this pre-shared mode is that it does not
force the parties to commit to their protocol inputs before revealing them, which admits an o�ine attack in
which a MitM may identify protocol inputs that result in a chosen SAS. A full attack is shown in Figure 12,
beginning with the establishment of a shared key (via Di�e-Hellman) and restarting with the PSK mode.

7 Transport Layer Security

The Transport Layer Security protocol (TLS) is used to provide secure channels for a variety of Internet
applications. It o�ers a number of key exchange mechanisms, authentication methods, and encryption
schemes, so that users can pick and choose mechanisms best suited to their needs.

A negative consequence of this agility is the potential for downgrades. TLS clients and servers commonly
support multiple protocol versions and hundreds of ciphersuites, even though some of them are known to be
obsolete or even broken. For example, SSL 2 is still supported by 10% of web servers even though it has long

27

Initiator I Responder R

m1 = (IDI , F (cfgI))

m2 = (IDR, F (cfgR))

a = nego(cfgI , F (cfgR))

m3 = (IDI , a, nI ,mac(psk IR, “Prsh
′′))

uid = h = H(m2,m3,−)
(kI , kR, sas) = kdf(psk IR, h)

check(cfgR, a)
uid = h = H(m2,m3,−)
(kI , kR, sas) = kdf(psk IR, h)

m4 = mac(kR,−)

m5 = mac(kI ,−)

sas

sas

mode = (a, IDI , IDR)
complete = true

mode = (a, IDI , IDR)
complete = true

Figure 11: ZRTP with Pre-Shared Keys: negotiation sub-protocol

been known to be vulnerable to multiple attacks including, notably, a ciphersuite downgrade attack [44].
More recently, about 25% of web servers were found to still support export-grade ciphersuites that were
deprecated in 2000, enabling powerful downgrade and server impersonation attacks like FREAK [10] and
Logjam [2].

Since SSL 3, all versions of TLS incorporate various downgrade protection mechanisms. We will analyze
the downgrade protection provided by TLS 1.2 and the proposed improvements in TLS 1.3.

7.1 Negotiation in TLS 1.2

Figure 13a depicts a mutually authenticated TLS connection incorporating a Di�e-Hellman key exchange
that uses either a �nite-�eld group (DHE) or an elliptic curve (ECDHE). Most TLS connections authenticate
only the server, but the �gure also depicts the optional client authentication messages.

The client I �rst sends a hello message (CH) with a nonce (nI) and a list of agility parameters [a1, . . . , an]
that include ciphersuites, compression methods, and protocol extensions. The server responds with a hello
message (SH) containing its chosen parameters (aR). At this point, the client and server know which key
exchange they will execute next. In an ephemeral Di�e-Hellman key exchange (DHE/ECDHE), the server
sends its public-key certi�cate (certR) and uses the private key to sign the nonces, the group (or curve)
parameters (p, g) and its own Di�e-Hellman public value (gy). The server may let the client remain anony-
mous, or it may require authentication (specifying the class of acceptable certi�cates [cert1, . . . , certm]), in
which case the client sends its own certi�cate (certI) and public value (gx), and uses its private key to sign
the full protocol transcript so far (log1). The client and server then derive a master secret (ms) and session
keys (k1, k2) from the nonces and shared secret (gxy). To complete the key exchange, both sides com-

28

Initiator I MitM M Responder R

m1 = Hello(vi, IDI , [cI,1, . . . , cI,n], hash(KI)),mac(KI ,m1) m′1 = Hello(vi, IDI , [cI,1, . . . , cI,n], hash(K ′I)),mac(K ′I ,m
′
1)

m′2 = Hello(vr, IDR, [cR,1, . . . , cR,n], hash(KR)),mac(KR,m
′
2)m2 = Hello(vr, IDR, [cR,1, . . . , cR,n], hash(K ′R)),mac(K ′R,m2)

m3 = Commit(IDI , hash(m5), ci,KI) m′3 = Commit(IDI , hash(m′5), ci,K
′
I)

m′4 = DHPart1(gy)m4 = DHPart1(gy
′
)

m5 = DHPart2(gx) m′5 = DHPart2(gx
′
)

h = hash(m2,m3,m4,m5)
(kI , kR, psk IR, sas) = kdf(gxy, IDI , IDR, h)

Knows
(kI , kR, psk IR, sas)
(k′I , k

′
R, psk ′IR, sas ′)

h′ = hash(m′2,m
′
3,m

′
4,m

′
5)

(k′I , k
′
R, psk ′IR, sas ′) = kdf(gx

′y, IDI , IDR, h
′)

m′6 = Confirm1(mac(k′R,flags))m6 = Confirm1(mac(kR,flags))

m7 = Confirm2(mac(kI ,flags)) m′7 = Confirm2(mac(k′I ,flags))

TerminateConnection
m′8 = Hello(vi, IDI , [ci], hash(K ′′I)),mac(K ′′I ,m

′
8)

m′9 = Hello(vr, IDR, [ci], hash(K ′′R)),mac(K ′′R,m
′
9)

Choose nI such that sas = sas ′′

m′10 = Commit(IDI , ci, nI ,mac(psk ′IR, “Prsh
′′),K ′′I)

h′′ = hash(m′9,m
′
10)

(k′′I , k
′′
R, psk ′′IR, sas ′′) = kdf(psk ′IR, IDI , IDR, h

′′)
h′′ = hash(m′9,m

′
10)

(k′′I , k
′′
R, psk ′′IR, sas ′′) = kdf(psk ′IR, IDI , IDR, h

′′)

sas(= sas ′′)

sas ′′(= sas)

Figure 12: Man-in-the-middle cross-protocol attack on ZRTP with Di�e-Hellman exchange followed imme-
diatly by a pre-shared key exchange: M tampers with the �rst exchange between I and R and disconnects
before they can compare their (di�ering) SAS values. M then runs a new pre-shared exchange with R and
is able to synchronize the SAS values at I and R by �nding an appropriate nonce (with 216 work).

pute MACs using the master secret over the protocol transcript, and exchange them in �nished messages
(CFIN,SFIN). These MACs provide key con�rmation as well as downgrade protection. Once exchanged, the
client and server can start exchanging application data encrypted under the new session keys ([Data]k).

7.2 TLS 1.2 does not prevent downgrades

The downgrade protection sub-protocol for TLS 1.2 is depicted in Fig. 13b. For simplicity, we consider only
server-authenticated (EC)DHE connections, where clients are anonymous.

The client o�ers its entire public con�guration (F (cfgI)) to the server, which then computes the nego-
tiated parameters (mode) that consist of the protocol version (v), the chosen parameters (aR), the group
(GR), the server identity (pkR), and the hash function used in the server signature (hash1). The protocol
version and the ciphersuite in aR together determine other protocol parameters, such as the key derivation
function (kdf), the authenticated encryption scheme, and the MAC and hash functions used in the �nished
messages (mac, hash). We note that the server may possess several identities and choose one based on the
chosen ciphersuite or other protocol extensions o�ered by the client.

Downgrade protection primarily relies on the MACs in the �nished messages, which in turn rely on the
strength of the group GR and the negotiated algorithms kdf, hash, and mac. If a client and server support
a weak group, for example, then an attacker can downgrade the group and then break the master secret to
forge the MACs, as in Logjam.

A second protection mechanism is the server signature, but we observe that this signature covers only
the unique identi�er and the group GR, but none of the other negotiated parameters. For example, the

29

Client I Server I

CH(nI , vmaxI , [a1, . . . , an])

SH(nR, v, aR)

SC(certR)

SKE(sign(skR, hash1(nI | nR | p | g | gy)))
SCR∗([cert1, . . . , certm])

SHD

CC∗(certI)log1 log1

CKE(gx)log2 log2

CCV∗(sign(sk I , hash2(log1)))

(ms, k1, k2) = kdf(gxy, nI | nR) (ms, k1, k2) = kdf(gxy, nI | nR)

log3 log3

[CFIN(mac(ms, hash(log2)))]k1

[SFIN(mac(ms, hash(log3)))]k2

[Data]k1

[Data]k2

(a)

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
mode = nego(F (cfgI), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (nR, v, aR, GR, pkR, sign(skR, hash1(nI | nR | GR | gy)))

uid = (nI , nR)
mode = (v, aR, GR, pkR, hash1)
Check(cfgI ,mode)
ms = kdf(gxy, nI | nR)

ms = kdf(gxy, nI | nR)

m3 = (gx,mac(ms, H(m1,m2, g
x,−)))

m4 = (mac(ms, H ′(m1,m2,m3,−)))

complete = true complete = true

(b)

Figure 13: TLS 1.2 with (EC)DHE key exchange (a), where messages labeled with * occur only when client
authentication is enabled, and (b) its downgrade protection sub-protocol

Logjam attacker tricks the server into using an export ciphersuite (DHE-EXPORT) that results in a weak
Di�e-Hellman group. The client does not support DHE-EXPORT and still thinks it is using standard
DHE, but the attacker can forge the MAC to hide this discrepancy. Importantly, the server signature fails
to prevent this attack, because it does not include the ciphersuite. Before this attack was disclosed, many
implementations of TLS clients still accepted arbitrary groups.

Furthermore, we note that the negotiated algorithms can be weak in practice. For example, TLS 1.2
supports MD5-based signatures; TLS 1.1 derives keys and transcript hashes based on combinations of MD5
and SHA1. These weak constructions also lead to downgrade and impersonation attacks [11].

Let minr,maxr be the supported minimum and maximum protocol versions, let algsr = [a1, . . . , am] =
F (cfgI) be the ciphersuites and extensions, and let groupsr be the groups supported by role r. In terms
of the general de�nition in Section 2, the downgrade protection sub-protocol uses the following session
variables:

cfg
4
=

{
(I,minI ,maxI , algsI , groupsI ,PKsR) for I

(R,minR,maxR, algsR, groupsR,PKR) for R

uid
4
= (nI , nR)

mode
4
= (v, aR, GR, pkR, hash1)

The negotiation function nego is executed by the server and is based on the server's con�guration cfgR
and the server's partial view F (cfgI) of the client con�guration. The client does not get to inspect cfgR,
but it does check that the resulting mode is consistent with its con�guration.

The protocol only o�ers downgrade protection if the peer is authenticated with an honest key and strong
signature and hash algorithms. So we will consider downgrade security from the viewpoint of a client, while
assuming that all keys in PKsR are honest and hash1 is collision-resistant. We get partnering security from
the freshness of the uid and the strength of the server signature (which includes the uid).

However, downgrade protection for the client cannot rely on just the signature, and hence requires one
of the following conditions:

• the server uses its pkR only with modes that use strong groups, key derivation algorithm kdf, hash and

30

Client I Server R

CH(nI ,maxI , [a1, . . . , an], [(G1, g
x1)])

Retry(G2)

CH(nI ,maxI , [a1, . . . , an], [(G1, g
x1), (G2, g

x2)])log1 log1

SH(nR, v, aR, (G2, g
y))

(k1, k2) = kdf(gx2y, log1) (k1, k2) = kdf(gx2y, log1)

log2 log2

[SC(certR)]k2log3 log3

[SCV(sign(skR, hash1(hash(log2))))]k2

ms = kdf(gx2y, log3) ms = kdf(gx2y, log3)

log4 log4

[SFIN(mac(ms, hash(log3)))]k2

[CFIN(mac(ms, hash(log4)))]k1

[Data]k1

[Data]k2

(a)

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
mode = nego(F (cfgI), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (nR, v, aR, GR, pkR)

m′2 = sign(skR, hash1(H(m1,m2,−)))

uid = (nI , nR)
mode = (v, aR, GR, pkR, hash1)
check(cfgI ,mode)
complete = true

complete = true

(b)

Figure 14: TLS 1.3 1-RTT mode with server-only authentication (a) and its downgrade protection sub-
protocol (b)

mac algorithms and the client is aware of the servers choice and aborts whenever it sees an unexpected
algorithm combination;

• the client only accepts modes with strong groups (in particular not the groups `negotiated' by the
Logjam and the ECDHE-DHE cross-protocol attacks [36]) and algorithms.

An extreme example of the �rst condition would be to require that the server uses a di�erent public
key for each mode; the proofs in [23] rely on this somewhat unrealistic assumption to avoid ECDHE-DHE
cross-protocol attacks and the need for agile security assumptions. More pragmatically, if a client and
server only support TLS 1.2 (and hence only strong hash constructions), only support strong groups and
curves for (EC)DHE and all other ciphersuites that use Di�e-Hellman, then TLS clients can be protected
from downgrade. Of course, we rely on the server using only honest and strong signing keys (e.g. 2048-bit
RSA) with strong signature and hash algorithms (e.g. RSA-SHA256).

We also get some downgrade protection for the server when the client is authenticated, relying only on
the client signature and the transcript hash algorithm hash. Pragmatically, TLS 1.2 servers that require
client authentication and only accept strong signature and hash algorithms cannot themselves be tricked
into completing a connection with a weak mode.

As evidenced by the Logjam attack, the TLS protocol does not satisfy downgrade security unless the
DP predicate guarantees that the client and server con�gurations exclusively use strong algorithms, hence
guaranteeing that all the negotiated algorithms used in the �nished MACs are strong.

7.3 On downgrade protection in Draft 10 of TLS 1.3

Draft 10 of TLS 1.3, the next version of TLS, proposes a protocol that is quite di�erent from TLS 1.2;
a typical run of the 1-round-trip mode is depicted in Fig. 14a. The corresponding downgrade protection
sub-protocol is in Fig. 14b.

31

In contrast to TLS 1.2, the client hello message includes Di�e-Hellman public values for the client's
preferred groups. The server may choose one of these groups or ask for a public value in a di�erent group, as
long as it is one supported by the client. The server sends its own public value in the server hello message,
and all subsequent messages are encrypted and integrity-protected using the Di�e-Hellman shared key.

For downgrade security from the client's viewpoint, a key di�erence is that server signatures in TLS 1.3
cover the full transcript, and hence they cover the full client and server hello messages. This foils most of
the downgrade attacks on TLS 1.2; as long as the client only accepts strong signature and hash algorithms
and honest public keys from the server, it cannot be downgraded to a weaker ciphersuite, and moreover, it
yields agreement on the chosen ciphersuite.

Although Draft 10 of TLS 1.3 provides strong downgrade protection for the ciphersuite, downgrade
attacks remain, in particular, because clients and servers will continue to support lower protocol versions
for backward compatibility. Considering that TLS 1.2 does not provide strong downgrade protections, this
unfortunately means that all the downgrade attacks on TLS 1.2 will be inherited by TLS 1.3.

There are three downgrade attacks possible on TLS 1.3 as described in Draft 10. One, an attacker
downgrades the connection to TLS 1.2 or lower and mounts any of the downgrade attacks mentioned
before. This will succeed as long as the attacker can forge the �nished MACs. Second, an attacker uses the
TLS fallback mechanism to stop TLS 1.3 connections and allows only TLS 1.2 connections to go through.
Even if the endpoints implement the fallback protection mechanism [39], the attacker can use one of the
downgrade attacks in TLS 1.2 to break the connection. Third, in Draft 10 of the TLS 1.3 protocol, the
handshake hashes restart upon receiving a Retry message and hence, the attacker can downgrade the
Di�e-Hellman group for some classes of negotiation functions.

We can prevent all of these attacks by two countermeasures, both of which have been incorporated into
TLS 1.3 Draft 11. See Fig. 15a. First, we continue the handshake hashes over retries. Second, TLS 1.3
servers always include their highest supported version number in the server nonce, even when they choose
a lower version such as TLS 1.0.

Including the maximum version number into the server nonce of all versions yields version downgrade
protection for clients. It is a simple patch (For the server, it amounts to changing how nonces are generated.
The client needs to implement an equality check.) that can be incorporated into TLS versions without
making them incompatible with TLS versions that do not implement the patch. If a server and a client
both implement the patch, the client gets version downgrade protection.

We proceed in three steps: We show that when hashes continue over Retry, clients that interact with
servers that just support TLS 1.3 achieve downgrade security. We then show that embedding the version
number into the server's nonce yields version downgrade protection from the client's perspective. We
then put the two results together and show that the composition of TLS 1.2 and TLS 1.3 with these
countermeasures provides the same client-side downgrade protection as when servers just support TLS 1.3.

The downgrade protection sub-protocol uses the same session variables as for TLS 1.2, but de�nes
Nego using the function nego from Fig. 15a. Let M be the set of modes supported by TLS and M? =
{Negocfg.role(cfg, cfg′)|PS(cfg)} be the modes negotiated between any pair of con�gurations for which the
�rst guarantees partnering security. Let Ps = {p | s, p = mode.sig ∧ mode ∈ M} be the signature agility
parameters for peer signature scheme s, H be the set of all hash algorithms supported by TLS, and
H? = {mode.hash | mode ∈ M?} be the hash algorithms used by partnering secure modes. We now
prove partnering security for TLS 1.2 and 1.3, and downgrade security for clients speaking to servers that
implement the �x described in Fig. 15a. We then de�ne version downgrade security and show that the �xes
in Fig. 15a (TLS 1.3) and Fig. 15b (TLS 1.2) prevent version downgrade.

Theorem 8 (Partnering security of TLS for clients). We consider a universe of con�gurations where

32

Client I Server R

m0 = (nI , F0(cfgI))

m′0 = GR
m1 = (nI , F1(cfgI , GR))

uid = (nI , nR)
n′R = maxR | nR
mode = nego(F1(cfgI , GR), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (n′R, v, aR, GR, pkR)

verifyVersion(n′R, v, cfgI)
uid = (nI , nR)

m′2 = sign(skR, hash1(H(m0,m
′
0,m1,m2,−)))

mode = (v, aR, GR, pkR, hash1)
check(cfgI ,mode)
complete = true

complete = true

(a) A version downgrade �x for TLS 1.3

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
n′R = maxR | nR
mode = nego(F (cfgI), cfgR)

= (v, aR, pkR, G, hash1)

m2 = (n′R, v, aR, G, pkR, sign(skR, hash1(nI | n′R | G | gy)))

verifyVersion(n′R, v, cfgI)
uid = (nI , nR)
mode = (v, aR, pkR, G, hash1)
check(cfgI ,mode)
ms = kdf(gxy, nI | n′R)

ms = kdf(gxy, nI | n′R)

m3 = (gx,mac(ms, H(m1,m2, g
x,−)))

m4 = mac(ms, H ′(m1,m2,m3,−))

complete = true complete = true

(b) A version downgrade �x for TLS 1.2

RSA keys are used for signing or encryption, but not for both. Let PS be such that PS(cfg) implies that

cfg.role = I, that all public keys in the range of cfg.PKsR are honest and that cfg does not support RSA

key transport. Given an adversary A against the partnering security of TLS, we construct adversaries Bs,p,i
and Bh running in about the same time as A such that AdvpartneringTLS,PS (A) is at most

∑
h∈H?

AdvCRh,H(Bh) +
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where ns keys are generated for signing scheme s.

The proof is the same as for Theorem 4 for SSH except that we only need to prove the property for
clients and rely on the nonces being hashed and signed as part of messages m0 and m1.

For downgrade security, we de�ne Nego,M, Ps, and H as before. However, we rede�neM?, H? to use
DP instead of PS, i.e.,M? = {Negocfg.role(cfg, cfg′) | DS(cfg, cfg′)} and H? = {mode.hash | mode ∈M?}.

Theorem 9 (Downgrade security of TLS1.3-sub). We consider a universe of con�gurations where RSA

keys are used for signing or encryption, but not for both.

Let DP be such that DP(cfg, cfg′) implies that cfg.role = I, that all public keys in the range of cfg.PKsR
are honest, that cfg and cfg′ implement the countermeasure, such that cfg′ only supports TLS 1.3 and cfg

only supports TLS 1.3 or TLS 1.3 & 1.2 and does not support RSA key transport. Given an adversary A
against the downgrade security of TLS1.3-sub, we construct adversaries Bs,p,i and Bh running in about the

same time as A such that AdvdowngradeTLS1.3-sub,DP(A) is at most

n2

2|nR|+1
+

∑
h∈H?

AdvCRh,H(Bh) +
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where n is the number of sessions, ns is the number of keys generated for signing scheme s, and |nR| is the
size of the servers contribution to the unique identi�ers. The current proposal is 24 bytes.

33

The proof again follows the same structure as for Theorem 5 for SSH except that we only need to prove
the property for clients.

Proof sketch. Game G0 is the original downgrade experiment. In game G1 we guarantee that there is at most
one partnered server session. By the collision probability of server nonces we have that |PrG0 [S]− PrG1 [S]| ≤
n2(2−|nR|−1) . In games G2 and G3 we abort on agile hash function collisions and signature forgeries for
modes inM?.

The �nal reasoning step follows a di�erent pattern than SSH. As the server signs all information that is
taken into account by nego together with the corresponding nonces, the signature over the protocol messages
must have been generated by the server session with the unique identi�er corresponding to these nonces.
Moreover, if there had been any modi�cation to the messages of the server and the client that in�uence
nego, then the client would have aborted in Game G3.

We de�ne version downgrade security similarly to downgrade security via a function Versionr that maps
two opposite-role con�gurations (which include the version numbers) to the version number negotiated (if
any) in the absence of active adversaries. Formally, if a session π talking to a session π′ completes, it must
be the case that π.v = Versionr(cfgr, cfgr̄). Akin to downgrade security, our de�nition of version downgrade
security is parameterized by a version downgrade protection predicate VDP on pairs of con�gurations.
When VDP(cfgr, cfgr̄) holds, we expect that the local instance r is protected. For TLS, we will only
consider version downgrade protection from the client's perspective.

De�nition 11 (Version downgrade security). The advantage AdvversionΠ,VDP(A) of A against the version down-

grade security of Π is the probability that, when A terminates after interacting with protocol Π through its

oracles, there exists a session π such that π.complete = true and there is a partnered session π′ such that

VDP(π.cfg, π′.cfg) but π.v 6= Versionπ.role(π.cfg, π
′.cfg).

In the variant of Version Downgrade Security that includes version agreement, the adversary also wins
if there exists a session π such that π.complete = true and there is a partnered session π′ such that
VDP(π.cfg, π′.cfg) but π does not agree with π′ on v.

Theorem 10 (Version downgrade security of TLS1.3−TLS1.2-sub). We consider a universe of con�g-

urations where RSA keys are used for signing or encryption, but not for both. Let VDP be such that

VDP(cfg, cfg′) implies that cfg.role = I and that all public keys in the range of cfg.PKsR are honest and

such that: (a) cfg activates the countermeasure for all its versions and does not support RSA key transport.

(b) cfg′ activates the countermeasure for all its versions.
Given an adversary A against the version downgrade security of TLS1.3-TLS1.2-sub, we construct

adversaries Bs,p,i and Bh running in about the same time as A such that AdvversionTLS1.3-TLS1.2-sub,VDP(A) is at
most

n2

2|nR|+1
+

∑
h∈H?

AdvCRh,H(Bh) +
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where n is the number of sessions, ns is the number of keys generated for signing scheme s, and |nR| is the
size of the servers contribution to the unique identi�ers. The current proposal is 24 bytes.

If the server con�guration supports at most TLS 1.3 and TLS 1.2, the above bound also holds for the

variant of version downgrade security that assures version agreement.

34

Proof sketch. Let S be the event that there exists a session π that completed and is version down-
graded, i.e., there exists a partner session π′ with the same uid and opposite role and such that π.v 6=
Versionπ.role(π.cfg, π

′.cfg)
Let G0 be the original version downgrade security experiment. Game G1 aborts whenever two server

sessions assign the same nR. Let n be the total number of sessions. The probability that n such random
values give rise to a collision is upper bounded by n22−|nR|−1. As G0 and G1 are identical up to collisions,
we have |PrG0 [S]− PrG1 [S]| ≤ n22−|nR|/2−1 . Game G2 behaves as G1, except that it aborts whenever two
sessions hash di�erent transcripts to the same log . Using A, we can construct for each h ∈ H? an adversary
Bh such that |PrG0 [S]− PrG1 [S]| ≤

∑
h∈H? AdvCRh,H(Bh). Observe that in G2, every nR is signed at most

once by the responder.
Game G3 is the same as Game G2, except that sessions with honest peer keys and (s, p) ∈ sig(M) abort

without completing whenever they verify a signature that was not produced by another session.
We again bound the di�erence in the success probabilities using the lemma of Bhargavan et al. [14,

Lemma 4] and have

|PrG2 [S]− PrG3 [S]| ≤
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i).

Observe that, since the signatures computed by initiators and responders cannot be confounded, in
Game G3 we never verify a message that was not signed by its unique partner.

For the initiator we have that message log was signed by its partner and contains the responder's nonce.
As the VDP holds, the responder's nonce contains the maximal supported version number and the initiator
veri�es that this matches the one that the initiator either proposed or received, the initiator yields the
preferred protocol version.

Generally, we do not get agreement on v, because the responder does not sign the initiator's maximal
version number and hence, even if the initiator completes, he has no guarantees that the server actually
received the highest protocol version. However, if the server only supports TLS 1.3 and TLS 1.2, then the
domain separation property of signatures guarantees that initiator and responder have the same protocol
version.

Note that we would generally obtain agreement on the version number if the client embeds his highest
supported version number into his nonce.

For a downgrade predicate DP and a version predicate VDP such that DP ⊆ VDP, let DP+VDP be the
predicate that holds for pair of con�gurations in DP, with server con�gurations extended to also support
con�gurations of lower version protocols that by VDP should never be negotiated. Putting Theorem 10
and Theorem 9 together, we get that when both client and server implement the countermeasures, then
supporting TLS 1.3 & 1.2 is as good as supporting only TLS 1.3.

Corollary 1 (Downgrade security of TLS1.3-TLS1.2-sub). Let DP ⊆ VDP and let VDP be such that

VDP(cfg, ·) implies that cfg.role = I, that all public keys in the range of cfg.PKsR are honest and that

1. cfg only supports TLS 1.3 or TLS 1.3 & 1.2, activates the countermeasure for all its versions, and

does not support RSA key transport,

2. cfg′ only supports TLS 1.3 or TLS 1.3 & 1.2 and activates the countermeasure for all its versions.

35

Given an adversary A against the downgrade security of TLS1.3-TLS1.2-sub, we construct adversaries

B and C running in about the same time as A such that

Advdowngrade
TLS1.3-1.2-sub,DP′

(A) ≤ AdvversionTLS1.3-1.2-sub,VDP(B) + AdvdowngradeTLS1.3-sub,DP(C)

where DP′ = DP ∪DP+VDP.

Proof sketch. Theorem 10 ensures that if the client and server con�gurations both support TLS 1.3 and
TLS 1.2, then they get TLS 1.3 and Theorem 9 ensures that a client session that supports TLS 1.3 and
TLS 1.2 gets the preferred mode when interacting with a server that only supports TLS 1.3.

The probability that the server partner session of a completing client that supports TLS 1.3 or TLS 1.3
and TLS 1.2 assigns a di�erent version variable than 1.3 is upper bounded by AdvversionTLS1.3-1.2-sub,VDP(B).
Note that crucially we rely on agreement on the version variable.

The main proof idea is that servers that support TLS 1.3 and 1.2 and server that support only TLS 1.3
behave the same way after receiving 1.3 as the client's highest version numbers. Hence, in a �rst game-hop,
we wait until the �rst Send query to a server session, and if this �rst query contains version number 1.3,
we initialize the server with a con�guration that only supports 1.3 (and besides has the con�guration that
the adversary provided). Else, we initialize the server with the con�guration that the adversary provided.
Now, all servers that run TLS 1.3 in a particular session only support TLS 1.3.

The probability that a client that supports either TLS 1.3 or TLS 1.3 and 1.2 when interacting with
such a server is downgraded is upper bounded by AdvdowngradeTLS1.3-sub,DP(C).

8 Related Work

Downgrade as an attack vector The importance of downgrades when building practical exploits
against key exchange protocols has been widely recognized [40, 10, 44, 2].

The lessons learned from this are less clear. There is a disconnect between the IETF, implementers,
penetration testers, and protocol analysts. Browser developers are frequently criticized for prioritized
interoperability over security and standard compliance.

RFC 7507 [39] proposes the Signaling Cipher Suite Value (SCSV) extension for TLS to prevent version
downgrade attacks when the key-exchange of all versions provides transcript authentication. SSL2.0 and
SSL3.0 are being deprecated, partly to prevent version downgrade attacks as these versions do not support
said extensions [42, 5] and SSL2.0 in any case does not provide reliable transcript authentication. Similarly,
ciphersuite hygiene is frequently discussed in standard documents [35, 34]

Previous downgrade security theorems about TLS 1.2 Dowling and Stebila [23] model ciphersuite
and version negotiation for the TLS protocol up to version 1.2 in the multi-ciphersuite setting introduced
by Bergsma et al. [9] (discussed below). In our model, their result corresponds to a proof of downgrade
security for a DP(π.cfg, π′.cfg) predicate that guarantees that all negotiable ciphersuites and versions are
strong enough to provide ACCE security and that all public keys are honest and used at most by one
negotiable ciphersuite. Their optimality function ω is a more limited variant of our Nego function and does
not include entity identi�ers. Their main theorem states that under such strong conditions multi-mode
authentication implies downgrade security.

36

This is a rather weak form of downgrade security, but as shown by our attack, TLS 1.2 does not provide
much stronger protection at least for clients. Servers that authenticate clients can however receive stronger
guarantees.

Related work for SSH Bergsma et al. [9] previously analyzed SSH in a multi-ciphersuite setting. They
split the protocol into a negotiation phase NP and key-exchange phase SP, one for each value of π.mode.

They show that if each combination NP‖SP is ACCE secure, then NP‖
→
SP is multi-ciphersuite ACCE secure.

While they do not prove downgrade security per se, the result of [23] adapted to SSH corresponds to a proof
of downgrade security for a DP(π.cfg, π′.cfg) predicate that guarantees that all negotiable ciphersuites and
versions are strong enough to provide ACCE security.

The sharing of the public key is admissible under the condition that each sub-protocol provides su�cient
oracle access to the long-term key functionality, e.g., signing, to simulate all other sub-protocols. In our

terminology, the protocols NP‖SP of [9] are single mode restrictions of NP‖
→
SP. After their extensions with

oracles providing su�cient access to long-term key functionalities, they are also sub-protocols in our sense.
We prove downgrade protection for a predicate DP that includes a much larger set of con�gurations.

Combined with the result of Bergsma et al., our result allows to prove multi-ciphersuite ACCE security

when not all sub-protocols in
→
SP are ACCE secure, as long as we restrict the protocol to con�gurations in

DP that do not negotiate them (cf. Theorem 1).

9 Conclusion and Future Work

In this paper we put forward a methodology to analyze the downgrade security of real-world key exchange
protocols. Our approach breaks down the complexity of analyzing a full protocol by considering only a
core sub-protocol that abstracts away details that are irrelevant for negotiation of a protocol mode. We
showed that proving a simulatability property for a sub-protocol is su�cient for ensuring the soundness of
our methodology: proving the absence of downgrade attacks on the sub-protocol is enough to guarantee
the downgrade security of the full protocol. In contrast, our methodology does not provide completeness: it
may very well be the case that a particular choice of sub-protocol abstracts too much and ends up allowing
attacks that are impossible to turn into attacks on the full protocol. Indeed, sometimes sieving through
false positives helped us to re�ne our choice of sub-protocols.

Our analysis of exemplary protocols shows that many designs fail to appropriately address downgrade
security. We advocate incorporating downgrade security as an integral part of security models of key
exchange protocols.

We believe that analyzing the downgrade security of typical sub-protocols is within reach of automated
tools. Symbolic analysis tools like ProVerif [17], Scyther [19] and Tamarin [38] seem particularly well suited
to detect attacks on sub-protocols, helping analysts to �nd attacks against the full protocol or converge
toward a sub-protocol that rules out false positives. Computationally sound tools like CryptoVerif [16],
on the other hand, provide a means to prove the downgrade security of sub-protocols and, provided the
sub-protocol is a sound abstraction of the full protocol, conclude that the corresponding full protocol also
enjoys downgrade security. Finding a simulator that witnesses the correctness of a sub-protocol appears to
be a more di�cult task that may require ingenuity. While this may be out of reach of fully automated tools,
interactive proofs can be constructed and machine-checked with tools like e.g. EasyCrypt [6]. Exploring
the use of automated tools could increase the con�dence in our proofs of downgrade security, and perhaps
�nd other simpler or more practical attacks on protocols for which we only showed negative results.

37

References

[1] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible Authentication Protocol
(EAP). IETF RFC 3748, 2004.

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,
D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmer-
mann. Imperfect forward secrecy: How Di�e-Hellman fails in practice. In 22nd ACM Conference on

Computer and Communications Security, pages 5�17, 2015.

[3] N. J. AlFardan and K. G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record protocols.
In 2013 IEEE Symposium on Security and Privacy, pages 526�540, 2013.

[4] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt. On the security
of RC4 in TLS. In 22th USENIX Security Symposium, pages 305�320, 2013. ISBN 978-1-931971-03-4.

[5] R. Barnes, M. Thomson, A. Pironti, and A. Langley. Deprecating Secure Sockets Layer Version 3.0.
IETF RFC 7568, 2015.

[6] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin. Computer-aided security proofs for the
working cryptographer. In Advances in Cryptology, CRYPTO 2011, pages 71�90, 2011.

[7] G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt. Mind the gap: Modular machine-checked
proofs of one-round key exchange protocols. In Advances in Cryptology � EUROCRYPT 2015, pages
689�718, 2015.

[8] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO 1993, pages
232�249, 1993.

[9] F. Bergsma, B. Dowling, F. Kohlar, J. Schwenk, and D. Stebila. Multi-ciphersuite security of the
secure shell (SSH) protocol. In 21st ACM Conference on Computer and Communications Security,
pages 369�381, 2014.

[10] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub,
and J. Zinzindohoue. A Messy State of the Union: Taming the Composite State Machines of TLS. In
2015 IEEE Symposium on Security and Privacy, pages 535�552, 2015.

[11] K. Bhargavan and G. Leurent. Transcript Collision Attacks: Breaking Authentication in TLS, IKE,
and SSH. Unpublished manuscript, 2015.

[12] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub. Implementing TLS with veri�ed
cryptographic security. In 2013 IEEE Symposium on Security and Privacy, pages 445�459, 2013.

[13] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub, and S. Zanella-Béguelin. Proving the
TLS handshake secure (as it is). In CRYPTO 2014, pages 235�255, 2014.

[14] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella-Béguelin. Proving the
tls handshake secure (as it is). Cryptology ePrint Archive, Report 2014/182, 2014. http://eprint.

iacr.org/2014/182/.

38

http://eprint.iacr.org/2014/182/
http://eprint.iacr.org/2014/182/

[15] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport Layer Security
(TLS) Extensions. IETF RFC 3546, 2003.

[16] Blanchet. A computationally sound mechanized prover for security protocols. Dependable and Secure

Computing, IEEE Transactions on, 5(4):193�207, 2008.

[17] B. Blanchet. An e�cient cryptographic protocol veri�er based on prolog rules. In 14th IEEE Computer

Security Foundations Workshop, CSFW 2014, pages 82�96, 2001.

[18] R. Canetti and H. Krawczyk. Security analysis of IKE's signature-based key-exchange protocol. In
CRYPTO 2002, pages 143�161, 2002.

[19] C. Cremers. The Scyther tool: Veri�cation, falsi�cation, and analysis of security protocols. In 20th

International Conference on Computer Aided Veri�cation, CAV 2008, pages 414�418, 2008.

[20] C. J. F. Cremers. Key exchange in ipsec revisited: Formal analysis of ikev1 and ikev2. In Computer

Security - ESORICS 2011 - 16th European Symposium on Research in Computer Security, Leuven,

Belgium, September 12-14, 2011. Proceedings, pages 315�334, 2011.

[21] A. Delignat-Lavaud and K. Bhargavan. Network-based origin confusion attacks against HTTPS virtual
hosting. In 24th International Conference on World Wide Web, WWW 2015, pages 227�237, 2015.

[22] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Internet Draft,
2015.

[23] B. Dowling and D. Stebila. Modelling ciphersuite and version negotiation in the TLS protocol. In 20th

Australasian Conference on Information Security and Privacy, ACISP 2015, pages 270�288, 2015. doi:
10.1007/978-3-319-19962-7_16.

[24] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3 handshake
protocol candidates. In 22nd ACM Conference on Computer and Communications Security, pages
1197�1210, 2015.

[25] T. Duong and J. Rizzo. Here come the ⊕ ninjas. Available at http://nerdoholic.org/uploads/

dergln/beast_part2/ssl_jun21.pdf, May 2011.

[26] C. Garman, K. G. Paterson, and T. V. der Merwe. Attacks only get better: Password recovery attacks
against RC4 in TLS. In 24th USENIX Security Symposium, pages 113�128, 2015. ISBN 978-1-931971-
232.

[27] D. Harkins and D. Carrel. The internet key exchange (IKE). RFC 2409, 1998. URL http://www.

ietf.org/rfc/rfc2409.txt.

[28] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard model.
In CRYPTO 2012, pages 273�293, 2012.

[29] M. Just and S. Vaudenay. Authenticated multi-party key agreement. In ASIACRYPT 1996, pages
36�49, 1996.

[30] C. Kaufman, P. Ho�man, Y. Nir, and P. Eronen. Internet Key Exchange Protocol Version 2 (IKEv2).
RFC 5996, 2010. URL http://www.ietf.org/rfc/rfc5996.txt.

39

http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc5996.txt

[31] K. Kobara, S. Shin, and M. Stre�er. Partnership in key exchange protocols. In 2009 ACM Symposium

on Information, Computer and Communications Security, ASIACCS 2009, pages 161�170, 2009.

[32] H. Krawczyk. SIGMA: the 'SIGn-and-MAc' approach to authenticated Di�e-Hellman and its use in
the IKE protocols. In CRYPTO 2003, pages 400�425, 2003.

[33] H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A systematic analysis.
In CRYPTO 2013, pages 429�448, 2013.

[34] N. M. Langley, A. and B. Moeller. Transport Layer Security (TLS) False Start. Internet Draft, 2010.

[35] R. H. M. Salter, E. Rescorla. Suite B Pro�le for Transport Layer Security (TLS). IETF RFC 5430,
2009.

[36] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel. A cross-protocol attack on the
TLS protocol. In 19th ACM Conference on Computer and Communications Security, pages 62�72,
2012. ISBN 978-1-4503-1651-4. doi: 10.1145/2382196.2382206.

[37] C. Meadows. Analysis of the internet key exchange protocol using the NRL protocol analyzer. In
1999 IEEE Symposium on Security and Privacy, Oakland, California, USA, May 9-12, 1999, pages
216�231, 1999.

[38] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The tamarin prover for the symbolic analysis of
security protocols. In 25th International Conference on Computer Aided Veri�cation, CAV 2013,
pages 696�701, 2013.

[39] B. Moeller and A. Langley. TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol
Downgrade Attacks. IETF RFC 7507, 2015.

[40] B. Möller, T. Duong, and K. Kotowicz. This POODLE Bites: Exploiting The SSL 3.0 Fallback.
Available at https://www.openssl.org/~bodo/ssl-poodle.pdf, 2014.

[41] J. Rizzo and T. Duong. The CRIME Attack, September 2012.

[42] S. Turner and T. Polk. Prohibiting Secure Sockets Layer (SSL version 2.0. IETF RFC 6176, 2011.

[43] University of Michigan. Tracking the FREAK Attack. Available at https://freakattack.com/,
November 2015.

[44] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In 2nd USENIX Workshop on Electronic

Commerce, WOEC 1996, pages 29�40, 1996.

[45] T. Ylonen and C. Lonvick. The secure shell (SSH) authentication protocol. RFC 4252, 2006.

[46] T. Ylonen and C. Lonvick. The secure shell (SSH) transport layer protocol. RFC 4253, 2006.

[47] P. Zimmermann. RFC 6189bis: ZRTP: Media Path Key Agreement for Unicast Secure RTP. Available
at http://zfone.com/docs/ietf/rfc6189bis.html, November 2012.

40

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://freakattack.com/
http://zfone.com/docs/ietf/rfc6189bis.html

	Introduction
	Motivating example
	Overview of our approach
	Summary of our results
	Outline of the paper

	Modeling Multi-Mode Key-Exchanges
	Unique identifiers and partnering
	Multi-mode authentication
	Key-indistinguishability and privacy
	Instantiating our model for SIGMA-N

	Defining Downgrade Resilience
	Downgrade resilience of SIGMA-N
	Downgrade resilience and multi-mode security
	Downgrade secure sub-protocols
	Downgrade security by whitelisting

	Secure SHell
	SSHv2 is partnering and downgrade secure
	Agile hash functions and signatures
	Partnering security
	Downgrade security

	Internet Key Exchange
	IKEv1 does not prevent downgrades
	IKEv2 does not prevent downgrades
	IKEv2 with signatures
	IKEv2 with EAP client authentication

	Version downgrades from IKEv2 to IKEv1

	Z Real-Time Protocol
	ZRTP does not prevent downgrades

	Transport Layer Security
	Negotiation in TLS 1.2
	TLS 1.2 does not prevent downgrades
	On downgrade protection in Draft 10 of TLS 1.3

	Related Work
	Conclusion and Future Work

