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Abstract

Ishai, Kushilevitz, Ostrovsky and Sahai (STOC‘07, SIAM JoC 2009) introduced the powerful “MPC-
in-the-head” technique that provided a general transformation of information-theoretic MPC protocols
secure against passive adversaries to a ZK proof in a “black-box” way. In this work, we extend this
technique and provide a generic transformation of any semi-honest secure two-party computation (2PC)
protocol (with mild adaptive security guarantees) in the so called oblivious-transfer hybrid to an adaptive
ZK proof for any NP-language, in a “black-box” way assuming only one-way functions. Our basic con-
struction based on Goldreich-Micali-Wigderson’s 2PC protocol yields an adaptive ZK proof with com-
munication complexity proportional to quadratic in the size of the circuit implementing the NP relation.
Previously such proofs relied on an expensive Karp reduction of the NP language to Graph Hamiltonicity
(Lindell and Zarosim (TCC‘09, Journal of Cryptology 2011)). We also improve our basic construction to
obtain the first linear-rate adaptive ZK proofs by relying on efficient maliciously secure 2PC protocols.
Core to this construction is a new way of transforming 2PC protocols to efficient (adaptively secure)
instance-dependent commitment schemes.

As our second contribution, we provide a general transformation to construct a randomized encoding
of a function f from any 2PC protocol that securely computes a related functionality (in a black-box
way). We show that if the 2PC protocol has mild adaptive security guarantees then the resulting random-
ized encoding (RE) can be decomposed to an offline/online encoding.

As an application of our techniques, we show how to improve the construction of Lapidot and Shamir
(Crypto‘90) to obtain “input-delayed” ZK proofs which are proofs where the honest prover’s algorithm
does not require the actual statement until the last round. Our transformation also yields the simplest
constructions of both static and adaptive ZK proofs from standard 2PC protocols of Yao and Goldreich-
Micali-Wigderson.
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1 Introduction

In this work we establish new general connections between three fundamental tasks in cryptography: secure
two-party computation, zero-knowledge proofs and randomized encoding. We begin with some relevant
background regarding each of these tasks.

Secure multiparty computation. The problem of secure multiparty computation (MPC) [Yao82, CCD87,
GMW87, BGW88] considers a set of parties with private inputs that wish to jointly compute some function
of their inputs while preserving certain security properties. Two of these properties are privacy, meaning
that the output is learned but nothing else, and correctness, meaning that no corrupted party or parties can
cause the output to deviate from the specified function. Security is formalized using the simulation paradigm
where for every adversary A attacking a real protocol, we require the existence of a simulator S that can
cause the same damage in an ideal world, where an incorruptible trusted third party computes the function
for the parties and provides them their output.

Honest vs. dishonest majority. Generally speaking, there are two distinct categories for MPC protocols:
(1) one for which security is guaranteed only when a majority of the parties are honest, and (2) one for which
security is guaranteed against an arbitrary number of corrupted parties. In the former category it is possible
to construct “information-theoretic” secure protocols where security holds unconditionally,1 whereas in the
latter only computational security can be achieved while relying on cryptographic assumptions.2 The former
setting necessarily requires 3 or more parties while the latter can be constructed with just two parties. In this
work, we will focus on the latter setting, considering secure two-party computation.

Semi-honest vs malicious adversary. The adversary may be semi-honest, meaning that it follows the pro-
tocol specification but tries to learn more than allowed, or malicious, namely, arbitrarily deviating from the
protocol specification in order to compromise the security of the other players in the protocol. Constructing
semi-honestly secure protocols is a much easier task than achieving security against a malicious adversary.

Static vs. adaptive corruption. The initial model considered for secure computation was one of a
static adversary where the adversary controls a subset of the parties (who are called corrupted) before the
protocol begins, and this subset cannot change. A stronger corruption model allows the adversary to choose
which parties to corrupt throughout the protocol execution, and as a function of its view; such an adversary
is called adaptive. Adaptive corruptions model “hacking” attacks where an external attacker breaks into
parties’ machines in the midst of a protocol execution and are much harder to protect against. In particular,
protocols that achieve adaptivity are more complex and the computational hardness assumptions needed
seem stronger; see [CLOS02, KO04, CDD+04, IPS08]. Achieving efficiency seems also to be much harder.

Zero-knowledge. Zero-knowledge (ZK) interactive protocols [GMR89] are paradoxical constructs that
allow one party (denoted the prover) to convince another party (denoted the verifier) of the validity of a
mathematical statement x ∈ L, while providing zero additional knowledge to the verifier. Beyond being
fascinating in their own right, ZK proofs have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks. The zero-knowledge property is formalized using the simulation
paradigm. That is, for every malicious verifier V∗, we require the existence of a simulator S that reproduces
a view of V∗ that is indistinguishable from a view when interacting with the honest prover, given only the

1Namely, against computationally unbounded adversaries.
2If one is willing to provide ideal access to an oblivious-transfer functionality then one can achieve information-theoretic security

even in the honest minority setting [GMW87, CvdGT95, IPS08].
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input x. Zero-knowledge protocols can be viewed as an instance of secure two-party computation where the
function computed by the third-party simply verifies the validity of a witness held by the prover.

Static vs. adaptive. Just as with secure computation, the adversary in a zero-knowledge protocol can be
either static or adaptive. Security in the presence of a statically corrupted prover implies that the protocol
is sound, namely, a corrupted prover cannot convince a verifier of a false statement. Whereas security in
the presence of a statically corrupted verifier implies that the protocol preserves zero-knowledge. Adaptive
security on the other hand requires a simulator that can simulate the corruptions of both the prover and
verifier.

Much progress has been made in constructing highly efficient ZK proofs in the static setting. In a recent
breakthrough result, Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS09] provided general constructions of
ZK proofs for any NP relation R(x, ω) which make a “black-box” use of an MPC protocol for a related
multiparty functionality f , where by black-box we mean that f can be programmed to make only black-box
(oracle) access to the relationR. Leveraging the highly efficient MPC protocols in the literature [DI06] they
obtained the first “constant-rate” ZK proof. More precisely, assuming one-way functions, they showed how
to design a ZK proof for an arbitrary circuit C of size s and bounded fan-in, with communication complexity
O(s) + poly(κ, log s) where κ is the security parameter. Besides this, the work of [IKOS09] introduced the
very powerful “MPC-in-the-head” technique that has found numerous applications in obtaining “black-
box” approaches, such as unconditional two-party computation [IPS08], secure computation of arithmetic
circuits [IPS09], non-malleable commitments [GLOV12], zero-knowledge PCPs [IW14], resettably-sound
ZK [OSV15] to name a few, as well as efficient protocols, such as OT-based cryptography [HIKN08, IPS08,
IPS09] and homomorphic UC commitments [CDD+15].

In contrast, in the adaptive setting, constructing adaptive zero-knowledge proofs is significantly harder
and considerably inefficient. Beaver [Bea96] showed that unless the polynomial hierarchy collapses the
ZK proof of [GMR89] is not secure in the presence of adaptive adversaries. Quite remarkably, Lindell and
Zarosim showed in [LZ11] that adaptive zero-knowledge proofs for any NP language can be constructed
assuming only one-way functions. However, it is based on reducing the statement that needs to be proved to
an NP complete problem, and is rather inefficient. In fact, the communication complexity of the resulting
zero knowledge is O(s4) where s is the size of the circuit. Moreover, the resulting protocol will not be
“black-box” in the NP relation as in the constructions of [IKOS09]. A first motivation for our work is the
goal of finding alternative “black-box” approaches of constructing (efficient) adaptive ZK proofs.

Randomized Encoding (RE). The third fundamental primitive considered in this work is randomized
encoding (RE). Formalized in the works of [IK00, IK02, AIK06], randomized encoding explores to what
extent the task of securely computing a function can be simplified by settling for computing an “encoding”
of the output. Loosely speaking, a function f̂(x, r) is said to be a randomized encoding of a function f if
the output distribution depends only on f(x). More formally, the two properties required of a randomized
encoding are: (1) given the output of f̂ on (x, r), one can efficiently compute (decode) f(x), and (2) given
the value f(x) one can efficiently sample from the distribution induced by f̂(x, r) where r is uniformly sam-
pled. One of the earliest constructions of a randomized encoding is that of “garbled circuits” and originates
in the work of Yao [Yao86]. Additional variants have been considered in the literature in the early works of
[Kil88, FKN94]. Since its introduction, randomized encoding has found numerous applications, especially
in parallel cryptography where encodings with small parallel complexity yields highly efficient secure com-
putation [IK00, IK02, AIK06]. (See also [GKR08, GGP10, AIK10, GIS+10, BHHI10, BHR12, App14] for
other applications)

Online/offline complexity. In an online/offline setting [AIKW13], one considers an encoding f̂(x, r)
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which can be split as an offline part f̂OFF(r) which only depends on the function f , and an online part
f̂ON(x, r) that additionally depends on input x. This notion is useful in a scenario where a weak device
is required to perform some costly operation f on sensitive information x: In an offline phase f̂OFF(r) is
published or transmitted to a cloud, and later in an online phase, the weak device upon observing the sample
x, transmits the encoding f̂ON(x, r). The cloud then uses the offline and online parts to decode the value
f(x) and nothing else. The goal in such a setting is to minimize the online complexity, namely the number
of bits in f̂ON(x, r). In the classic garbled circuit construction, the online complexity is proportional to
|x|poly(κ) where κ is the security parameter. More recently, Applebaum, Ishai, Kushilevitz and Waters
showed in [AIKW13] how to achieve constant online rate of (1 + o(1))|x| based on concrete number-
theoretic assumptions.

A notoriously hard question here is to construct an adaptively secure RE where privacy is maintained
even if the online input x is adaptively chosen based on the offline part. In fact, the standard constructions of
garbled circuits (with short keys) do not satisfy this stronger property unless some form of “exponentially-
hard” assumption is made [GKR08] or analyzed in the presence of the so-called programmable random-
oracle model [AIKW13]. In fact, recently, it was shown in [AIKW13] that any adaptively secure randomized
encoding must have an online complexity proportional to the output length of the function.

While the connection between RE and secure computation has been explored only in one direction,
where efficient RE yield efficient secure computation, we are not aware of any implication in the reverse
direction. A second motivation of our work is to understand this direction while better understanding the
complexity of constructing secure protocols by relying on the lower bounds already established for the
simpler RE primitive.

1.1 Our Contribution

In this work we present the following transformations:

1. A general construction of a static zero-knowledge proof system ΠR for any NP relation R(x, ω)
that makes a black-box use3 of a two-party protocol ΠOT

f , carried out between parties P1 and P2, for a
related functionality f in the oblivious-transfer (OT) hybrid model,4 along with a (statically secure) bit
commitment protocol,5 that can be realized assuming only one-way functions. The requirements on
our protocol ΠOT

f are: Perfect (UC) security against static corruptions by semi-honest adversaries. For
example, the standard versions of the known [GMW87] protocol (denoted by GMW) and [Yao86]’s
protocol satisfy these requirements. We remark here that the approach of [IKOS09] that transforms
general MPC protocol is inapplicable here, as their work crucially requires the MPC protocol to admit
at least three or more parties.

2. A general construction of an adaptively secure zero-knowledge proof system ΠR for any NP relation
R(x, ω) that makes a black-box use of a two-party protocol ΠOT

f , carried out between parties P1 and
P2, for a related functionality f in the oblivious-transfer (OT) hybrid model, along with a (statically
secure) bit commitment protocol, that can be realized assuming only one-way functions. The require-
ments on our protocol ΠOT

f are: (1) Perfect (UC) security against semi-honest parties admitting a

3The functionality f can be efficiently defined by making only a black-box (oracle) access to the NP relation R.
4Where all parties have access to an idealized primitive that implements the OT functionality, namely, the functionality upon

receiving input (s0, s1) from the sender and a bit b from the receiver, returns sb to the receiver and nothing the sender.
5We will be able to instantiate our commitment schemes using a statistically-binding commitment scheme for commitments

made by the prover in the ZK protocol, and by a statistically-hiding commitment scheme for commitments made by the verifier.
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static corruption of P1 and an adaptive corruption of P2, and (2) P1 is the sender in all OT invoca-
tions. We remark that the semi-honest version of the GMW protocol satisfies these requirements. In
fact, we will only require milder properties than perfect privacy (namely, robustness and invertible
sampleability) and adaptive corruption (namely, semi-adaptive) which will be further satisfied by the
standard Yao’s protocol [Yao86] based on garbled circuits.

3. A general construction of a randomized encoding for any function f that makes a black-box use (a
la [IKOS09]) of a two-party computation protocol ΠOT

f , carried out between parties P1 and P2, for
a related functionality g in the OT-hybrid assuming only one-way functions. If we start with the
same requirements as our first transformation (namely, only security against static adversaries) then
we obtain a standard randomized encoding. However, if we start with a protocol as required in our
second transformation with the additional requirement that it admits (full) adaptive corruption of P2,
we obtain an online/offline RE. Moreover, our construction makes a black-box use of a randomized
encoding for the functionality f . Finally, we also show how to obtain an adaptive ZK proof for an NP
relation R using a slightly stronger version of RE (that our second instantiation above will satisfy).
An important corollary we obtain here is that starting from an RE that is additionally secure against
adaptive chosen inputs we obtain the—so called—input-delayed ZK proof in the static setting.

Next, we provide an overview of our transformations.

Static ZK via (semi-honest) 2PC or “2PC-in-the-head”. We begin with a perfectly-correct 2PC protocol
Πf between parties P1 and P2 that securely implements the following functionality f : f(x, ω1, ω2) outputs
1 if and only if (x, ω1 ⊕ ω2) ∈ R where ω1 and ω2 are the private inputs of P1 and P2 in the two party
protocol Πf . We require that the 2PC protocol admits semi-honest UC security against static corruption of
P1 and P2. Our first step in constructing a ZK proof involves the prover P simulating an honest execution
between P1 and P2 by first sampling ω1 and ω2 at random such that ω1⊕ω2 = ω, where ω is the witness to
the statement x and then submitting the transcript of the interaction to the verifier V . The verifier responds
with a bit b chosen at random. The prover then reveals the view of P1 if b = 0 and the view of P2 if
b = 1, namely it just provides the input and randomness of the respective parties. Soundness follows from
the perfect correctness of the protocol. Zero-knowledge, on the other hand, is achieved by invoking the
simulation of parties P1 and P2 depending on the guess that the simulator makes for the verifier’s bit b.

This general construction, however, will inherit the hardness assumptions required for the 2PC, which
in the case of [Yao86] and [GMW87] protocols will require the existence of an oblivious-transfer protocol.
We next show how to modify the construction to rely only on one-way functions. The high-level idea is
that we encode the transcript of all oblivious-transfer invocations by using a randomized encoding of the
oblivious-transfer functionality based on one-way functions as follows:

• For every OT call whereP1’s input is (s0, s1) andP2’s input is t, we incorporate it in the transcript τ by
generating a transcript containing the commitments c0 and c1 of s0 and s1 using a statistically binding
commitment scheme com (which can be based on one-way functions), placing the decommitment
information of ct in P2’s random tape.6

This protocol results in an interactive commitment phase as we rely on a statistically-binding commitment
scheme and the first message corresponding to all commitments needs to be provided by the receiver.

6Note that, in Naor’s statistically binding commitment scheme [Nao91] the decommitment information is the inverse under a
pseudorandom generator that is uniformly sampled, and hence can be placed in the random tape.
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Adaptive ZK via “2PC-in-the-head”. First, we recall the work of Lindell and Zarosim [LZ11] that
showed that constructing adaptively secure ZK proofs can be reduced to constructing adaptive instance-
dependent commitment schemes [BMO90, IOS97, OV08, LZ11]. In fact, by simply instantiating the com-
mitments from the prover in the (static) ZK proofs of [IKOS09] with instance-dependent commitments, we
can obtain an adaptive ZK proof. Briefly, instance-dependent commitment schemes are defined with respect
to a language L ∈ NP such that for any statement x the following holds. If x ∈ L then the commitment
associated with x is computationally hiding, whereas if x /∈ L then the commitment associated with x is
perfectly binding. An adaptively secure instance-dependent commitment scheme additionally requires that
there be a “fake” commitment algorithm which can be produced using only the statement x, but later, given
a witness ω such that (x, ω) ∈ R, be opened to both 0 and 1.

First, we describe an instance-dependent commitment scheme using a (perfectly-correct) 2PC protocol
Πf engaged between parties P1 and P2 that securely implements the following functionality f : f(x, ω1, ω2)
outputs 1 if and only if (x, ω1 ⊕ ω2) ∈ R where ω1 and ω2 are the private inputs of P1 and P2 in the two
party protocol Πf . We will require that only P2 receives an output and that Πf is (UC) secure against the
following adversaries: (1) A semi-honest adversary A1 that statically corrupts P1, and (2) A semi-honest
adversary A2 that statically corrupts P2.

Given such a 2PC Πf a commitment to the message 0 is obtained by committing to the view of party P1

in an interaction using Πf , using the simulator S1 for adversary A1 as follows. The commitment algorithm
runs S1 on input a random string ω1 that serves as the input of P1. The output of the commitment on input
0 is τ where τ is the transcript of the interaction between P1 and P2 obtained from the view of P1 generated
by S1. A commitment to 1 is obtained by running the simulator S2 corresponding to A2 where the input
of P2 is set to a random string ω2. The output of the commitment is transcript τ obtained from the view
of P2 output by S2. Decommitting to 0 simply requires producing input and output (ω1, r1) for P1 such
that the actions of P1 on input ω1 and random tape r1 are consistent with the transcript τ . Decommitting
to 1 requires producing input and randomness (ω2, r2) for P2 consistent with τ and P2 outputs 1 as the
output of the computation. The hiding property of the commitment scheme follows from the fact that the
transcript does not reveal any information regarding the computation. The binding property for statements
x 6∈ L, on the other hand, relies on the perfect correctness of the protocol. More precisely, if a commitment
phase τ is decommitted to both 0 and 1, then we can extract inputs and randomness for P1 and P2 such
that the resulting interaction with honest behavior yields τ as the transcript of messages exchanged and P2

outputting 1. Note that this is impossible since the protocol is perfectly correct and 1 is not in the image of
f for x 6∈ L.

Next, to obtain an adaptively secure instance-dependent commitment scheme we will additionally re-
quire that Πf be secure against a semi-honest adversary A3 that first statically corrupts P1 and then adap-
tively corrupts P2 at the end of the execution. This adversary is referred to as a semi-adaptive adversary in
the terminology of [GWZ09]. The fake commitment algorithm follows the same strategy as committing to 0
with the exception that it relies on the simulator S3 ofA3. S3 is a simulator that first produces a view for P1

and then post execution produces a view for P2. More formally, the fake commitment algorithm sets P1’s
input to a random string ω1 and produces P1’s view using S3 and outputs τ where, τ is the transcript of the
interaction. Decommitting to 0 follows using the same strategy as the honest decommitment. Decommitting
to 1, on the other hand, requires producing input and randomness for P2. This can achieve by continuing
the simulation by S3 post execution. However, to run S3 it needs to produce an input for party P2 such that
it outputs 1. This is possible as the decommitting algorithm additionally receives the real witness ω for x,
using which it sets P2’s input as ω2 = ω ⊕ ω1.

In fact, we will only require adversaries A2 and A3, as the honest commitment to 0 can rely on S3.
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Indistinguishability of the simulation will then follow by comparing the simulations by S2 and S3 with a
real-world experiment with adversaries A2,A3 where the parties inputs are chosen at random subject to the
condition that they add up to ω and using the fact that the adversaries are semi-honest.

We will follow an approach similar to our previous transformation to address calls to the OT function-
ality. We will additionally require that P1 plays the sender’s role in all OT invocations. We note that our
encoding accommodates an adaptive corruption of P2, as it enables us to equivocate the random tape of P2

depending on its input t.
To instantiate our scheme, we can rely on [Yao86] or [GMW87] to obtain an adaptive instance-dependent

commitment scheme. Both commitments results in a communication complexity of O(spoly(κ)) where s
is the size of the circuit implementing the relation R and κ is the security parameter. Achieving adaptive
zero-knowledge is then carried out by plugging in our commitment scheme into the prover’s commitments
in the [IKOS09] zero-knowledge (ZK) construction, where it commits to the views of the underlying MPC
protocol. The resulting protocol will have a complexity of O(s2poly(κ)) and a negligible soundness error.
We remark that this construction already improves the previous construction of Lindell and Zarosim that
requires the expensive Karp reduction to Graph Hamiltonicity. Our main technical contribution is showing
how we can further improve our basic construction to achieve a complexity of O(spoly(κ)) and therefore
obtaining a “linear”-rate adaptive ZK proof.

RE from (semi-honest) 2PC. To construct a RE for a function f , we consider an arbitrary 2PC protocol
that securely realizes the related function g that is specified as follows: g(a1, a2) = f(a1⊕a2) where a1 and
a2 are the private inputs of P1 and P2 in the two party protocol Πg. We will make the same requirements on
our 2PC as in the previous case, namely, security with respect to adversaries A1 and A2. The offline part of
our encoding function f̂OFF(r) is defined using the simulator S3 for adversary A3 that proceeds as follows.
Upon corrupting P1, S3 is provided with a random input string a1, where the simulation is carried out till the
end of the execution and temporarily stalled. The output of f̂OFF(r) is defined to be the simulated transcript
of the interaction between parties P1 and P2. Next, upon receiving the input x, the online part f̂ON(x, r)
continues the simulation by S1 which corrupts P2 post execution (at the end of the protocol execution),
where P2’s input is set as a2 = x ⊕ a1 and its output is set as f(x). Finally, the output of f̂ON(x, r) is
defined by the input and random tape of P2. In essence, f̂(x, r) = (f̂OFF(r), f̂ON(x, r)) constitutes the
complete view of P2 in an execution using Πg. The decoder simply follows P2’s computation in the view
and outputs P2’s output, which should be f(x) by the correctness of the algorithm. The simulation for our
randomized encoding S relies on the simulator for the adversaryA2, denoted by S2. Namely, upon receiving
f(x), S simply executes S2. Recalling that S2 corrupts P2, S simply provides a random string a2 as its input
and f(x) as the output. Finally, the offline and online parts are simply extracted from P2’s view accordingly.
Privacy will follow analogously as in our previous case.

Note that the offline complexity of our construction is equal to the communication complexity of the
underlying 2PC protocol Πg, whereas the online complexity amounts to the input plus the randomness
complexity of P2. The efficiency of our randomized encoding ties the offline part with the static simulation
of party P1 and the online part with the semi-adative simulation of P2. Moreover, this protocol can be
instantiated by the [Yao86] and [GMW87] protocols, where the OT sub-protocols are implemented using
one-way functions as specified before. We remark that the protocol of [Yao86] does not, in general, admit
adaptive corruptions, yet it is secure in the presence of a semi-adaptive adversary that adaptively corrupts P2

after statically corrupting P1. The [Yao86] based protocol will result in an offline complexity ofO(spoly(κ))
and an online complexity ofO(npoly(κ)) where s is the size of the circuit implementing f and n is the input
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length.7 Whereas the [GMW87] protocol will result in an offline and online complexities of O(spoly(κ)).
While this might not be useful in the “delegation of computation” application of randomized encoding as
the online encoding is not efficient, it can be used to construct an instance-dependent commitment scheme
where we are interested only in the total complexity of the encoding. Finally, we remark that if we are not
interested in an offline/online setting and just require a standard randomized encoding we will requite Πf

to be secure only against a static corruption of P2 by A2 and the honest encoding can be carried out by
emulating the real world experiment (as opposed to relying on the simulation by S3).

Next, we provide a construction of instance-dependent commitments based on online/offline RE. Stan-
dard RE will not be sufficient for this and we introduce a stronger notion of robustness for RE and show that
the preceeding construction already satisfies this. Then based on a robust RE we show how to get an instant-
dependent commitment scheme. In fact, we can get an adaptive instance-dependent commitment scheme
if the underlying RE has a corresponding adaptive property. Since adaptive instance-dependent comitment
schemes are sufficient to realize adaptive ZK, this provides a transformation from RE to adaptive ZK.

“Linear”-rate adaptive ZK proof from malicious 2PC. The main drawback in our first construction of
adaptive ZK proofs was in the equivocation parameter of our instance-dependent commitment. Namely,
to equivocate one bit, we incurred a communication complexity of O(spoly(κ)). To improve the com-
munication complexity one needs to directly construct an instance-dependent commitment scheme for a
larger message space {0, 1}`. We show how to construct a scheme where the communication complexity
depends only additively on the equivocation parameter, implying O((s + `)poly(κ)) overhead. Combin-
ing such a scheme with the [IKOS09] ZK proof results in a protocol with communication complexity of
O(nspoly(κ) +

∑n
i=1 `ipoly(κ)) where `i is the length of the ith commitment made by the prover. Setting

n = ω(log k) results in an adaptive ZK proof with negligible soundness error and complexity O(spoly(κ)).
Our approach to construct an instance-dependent commitment scheme for larger message spaces is to

rely on a maliciously secure two-party computation. Specifically, suppose that for a polynomial-time com-
putable Boolean function f(x, y) we have a 2PC protocol Πf with parties P1 and P2, where P2 receives the
output of the computation and satisfies all the conditions required in our original transformation. In addition
we require it to satisfy statistical security against a malicious P1 (in the OT-hybrid). In fact, it suffices for
the protocol to satisfy the following “soundness” condition: If there exists no pair of inputs x, y such that
f(x, y) = 1 then for any malicious P ∗1 , the probability that an honest P2 outputs 1 is at most 2−t, where
the probability is taken over the randomness of party P2. Then, using such a protocol, we can provide a
framework to construct an instance-dependent commitment scheme where the soundness translates to the
equivocation parameter, namely, it will be O(t) for soundness 2−t.

Concretely, given an input statement x we consider a protocol Πf that realizes function f defined as
follows: f(ω1, ω2) = 1 iff (x, ω1 ⊕ ω2) ∈ R. We first describe an (incorrect) algorithm as a stepping stone
towards explaining the details of the final construction. The commitment algorithm on input a message m,
(just as in our transformation to RE) invokes the simulator S2 that corresponds to the adversary A2, which
statically corrupts P2 with an input set to a random string ω2 and output 1. Upon completing the simulation,
the committer submits to the receiver the transcript of the interaction and Ext(r2) ⊕ m where r2 is the
randomness of P2 output by the simulation and Ext(·) is a randomness extractor that extracts R−O(t) bits
where R is the length of P2’s random tape. A decommitment simply produces m along with P2’s input and
randomness corresponding to the transcript output in the commitment phase. Intuitively, binding follows
directly from the soundness condition as no adversarial committer can produce two different random strings
for P2, as Ext extracts out all “accessible” random tapes for P2. The fake commitment, on the other hand,

7We note that the online complexity can be improved by relying on the work of [AIKW13].
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relies as above on a simulator corresponding to adversary A1 that statically corrupts P1 and adaptively
corrupts P2, where instead of Ext(r2)⊕m it simply sends a random string. Equivocation, on the other hand,
is achievable if the simulation can additionally access the entire space of consistent random tapes of P2 and
invert Ext. Several problems arise when materializing this basic framework.

The first issue is that we cannot rely on an extractor as the adversary can adaptively decide on r2 given
the description of Ext. Now, since extractors are only statistically secure, this implies that for certain (very
small) set of values for r2 there could be multiple pre-images with respect to Ext. Instead, we rely on an
interactive hashing protocol [NOVY98, DHRS04, HR07] that guarantees binding against computationally
unbounded adversaries. More precisely, an interactive hashing protocol ensures that if the set of random
tapes accessible to the adversary is at most 2R−O(t) then except with negligible probability it cannot obtain
two random tapes that are consistent with the transcript of the hashing protocol. This protocol will addi-
tionally require to satisfy an invertible sampleability property where given an interaction it is possible to
compute efficiently a random input consistent with the transcript. We will not be able to rely on the efficient
4-message protocol of [DHRS04] but will rely on the original protocol of [NOVY98] that proceeds in a
linear number of rounds (linear in the message length) where inverting simply requires solving a system of
linear equations in a finite field.

Another major issue is that the space of consistent random tapes might not be “nice” to be invertible.
More precisely, to adaptively decommit a fake commitment to an arbitrary message we require that the
space of consistent random tapes for P2, i.e. consistent with both the transcript τ of the protocol and the
transcript of the interactive-hashing protocol in the commitment phase, to be “uniform”. We thus consider
a variant of the protocol in [IPS08] so that the space of consistent random tapes will be uniform over the
bits of a specified length. While this modification solves the problem of “nice” random tapes, it requires
re-establishing a certain “soundness” condition in the compilation of [IPS08].

As mentioned before we combine our adaptive instance-dependent commitment scheme with the ZK
protocol of [IKOS09]. We will rely on a variant where the MPC protocol in their construction will be in-
stantiated with the classic [BGW88] protocol, as opposed to highly-efficient protocol of [DI06]. The reason
is that we will additionally require a reconstructability property8 of the MPC protocol that can be shown to
be satisfied by [BGW88]. Secondly, relying on this efficient variant anyway does not improve the asymp-
totic complexity to beyond a linear-rate. As an independent contribution we also provide a simple adaptive
ZK protocol based on garbled circuits that satisfies reconstructability but will only achieve soundness error
1/2 (see Section 7.1).

1.2 Applications

We list a few of the applications of our techniques and leave it as future work to explore the other ramifica-
tions of our transformations.

Arithmetic circuits and other efficient garbling: As our transformation works for an arbitrary 2PC pro-
tocol with the respective properties, we can obtain efficient adaptive ZK proofs for arithmetic circuits by
relying on the work of [IPS09]. We explore the concrete parameters in the full version of the paper. More-
over, recently there has been an explosion of works trying to improve the efficiency of garbling schemes that
can be used to instantiate very efficient adaptive ZK according to our constructions.

Input-delayed ZK proofs. In [LS90], Lapidot and Shamir provided a three-round witness-indistinguishable
(WI) proof of knowledge for Graph Hamiltonicity with a special “input-delayed” property: namely, the

8Informally, reconstructability requires that given the views of t out of n players in an instance of the protocol, and the inputs
of all parties, it is possible to reconstruct the views of the remaining parties consistent with views of the t parties.
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prover uses the statement to be proved only in the last round. Recently, in [CPS+15] it was shown how
to obtain efficient input-delayed variants of the related “Sigma protocols” when used in a restricted setting
of an OR-composition. We show that starting from a robust RE that is additionally secure against adaptive
inputs, we can obtain constructions of input-delayed zero-knowledge proofs that yield an efficient version
of the protocol of [LS90]. In essence, the communication complexity linearly depends on the size of the
circuit implementing the NP relation. As in our other transformation, this transformation will only depend
on the relation in a black-box way. Finally, we show how to realize robust RE secure against adaptive inputs
based on recent work of Hemenway et al. [HJO+15].

Instance-dependent trapdoor commitment schemes. As a side result, we show that our constructions
imply instance-dependent trapdoor commitment schemes, for which the witness ω serves as a trapdoor
that allows to equivocate the commitment into any value from the message space. More specifically, this
notion implies the same hiding/binding properties as any instance-dependent commitment scheme with the
additional property that the witness allows to decommit a commitment into any message. To the best of our
knowledge, our construction is the first trapdoor commitment for all NP. Prior constructions were known
only for Σ-protocols [Dam10].

1.3 Perspective

Our work is similar in spirit to the work of [IKOS09, IPS08] where they demonstrate the power information-
theoretic MPC protocols in constructing statically-secure protocols. Here, we show the power of (adaptively-
secure) 2PC protocols in the OT-hybrid helps in constructing adaptively-secure protocols and randomized
encodings. Instantiating our 2PC with the standard protocols of [Yao86] and [GMW87] yields simple con-
structions of adaptive ZK proofs and randomized encodings. While ZK can be viewed as a special instance
of a two-party computation protocol, the resulting instantiation requires stronger assumptions (such as en-
hanced trapdoor permutations). On the other hand, our transformation requires only one-way functions. As
mentioned earlier, we not only provide adaptive ZK proofs, but we obtain two new simple static ZK proofs
from our instance-based commitments.

A second contribution of our construction shows a useful class of applications for which 2PC protocols
can be used to boost the security from static to adaptive in a black-box way. The well known and pow-
erful “MPC-in-the-head” technique has found extensive applications in obtaining black-box construction
of protocols that previously depended on generic Karp reductions. We believe that our technique yields an
analogous “2PC-in-the-head” technique which might potentially be useful to obtain analogous constructions
with adaptive security. In addition, we believe it will be useful in applications that rely on certain special
properties of the Blum’s Graph-Hamiltonicity ZK proof (BH). Concretely, we improve the Lindell-Zarosim
adaptive ZK proof and the input-delayed protocol of Lapidot and Shamir [LS90] both of which relied on
BH ZK-proof. More precisely, by relying on our ZK proof based on our instance-dependent commitment
schemes that, in turn, depends on the NP relation in a black-box way, we save the cost of the expensive Karp
reduction to Graph Hamiltonicity. We leave it as future work to determine if other applications that rely on
the BH ZK-proof can be improved (e.g., NIZK).

2 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time. For an NP relation R, we denote by Rx the
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set of witnesses of x and by LR its associated language. That is, Rx = {ω | (x, ω) ∈ R} and LR =
{x | ∃ ω s.t. (x, ω) ∈ R}.

We specify next the definitions of computationally indistinguishable and statistical distance.

Definition 2.1. Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ’s,∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

Definition 2.2. Let Xκ and Yκ be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

2.1 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender S, to commit itself to a value while
keeping it secret from the receiver R (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the
committing phase (this property is called binding). In this work, we consider commitment schemes that are
statistically binding, namely while the hiding property only holds against computationally bounded (non-
uniform) adversaries, the binding property is required to hold against unbounded adversaries. Formally,

Definition 2.3 (Commitment schemes). A PPT machine Com = 〈S,R〉 is said to be a non-interactive
commitment scheme if the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that the following ensembles are
computationally indistinguishable.

• {ViewR∗
Com(m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

• {ViewR∗
Com(m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where ViewR∗
Com(m, z) denotes the random variable describing the output of R∗ after receiving a

commitment to m using Com.

Statistical binding: For any (computationally unbounded) malicious sender S∗ and auxiliary input z, it
holds that the probability that there exist valid decommitments to two different values for a view v,
generated with an honest receiver while interacting with S∗(z) using Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive perfectly binding commit-
ment schemes can be constructed based on one-way permutations, whereas two-round statistically binding
commitment schemes can be constructed based on one-way functions [Nao91]. We further consider pseu-
dorandom commitments for which a honestly generated commitment to any message m is indistinguishable
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from a uniform string of the same length. We note that such commitment schemes with statistical binding
can be constructed based on one-way functions due to [Nao91] and with perfect binding based on one-way
permutations. We conclude with the definition of trapdoor commitment schemes.

Definition 2.4 (Trapdoor commitment schemes). Let Com = (S,R) be a statistically binding commitment
scheme. We say that Com is a trapdoor commitment scheme is there exists an expected PPT oracle machine
S = (S1,S2) such that for any PPT R∗ and all m ∈ {0, 1}κ, the output (τ, w) of the following experiments
is computationally indistinguishable:

- an honest sender S interacts with R∗ to commit to m, and then opens the commitment: τ is the view of R∗

in the commit phase, and w is the message S sends in the open phase.

- the simulator S generates a simulated view τ for the commit phase, and then opens the commitment to m
in the open phase: formally (τ, state)← SR∗

1 (1κ), w ← S2(state,m).

2.2 Adaptive Instance-Dependent Commitment Schemes [LZ11]

We extend the instance-dependent commitment scheme definition of [LZ11], originally introduced for the
binary message space, to a commitment scheme with an arbitrary message spaceM.

Syntax. Let R be an NP relation and L be the language associated with R. A (non-interactive) adap-
tive instance dependent commitment scheme (AIDCS) for L is a tuple of probabilistic polynomial-time
algorithms (Com,Com′,Adapt), where:

• Com is the commitment algorithm: For a message m ∈ M, an instance x ∈ {0, 1}∗ and a random
string r ∈ {0, 1}p(|x|) (where p(·) is a polynomial), Com(x,m; r) returns a commitment value c.

• Com′ is a “fake” commitment algorithm: For an instance x ∈ {0, 1}∗ and a random string r ∈
{0, 1}p(|x|), Com′(x; r) returns a commitment value c.

• Adapt is an adaptive opening algorithm: Let x ∈ L and ω ∈ Rx. For all c and r ∈ {0, 1}p(|x|)
such that Com′(x; r) = c, and for all m ∈ M, Adapt(x, ω, c,m, r) returns a pair (m, r′) such that
c = Com(x,m; r′). (In other words, Adapt receives a “fake” commitment c and a message m, and
provides an explanation for c as a commitment to the message m.

A decommitment to a commitment c is a pair (m, r) such that c = Com(x,m; r). Note the difference
between Com and Com′: Com is an ordinary committing algorithm (creating a commitment value for a
given value), while for x ∈ L algorithm Com′ creates commitment values that are not associated to any
specific value. However, given a witness attesting to the fact that x ∈ L, these commitments can later be
claimed to be commitments to a specificm by using algorithm Adapt. We stress that without such a witness,
a commitment generated by Com′ cannot necessarily be decommitted to any value.

Security. We now define the notion of security for our commitment scheme.

Definition 2.5 (AIDCS). Let R be an NP relation and L = LR. We say that (Com,Com′,Adapt) is a
secure AIDCS for L if the following holds:

1. Computational hiding: For all m,m′ ∈M, the ensembles {Com(x,m)}x∈L, {Com(x,m′)}x∈L and
{Com′(x)}x∈L are computationally indistinguishable.
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2. Adaptivity: For all m ∈M, the distributions {Com(x,m;Up(|x|)),m,Up(|x|)}x∈L,ω∈RL and

{Com′(x;Up(|x|)),m,Adapt(x, ω,Com
′(x;Up(|x|)),m)}x∈L,ω∈RL are computationally indistinguish-

able (that is, the random coins that are generated by Adapt are indistinguishable from real random
coins used by the committing algorithm Com).

3. Statistical binding: For all m,m′ ∈ M, x /∈ L and a commitment c, the probability that there exist
r, r′ for which c = Com(x,m; r) and c = Com(x,m′; r′) is negligible in κ.

2.3 Interactive Hashing

An important sub-protocol that we rely on in most efficient instance-dependent commitment scheme is
interactive hashing. We consider the following interactive hashing protocol of [NOVY98] that is executed
between a sender SIH and a receiver RIH where the sender has private input x ∈ {0, 1}n1 with length
parameter 1n1 , entropy threshold 1m1 and a common input security parameter 1κIH . It proceeds as follows:

1. For i ∈ [m1 + κIH]

(a) RIH selects a string hi ← 0i−11ai where ai is chosen uniformly from {0, 1}n1−i.

(b) SIH sends zi = 〈hi, x〉 to RIH.

We rely on the following proposition from [HRVW09] regarding the [NOVY98] protocol.

Proposition 2.1. Let L ⊆ {0, 1}n1 be a set of size at most 2m1 . Let S∗IH be an (unbounded) adversary
interactive with an honest receiver RIH, then the following holds:

Pr[(τ, (x0, x1), ·)← (S∗IH,RIH) : x0 6= x1 ∧ ∀ b ∈ {0, 1} xb ∈ L ∧ xb is consistent with τ ] < 2−Ω(κIH)

where (τ, zA, zB)← (A,B) means that τ is the transcript of the interaction between A and B and zA and
zB are the respective outputs of A and B at the end of the execution. We say that x is consistent with a
transcript with τ , if for every i hi(x) = zi, where hi is the receiver’s message and zi is the sender’s message
in the ith round.

2.4 Zero-knowledge Proofs

Definition 2.6 (Interactive proof system). A pair of PPT interactive machines (P,V) is called an interactive
proof system for a language L if there exists a negligible function negl such that the following two conditions
hold:

1. COMPLETENESS: For every x ∈ L,

Pr[〈P,V〉(x) = 1] ≥ 1− negl(|x|).

2. SOUNDNESS: For every x /∈ L and every interactive PPT machine B,

Pr[〈B,V〉(x) = 1] ≤ negl(|x|).
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Definition 2.7 (Zero-knowledge). Let (P,V) be an interactive proof system for some language L. We say
that (P,V) is computational zero-knowledge if for every PPT interactive machine V∗ there exists a PPT
algorithm S such that

{〈P,V∗〉(x)}x∈L
c
≈ {〈S〉(x)}x∈L

where the left term denote the output of V∗ after it interacts with P on common input x whereas, the right
term denote the output of S on x.

Definition 2.8 (Σ-protocol). A protocol π is a Σ-protocol for relation R if it is a 3-round public-coin
protocol and the following requirements hold:

• COMPLETENESS: If P and V follow the protocol on input x and private input ω to P where (x, ω) ∈
R, then V always accepts.

• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any x and any pair of
accepting transcripts (a, e, z), (a, e′, z′) on input x, where e 6= e′, outputs ω such that (x, ω) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithm S such that

{〈P(x, ω),V(x, e)〉}x∈L
c
≈ {S(x, e)}x∈L

where S(x, e) denotes the output of S upon input x and e, and 〈P(x, ω),V(x, e)〉 denotes the output
transcript of an execution between P and V , where P has input (x, ω), V has input x, and V’s random
tape (determining its query) equals e.

2.5 Garbled Circuits

A core building block in our instance-dependent commitment schemes is garbled circuits, where these ideas
are originated in [Yao86]. Here, a sender can encode a Boolean circuit that computes some PPT function f ,
in a way that (computationally) hides from the receiver any information but the function’s output. Recalling
that garbled circuits is an extremely useful tool for statically realizing any PPT function (for an arbitrary
number of players), we note that it is insufficient for achieving security in the presence of static corruption of
the receiver and adaptive corruption of the sender (when corruption takes place anytime during the protocol
execution). This is due to the fact that the simulation of the corrupted receiver requires a simulator that
produces a programmed fake garbling of the Boolean circuit that is always evaluated to the right output
of the computed function, and only to that value. Nevertheless, if the party that produces the simulated
garbling is adaptively corrupted, it must introduce randomness that is consistent with a correct generation of
the garbling. Unfortunately, it is unknown how to complete the simulation for this case. Instead, we suggest
to enhance the traditional view of garbled circuits with an additional algorithm that allows to capture the
security property we need for our commitment protocols.

To be concrete, our notion of garbled circuits includes an additional algorithm of oblivious generation
of a garbled circuit. Namely, given the randomness used to produce a garbled circuit C̃ of some circuit
C, the algorithm generates new randomness that explains C̃ as the outcome of the simulated algorithm.
We note that this modified notion of garbled circuits can be realized based on one-way functions, e.g., the
construction from [LP09], for instance when the underlying symmetric key encryption used for garbling
has an additional property of oblivious ciphertext generation (where a ciphertext can be sampled without
the knowledge of the plaintext). Then the simulated garbling of a gate produces a garbled table using three
obliviously generated ciphertexts and one ciphertext that encrypts the output label. We note that the ability

14



to switch from a standard garbled circuit to a simulated one will be exploited in our constructions below in
order to equivocate a commitment to 0 into a commitment to 1.

Towards introducing our definition of garbled circuits we denote vectors by bold lower-case letters and
use the parameter n to denote the input and output length for the Boolean circuit C.

Definition 2.9 (Garbling scheme). A garbling scheme Garb = (Grb,Enc,Eval,Dec) consists of four polynomial-
time algorithms that work as follows:

- (C̃,dk, sk) ← Grb(1κ,C): is a probabilistic algorithm that takes as input a circuit C with 2n input
wires and n output wires and returns a garbled circuit C̃, a set of decoding keys dk = (dk1, . . . ,dkn)
and a secret key sk.

- x̃ := Enc(sk,x) is a deterministic algorithm that takes an input a secret key sk, an input x and
returns an encoded input x̃. We denote this algorithm by x̃ := Enc(sk, x̃). In this work we consider
decomposable garbled schemes. Namely, the algorithm takes multiple input bits x = (x1, . . . , xn),
runs Enc(sk, ·) on each xi and returns the garbled inputs x̃1 through x̃n, denoted by input labels.

- ỹ := Eval(C̃, x̃): is a deterministic algorithm that takes as input a garbled circuit C̃ and encoded
inputs x̃ and returns encoded outputs ỹ.

- {⊥, yi} := Dec(dki, ỹi): is a deterministic algorithm that takes as input a decoding key dki and
an encoded output ỹi and returns either the failure symbol ⊥ or an output yi. We write {⊥,y} :=
Dec(dk, ỹ) to denote the algorithm that takes multiple garbled outputs ỹ = (ỹ1 . . . ỹn), runs Dec(dki, ·)
on each ỹi and returns the outputs y1 through yn.

Correctness. We say that Garb is correct if for all n ∈ N, for any polynomial-size circuit C, for all inputs
x in the domain of C, for all (C̃,dk, sk) output by Grb(1κ,C), for x̃ := Enc(sk,x) and ỹ := Eval(C̃, x̃)
and for all i ∈ [n], yi := Dec(dki, ỹi), where (y1, . . . , yn) = C(x).

Security. We say that a garbling scheme Garb is secure if there exists a PPT algorithm SimGC such that for
any polynomial-size circuit C, for all inputs x in the domain of C, for all (C̃,dk, sk) output by Grb(1κ,C)
and x̃ := Enc(sk,x) it holds that,

(C̃, x̃,dk)
c
≈ SimGC (1κ,C,y)

where y = C(x).

Oblivious sampling. There exists a PPT algorithm OGrb such that for any polynomial-time circuit C and
for all input/output pairs (x,y) such that C(x) = y it holds that,

{r′Grb,SimGC
(
1κ,C,y; r′Grb

)
}r′Grb←{0,1}∗

c
≈ {r̂Grb, C̃, x̃,dk}(r̂Grb,x̃)←OGrb(1κ,C,x,rGrb)

where rGrb is the randomness for (C̃,dk, sk)← Grb(1κ,C).
Note that correctness is perfect by our definition, which implies that a garbled circuit must be evaluated

to the correct output. We further note that this notion is achieved by employing the point-and-permute
optimization [PSSW09] to the garbling construction, as the evaluator of an honestly generated circuit always
decrypts a single ciphertext for each gate which leads to the correct output. We further note that we assume
that giving the secret key, it is possible to verify that the garbled circuit was honestly generated. Again, this
holds with respect to existing garbling schemes, as the secret key includes the encoding of all input labels
which allows to recompute the entire garbling and verifying the correctness of each gate.
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2.6 Randomized Encoding

We review the definition of randomized encoding from [IK00, AIK04]. The following definition is produced
almost verbatim from [AIK04].

Definition 2.10 (Randomized Encoding). Let f : {0, 1}n → {0, 1}` be a function. Then a function f̂ :
{0, 1}n × {0, 1}m → {0, 1}s is said to be a randomized encoding of f , if:

Correctness: There exists a decoder algorithm B such that for any input x ∈ {0, 1}n, except with neg-
ligible probability over the randomness of the encoding and the random coins of B, it holds that
B(f̂(x, Um)) = f(x).

Computational (statistical) privacy: There exists a PPT simulator S, such that for any input x ∈ {0, 1}n
the following distributions are computationally (statistically) indistinguishable:

• {f̂(x, Um)}n∈N,x∈{0,1}n ,

• {S(f(x))}n∈N,x∈{0,1}n .

We require our randomized encoding to satisfy some additional properties:

1. Robustness: Applebaum et al. introduced in [AIKW13] the measures of offline and online complex-
ities of an encoding, where the offline complexity refers to the number of bits in the output of f̂(x, r)
that solely depend on r and the online complexity refers to the number of bits that depend on both x
and r. The motivation in their work was to construct online efficient randomized encoding, where the
online complexity is close to the input size of the function. In our construction, we are not concerned
specifically with the online complexity, but we require that there exists an offline part of the random-
ized encoding that additionally satisfies a robustness property. We present the definition of robustness
for boolean functions f as it suffices for our construction.

We say that f̂ is a robust encoding of f if there exist functions f̂OFF and f̂ON such that f̂(x, r) =
(f̂OFF(r), f̂ON(x, r)) and, in addition, it holds that: if there exists no x such that f(x) = 1, then for
any r, there exists no z such that B(f̂OFF(r), z) outputs 1.

Intuitively, robustness ensures that if the offline part was honestly computed using f̂OFF then there
cannot exist any online part that can make the decoder output an element not in the range of the
function f . We remark that it is possible to rewrite any randomized encoding as (f̂OFF(r), f̂ON(x, r))
for some functions f̂OFF and f̂ON (for instance, by setting f̂OFF to be the function that outputs the
empty string and f̂ON = f̂ ). Nevertheless, in order for the encoding to be robust there must exist a
way to split the output bits of f̂(x, r) into an offline part f̂OFF(r) and online part f̂ON(x, r) such that
they additionally satisfy the robustness property. As mentioned before, it will not always be important
for us to minimize the online complexity, where instead we require that the encoding is robust while
minimizing the total (online+offline) complexity. We note that our definition is in the spirit of the
authenticity definition with respect to garbled schemes from [BHR12].

2. Oblivious sampling: We require an additional oblivious property, as for the definition of garbling
schemes, (that, looking ahead, will enable equivocation in our instance-dependence commitment
schemes where a randomized encoding of function f can be explained as a simulated encoding).
We denote this algorithm by ORE and define this new security property as follows.
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For any function f as above and for all input/output pairs (x, y) such that f(x) = y it holds that,

{r′,S
(
y; r′

)
}r′←{0,1}∗

c
≈ {r′, f̂OFF(r), f̂ON(x, r)}r′←ORE(x,r)

where r is the randomness for generating f̂ .

We note that garbling schemes meet our definition of robust randomized encoding. Specifically, the
offline phase can be viewed as the garbled circuit and a commitment to the encoding of input x, whereas
the online phase is the decommitment for the encoding of the input x. It is simple to verify that in case
there exists no input x for which the circuit outputs 1, then a garbler cannot produce input labels for which
the evaluation yields the encoding of 1. The oblivious sampling property directly follows if we rely on
an encryption scheme that has the oblivious ciphertext generation property (which, in turn, can be easily
obtained by viewing ciphertexts as obliviously sampled). Therefore, we have the following theorem:

Theorem 2.11. Assuming the existence of one-way functions. Then, for any polynomial time computable
boolean function f : {0, 1}n → {0, 1}, there exists a robust randomized encoding scheme (f̂OFF, f̂ON,S)
such that the offline complexity is O(spoly(κ)) and online complexity is O(npoly(κ)) where s is the size of
the circuit computing f , n is the size of the input to f and κ is the security parameter.

In Section 5, we show how to realize a robust randomized encoding scheme based on any two-party se-
cure computation protocol (that meets certain requirements), which, in particular is satisfied by the [Yao86]
and [GMW87] protocols. While this construction does not achieve any “non-trivial” online complexity, it
will be sufficient for our application, as the total complexity will be O(sκ).

2.7 Secure Multiparty Computation (MPC)

Our construction from Section 6 is inspired by the seminal work by Ishai et al. [IKOS09] that designs zero-
knowledge proofs from secure multiparty protocols. Specifically, we first construct an instance-dependent
commitment scheme and then combine it with their zero-knowledge protocol in order to achieve adaptive
security. For that, we some of their definitions. Let n be the number of players, which will be denoted by
P1, . . . , Pn. All players share the public input statement x ∈ L and a randomness share ri. The view of Pi,
denoted by Vi, includes x, ri and the messages received by Pi during the execution of a protocol Π. Note
that the messages sent by an uncorrupted player Pi as well as its local output can be inferred from Vi and x
by invoking Π. The following definitions are taken from [IKOS09] verbatim.

Definition 2.12 (Consistent views). We say that a pair of views Vi, Vj are consistent (with respect to the
protocol Π and some public input x) if the outgoing messages implicit in Vi are identical to the incoming
messages reported in Vj and vice versa.

We consider security of protocols in both the semi-honest and the malicious models. In the semi-honest
model, one may break the security requirements into the following correctness and privacy requirements.

Definition 2.13 (Correctness). We say that Π realizes a deterministic n-party functionality (x, r1, . . . , rn)
with perfect (resp., statistical) correctness if for all inputs (x, r1, . . . , rn), the probability that the output of
some player is different from the output of f is 0 (resp., negligible in κ), where the probability is over the
independent choices of the random inputs r1, . . . , rn.
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Definition 2.14 (t-Privacy). Let 1 ≤ t < n. We say that Π realizes f with perfect t-privacy if there is a PPT
simulator S such that for any inputs (x, r1, . . . , rn) and every set of corrupted players T ⊂ [n], where |T | ≤
t, the joint view ViewT (x, r1, . . . , rn) of players in T is distributed identically to S(T, x, {ri}i∈T , fT (x, r1,
. . . , rn)). The relaxations to statistical or computational privacy are defined in the natural way. That is, in
the statistical (resp., computational) case we require that for every distinguisher D (resp., D with circuit
size poly(κ)) there is a negligible function δ(·) such that

|Pr[D(ViewT (κ, x, r1, . . . , rn)) = 1]− Pr[D(S(κ, T, x, {ri}i∈T , fT (x, r1, . . . , rn))) = 1]| ≤ δ(κ).

In the malicious model, in which corrupted players may behave arbitrarily, security cannot be generally
broken into correctness and privacy as above. However, for our purposes we only need the protocols to
satisfy a weaker notion of security in the malicious model that is implied by the standard general definition.
Specifically, it suffices that Π be t-private as defined above, and moreover it should satisfy the following
notion of correctness in the malicious model.

Definition 2.15 (t-Robustness). We say that Π realizes f with perfect (resp., statistical) t-robustness if it is
perfectly (resp., statistically) correct in the presence of a semi-honest adversary as in Definition 2.13, and
furthermore for any computationally unbounded malicious adversary corrupting a set T of at most t players,
and for any inputs (x, r1, . . . , rn), the following robustness property holds. If there is no (x, r1, . . . , rn) such
that f(x, r1, . . . , rn) = 1, then the probability that some uncorrupted player outputs 1 in an execution of Π
in which the inputs of the honest players are consistent with (x, r1, . . . , rn) is 0 (resp., is negligible in κ).

3 Static Zero-Knowledge Proofs from 2PC

Our technique also imply static ZK proofs from any two-party protocol that provides perfect correctness.
Intuitively speaking, consider a two-party protocol that is corrupted in the presence of static adversaries with
perfect correctness. Then, the prover generates the transcript of an execution where the parties’ inputs are
secret shares of the witness ω. That is, the parties’ inputs are ω1 and ω2, respectively, such that ω = ω1⊕ω2.
Upon receiving a challenge bit from the verifier, the prover sends either the input and randomness of P1 or
P2, for which the verifier checks for consistency with respect to the transcript, and that P2 outputs 1. From
the correctness of the underlying two-party protocol it holds that a malicious prover will not be able to
answer both challenges, as that requires generating a complete accepting view. On the other hand, zero-
knowledge is implied by the privacy of the two-party protocol.

We now proceed with the formal description of our zero-knowledge proof. Let x denote a statement
in an NP language L, associated with relation R, let C be a circuit that outputs 1 on input (x, ω) only
if (x, ω) ∈ R, and let ΠOT

g = 〈π1, π2〉 denote a two-party protocol that privately realizes C with perfect
correctness; see Section 5 for the complete details of protocol ΠOT

g when embedded with our OT encoding.
Our protocol is specified in Figure 1.

We note that our protocol implies the first static zero-knowledge proof based on (the two-party variant
of) [GMW87] and [Yao86]. We next prove the following claim,

Theorem 3.1. Assume the existence of one-way functions. Then, the protocol presented in Figure 1 is a
static honest verifier zero-knowledge proof for any language in NP.

Proof: Completeness follows easily from the fact that the honest prover knows the witness ω, thus it can
answer both challenges of the verifier. On the other hand, from the perfect completeness of ΠOT

g , a malicious
prover cannot provide randomness and input for both parties that are consistent with τ since that would
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Static Zero-Knowledge Proof for any Language L ∈ NP

Inputs: A circuit C that computes the function f(x, ω) = R(x, ω) and a public statement x ∈ L for
both. A witness ω for the validity of x for the prover P .

The protocol:

1. P → V : P invokes ΠOT
g and emulates the roles of P1 and P2 on random shares ω1, ω2 of ω, and

randomness r1, r2. Let τ be the transcript of messages exchanged between these parties. P sends τ
to the verifier.

2. V → P : The verifier sends a random challenge bit b← {0, 1}.

3. P → V : Upon receiving the bit b the prover continues as follows,

• If b = 0 then the prover sends (r1, ω1).

• Else, if b = 1 then the prover sends (r2, ω2).

4. The verifier checks that the randomness and input are consistent with τ by emulating the corre-
sponding party. In case of emulating P2, the verifier checks that it further outputs 1.

Figure 1: Static zero-knowledge proof for any language L ∈ NP

imply that ΠOT
g computes an incorrect output for a false statement x that is not in L, and violates the perfect

correctness of ΠOT
g . Finally the zero-knowledge argument follows similarly to the proof of Theorem 5,

where a simulated and real transcripts are indistinguishable.

Next, we extend this basic protocol to obtain an input-delayed zero-knowledge proof.

4 Instance-Dependent Commitments for the Binary Message Space

In the following two sections we discuss a general paradigm for designing adaptive instance-dependent
commitments schemes for the binary message space, namely for the message space {0, 1}. Our construc-
tions follow from two fundamental cryptographic primitives: garbling schemes (see Section 4.1) and robust
randomized encoding (see Section 5.1.1), where the former can be viewed as a special case of the latter.

4.1 Instance-Dependent Commitments from Garbled Schemes

As a warmup, we present our first adaptive instance-dependent commitment scheme based on our garbled
circuits notion as formally defined in Section 2.5 which, in turn, implies a construction for the binary mes-
sage space {0, 1} based on one-way functions (see more detailed discussion in Section 2.5). Let x denote
a statement in an NP language L, associated with relation R, and let C be a circuit that outputs 1 on input
(x, ω) only if (x, ω) ∈ R.9 Intuitively speaking, our construction is described as follows.

A commitment to the bit 0 is defined by a garbling of circuit C , i.e., Grb(C), and a commitment to
the secret key whereas a commitment to the bit 1 is defined by a simulated garbling of the circuit C with
output set to 1, i.e., the garbled circuit output by SimGC(C, 1), and a commitment the input encoding z̃ that
is output by SimGC(C, 1). The decommitment to the bit 0 requires revealing the secret key (all input labels)

9More explicitly, we assume that the common statement x is embedded inside the circuit and only ω is given as its input.
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with which the receiver checks that Grb(C) is indeed a garbling of C. On the other hand, the decommitment
to the bit 1 requires decommitting to z̃ with which the receiver checks that the simulated garbled circuit
evaluates to 1. Importantly, if the committer knows a witness ω for the validity of x in L, then it can always
honestly commit to a garbling of circuit C and later decommit to both 0 and 1. For statements x ∈ L, the
hiding property of the commitment scheme follows directly from the indistinguishability of the simulated
garbled circuit and the hiding property of the underlying commitment scheme. Whereas, for x 6∈ L, the
commitment is perfectly binding as even an unbounded committer cannot provide a honestly generated
garbled circuit, and at the same time provide an encoding of some input that evaluates the garbled circuit to
1 (as there exists no witness ω for x). Finally, considering gabling constructions from the literature, such as
the [LP09] scheme, we note that the communication complexity of our construction for committing a single
bit equals O(spoly(κ)) where s is the circuit’s size and κ is the security parameter.

We are now ready to formally describe our construction in Figure 2. We further note that our construction
can be based on one-way functions if we use the two-round Naor [Nao91] commitment scheme instead of a
non-interactive commitment scheme based on one-way permutations. We prove the following theorem,

Instance-Dependent Commitment from Garbled Schemes

Building block: Let com denote a pseudorandom and statistically binding commitment scheme.

Inputs: Let circuit C be as above and let x denote a statement x ∈ L.

The commitment scheme:

- Com(x, 0): S generates (C̃,dk, sk) ← Grb(1κ,C) and sends C̃,dk and σ = com(sk) to the
receiver.

Decommitment: S decommits σ to the secret key sk to the receiver, that verifies that C was garbled
correctly and that decommitment information is correct.

- Com(x, 1): S generates (S̃imC, z̃,dk) ← SimGC(1κ,C) and sends S̃imC,dk and σ = com(z̃′)
to the receiver, where z̃′ is a complete set of input labels that involve z̃ and randomly chosen
labels of the appropriate length.

Decommitment: S decommits the encoding z̃ (and only that part within σ) to the receiver R, that
computes ỹ := Eval(S̃imC, z̃) and then verifies whether Dec(dk, ỹ) equals 1.

- Com′(x): S generates a commitment as for the case of Com(x, 0) using randomness rGrb.

- Adapt(x, ω, c, 0, rGrb) : If Com′(x; rGrb) 6= c, then the algorithm returns ⊥. Otherwise, it outputs
the bit 0 and rGrb.

- Adapt(x, ω, c, 1, rGrb) : If Com′(x; rGrb) 6= c, then the algorithm returns ⊥. Otherwise, let rGrb =
(rGarbGrb , r

com
Grb ) denote the corresponding randomness used to generate the garbled circuit and

σ, respectively. Then, the algorithm computes r̂Grb ← OGrb(1κ,C, (x, ω), rGarbGrb ) and returns
the bit 1, r̂Grb and the randomness for explaining σ as a commitment of the encoding of ω as
implied by sk, denoted by ω̃.

Figure 2: Instance-dependent commitment from garbled schemes

Theorem 4.1. Assume the existence of one-way functions. Then, the protocol presented in Figure 2 is a
secure adaptive instance-dependent commitment scheme for any language in NP.
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Proof: The proof follows by demonstrating the three properties from Definition 2.5.

Computational hiding: Towards proving that, we need to show that the ensembles {Com(x, 0)}x∈L,
{Com(x, 1)}x∈L and {Com′(x)}x∈L are computationally indistinguishable. Note first that algorithm Com′

is defined identically to Com(x, 0), thus it is sufficient to prove that the ensembles {Com(x, 0)}x∈L and
{Com(x, 1)}x∈L are computationally indistinguishable. Loosely speaking, this follows due to the indistin-
guishability of a garbled circuit from a simulated garbled circuit and the hiding property of the commitment
scheme. In more details, recall that a commitment to 0 is a garbling of C and a commitment to sk, whereas
a commitment to 1 is a simulated garbling of C and a commitment to z̃′. Moreover, a garbling of C is
computationally indistinguishable from a simulated garbling of the same circuit by the security of garbling
scheme. Whereas the hiding property of the commitment scheme com implies that a commitment to sk is
indistinguishable from a commitment to z̃′. Combining the two arguments, and the fact that the committer
does not need to reveal any information about the encoding of x, we define a hybrid commitment for which
the circuit is garbled honestly (as in the case of committing to 0), yet the commitment to sk is replaced with
a commitment to z̃′ (as in the case of committing to 1). We denote the distribution of this commitment
scheme by {ComHYBRID} and prove that

{C̃,dk,Com(sk)}
c
≈ {ComHYBRID}

and
{ComHYBRID}

c
≈ {[SimGC (1κ,C,y)]1, [SimGC (1κ,C,y)]3, σ}

where y = 1 in our case and [SimGC (1κ,C,y)]i denotes the ith output of algorithm SimGC. The first
indistinguishability proof is reduced to the hiding property of the commitment scheme, where a commitment
to sk is indistinguishable from a commitment to z̃′. Thus, in the reduction an adversary that wishes to break
this property, garbles the circuit C and associates this garbling with the an external string (that might be
either be a commitment to sk or a commitment to z̃′). Finally, we claim that the second indistinguishability
argument follows immediately from the security of the garbling scheme.

Adaptivity: Adaptivity follows from the fact that a “fake” commitment of 0, computed using algorithm
Com′, can be explained as a commitment to 1 by exploiting the obliviousness property of the garbling
scheme. Namely, algorithm OGrb implies that it is possible to explain a garbled circuit generated by Grb
as a simulated garbled circuit generated by SimGC. Moreover, com is a pseudorandom commitment. More
formally, security is shown by constructing a simulator SCOM that produces the parties’ views in the commit-
ment phase, and then provides randomness that is consistent with the committer’s message upon corruption.
Specifically, the simulation of an honest committer is carried out by invoking algorithm Com′(x; r). Next,
upon corrupting the committer, simulator SCOM obtains the committer’s message m and ω ∈ Rx. If m = 0
then the simulator outputs r. Else, the simulator invokes algorithm r′ ← OGrb(1κ,C, (x, ω), r), and ex-
plains σ as a commitment to ω̃, outputting randomness r′ and the randomness for σ.

Finally, we need to prove that the following two distributions {Com(x,m;Up(|x|)), 1, Up(|x|)}x∈L,ω∈RL
and {Com′(x;Up(|x|)), 1,Adapt(x, ω,Com

′(x;Up(|x|)))}x∈L,ω∈RL are computationally indistinguishable,
which follows from the oblivious sampling of the garbled circuit and the pseudorandomness of the com-
mitment scheme com. Namely, the first distribution corresponds to a honest commitment of 1 which yields
(S̃imC,dk, r, σ), whereas the second distribution corresponds to an execution by the oblivious sampler
which yields (C̃,dk, r′, σ). By the oblivious sampling property specified in Section 2.5, the first three items
within the two distributions are computationally indistinguishable. Moreover, σ is indistinguishable in both
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distributions due to the hiding property of com. A formal statement follows using a hybrid argument as
explained above.

Perfect binding: Finally, for an invalid statement x that is not in LR, binding is ensured by the perfect
correctness property of the garbling scheme and the fact that for a false statement there exists no input for
C for which the circuit is evaluated to 1. Thus, a committer cannot commit to 0 by producing a real garbled
circuit and then decommit to 1, and vice versa. More formally, let (C̃,dk, σ) denote a commitment to 0 as
specified in Figure 2. Then (C̃,dk, σ) cannot be decommitted into 1 as that requires specifying a garbled
input z′ for algorithm Eval for which C̃ is evaluated to 1. Nevertheless, since there exists no such input then
equivocation to 1 is not possible. Moreover, if the commitment is comprised from (S̃imC,dk, σ), then a
dishonest committer cannot decommit it into 0 as that implies that it has an encoding for some input that
evaluates the real garbled circuit to 1. By the correctness of the garbling, such an encoding does not exist.

4.2 On Obtaining Instance-Dependent Trapdoor Commitment Schemes

As a side note, we observe that our construction implies instance-dependent trapdoor commitment scheme
where the secret trapdoor of the construction is the witness. To see that, consider a standard garbling
construction without the additional obliviousness property that we require in Definition 2.9. Moreover,
consider the same commitment/decommitment algorithms for both 0 and 1 as specified in Figure 2. Then, it
is simple to verify that computational hiding and perfect binding hold as above with respect to the validity
of the proven statement x. This is because non of these properties is implied by the additional obliviousness
property. Finally, we note that a committer who holds the witness ω, can first commit to 0 and then later
equivocate its commitment by revealing the encoding of (x, ω) (which amounts to a decommiment to 1 as
such an encoding evaluates the garbled circuit to 1). We stress that the witness should not need to be given to
the committer prior to the commitment phase in order to achieve equivocation. This implies the following,

Theorem 4.2. Assume the existence of one-way functions. Then, the there exists a protocol that is a secure
instance-dependent trapdoor commitment scheme for any language in NP.

Note that our construction improves over prior work for which instance-dependent trapdoor commitment
schemes were only known for Σ-protocols [Dam10].

5 Randomized Encoding from Two-Party Computation

In this section, we show how to construct a randomized encoding for any function f , given a two-party
computation in the oblivious transfer (OT)-hybrid. This is opposed to prior works that have established the
usefulness of randomized encoding in constructing efficient multiparty computation [IK00, AIK04, DI06].

Let f : {0, 1}n → {0, 1} be an arbitrary polynomial-time computable function. We define g(a, b) =
f(a ⊕ b) and view g as a two-party functionality. Then let ΠOT

g = 〈π1, π2〉 be a two-party protocol which
realizes g with the following guarantees:

1. It guarantees UC security against semi-honest adversaries in the OT-hybrid that can statically corrupt
either P1 or P2 and adaptively corrupt P2. Looking ahead, we consider two different adversaries:
(1) adversary A1 that corrupts P1 at the beginning of the execution and adaptively corrupts P2 post-
execution (further denoted as a semi-adaptive adversary [GWZ09]) and (2) adversaryA2 that corrupts
P2 at the beginning of the execution. We denote the corresponding simulators by S1 and S2.
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2. Finally, we require that P1 is the (designated) sender for all OT instances and that the output of the
computation is obtained only by P2.

We remark that both the classic Yao’s garbled circuit construction [Yao86] and the [GMW87] protocol
satisfy these conditions in the OT-hybrid. We further stress that while garbled circuit constructions do not (in
general) admit adaptive corruptions, we show that the specific corruption by adversary A1 can be simulated
in the OT-hybrid. In Section 5.2 we discuss these two realizations in more details. We next demonstrate how
to transform any two-party computation protocol that satisfies the properties listed above to a randomized
encoding. Our first construction will rely on trapdoor permutations to realize the OT functionality. We then
relax this requirement and show how to rely on one-way functions.

Given any protocol ΠOT
g we consider a protocol Π̃ that is obtained from ΠOT

g by replacing every OT call
with the enhanced trapdoor permutation based OT protocol of [EGL85]. Let {fTDP : {0, 1}n → {0, 1}n}
be a family of trapdoor permutations and h be the corresponding hard-core predicate. More precisely,

• For every OT call where P1’s input is (s0, s1) and P2’s input is t, we require P1 to send the index of
a trapdoor permutation fTDP to P2. Next, P2 samples v1−t and ut uniformly at random from {0, 1}n
and sets vt = fTDP(ut). P2 sends (v0, v1) to P1, that is followed by the message (c0, c1) from P1 to
P2 where c0 = h(u0)⊕ s0 and c1 = h(u1)⊕ s1 and u0 = f−1

TDP(v0), u1 = f−1
TDP(v1).

We need to verify that Π̃ satisfies all the required properties.

1. It follows from the fact that if ΠOT
g implements g with UC security against semi-honest adversariesA1

andA2, then Π̃ achieves the same against corresponding adversaries that corrupt the same parties and
finally output the view of P2. In more detail, recall that A1 corrupts P1 at the beginning and P2 post
execution (adaptively). Now, since ΠOT

g admits simulation ofA1 in the OT-hybrid, for the same prop-
erty to hold for Π̃, it suffices to achieve simulation of the OT protocol where the sender is corrupted at
the beginning and the receiver is corrupted post execution. It is easy to see that the [EGL85] protocol
satisfies this requirement since the receiver is equivocable. Next, to see that A2 can be simulated
we rely on the fact that the OT protocol described above admits (semi-honest) receiver’s simulation.
Therefore, Π̃ satisfies all the required properties.

2. This property directly holds as we rely on the same instructions to determine the sender and receiver
of the OT calls.

Our randomized encoding. We now proceed with the description of our robust randomized encoding of
f as formalized in Definition 2.10 by specifying the functions f̂OFF, f̂ON and the simulation S.

Towards describing our algorithms, we consider a real world experiment carried out between parties P1

and P2 that engage in an execution of Π̃ with environment Z . Let REAL
Π̃,A,Z(κ, x, r) denote the output

of Z on input x, random tape rZ and a security parameter κ upon interacting with A with random tape
rA and parties P1, P2 with random tapes r1, r2, respectively, that engage in protocol Π̃ where the inputs
are determined by Z and r = (rZ , rA, r1, r2). Let REAL

Π̃,A,Z(κ, x) denote a random variable describing
REAL

Π̃,A,Z(κ, x, r) where the random tapes are chosen uniformly. We denote by IDEALg,S,Z(κ, x, r) the
output ofZ on input x, random tape rZ and security parameter κ upon interacting with S and parties P1, P2,
running an ideal process with random tape rS , where r = (rZ , rS). Let IDEALg,S,Z(κ, x) denote a random
variable describing IDEALg,S,Z(κ, x, r) when the random tapes rZ and rS are chosen uniformly.

Encoding: Consider a (semi-honest) adversaryA1 that corrupts P1 at the beginning of the execution. At the
end of the execution, A1 first sends τ to Z where τ is the transcript of messages exchanged between
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P1 and P2. Next it (adaptively) corrupts P2 and sends (a2, r2) to Z where a2 and r2 are the respective
input and randomness used by party P2. Let S1 be the corresponding simulator as guaranteed by the
properties of Π̃.

1. f̂OFF(r): The offline encoding is obtained by running S1 with randomness rS1 until it sends the
first message to the environment. Recall that S1 statically corrupts P1, where upon completing
the execution, S1 sends the transcript of the messages to the environment. We define the output
of f̂OFF(r) to be this output where the input a1 of party P1 is sampled uniformly at random.
Notice that the offline part of the encoding does not depend on the input x as required.

2. f̂ON(x, r): To obtain the online part, we continue the execution of S1 in the execution corre-
sponding to the transcript τ generated by f̂OFF(r). Recall that after sending τ , S1 adaptively
corrupts P2 and sends the input and random tape of P2 to the environment. f̂ON(x, r) contin-
ues the emulation of S1, where upon corrupting party P2 it feeds S1 with the input of P2 as
a2 = x⊕ a1 and f(x) as the output. The simulation returns the view of P2 and f̂ON(x, r) is set
to (a2, r2) where r2 is the random tape of P2 output by S1.

Decoder: The decoder B on input (zOFF, zON) recomputes the view of P2 from the messages sent by P1 to
P2 in zOFF and the input and randomness of P2 in zON. It checks if the messages sent from P2 to P1

are consistent with what is in zOFF and finally outputs what P2 outputs in the execution.

Simulation: Consider the (semi-honest) adversary A2 that statically corrupts P2. At the end of the execu-
tion A2 sends (τ, (a2, r2)) to Z where τ is the transcript of messages exchanged between P1 and P2

and a2 and r2 are the respective input and randomness used by party P2. Let S2 be the corresponding
simulator. Then the simulation algorithm of the randomized encoding S is defined as follows. Upon
receiving y = f(x), S invokes S2 where P2’s input is set to a uniformly chosen random string a2 and
its output is set to y. Recall that S2 outputs (τ, (a2, r2)) at the end of the execution. Then the output
of S is defined by (sOFF, sON) where sOFF = τ and sON = (a2, r2).

We next prove the following theorem.

Theorem 5.1. Let (f̂(x, r),S, B) be as above. Then f̂(x, r) is a randomized encoding of f with compu-
tational privacy. Assuming the existence of enhanced trapdoor permutations, we obtain an encoding with
offline complexity CΠ + ρΠκ and online complexity |x| + rΠ + ρΠκ where CΠ is the communication com-
plexity of ΠOT

g in the OT-hybrid, ρΠ in the number of OT invocations made by P2, rΠ is the randomness
complexity of P2 in ΠOT

g and κ is the security parameter. If we instead rely on one-way functions we achieve
an encoding with offline and online complexities CΠ + ρΠpoly(κ) and |x|+ rΠ + ρΠpoly(κ), respectively.

Proof: We continue with the arguments of the two properties required for our randomized encoding: cor-
rectness and privacy. As the correctness argument relies on an argument made in the proof for claiming
privacy, we start with the privacy proof. Towards this, we will consider a specific environment Z∗ that
assigns inputs to the parties as follows. Z∗ gives P1 and P2 inputs a1 and a2 where a1 is chosen at random
and a2 = a1 ⊕ x. At the end of the execution Z∗ outputs all messages received from A as its output.

Privacy. We prove the indistinguishability of a real and a simulated encoding. At first glance, it may
seem that the real encoding and the simulated encoding are quite different as they rely on the simulation
of different adversaries. We begin with observation that the joint distribution of (f̂OFF(r), f̂ON(x, r)) is
identically distributed to the ideal execution IDEALg,S1,Z∗(κ, x). This is because the distribution of inputs
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and outputs provided for P1 and P2 by the encoding algorithm is identical to the distribution of inputs and
outputs assigned by Z∗. Analogously, it follows that the distribution of the simulated encoding generated
by S is the identically distributed to IDEALg,S2,Z(κ, x). More precisely,

(f̂OFF(r), f̂ON(x, r)) ≡ IDEALg,S1,Z∗(κ, x), whereas

S(f(x)) ≡ IDEALg,S2,Z∗(κ, x).

We prove indistinguishability via a standard hybrid argument. First, it follows from the indistinguishability
of the simulations generated by S1 and S2 that:

IDEALg,S1,Z∗(κ, x)
c
≈ REAL

Π̃,A1,Z∗(κ, x), and

IDEALg,S2,Z∗(κ, x)
c
≈ REAL

Π̃,A2,Z∗(κ, x).

Recall that both adversaries A1 and A2 send (τ, (a2, r2)) where τ is the transcript of messages exchanged
between the parties and a2 and r2 are the respective input and randomness of P2. Furthermore, from the
description of our environmentZ∗, we know thatZ∗ simply outputs whatever it receives from the adversary.
Now, as the adversaries are semi-honest and send identical information to Z∗, we conclude the proof of
indistinguishability by observing that

REAL
Π̃,A1,Z∗(κ, x) ≡ REAL

Π̃,A2,Z∗(κ, x).

Therefore, indistinguishability is implied.

Correctness. We need to show that for every x,B(f̂OFF(r), f̂ON(x, r)) outputs f(x) except with negligible
probability, where the probability is over the choices of r and the random coins of B. Due to the facts that
IDEALg,S1,Z∗(κ, x)

c
≈ REAL

Π̃,A1,Z∗(κ, x) and that P2 outputs f(x) except with negligible probability in
the real world experiment, it follows that P2 must output f(x) except with negligible probability relative to
its view output in the ideal world. Therefore, B must output f(x) with the same probability as well. If we
additionally require perfect correctness, then we need to assume that protocol Π̃ is perfectly correct and the
simulation generated by S1 is perfect.

Relaxing to one-way functions. Recall that in the preceding construction we relied on enhanced trapdoor
permutation family for realizing the OT-hybrid. We now argue that the same can be accomplished using only
one-way functions. Towards this, we first observe that if we use a one-way permutation (OWP) as opposed
to a trapdoor permutation in protocol Π̃, then our construction still satisfies all the required properties. This
is because we do not require the protocol instantiated with OWP to be played by two efficient parties P1 and
P2. Specifically, it suffices to have the simulations generated by S1 and S2 be efficient and indistinguishable.
This is because the simulators are not required to use the trapdoor in order to simulate the OT calls in our
instantiation based on trapdoor permutations, as they can ensure that they know the preimages of all the
image elements in the transcript.

Finally, to relax to one-way functions, we realize the OT calls by relying on a randomized encoding of
OT defined as follows:

• For every OT call where P1’s input is (s0, s1) and P2’s input is t, we incorporate it in the encoding by
generating a transcript containing the commitments c0 and c1 of s0 and s1 using a statistically binding
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commitment scheme com (which can be based on one-way functions), placing the decommitment
information of ct in P2’s random tape.10

Note that this OT encoding does admit static corruption of P1 followed by adaptive corruption of P2 as
we can honestly generate the commitments using P1’s inputs and place the decommitment information
appropriately in P2’s random tape when it is corrupted post execution. This encoding also admits static
corruption of P2 as we simply commit to the required value st, use a random value in place of s1−t, and
place the decommitment of st in P2’s random tape.

Complexity. Finally, we measure the complexity of our encoding. Note first that for each OT call the
offline encoding is a pair of image elements of the one-way permutation incurring O(κ) overhead, while
the online complexity is a preimage of length κ. Then the offline encoding of the overall construction is the
communication complexity of Π̃ which equals to the communication of ΠOT

g , denoted by CΠ, together with
the number of OT calls, denoted by ρΠ, which overall yields CΠ + ρΠO(κ). Moreover, the online encoding
includes P2’s input a2 and randomness r2 where the latter includes the randomness complexity of ΠOT

g and
the complexity of the receiver’s randomness for the OT invocations which is |x|+ rΠ + ρΠκ. If we rely on
one-way functions then the OT calls are incorporated as commitments and incur poly(κ) per invocation for
the commitment as well as the decommitment algorithms.

5.1 Corollaries and Applications

In this section, we demonstrate the power of the proceeding transformation by proving lower bounds and
providing additional applications.

5.1.1 Instance-Dependent Commitment Schemes

In the following, we require two additional prosperities on our randomized encoding to construct an instance-
dependent commitment. These are robustness and oblivious sampling. Robustness requires that for an hon-
estly generated encoding of the offline part there exists no string that serves as the online part that makes the
decoder output an element outside the range of f . On the other hand, oblivious sampling requires that given
any (honestly generated) encoding it is possible to provide randomness for the simulation that produces the
same encoding. We show that each of the two properties can be guaranteed relative to the construction
specified in Section 5 if the underlying secure two-party protocol ΠOT

g satisfies some additional properties.

Robustness. To achieve robustness we require that ΠOT
g satisfies the following additional property:

• We say that a two-party computation protocol is robust if the following holds: Suppose there exists no
x such that f(x) = 1, then in any execution using ΠOT

g where both P1 and P2 act honestly (potentially
using a maliciously generated random tape), P2 can never output 1.

We remark that this definition of robustness is slightly different from the notion of t-robustness defined
for MPC in Section 2.7. In the definition presented above for two-party computation, we require that it
holds against an adversary that is only allowed to (maliciously) determine the random tapes of both parties
who later interact honestly according to the protocol specification. In contrast, the definition for MPC as
required in [IKOS09] requires that the property holds against an adversary that in addition to (maliciously)

10Note that, in Naor’s statistically binding commitment scheme the decommitment information is the inverse under a pseudoran-
dom generator that is uniformly sampled, and hence can be placed in the random tape.
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determining the random tapes of all honest parties, can corrupt t parties and cause it to arbitrarily deviate
from the protocol specification. Our variant for the two-party protocol is similar in spirit to the notion of
semi-malicious security defined in [BGJ+13]. As noted in [BGJ+13] the protocol of [GMW87] satisfies
this definition.11 In fact, it suffices for the underlying OT protocol to statistically bind the sender’s input to
the transcript. Hence, this implies that our modified protocol Π̃ where we realize OT using the [EGL85]
protocol satisfies robustness.

Given this property, we can establish the robustness of our randomized encoding. Specifically, observe
that the offline part of the actual encoding f̂OFF(x, r), i.e., the transcript of the exchanged messages is
generated by using the randomness r to provide input and randomness to P1 consistent with the transcript.
Furthermore, by the way we encode the oblivious transfer, it binds the sender’s inputs to the oblivious
transfer executions. On the other hand, the online part produces the corresponding input and randomness for
P2. Thus for an offline part τ and a valid randomness r such that f̂OFF(x, r) = τ if there is a corresponding
online part, then it holds that there exists an execution between parties P1 and P2 with some inputs and
(potentially maliciously chosen) randomness that results in the transcript τ . Therefore from the robustness
of the underlying two-party protocol it follows that P2 cannot output 1, as 1 is not in the range of f which,
in turn, means that 1 is not in the range of g.

In order to relax our construction to one-way functions using statistically binding commitments, the
robustness property must require that a commitment cannot be equivocated as this will allow the sender
of the OT to commit to one value and the receiver to decommit to another. Unfortunately, statistically
binding commitments can be equivocated with maliciously generated randomness. In order to overcome
this problem, we modify the definition of robustness which will be sufficient for our application of instance-
dependence commitments. Namely, we require that there is a public-parameter pp for which the encoding
function takes as input such that robustness holds with high probability over a randomly generated pp. More
formally, we say that f̂ is a statistically robust encoding of f if there exist functions f̂OFF and f̂ON such that
f̂(pp, x, r) = (pp, f̂OFF(pp, r), f̂ON(pp, x, r)) and, in addition, it holds that: if there exists no x such that
f(x) = 1, then for any r the probability over pp that there exists τ such thatB(f̂OFF(r), τ) = 1 is negligible.

Now, we can incorporate our OT calls using statistically binding commitments (based on one-way func-
tions) and require pp to be the set of the first messages required for all the commitments used in the encoding.

Oblivious sampling. To obtain this property, we will require that ΠOT
g satisfy that:

• Any view of P2 in an execution of ΠOT
g can be explained as the output of a simulation of an adversary

that statically corrupts P2. This property is required for the Adapt algorithm of our instance-dependent
commitment scheme. We formalize this by requiring an algorithm InvSamp that is giving as input a
view of P2 denoted by (τ, (a2, r2)) where τ is the transcript of messages exchanged and a2 and r2 are
the respective input and random tape of P2, and outputs random coins r′ for S2 such that S2 on input
(a2, f(x)) and random tape r′ outputs the view (τ, (a2, r2)). Furthermore, we require that InvSamp
on input a view generated by S2 with random tape r′ returns the same random tape r′.

Recall that in our construction we rely on Π̃ which is exactly the protocol ΠOT
g with the exception that the

OT calls are replaced using the protocol of [EGL85]. If ΠOT
g has an InvSamp algorithm, it is possible to

extend this algorithm to obtain an analogous algorithm for Π̃ as we can combine InvSamp with an algorithm
that achieves the same for the OT subprotocol implemented using [EGL85], where the latter follows due to

11If we assume encryption scheme with zero decryption error, then even [Yao86]’s protocol satisfies robustness.
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the equivocality of the receiver.12 Hereafter, when we refer to InvSamp we will refer to the algorithm that
corresponds to protocol Π̃.

We recall that the simulator for the encoding S uses its random tape to sample P2’s input a2 and the
random tape of S2 that it executes internally. We identify the random tape of S as (a2, r

′) where a2 will be
used for P2’s input and r′ will be the random tape of S2 in the internal emulation by S. This means that
an execution of S(f(x)) with random tape r∗ can be rewritten as {S2(a2, f(x); r′)} where r∗ = (a2, r

′).
Furthermore, from the properties of our InvSamp algorithm we have that

InvSamp(S2(a2, f(x); r′)) = r′.

Next, we describe the oblivious sampling algorithm for our randomized encoding that allows to demon-
strate an actual encoding as a simulated encoding. Upon receiving an encoding, the OblSamp algorithm
needs to produce a random tape for S that generates the same encoding. That is, upon receiving as input an
encoding (τ, (a2, r2)), OblSamp outputs (a2, InvSamp(τ, (a2, r2))). It follows from the construction that
when S is executed with random tape (a2, InvSamp(τ, (a2, r2))) it will output (τ, (a2, r2)).

Next, from privacy property of our encoding we have that

(f̂OFF(r), f̂ON(x, r))
c
≈ S(f(x)).

This means that

{(τ, (a2, r2))← (f̂OFF(r), f̂ON(x, r)) : OblSamp(τ, (a2, r2))}

≡ {(τ, (a2, r2))← (f̂OFF(r), f̂ON(x, r)) : (a2, InvSamp(τ, (a2, r2)))}
c
≈ {(τ, (a2, r2))← S(f(x)) : (a2, InvSamp(τ, (a2, r2)))}
≡ {a2 ← {0, 1}n; r′ ← {0, 1}∗; (τ, (a2, r2))← S2(a2, f(x); r′) : (a2, InvSamp(τ, (a2, r2)))}
≡ {a2 ← {0, 1}n; r′ ← {0, 1}∗; (τ, (a2, r2))← S2(a2, f(x); r′) : (a2, r

′)}
≡ {a2 ← {0, 1}n; r′ ← {0, 1}∗ : (a2, r

′)}.

Now, since {a2 ← {0, 1}n; r′ ← {0, 1}∗ : (a2, r
′)} is the distribution of S’s random tape, we have that the

oblivious sampling satisfies the required indistinguishability property.
Finally, to relax to one-way functions we observe that in the OT protocol, the receiver submits two

image elements for which it only knows the preimage for only one of them and the other one is obliviously
sampled. This can be achieved by using Naor’s statistically binding commitment scheme that further has a
pseudorandom range.

Our commitment scheme. We next generalize our construction from Section 4.1 and introduce an instanced-
dependent commitment scheme based on robust randomized encoding as defined in Definition 2.10. Given
an NP language LR, whereR is the associated relation, and an input statement x, we define the function:

fx(w) = R(x,w).

Namely, the function that checks membership in the NP relation corresponding to the statement x. When it is
clear from context we will drop the subscript x and simply refer to it by f . Corresponding to a function f , let
f̂ denote the robust randomized encoding that comprises of functions f̂OFF(r) (the offline part) and f̂ON(x, r)
(the online part). We further recall that the simulator’s output is captured via two strings (sOFF, sON) that
correspond to the offline/online parts of the encoding. Our construction is introduced in Figure 5.

12More precisely, to generate the random tape for the simulated receiver, we rely on the fact that the commitment scheme (used
to implement the OT invocations) has a pseudorandom range.
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Instance-Dependent Commitment from Robust Randomized Encoding

Building block: Let com denote a pseudorandom perfectly binding commitment scheme.

Inputs: Let function f be as above and let x denote a statement x ∈ L.

The commitment scheme:

- Com(x, 0): S samples r and sends to the receiver (f̂OFF(r), σ) where σ = com(r).

Decommitment: S decommits σ to the value r to the receiver, that verifies that the encoding was
computed correctly with randomness r and that the decommitment information is correct.

- Com(x, 1): S computes (sOFF, sON) ← S(1; r′) and sends (sOFF, σ) to the receiver, where σ ←
{0, 1}t and t = |com(r)|.

Decommitment: S sends sON to the receiver and explains σ as an obliviously generated commit-
ment. The receiver checks if B(sOFF, sON) = 1.

- Com′(x): S generates a commitment as for the case of Com(x, 0) using randomness r, i.e., it sends
(f̂OFF(r), σ = com(r)).

- Adapt(x, ω, c, 0, r) : If Com′(x; r) 6= c, then the algorithm returns⊥. Otherwise, it outputs the bit
0 and the randomness for computing σ as a commitment to r.

- Adapt(x, ω, c, 1, r) : If Com′(x; r) 6= c, then the algorithm returns ⊥. Otherwise, it computes
r′ ← ORE(f, (x, ω), r) and outputs the bit 1 and r′, and further explains σ as an obliviously
generated commitment.

Figure 3: Instance-dependent commitment from robust randomized encoding

Theorem 5.2. Assume the existence of one-way functions. Then, the protocol presented in Figure 5 is a
secure adaptive instance-dependent commitment scheme for any language in NP.

The proof follows analogously to the proof of Theorem 4.1. On a high-level, hiding is achieved by the
privacy of the randomized encoding and the hiding of the commitment scheme com. Adaptivity is achieved
due to the obliviousness of the randomized encoding and the pseudorandomness of com. Finally, binding
follows from the robustness property where in case that x 6∈ L, then fx can never output the value 1. Hence,
by robustness it follows that no adversary can produce a commitment (z, σ) such that there exists a string r
for which z = f̂OFF(r) and σ = com(r) (namely, a decommitment to 0), and at the same time produce an
online part z′ as part of a decommitment to 1 such that B(z, z′) = 1 since 1 is not in the range of fx.

5.1.2 Input-delayed Zero-Knowledge Proofs

In this section, we extend the basic construction of instance-dependent commitment schemes from our
previous construction to additionally allow constructing input-delayed zero-knowledge proofs. In [LS90],
Lapidot and Shamir provided a three-round witness-indistinguishable (WI) proof of knowledge for Graph
Hamiltonicity with a special “input-delayed” property: namely, the prover uses the statement to be proved
only in the last round. Recently, in [CPS+15] it was shown how to obtain efficient input-delayed variants of
the related “Sigma protocols” when used in a restricted setting of an OR-composition.

In this section, we show how randomized-encoding that is secure against adaptive chosen inputs can
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be used to realize input-delayed zero-knowledge proofs. Then relying on the recent construction of such
a randomized encoding [HJO+15] we obtain a constant-rate input-delayed zero-knowledge proof, namely
whose communication complexity is O(s) + poly(κ) where s is the size of the circuit realizing the NP-
relation and κ is the security parameter.

We achieve this in two steps. First, we extend our notion of instance-dependent commitment scheme to
one where the actual commitment scheme do not require the input statement. Then using such an instance-
dependent commitment scheme we will show how to realize an input-delayed zero-knowledge proofs. We
provide next definitions for the above primitives.

Our first notion is that of input-delayed instant-dependent commitment scheme. On a high-level, this
primitive is a variant of the plain instant-dependent commitment scheme where the real and fake commit-
ment algorithms do not require the knowledge of the input statement in the commit phase. The statement
can be adaptively chosen based on the commit phase and will be required only in the decommit phase.
Second, we will not require an Adapt algorithm that can explain a fake commitment as an honest commit-
ment of any message by generating random coins for an honest committer that would have produced the
same commitment. Instead we will only require the slightly weaker property of the fake commitment being
equivocable. Towards this, we will introduce a decommitment algorithm for the honest commitment that
additionally takes as input the statement x and produces a decommitment to the corresponding message m.
The receiver then verifies the decommitment with respect to the statement x. Corresponding to the fake
commitment algorithm, we now require an algorithm that, given the statement and the witness can reveal a
commitment (i.e. produce decommitments) to any message m.

Definition 5.3 (Input-delayed IDCS). Let R be an NP relation and L be the language associated with
R. A (non-interactive) instance dependent commitment scheme (IDCS) for L is a tuple of probabilistic
polynomial-time algorithms (C̃om, C̃om

′
,Adapt), where:

• C̃om is the commitment algorithm: For a message m ∈ M, and a random string r ∈ {0, 1}p(n),
C̃om(1n,m; r) returns a commitment value c where n is the length of the input-instance and p(·) is a
polynomial.

• D̃ecom is the decommitment algorithm that on input a statement x, commitment c, mesage m and
randomness r outputs a decommitment d.

• Ṽer is the verification algorithm that on input x,m, c, d outputs accept or reject.

• C̃om
′

is a “fake” commitment algorithm: For a random string r ∈ {0, 1}q(n), C̃om
′
(1n, r) returns a

commitment value c where n is the length of the input instance and q(·) is a polynomial.

• Equiv is an equivocation algorithm: Let x ∈ L and ω ∈ Rx. For all c and r ∈ {0, 1}q(|x|) such that
Com′(r) = c, and for all m ∈ M, Equiv(x, ω, c,m, r) outputs d such that Ṽer(x,m, c, d) outputs
accept.

The hiding property now requires that for any message m, an honest commitment and decommitment
to m be indistinguishable from a fake commitment and decommitment to m even when the input statement
is adaptively chosen after the commitment phase. The binding property on the other hand will require
that for any commitment c and a false statement x 6∈ L, there exists no values m, d and m′, d′ such that
Ṽer(x,m, c, d) = Ṽer(x,m′, c, d′) = accept.

We next describe our input-delayed zero-knowledge proof.
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Input Delayed Zero-Knowledge Proof for any Language L ∈ NP

Building block: Instance-dependent commitment scheme (C̃om, C̃om
′
,Adapt) for language L.

Inputs: A circuit C that computes the function f ′(x, ω) = (R(x, ω), x) and a public statement x ∈ L
for both. A witness ω for the validity of x for the prover P .

The protocol:

1. P → V : P invokes com← C̃om
′
(1κ; r) and sends com to the verifier.

2. V → P : The verifier sends a random challenge bit b← {0, 1}.

3. P → V : Upon receiving the input statement x and witness ω,

• If b = 0 then the prover invokes Equiv(x, ω, c, 0, r) to obtain a decommitment of c to the bit
0 and sends it to the Verifier.

• If b = 0 then the prover invokes Equiv(x, ω, c, 1, r) to obtain a decommitment of c to the bit
1 and sends it to the Verifier.

4. The verifier checks that the decommitment is valid with respect to x.

Figure 4: Input delayed zero-knowledge proof for any language L ∈ NP

Theorem 5.4. Assume the existence of one-way functions. Then, the protocol presented in Figure 4 is an
input-delayed honest verifier zero-knowledge proof for any language in NP.

Proof: Briefly, the security of our proof is implied by the security of the instance-dependent commitment
scheme. More concretely, completeness follows easily from the adaptivity property of the commitment
scheme. Namely, since an honest prover knows a witness for x, it can always provide a valid reply to any
challenge posed by the verifier. Next, we claim that the proof is sound. This is due to the underlying binding
property of the commitment scheme. Specifically, for any x /∈ L, a corrupted prover cannot convince the
verifier in its validity with probability better than 1/2, as that requires answering both challenges. The
binding property of our commitment schemes ensure that the prover cannot do that.

Finally, we discuss zero-knowledge for an honest verifier. Here, the simulator guesses the challenge of
the verifier in advance and computes the first message according to this challenge following the honest com-
mitmetn algorithm. In more detail, for the bit b, the simulation relies on the honest commitment algorithm
C̃om(b; r) instead of the fake commitment algorithm as the honest prover does. Indistinguishability of the
simulation follows directly from the hiding property of the fake commitment algorithm.

Finally, we need to show how our input-delayed IDCS can be constructed from a robust randomized
encoding that is secure against an adaptive chosen input. On a high-level our instance-dependent commit-
ment scheme from randomized encoding will follow the same approach as in Section 5.1.1. We begin with
a randomized encoding for the following function f :

f(x, ω) = (R(x, ω), x).

Since the randomized encoding is secure against adaptive choice of inputs, we can split the simulation
algorithm to an offline and online part, namely SOFF and SON where SOFF on input 1n and randomness r′

outputs the offline part of the encoding sOFF and SON on input (1n, f(x), r′) outputs the online part sON.
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Instance-Dependent Commitment Scheme from Robust Randomized Encoding secure against
Adaptive Choice of Inputs

Building block: Let com denote a pseudorandom perfectly binding commitment scheme.

Inputs: Let function f be as above.

The commitment scheme:

- Com(0): Sample r and output (f̂OFF(r), σ) where σ = com(r). Observe that f̂OFF does not take
the statement x as input.

Decom(x, c, 0, r): The decommitment simply contains the decommitment of σ to the value r to the
receiver. Ver algorithm outputs accept only if the (offline) encoding was computed correctly
with randomness r and that the decommitment information of σ is correct. Otherise Ver
outputs reject.

- Com(1): Compute sOFF ← SOFF(1n; r′) and output (sOFF, σ), where σ ← {0, 1}t and t =
|com(r)|.

Decom(x, c, 1, r): The decommitment contains sON ← SON(1n, (1, x), r′) and explaination of
σ as an obliviously generated commitment, i.e. a random string. Ver algorithm computes
B(sOFF, sON) and outputs accept only if it evaluates to (1, x). Otherwise it outputs reject

- Com′(): Is identical to Com(0), i.e. output (f̂OFF(r), σ = com(r)).

- Equiv(x, ω, c, 0, r) : If Com′(r) 6= c, then the algorithm returns ⊥. Otherwise, it outputs the bit 0
and the randomness for computing σ as a commitment to r.

- Equiv(x, ω, c, 1, r) : If Com′(x; r) 6= c, then the algorithm returns ⊥. Otherwise, it sends
f̂ON((x, ω), r) and further explains σ as an obliviously generated commitment. Recall that
the receiver now checks if B(f̂OFF(r), f̂ON((x, ω), r)) = (1, x).

Figure 5: Instance-dependent commitment from robust randomized encoding

Observe that both the honest and fake commitment algorithms do not depend on the input statement.
This is enabled by the adaptive input security of the randomized encoding. The hiding property of the
commitment for bit 0 holds directly, whereas the hiding property for the bit 1 follows from the simula-
tion property of the randomized encoding. Binding on the other hand follows directly from the robustness
property of the randomized encoding.

The work of Hemenway et al. [HJO+15] shows how to obtain a randomized encoding secure against
adaptively chosen inputs. We show in the next section how to extend it to achieve the stronger robustness
property. Combining their work with our construction, we have the following corollary.

Corollary 5.5. Assuming the existence of one-way functions. Then for any NP-relation R, there exists
an input-delayed ZK proof with communication complexity O(spoly(k)) where s is the size of the circuit
computing the NP relation.

Additionally, our protocol only depends on an underlying randomized encoding that implements a re-
lated functionality in a black-box way.
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5.2 Realizations of Our Randomized Encoding

A realization based on garbled circuits. We next demonstrate that our construction can be realized based
on garbling schemes. This is shown by proving that Yao’s protocol from [LP09] maintains all the security
requirements specified above. To this end, the only non-trivial arguments are regarding the following items.
First, regarding the proof for which the protocol is secure in the presence of static corruption of P1 and
adaptive (post-execution) corruption of P2. Second, it must be shown that the adaptive simulation of (post
execution corrupted) P2 can be explained as if P2 was statically corrupted. The former argument can be
easily shown due to the fact that we instantiate the OT calls using a variant of the [EGL85] protocol which
allows for receiver equivocation, which is exactly what is required in order to equivocate P2 internal state.
This is because P2 only uses its input in the OT executions in this protocol.

To prove the later we must modify the way Lindell and Pinkas design their static simulation when P2

is corrupted. We recall that when P2 is statically corrupted, the simulator in their proof constructs a fake
garbled circuit that always outputs the correct output of P2. This fake garbling involves a sequence of four
ciphertexts per gate that encrypt the same input label four times (the so called the “active” key). On the
other hand, in case P2 is adaptively corrupted, upon statically corrupting P1, the garbled circuit is honestly
generated by the semi-honest corrupted P1. Now, since it is not possible to explain an honestly generated
garbled circuit as a fake one (at least not with the set of tools used for garbling), we slightly modify the
original simulation of Lindell and Pinkas as follows. Instead of having four ciphertexts that encrypt the
same plaintext, the simulator generates only one valid ciphertext and three oblivious ciphertexts. Note that
now it is possible to explain an adaptive simulation of P2 as a static one by relying on the obliviousness
property of the underlying encryption scheme.

A realization based on [GMW87]. We consider the basic protocol from [GMW87] where parties P1

and P2 first XOR-share their respective inputs x and y into two shares (x1, x2) and (y1, y2), and exchange
one share with each other, say x2 from P1 and y1 from P2. Next, they evaluate the circuit gate by gate
where given the shares of the input they try to obtain shares for the output. The shares that correspond
to the output of an addition gate can be simply obtained by locally adding that shares that correspond to
the input. Multiplication gates, on the other hand, require oblivious transfer. For instance, if ai, bi are the
input shares held by party Pi (i ∈ {1, 2}) where the inputs are a1 ⊕ a2 and b1 ⊕ b2, then to compute
the product the parties engage in a 1-out-of-4 OT where P2 sets its input as (a2, b2) and P1 sets its inputs
as {(a1 ⊕ A)(b1 ⊕ B) + s}A∈{0,1},B∈{0,1} where s is chosen at random. In essence, corresponding to
the input (a2, b2), P2 learns (a1 ⊕ a2)(b1 ⊕ b2) + s and uses that as its output shares, while P1 uses s.
Finally, P1 transmits its share of the output wires to P2. In this protocol P1 is the designated sender for all
OT invocations and the protocol admits (UC) simulation in the presence of adaptive adversaries corrupting
either P1 or P2 in the OT-hybrid.

We next discuss how to construct a robust randomized encoding with oblivious sampling from the
[GMW87] protocol, that satisfies all the required properties. Namely, achieving privacy against semi-honest
adversaries with UC security and requiring that P1 is the designated sender are immediately satisfied by the
protocol (in the OT-hybrid). Robustness, on the other hand, holds because the protocol achieves uncondi-
tional security in the OT-hybrid in the information theoretic setting against passive adversaries.

Finally, we argue oblivious sampling. Recall that the simulation for party P2 in the [GMW87] protocol
proceeds as follows. Given the input y and output f(x, y) of the computation, the simulation generates first
the shares of P2’s input, namely (y1, y2), and a random value x2 for the share of P1’s input that it transmits.
Next, for every OT call, it simply sets the output of the OT invocation as a random bit. It then follows P2’s
computation to generate a share z2 of the output. Finally, it sets the share of the output transmitted by P1 as
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z1 = f(x, y)⊕ z2. To demonstrate oblivious sampling, we need to show that any view of P2 can be shown
as an output of the simulation. Recall that the view of P2 includes its input and output, random tape and
the messages from P1. The messages from P1 are x2 (share of P1’s input), the OT outputs corresponding to
P2’s queries which are all uniformly distributed because they are masked by P1, and the share of the output.
Given the view, the message x2 and all outputs of the OT invocations can be placed in the random tape of
the simulation as they are randomly generated. The final message z1 is fixed and determined by x2, the OT
outputs and the random tape of P2. Therefore, the protocol satisfies oblivious sampling in the OT-hybrid.

Realizing robust randomized encoding secure against adaptive choice of inputs based on [HJO+15].
On a high-level, the construction [HJO+15] considers the randomized encoding based on garbled circuits
and then modifies it to achieve security against adaptive chosen inputs using the following approach: The
offline encoding now includes an encryption of the garbled circuit under a special kind of encryption scheme.
This encryption scheme allows the encryptor to reveal a ciphertext to M different possible plaintexts (with
certain restrictions) where M is a parameter chosen for the security proof.13 In fact, given the parameter M
and the encryption key the encryptor generatesM distinct keys corresponding to the plaintexts. We note that
the honest encoding and the simulated encoding will not use this equivocation property, and reveal only one
key corresponding to the intended plain text. However, the proof of security involves a sequence of hybrid
steps that will make use of the different keys.

Recall that a robust randomized encoding f = f̂OFF, f̂ON requires that there does not exist any random
tape r for the encoding such that given an encoding generated using randomness r, namely σOFF = f̂OFF(r),
there is no string σON such that the decoder B on input (σOFF, σON) outputs an element outside the range of
f . As such, the construction presented in the work [HJO+15] is not necessarily robust as an encoding, even
if honestly generated, can be revealed to M different possible plaintexts, therefore possibly M different
garbled circuits. We modify the construction to make it robust by including in the offline encoding a non-
interactive statistically binding commitment of the key. More precisely, we will require that f̂OFF also
includeM commitments to the encryption key used to encrypt the garbled circuit. The online encoding, now,
along with the key and the online encoding corresponding to the garbled circuit, includes the decommitment
of a randomly chosen commitment among theM commitments. The decoder verifies that the key revealed is
indeed the one decommitted, decrypts the ciphertext and evaluates the garbled circuit. This scheme is robust
as any randomness revealed for an offline encoding will have to show that all the M commitments are
commitments to the same key. Since the commitments are perfectly binding, this means it is impossible for
a correctly generated offline phase to be revealed to more than one garbled circuit via the onling encoding.
Now, since there is only one garbled circuit that can be revealed, we can conclude the robustness of the
scheme using the robustness of the garbled circuit construction. However, we still require that the proof
of security from [HJO+15] holds. This proof of security requires that the real and simulated encoding are
indisitinguishable. Since in this indistinguishability experiment, the randomness of the offline phase is not
revealed and only one commitment is decommitted to in the online encoding, it is possible to, in hybrid
steps, commit to M different keys and reveal the one corresponding to the one required in the hybrid step.

The efficiency of our randomized encoding. As shown above, both garbled schemes [Yao86, LP09] and
the [GMW87] protocol satisfy the required properties to realize our randomized encoding. Thus, if we rely
on the former protocol, the offline complexity is O(spoly(κ)) whereas the online complexity is npoly(κ)),
where s is the size of the circuit computing f , n is the input length of f and κ is the security parameter.
In contrast, if we rely on [GMW87], we get that the online and offline complexities are both O(spoly(κ)).

13M will be chosen to be proportional to the width of the circuit implementing the function f .
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Finally, our robust randomized encoding secure against adaptive input based on [HJO+15] has an offline
efficiency of O(spoly(κ)) and an online efficiency of O((d + n)poly(κ)) where d is width of the circuit
implementing the function under consideration.

6 Instance-Dependent Commitments for a Bounded Message Space

In this section we present a more efficient instance-dependent commitment scheme with a better equivo-
cation parameter (for message domains larger than {0, 1}). Formally, we say that an instance-dependent
commitment has equivocation parameter ` if the message space of the commitment scheme is {0, 1}`. In
particular, given an arbitrary integer `we show how to construct a commitment scheme with an equivocation
parameter `. Let LR be the NP language associated with relation R and let C be the circuit that on input
(x, ω) outputs 1 iff (x, ω) ∈ R. Then improving the binary equivocation parameter from Section 4.1 using
garbled schemes requires taking a new approach as it is not a matter of generating a standard garbled circuit
or a simulated one any longer.

Our idea is to use the “IPS-technique” from [IPS08] which we briefly recall for the two-party setting. In
the IPS compiler we start with a multiparty protocol among n parties that is information-theoretically secure
when a majority of the parties are honest. This is referred to as the outer protocol. This outer protocol is
simulated by the actual parties P1 and P2 via a two-party protocol secure against semi-honest adversaries
which is referred to as the inner protocol. The parties in the outer protocol are called the servers and the
actual parties P1 and P2 are called the clients. The high-level approach is to make P1 and P2 engage in n
sub-protocols ρ1, . . . , ρn where in ρj , the parties jointly compute the next message of server Sj . In typical
instantiations of this compiler the (simulated) servers themselves do not have any input. The clients P1 and
P2 share their inputs with the n servers via a verifiable secret sharing scheme, for which the servers then use
to securely compute an appropriate function over their joint inputs. Then, for every step in the computation
of server Sj , P1 and P2 securely execute the next-message functionality for the outer protocol using ρj , to
produce the output (i.e., the next message of Sj) which is secret shared between the clients.

Note that if the inner protocols are secure against malicious parties then the entire protocol is maliciously
secure as well. However, the requirements on the inner protocol is mild, namely, it requires only privacy
against semi-honest adversaries. Therefore, there needs to be a mechanism for the parties to enforce (check)
honest behavior of the other party. To handle this issue, a novel concept called watchlists was introduced by
[IPS08]. In essence, each party gets to check the other party’s behavior on a subset of the servers that are
on its watchlists. These subsets are randomly selected by both parties for which the corresponding party has
complete information of the servers in the selected subset, namely, their inputs, incoming messages from
other servers and output. With this information, each party can verify that the other party performed the
computation correctly for the servers on its watchlists. The number of servers in the watchlists should be
carefully chosen as it should not be too high to avoid compromising the privacy of the outer protocol and not
be too low to allow catching misbehavior of each party with sufficiently high probability. It was shown in
[IPS08] that in the two-party setting n = O(κ) servers is sufficient as long as t = O(n) is the watchlists size.
For more optimizations, we refer the reader to [LOP11]. We now proceed to give more details regarding
the inner protocol and watchlist mechanism to the extent that is relevant to our work. For more details and
discussion we refer the reader to [IPS08, LOP11].

To understand what computation is performed in the inner protocol we need to observe the requirements
on the outer protocol. First, the servers do not start with any input and receive their inputs from the clients
and therefore their actions are a function of their random tapes and the incoming messages. Next, if the outer
protocol is interactive then the functionality executed by the inner protocol needs to be reactive. Namely, in
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each round of the outer protocol, each server starts with a state computed from a previous round and the set
of messages received from other servers in the previous round, and outputs a state and messages to be sent
to other servers. The input for each round is secret shared among P1 and P2. The inner protocol outputs the
sharing of the state and the messages sent by each server to the other party. In order for the inner protocol
to work, parties P1 and P2 must accomplish two things regarding each server Sj :

1. The servers’ computation must be performed according to some random tape.

2. The parties must correctly carry the share of the state of Sj and the shares of messages received by
Sj from the other servers from one round to the next one, where the later messages are, in turn, the
outputs from the computations performed for the other servers in the previous round.

These two conditions are exactly what each party needs to enforce with respect to the other party in order
to prevent cheating, which is carried out using a watchlist mechanism that works as follows. Suppose P2

wants to check the behavior of party P1. Then P1 chooses random tapes r1
1, . . . , r

n
1 where rj1 is the random

tape that it uses for ρj . It also selects keys k1
1, . . . , k

n
1 to a semantically secure encryption scheme where the

share of the messages from any server to Sj , computed by P1, is encrypted using kj1 and explicitly passed
to P2. In essence, if P2 knows rj1 and kj1 it can recompute the messages that P1 should have sent in the
execution using ρj . We remark here that there are two inputs corresponding to the server in each round that
P1 uses, the share of the incoming messages and the share of the state. While the incoming messages from
the other servers can be obtained by P2 by decrypting the encryptions sent by P1 in the previous round using
key kj1, the share of the state in each round is internally maintained by P1. Nevertheless, using rj1 and kj1, P2

can obtain the share of the state that should have been computed in each round to verify the actions of P1.
Finally, P2 obtains rj1, k

j
1 corresponding t servers by running a t-out-of-n oblivious transfer where P1 acts

as the sender and sets its input as ((r1
1, k

1
1), . . . , (rn1 , k

n
1 )) and P2 uses the indices of the servers that it wants

to put on its watchlist as its input. P1 can analogously check P2.
In our construction, we only require P2 to check the actions of P1, since in our instance-dependent

commitment scheme the receiver always receives the complete information regarding P1 and can itself verify
the semi-honest behavior (of all servers). We now proceed to describe our instance-dependent commitment
scheme, starting with the requirements from our outer and inner protocols.

Outer protocol. We consider an outer protocol Π that is executed among two clients, denoted by C1, C2,
and a set of n = O(κ) servers {Sj}j∈[n], computing the following functionality:

g(ω1, ω2) = R(x, ω1 ⊕ ω2)

where ωi is client Ci’s input and the servers do not have any inputs. We require that Π UC realizes the func-
tionality f , against adaptive corruptions of up to t servers, adaptive corruption of C2 and static corruption
of C1. Additionally, just as in [IKOS09, IPS08] we need the outer protocol to be t-robust against malicious
adversaries (see Definition 2.15). The corruptions are active and the security is computational. Concretely,
we instantiate the outer protocol with the protocol of Ben-Or, Goldwasser and Micali [BGW88, AL11]. This
description slightly differs from the preceding discussion, where the outer protocol just involves n servers,
as we have two additional clients involved in the outer protocol. The only purpose of the clients is to dis-
tribute the inputs to the servers and finally collect the result of the computation. The actions of the clients
can (and will) be performed by P1 and P2.
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Inner protocol. The inner protocol is executed between the parties P1 and P2 that simulate the outer pro-
tocol. More precisely, there are n executions of the inner protocol ρ1, . . . , ρn, where protocol ρj computes
the actions of Sj . ρj is required to be secure against (passive) semi-honest adversaries tolerating a static cor-
ruption of P1 and an adaptive corruption of P2 in the OT-hybrid. We instantiate the inner protocol with the
[GMW87] semi-honest two-party protocol in the OT-hybrid where as in the previous section, we implement
the OT invocations using one-way permutations as specified. We can then relax this assumption to one-way
functions using an approach that is similar to the one used in the previous section. As mentioned above, we
require from P2 to monitor the behavior of P1 using watchlists. This is implemented by making P2 sample
indices s1, . . . , st where each si is sampled uniformly at random from [n]. Then before the execution begins,
the parties engage in an OT protocol where P1 acts as the sender and sets its input as ((r1

1, k
1
1), . . . , (rn1 , k

n
1 ))

and P2 sets its input as s1, . . . , st, where rj1 is the randomness that P1 is supposed to use in the simulation
of server Sj and kj1 is the key used by P1 to encrypt the shares of all incoming messages computed in the
inner protocol from any server to Sj , for which this ciphertext is sent to P2.

Let ΠOT
g be the combined protocol and let Π̃ be the protocol that relies on one-way functions to realize

the OT calls as in the previous section. We also consider a slightly modified algorithm for P2 that in addition
to ω2 takes as input the indices s = (s1, . . . , st) of the t servers that are to be on its watchlist. We require
the following additional properties to be satisfied by our protocol:

Semi-adaptive security. We require privacy against a (semi-honest) adversary A1 that statically corrupts
P1 and corrupts P2 post execution. In other words, we require a simulation that first generates the
view of P1 given its input and output. Next, given the input and output of P2 it can provide a view of
P2 consistent with the view of P1 (namely the transcript of messages received to and from P1 must
be consistent with the same messages in the view of P1). This property follows essentially using
the same proof as in [IPS09] which demonstrates that the combined protocol satisfies full adaptive
security in OT-hybrid if the inner protocol satisfies the same. Here, we only require semi-adaptive
security and we can relax the OT requirement to the same semi-adaptive security which is satisfied
in our instantiation. Nevertheless, for completeness, we discuss in Section 6.2 why our combined
protocol satisfies this semi-adaptive security.

Oblivious sampling. We recall the oblivious sampling property from our previous section that we need
our inner protocol to satisfy. Let S2 be the simulation corresponding to an adversary that statically
corrupts P2. We require an algorithm InvSamp that on input a view of P2, (τ, ((ω2, s), r2)) outputs
random coins r′ such that S2 on input (ω2, f(ω1, ω2) = 1) and random tape r′ outputs the view
(τ, ((ω2, s), r2)) where τ is the transcript of messages exchanged and (ω2, s) and r2 are the input and
random tape of P2. Furthermore, we require that InvSamp on input a view generated by S2 with
random tape r′ returns the same random tape r′. As discussed in Section 5.2 this property is met by
the [GMW87] protocol.

Unique randomness. We require that given the transcript τ of interaction between P1 and P2 using Π̃ and
the input ω2 of P2 then there exists at most one view for each Sj that is consistent with τ and P2’s
input ω2. Towards achieving this, we require that given a transcript of the interaction τ and an input
(ω2, s) of P2, there exists at most one value for the random tape used by P2 that is consistent with
the transcript. This is because, given τ , it holds that P1’s view is completely fixed in the transcript
τ as its input and randomness are fixed as part of the watchlist phase. Then the unique randomness
property fixes P2’s view on input (ω2, s). This, in turn, implies that the views of all emulated servers
are determined. Furthermore, the views of the servers determined this way are independent of s since
s is only used in the watchlist phase and does not affect the P1’s computations in the inner protocol.
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We next argue the unique randomness property for our protocol. Recall first that in the [GMW87]
protocol in the OT-hybrid, the only randomness required by P2 is for the input sharing which given
the share sent from P2 to P1 (that is present in the transcript) and P2’s input results in a fixed random
tape for P2. We next claim that the same property extends to the modified protocol when the OT
invocations are instantiated with a one-way permutation. This is because the receiver’s inputs and
outputs to each OT invocation have already been determined and when instantiated with the one-way
permutation, the transcript fixes the image elements used in the OT invocation which, in turn, fixes
the random tape of P2 required for that OT instance.

Next, we return to our combined protocol ΠOT
g where the parties interact in several instances of the

inner protocol that securely computes a reactive functionality. To show that the combined protocol
satisfies the same unique randomness property, we observe that given the transcript of the interaction
τ and P2’s input, the input of P2 in every instance of the inner protocol is determined. Hence, from the
unique randomness property of the [GMW87] protocol, it follows that the random tape of P2 is fixed
for each instance of the inner protocol. The only other randomness required by P2 in the combined
protocol is to obtain the watchlist information corresponding to the servers it maintains. Now, since P2

receives this information via an OT, the same argument as in the previous paragraph ensures that the
random tape of P2 is fixed given the transcript and s. Therefore, we can conclude that our combined
protocol satisfies the unique randomness property.

6.1 Our Commitment Scheme

We are now ready to describe our instance-dependent commitment scheme. The building-blocks that we
rely on in the construction are (1) a statistically-binding commitment scheme com with pseudorandom
range, where such commitments schemes can be based on one-way function [Nao91]. (2) An interactive
hashing protocol (SIH,RIH) described in Section 2.3 with parameters n1 = t log n, m1 = t log n− ct/2 and
a security parameter κIH = ct/4 where c is a constant that is determined later. We construct a commitment
scheme whose message space is in {0, 1}ct/4. Hence, to achieve an equivocation parameter ` we simply set
t = 4`/c.

Commitment algorithm Com(x,m). Consider the (semi-honest) adversary A2 that statically corrupts
P2, namely, at the beginning of an execution. At the end of the execution A2 sends (τ, ((ω2, s), r2)) to Z
where τ is the transcript of messages exchanged between P1 and P2 and (ω2, s) and r2 are the respective
input and randomness used by party P2. Let S2 be the corresponding simulator. The Com algorithm on
input statement x and message m ∈ {0, 1}ct/4 proceeds as follows:

1. Com samples ω2 from {0, 1}|ω| and s = (s1, . . . , st) from [n]t at random and emulates an execution
using S2 where the input of P2 is set to (ω2, s). S2 produces at the end a view (τ, ((ω2, s), r2)) of P2

where τ is the transcript of messages exchanged between P1 and P2. It then sends τ to the receiver.

2. The committer and the receiver engage in the interactive protocol (SIH,RIH) where the committer
plays the role of SIH on input s and the receiver plays the role RIH. Here, the receiver sends hi in
round i ∈ [r + ct/4] where hi ← 0i−11ai and ai is chosen at random from {0, 1}t logn−i where
r = m1 + κIH = t log n− ct/2 + ct/4 = t log n− ct/4. The committer replies with the message zi
in round i where zi = 〈hi, s〉 for i ≤ r and zi = 〈hi, s〉 ⊕mi for r + 1 ≤ i ≤ r + ct/4. Note that
r + ct/4 = t log n− ct/4 + ct/4 = t log n.
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We describe the entire transcript by (τ,h, z). We remark that the random tape r̃ of Com can be written
as (ω2, s, r′,h) where (ω2, s) is used as P2’s input, r′ is the random tape used to execute S1 and h is for
the interactive hashing used to incorporate m. Then the decommitment to m is the random coins r̃ =
(ω2, s, r′,h) of Com used to generate the commitment. Using r′, the receiver reconstructs the output of S2

from which it obtains the random tape r2 of P2 corresponding to input ω2. It then verifies that the simulated
view of P2 is consistent with the transcript τ from the commitment phase and that P2 outputs 1 at the end
of the execution. Finally, the receiver accepts if 〈hi, s〉 = zi for all i ≤ r and 〈hi, s〉 ⊕mi−r = zi for all
r + 1 < i ≤ t log n.

Fake commitment algorithm Com′(x). Consider a (semi-honest) adversary A1 that corrupts P1 at the
beginning of the execution. At the end of the execution, A1 first sends τ to Z where τ is the transcript of
messages exchanged between P1 and P2. Next it (adaptively) corrupts P2 and sends ((ω2, s), r2) to Z where
(ω2, s) and r2 are the respectively input and randomness used by party P2. Let S1 be the corresponding
simulator as guaranteed by the properties of Π̃. Then the fake commitment algorithm Com′ proceeds as
follows: It runs S1 until it sends the first message to the environment. Recall that S1 statically corrupts P1

and upon completion of the execution sends the transcript of the messages to the environment. Specifically,
Com′ generates a transcript τ of the interaction by running S1 where P1’s input is set to ω1 chosen at random.
It then outputs (τ,h, z) where h = (h1, . . . , ht logn) and z = (z1, . . . , zt logn) are chosen at random from
the appropriate domains.

Adapt algorithm. Recall that the Adapt algorithm needs to demonstrate that the transcript of the com-
mitment phase was generated using the honest algorithm Com and message m, upon receiving as input the
witness ω and the message m. Towards this, Adapt first computes ω2 = ω ⊕ ω1 where ω1 was the input set
for P1 by Com′. Next, it determines the indices s = (s1, . . . , st) as follows:

• Using the message m (for which the committer’s internal state needs to be explained with respect to),
Adapt computes z∗r+i = zr+i ⊕ mi for 1 ≤ i ≤ ct/4. Denote the matrix A where row i contains
the bits of hi. Next define the vector z∗ = (z1, . . . , zr, z

∗
r+1, . . . , z

∗
t logn). We solve the set of linear

equations As = z∗ to obtain s. The set of equations are always solvable since from the way h1, . . . , hr
are chosen by the interactive hashing protocol and the way hr+1, . . . , ht logn are chosen, we have that
h = (h1, . . . , ht logn) contains t log n linearly independent vectors.

Adapt, uses S1 to generate the view of P2 relative to τ (the transcript generated by Com′), by adaptively
corrupting P2 post execution, where P2’s input is set to (ω2, s). Recall that such a simulation exists following
the semi-adaptive simulation property of our combined protocol. Finally, using a view of P2, Adapt uses
the invertible sampler algorithm InvSamp to demonstrate that it was generated using the simulator S2. More
precisely, it runs InvSamp on τ to generate r′ and outputs r∗ = (ω2, s, r′,h).

Complexity. For any integer t, the commitment phase incurs a cost proportional to the communication
complexity of our combined protocol in the OT-hybrid and the communication complexity of the incorpo-
rated OT calls. If we rely on the outer and inner protocols as specified at the beginning of this section then the
communication complexity of our combined protocol and the number of OT invocations are both bounded
by O(s) + t · poly(κ, d, log s), where s is size of the circuit, d is the depth of the circuit and κ is the security
parameter. Therefore, the overall communication complexity is O(s) · κ + t · poly(κ, d, log s). If we rely
on one-way functions, then the overhead of each OT invocation is poly(κ). Therefore, for any equivocation
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parameter `, we set t = O(`) implying communication complexity O(s) ·poly(κ) + ` · (κ, d, log s). In com-
parison, both our previous constructions, the one based on garbled circuits from Section 4.1 and the more
general construction based on robust randomized encodings from Section 5.1.1, result in O(s` · poly(κ))
overhead where the communication incurs a multiplicative cost of `. In contrast, our more efficient scheme
from this section incurs an additive cost of Õ(`). We further note that the round complexity of our protocol
is O(t log n) which is incurred by the round complexity of the interactive hashing.

We next prove the following theorem,

Theorem 6.1. Assume the existence of one-way functions. Then, the above protocol is a secure adaptive
instance-dependent commitment scheme for any language in NP with communication complexity O(s) ·
poly(κ) + ` · poly(κ, d, log s), where ` is the equivocation parameter, s is the size of the circuit computing
the NP relation, d is the depth of the circuit and κ is the security parameter.

Proof: The proof follows by demonstrating the three properties from Definition 2.5. As in our previous
section, we consider a specific environment Z∗ that assigns inputs to the parties as follows. Z∗ gives P1

and P2 inputs ω1 and ω2 where ω1 is chosen at random and ω2 = ω1 ⊕ ω. At the end of the execution Z∗
outputs all the messages received from A as its output.

Adaptivity and computational hiding. To prove hiding, we need to show that for any malicious receiver
R∗ the views are indistinguishable when receiving a commitment to any two arbitrary messages m and m′.
We prove a stronger result that shows that an honestly generated commitment to a message m using Com
along with the decommitment information is indistinguishable from a fake commitment Com′ along with a
decommitment made to message m using the Adapt algorithm. This implies hiding using a standard hybrid
argument, as the fake commitment algorithm does not get the message as an input.

In more detail, we prove that the following two distributions

• D1 = {Com(x,m;Up(|x|)),m,Up(|x|)}x∈L,ω∈RL , and

• D2 = {Com′(x;Up(|x|)),Adapt(x, ω,Com
′(x;Up(|x|)),m,Up(|x|))}x∈L,ω∈RL

are computationally indistinguishable.
Recall the difference between Com′ and Com is in that Com′ generates the internal transcript of protocol

Π̃ using the simulation ofA1 while Com generates it using the simulation ofA2. Moreover, the transcript of
the commitment phase contains the transcript of the messages between P1 and P2, as well as the tuple (h, z)
where h = (h1, . . . , ht logn) and z = (z1, . . . , zt logn). Intuitively speaking, the latter tuple information
theoretically hides the messagem as the number of possible values for (s1, . . . , st) is [n]t. We next formally
prove the stronger statement that includes the decommitment information.

• Hybrid H0. This experiment is identically distributed to D1. From the description of our Com
scheme it follows that we can rewrite the distribution (and therefore the ouput of the this experiment)
as follows:

1. Pick h and s uniformly at random from their respective domains. Compute zi = 〈hi, s〉 for i ≤ r
and zi = 〈hi, s〉 ⊕mi−r for r + 1 < i ≤ t log n.

2. Pick ω2 ← {0, 1}|ω|, r′ ← {0, 1}∗. Set rZ = (ω2, s) and rS2 = r′. Compute

(τ, viewP2)← IDEALf,S2,Z∗(κ, ω, (rZ , rS2)).
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We recall here thatZ∗ is an environment that on input ω XOR-shares it to ω1 and ω2 and provides
them as input to P1 and P2. Without loss of generality, we assume here that Z∗ uses a portion of
its random tape as the share ω2 and ω1 is obtained by setting ω1 = w⊕ω2. Set the commitment
phase transcript σ = (τ,h, z).

3. Output
(
m,σ, (ω2, s, r′,h)

)
.

We remark that viewP2 contains (ω2, s) and r2, which are the input and random tape of P2, as well as
the messages sent from P1 to P2, whereas τ is the entire transcript of messages between P1 and P2.

• Hybrid H1: In this execution, we consider the honestly generated commitment to message m fol-
lowed by the decommitment that is generated differently. The decommitment contains (ω2, s, r′,h)
where r′ is the random tape used to execute S2. Instead of using the actual randomness used by S2 to
decommit, we rely on the InvSamp algorithm. More precisely, given τ from the commitment phase
and random coins r, we complete the simulation by S2 that produces input (ω2, s) and randomness
r2 for P2 and run InvSamp on input (τ, ((ω2, s), r2)) to obtain r∗. The decommitment is then set as
(ω2, s,h, r∗). More formally, the output of this experiment is:

1. Pick h and s uniformly at random from their respective domains. Compute zi = 〈hi, s〉 for i ≤ r
and zi = 〈hi, s〉 ⊕mi−r for r + 1 < i ≤ t log n.

2. Pick ω2 ← {0, 1}|ω|, r′ ← {0, 1}∗. Set rZ = (ω2, s) and rS2 = r′. Compute

(τ, viewP2)← IDEALf,S2,Z∗(κ, ω, (rZ , rS2)).

Set the commitment phase transcript σ = (τ,h, z).

3. Output
(
m,σ, (ω2, s, r∗,h)

)
where r∗ = InvSamp(τ, viewP2).

The only difference between the outputs of H1 from the previous hybrid is in Step 3 where InvSamp
algorithm. However, from the requirements of our InvSamp algorithm, it follows r∗ = r′. Therefore,
the output of H0 and H1 are identically distributed.

• Hybrid H2: Recall that Com generates the transcript in the commitment phase τ using the simulator
S2 for the underlying protocol. In this hybrid experiment we generate the transcript in the commitment
phase differently. We use the witness ω and emulate the adversary A2 in the real experiment with
environment Z∗. We modify the decommitment appropriately. Specifically, in H1 the random coins
for Com are generated by running InvSamp on the view of P2 obtained from the output of S2. On
the other hand, in this experiment we run InvSamp on the view of P2 output by A2 in the real world
experiment. More formally, the output of this experiment is:

1. Pick h and s uniformly at random from their respective domains. Compute zi = 〈hi, s〉 for i ≤ r
and zi = 〈hi, s〉 ⊕mi−r for r + 1 < i ≤ t log n.

2. Pick ω2 ← {0, 1}|ω|. Set rZ = (ω2, s) and rA2 = λ (the empty string). Compute

(τ, viewP2)← REAL
Π̃,A2,Z∗(κ, ω, (rZ , rA2)).

Set the commitment phase transcript σ = (τ,h, z).

3. Output
(
m,σ, (ω2, s, r∗,h)

)
where r∗ = InvSamp(τ, viewP2).
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The only difference between the experiments H1 and H2 is in Step 2 and indistinguishability follows
directly from the indistinguishability of the simulation by S2 since

REAL
Π̃,A2,Z∗(κ, ω)

c
≈ IDEALf,S2,Z∗(κ, ω).

• Hybrid H3: In this experiment we use the witness ω and emulate the adversary A1 instead of A2.
The rest of the computation follows exactly as in the previous hybrid. The decommitment is obtained
as in the previous hybrid with the exception that the view of P2 used to run InvSamp is obtained from
the output of A1 instead of A2. The output in this experiment is:

1. Pick h and s uniformly at random from their respective domains. Compute zi = 〈hi, s〉 for i ≤ r
and zi = 〈hi, s〉 ⊕mi−r for r + 1 < i ≤ t log n.

2. Pick ω2 ← {0, 1}|ω|. Set rZ = (ω2, s) and rA1 = λ (the empty string). Compute

(τ, viewP2)← REAL
Π̃,A1,Z∗(κ, ω, (rZ , rA1)).

Set the commitment phase transcript σ = (τ,h, z).

3. Output
(
m,σ, (ω2, s, r∗,h)

)
where r∗ = InvSamp(τ, viewP2).

The only difference between the experiments H2 and H3 is in Step 2. Namely, since A1 and A2 are
semi-honest adversaries that output the same information, we have that

REAL
Π̃,A2,Z∗(κ, ω, (ω2, ·)) ≡ REAL

Π̃,A1,Z∗(κ, ω, (ω2, ·)).

Therefore, the outputs of H2 and H3 are identically distributed.

• Hybrid H4: In this hybrid experiment we obtain the transcript in the commitment phase according
to the Com′ algorithm using simulator S1 but we incorporate the message m honestly. Namely,

1. Pick h and s uniformly at random from their respective domains. Compute zi = 〈hi, s〉 for i ≤ r
and zi = 〈hi, s〉 ⊕mi−r for r + 1 < i ≤ t log n.

2. Pick ω2 ← {0, 1}|ω|, rS1 ← {0, 1}∗. Set rZ = (ω2, s). Compute

(τ, viewP2)← IDEALf,S1,Z∗(κ, ω, (rZ , rS1)).

Set the commitment phase transcript σ = (τ,h, z).

3. Output
(
m,σ, (ω2, s, r∗,h)

)
where r∗ = InvSamp(τ, viewP2).

The only difference between the experiments H3 and H4 is in Step 2 and indistinguishability follows
directly from the indistinguishability of the simulation by S1 as

REAL
Π̃,A1,Z∗(κ, ω)

c
≈ IDEALf,S1,Z∗(κ, ω).

• Hybrid H5: In this experiment the commitment is generated exactly as in the previous hybrid H4

with the exception that instead of honestly computing h, z by first sampling s, the experiment returns
h, z where z are chosen at random. Moreover, to decommit we follow the strategy of Adapt. More
formally, the output in this experiment is:
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1. Pick h = (h1, . . . , ht logn) and z = (z1, . . . , zt logn) at random from the appropriate domains.
Following the Adapt algorithm, using message m compute z∗r+i = zr+i ⊕ mi for 1 ≤ i ≤
ct/4. Denote the matrix A where row i contains the bits of hi. Next define the vector z∗ =
(z1, . . . , zr, z

∗
r+1, . . . , z

∗
t logn). We solve the set of linear equations As = z∗ to obtain s.

2. Pick ω2 ← {0, 1}|ω|, rS1 ← {0, 1}∗. Set rZ = (ω2, s). Compute

(τ, viewP2)← IDEALf,S1,Z∗(κ, ω, (rZ , rS1)).

Set the commitment phase transcript σ = (τ,h, z).

3. Output
(
m,σ, (ω2, s, r∗,h)

)
where r∗ = InvSamp(τ, viewP2).

By construction, the output of this experiment is identically distributed to D2. We remark that the
only difference between hybrids H4 and H5 is in how (z1, . . . , zr+ct/4) and s are generated in Step
1. In H4, we first sample s uniformly at random and then set (z1, . . . , zr+ct/4) according to s and
message m, whereas in H4 we have that z are set to random strings and s is obtained later using
m. Given h, and z1, . . . , zr there is a bijective mapping from {s | hi(s) = zi ∀1 ≤ i ≤ r} to
{(zr+1, . . . , zr+ct/4) | zr+i = hr+i(s) ∀1 ≤ i ≤ ct/4}, namely the map (〈hr+1, s〉, . . . , 〈hr+ct/4, s〉).
This is because the matrix A where hi occupies row i has full rank. Now, since for any message m
we have that

{(zr+1, . . . , zr+ct/4) | zr+i = hr+i(s)∀ 1 ≤ i ≤ ct/4}
= {(zr+1 ⊕m1, . . . , zr+ct/4 ⊕mct/4) | zr+i = hr+i(s)∀ 1 ≤ i ≤ ct/4}.

This implies that H4 and H5 are identically distributed.

This concludes the proof of indistinguishability.

Perfect binding. Finally, for an invalid statement x that is not in LR, we need to show no adversarial
committer can equivocate a commitment to two different messages. We first show that if x 6∈ LR, except
for 2−O(t) fraction of possible values of s = (s1, . . . , st), it is impossible for any (unbounded) adversary to
generate the views for the servers with indices in Γ = {s1, . . . , st}. In essence, this is the soundness proof
of the outer MPC protocol. We recall that in [IKOS09] it is proven that except for 2−O(t) of challenge sets
S no adversary can produce consistent views for the servers with indices in S. A major difference between
the proof presented in [IKOS09] and what is required for our proof is in the probability distribution of S.
Specifically, in [IKOS09] it was the uniform distribution over all t subsets of [n]. However, here the subset
is generated by sampling s1, . . . , st where each si is uniformly distributed over [n]. We first establish the
soundness proof for our distribution.

As in the proof of [IKOS09], we consider an inconsistency graph G based on n views V1, . . . , Vn where
there is an edge between i and j if the views Vi and Vj are inconsistent. Another major difference between
the [IKOS09] proof and our scenario here is that the views are not completely committed to in our case.
Specifically, each server is emulated as a two-party computation between P1 and P2 and only P1’s view is
committed in the two-party computation because its input and randomness are part of the OT invocations
used for the watchlist setup. Instead, we prove “soundness” for a fixed value of P2’s input ω2 and then
conclude the proof using a union bound argument over the 2n possible values for ω2. As mentioned in our
discussion on unique randomness, given a transcript τ , P1’s input and randomness are fixed and given the
input ω2 of P2, the random tape of P2 is fixed. Therefore, the views of all servers emulated by P1 and P2

are determined given τ, ω2.
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Next, for a fixed input ω2 picked for P2 we show why soundness holds for a subset Γ chosen according
to the distribution of s. Given the transcript τ and P2’s input ω2, let Vj be the view of server Sj for j ∈ [n].
As in the [IKOS09] approach, we consider the following two cases depending on the graph G.

Case 1: There exists a vertex cover B in G of size at most t. The idea in this case is that if all the views
Vi for i 6∈ B are consistent with each other then their output in the computation must be 0. This is
because we can consider an execution of the outer protocol where the parties in B are corrupted by an
adversary and behave is such as way that the views of the parties for every (honest) party i 6∈ B results
in Vi. Recall that t-robustness property of the outer protocol ensures that if the function computed by
the outer protocol does not have the output 1 in its range then it is impossible for t corrupted parties to
make any honest party output 1. Now, since the NP statement x is not in L, we have the 1 is not in the
range of the function computed by the outer protocol. Therefore, it must follow that for every i 6∈ B,
the view Vi must have the party output 0. This means that if Γ contains some index outside B then
the adversary is caught. Since each index si assumes a value in [n], the fraction of tuples (s1, . . . , st)

for which all si ∈ B is
(
t
n

)t
= 2−Ω(t).

Case 2: The minimum vertex cover in G is of size greater than t. As in [IKOS09], we rely on the fact
that if the minimum vertex cover is at least t, then there must exist a matching of size t

2 . Therefore,
we need to compute the fraction of tuples (s1, . . . , st) such that there exists no i, j such that (si, sj) is
an edge in the matching. Let the indices of the matching edges be (i1, it/2+1), . . . , (it/2, it). We now
have the following claim:

Claim 6.1. The fraction of tuples such that |{s1, . . . , st/2}∩{i1, . . . , it/2}| < t2

8n is at most e−
t4

128n2 =

2−O(t2).

Proof: Set the random variable Xj to be 1 if ij is chosen among s1, . . . , st/2. Now, since each si
is chosen uniformly at random we have that Pr[Xj = 1] = t

2n . By the linearity of expectations it
follows that

E[

t/2∑
j=1

Xi] =
t2

4n
.

Using the Chernoff-Hoeffding inequality we have that

Pr

 t/2∑
j=1

Xj ≤
t2

8n

 ≤ Pr

∣∣∣ t/2∑
j=1

Xj −
t2

4n

∣∣∣ ≥ t2

8n

 ≤ e− t4

32n2 .

Now, conditioned on there being at least t2

8n = O(t) vertices from i1, . . . , it/2 in s1, . . . , st/2, the
probability that all indices st/2+1, . . . , st miss the O(t) matched vertices in it/2+1, . . . , it is at most

(1− O(t)
n )t/2 = e−Ω( t

2

n
) = 2−Ω(t).

We can conclude that for a fixed value of ω2, the fraction of possible tuples that an adversary can reveal
as a decommitment is at most 2−Ω(t). We set c to be a constant such that this fraction is bounded by 2−ct.
Since t = O(n), we set n so that ct > 2|ω|. Therefore, by using a union bound on every possible value
of ω2 we get that the total fraction of tuples for which there exists some ω2 that can be revealed in the
decommitment is bounded by 2−ct+|ω| < 2−ct/2.
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Next, given a transcript τ submitted in the first message of the commitment phase, let S denote the set
of possible tuples s = (s1, . . . , st) that can be revealed. Then, from the preceding argument we have that
|S| < 2t logn−ct/2. We show now that m is bound to the commitment using the binding property of the
interactive hashing protocol.

Recall that the binding property (see Proposition 2.1) says that if the message space is {0, 1}n1 and
an adversary can access a set S of at most 2m1 elements, then the probability that it can decommit to two
elements from S is at most 2−κIH . Since m1 = t log n, n1 = t log n − ct/2 and κIH = ct/4, it follows
that except with probability 2−Ω(κIH) = 2−Ω(t), the adversarial committer cannot reveal two values for s in
S. Therefore, with high probability there exists only one value for s it can reveal in the decommitment and
there exists at most one value of m that it can reveal, since the bits of m are determined by zr+i ⊕ hr+i(s)
(for j ∈ [ct/4]).

We conclude using a union bound that the overall probability that there is more than one possible value
that the adversary can decommit is at most 2−Ω(t).

6.2 Semi-Adaptive Security of the [IPS08] Protocol

We briefly discuss why our protocol satisfies privacy against an adversary that statically corrupts P1 and
adaptively corrupts P2 post execution. Recall that our combined protocol, P1 and P2 emulate an outer
protocol. Simulating P1 is easy, however, since P2 receives as input the set of indices to s, we require our
simulation to be able to, in essence, “adaptively” simulate the views of the servers in the emulation of the
outer protocol. We argue below that we will not require the outer protocol to be adaptively secure.14

To show this we rely on the fact that the view of P1 does not bind the views of the servers in the
emulation. Simulation can then be achieved by relying on the simulation of our inner protocol [GMW87]
that is secure against a similar adversary that statically corrupts P1 and adaptively corrupts P2 post execution.
Recall that the inner protocol ρj computes a reactive functionality that emulates the actions of server Sj
where it proceeds in phases such that the inputs in a phase corresponding to ρj may depend on the outputs
of all instances ρ1, . . . , ρn from the previous phase. The first observation we make is that in every instance
ρj and every phase, the inputs of server Sj are XOR-shared as inputs to P1 and P2 and the outputs are
XOR-shared as well and the final output of the server is transmitted only to party P2. This means that the
view of P1 for all instances does not bind the view of the servers as its input and output in every instance
are simply random strings. Semi-adaptive security requires simulating a static corruption P1 followed by an
adaptive corruption of P2 post execution. By relying on the simulation of [GMW87], we can simulate P1

in our combined protocol, by simply providing its input and output for every instance as a random string.15

Next, upon completion of the execution, P2 is corrupted and upon receiving the inputs w2, s, the simulation
must generate P2’s view. The high-level idea here is that since none of the servers views are bound we
first generate the views for all servers in the outer protocol using the respective inputs ω1 and ω2 of P1 and
P2. Next, we “map” the computation of server Sj to the instance ρj . Namely, the input and output of each
computation step is the input and output of each step in the reactive computation. More precisely, given
the input and output of P1 that have been already fixed as part of simulating P1 during the execution, we
respectively XOR it with the actual input and output of the server in that step to obtain the input and output
of party P2. Then for each step we rely on the (semi-honest) adaptive simulation of the [GMW87] protocol
to generate the view of P2 in that step using the input and output. In this manner, we can obtain the view of

14As pointed out in [AL11], the protocol of [BGW88] is in fact not known to be adaptively secure and only admits exponential-
time simulation of adaptive adversaries.

15The first execution, however, requires P1’s actual input which is provided and can be used directly.
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P2 for all steps in the reactive computation using ρj for every j.

Remark 6.2. We remark that the proof of security of the protocols in [IPS08] against malicious parties
crucially relies on the adaptive security of the outer protocol. This is because during the execution of their
protocol when a malicious party deviates in an instance of the inner protocol corresponding to the actions of
a particular server, the server is considered corrupted. As this can happen at any point during the protocol
the security of the outer protocol is required to be secure against adaptive corruptions. In contrast, here
the proof of indistinguishability relies on the simulation of semi-honest adversaries emulated by the real
and fake commitment algorithm. Furthermore, we require only static corruption for the outer protocol as
at the time the views of the servers are determined (by running the MPC-in-the-head for the outer protocol)
the set of corrupted parties are already known. For an honest commitment, the input message determines
the corrupted parties and for the fake commitment, the views are determined by the Adapt algorithm which
knows the message and therefore the set of corrupted parties.

7 Constructing Adaptive Zero-Knowledge Proofs

We describe next how to construct adaptive zero-knowledge proofs for all NP languages based on our
instance-dependent commitment schemes from Sections 4, 5.1.1 and 6. For simplicity we focus on honest
verifier zero-knowledge proofs, which can be transformed to zero-knowledge proof using standard tools.

7.1 Adaptive Zero-Knowledge Proofs with Soundness Error 1/2

Let x denote a statement to be proven by the prover relative to some language L associated with relation
R. Then the prover generates a garbled circuit C that takes (x, ω) and outputs 1 only if (x, ω) ∈ R, and
commits to this garbling and the secret key sk using the commitment scheme from Figure 2. Next, upon
receiving a challenge bit b from the verifier, the prover continues as follow. If b = 0 then the prover
decommits to the commitment of the secret key and the garbled circuit for which the verifier verifies the
correctness of garbling. Else, if b = 1 then the prover decommits a “path” in the garbled circuit and provides
an encoding for ω that evaluates the path to 1. Namely, we consider the concrete garbling construction
by [Yao86, LP09] for which each evaluation induces a path of computation, where each gate evaluation
requires the decryption of a single ciphertext out of four ciphertexts, where this ciphertext can be part of the
decommitted information handed to the verifier when b = 1. The verifier then evaluates the garbling on this
path and checks that the outcome if 1. We note that it is not clear how to generalize this property (where
only part of the garbled circuit is decommitted) nor the following reconstructability property, for the general
notion of garbled schemes.

Let Garb = (Grb,Enc,Eval,Dec) denote a garbling scheme as in Section 2.5. Then, we will require one
more property that Garb should satisfy:

Reconstructability: Given any path of computation in the garbled circuit it is possible to reconstruct the
rest of the garbled circuit as being honestly generated by Grb.

We note that the garbling scheme described in [LP09] meets this notion. Specifically, it is possible to
initially honestly generate a pair of labels per wire without assigning their meaning, encrypting only one
label per gate (known by the active key). Next, upon receiving the witness ω, the bit values associated with
each label are determined, and the rest of the ciphertexts for each gate can be completed.

The formal description of our protocol can be found in Figure 6.
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Adaptive Zero-Knowledge Proof for Any Language L ∈ NP

Building block: Instance-dependent commitment scheme Com for language L.

Inputs: A circuit C as above and a public statement x ∈ L for both. A witness ω for the validity of x
for the prover P .

The protocol:

1. P → V : P generates (C̃,dk, sk) ← Grb(1κ,C) and sends Com(C̃,dk) and Com(sk) to the
verifier (where the commitments are computed using the real commitment algorithm).

2. V → P : The verifier sends a random challenge bit b← {0, 1}.

3. P → V :

• If b = 0 then the prover decommits to C̃,dk and sk. The verifier accepts if the decommitments
are valid and that the garbling was honestly generated.

• If b = 1 then the prover decommits to dk and further provides the decommitment for the
encoding of ω and the path of computation in the commitment to C̃ that is evaluated during the
computation of Eval(C̃, ω̃). Namely, the prover invokes ω̃ := Enc(sk, ω) and then decommits
to the encoding of ω̃ within the commitment of sk (recall that this is possible due to the
decomposability of the garbled scheme), as well as the path of computation. The verifier then
invokes ỹ := Eval(C̃, ω̃) and accepts if Dec(dk, ω̃) equals 1.

Figure 6: Adaptive zero-knowledge proof for any language L ∈ NP

Theorem 7.1. Assume the existence of one-way permutations. Then, the protocol presented in Figure 6 is an
adaptively secure honest verifier zero-knowledge proof for any language in NP with soundness error 1/2.

Using our instance-dependent commitment scheme from Section 4.1 we note that the communication
complexity of our protocol is O(κs2) where κ is the security parameter and s is the size of C.

Proof: Proving completeness is straightforward, as an honest prover always has a convincing strategy.
Specifically, it can both properly decommit to a valid garbling and secret key as well as the input labels
that evaluates the garbled circuit to 1. Next, proving soundness is based on the binding property of the
underlying commitment schemes. Specifically, in case x /∈ L, then a corrupted prover cannot equivocate the
commitment. Moreover, by the correctness property of the garbling scheme, it holds that the prover cannot
answer both possible challenges. As that implies that it constructed the garbled circuit property and that it
has an encoding of an input that evaluates the garbling to 1. This argument is similar to the argument made
in the proof of Theorem 4.1.

To prove the zero-knowledge property we need to construct a simulator S that simulates the view of
the (honest) verifier. More formally, simulator S picks a random bit b and continues as follows. In case
b = 0 then S plays the role of the honest prover throughout the entire protocol. On the other hand, in case
b = 1 then the simulator constructs a fake garbled circuit by running SimGC(1κ,C,y) and then commits
to [SimGC(1κ,C, 1)]1 and [SimGC(1κ,C, 1)]3 using the fake commitment algorithm. Finally, it commits
to [SimGC(1κ,C, 1)]′2 using the fake commitment algorithm where [SimGC(1κ,C, 1)]′2 is a complete set
of input labels that involves the second outcome of the simulated garbler and randomly chosen labels of
the appropriate length. Upon receiving the bit 1 from the verifier, the simulator completes the execution
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as would the honest prover do, decommitting to . Then, the indistinguishability of the real and simulated
views follows from the hiding property of the instance-dependent commitment scheme for x ∈ L and the
privacy of the garbling scheme, where the difference between the executions is in case that b = 1 such that
the simulator computes a simulated circuit and uses the fake commitment algorithm.

Finally, to prove adaptivity we define the randomness presented by the simulator upon corrupting the
prover and receiving the witness ω for x. That is, in case b = 1 the simulator must present randomness
demonstrating that it committed to C̃,dk and sk using the real commitment algorithm rather than commit-
ting to the simulated garbling using the fake algorithm. This can be achieved as follows. The simulator first
reconstructs the garbled scheme, viewing the garbled circuit as honestly generated (this follows efficiently
from the reconstructability property). Next, the simulator invokes the Adapt algorithm in order to gener-
ate randomness that is consistent with the reconstructed garbled circuit. By the security of the commitment
scheme, the verifier’s views in the real and simulated executions are computationally indistinguishable.

7.2 Linear-Rate Adaptive Zero-Knowledge Proofs

In the next section we will rely on the protocol of [IKOS09] to construct an adaptively secure zero-knowledge
protocol with optimal efficiency, we briefly recall this protocol below. Given an NP language L with the
corresponding relationR, let f be the following (n+ 1) input functionality:

f(x, ω1, . . . , ωn) = R(x, ω1 ⊕ · · · ⊕ ωn).

In addition, let Πf be an n-party protocol which realizes f with perfect correctness, perfect t-privacy against
semi-honest adversary and t-robustness against malicious parties. Furthermore, we will require one more
property that Πf should satisfy:

Reconstructability: Given any set of t indices i1, . . . , it and corresponding views Vi1 , . . . , Vit that are
consistent with an execution using Πf , then using a witness w ∈ Rx it is possible to reconstruct
views for all the remaining parties, namely Vj for j 6∈ {i1, . . . , it}, such that V1, . . . , Vn are pairwise
consistent (with respect to x and Πf ). In essence, this set of views demonstrates an execution using
honest parties.

It can be easily verified that the semi-honest protocol variant of [BGW88] satisfies this notion as it simply
involves reconstructing secret shares corresponding to the Shamir secret sharing scheme. Namely, given
shares of t specific parties and a secret s, we need to be able to find consistent shares for all parties that
demonstrate that the shares were honestly generated from s. Nevertheless, for our protocol to be secure we
need to rely on the stronger version of [BGW88] that is secure in the presence of malicious adversaries.
This is because we require our protocol to satisfy t-robustness. In Appendix B we demonstrate that for a
variant of the proceeding protocol presented in [AL11] we can achieve reconstructability. More precisely,
we will rely on a protocol that secure only against t < n/4 corruptions, as we only require t = O(n),
implying that we do not need to rely on the strongest possible setting where any minority of the parties can
be corrupted. Roughly speaking, we can achieve reconstructability as it only relies on being able to achieve
reconstructability for a verifiable secret sharing scheme with the same parameters. In our protocol, t is set
to O(κ) and n = O(t). We now describe the zero-knowledge protocol in the commitment-hybrid model.

1. The verifier picks t distinct parties i1, . . . , it ∈ [n] and commits the indices to the prover.

2. The prover chooses ω1, . . . , ωn ∈ {0, 1}|ω| at random subject to ω1 ⊕ · · · ⊕ ωn = w. It then emulates
the execution of Πf on input (x, ω1, . . . , ωn) and prepares the views V1, . . . , Vn of the n parties. It
finally commits to each of the n views separately.
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3. The verifier decommits to the indices i1, . . . , it committed to in the first message.

4. The prover decommits the views of players with indices i1, . . . , it, namely, Vi1 , . . . , Vit .

5. The verifier accepts if and only if the prover successfully opens t views that are consistent with each
other and the players in each of these views output 1.

It was shown in [IKOS09] that this protocol is a zero-knowledge proof in the commitment-hybrid model.
Informally, correctness follows the fact that all the n views can be constructed honestly given the witness ω,
and therefore any t subset of parties can be convincingly revealed. Furthermore, soundness follows from the
t-robustness of the protocol Πf and the zero-knowledge requirement follows from the fact that protocol Πf

is t-private. To realize the commitment functionality we simply rely on a statistically hiding commitment
scheme for the commitments made by the verifier in the first message, whereas the commitments made by
the prover in the second message are realized using a statistically binding commitment scheme.

We can easily modify the same protocol to obtain an adaptive zero-knowledge proof by simply using our
instance-dependent commitment scheme to compute all the commitments made by the prover. Complete-
ness, soundness and zero-knowledge follows as before with the exception that we need to additionally show
that we can admit adaptive prover corruption when simulating a malicious verifier. This essentially entails
revealing all the views V1, . . . , Vn consistently and not just the t views requested by the malicious verifier.
The hardest corruption case to prove is when the prover is post execution corrupted. In this case, given
the views Vi1 , . . . , Vit revealed in the execution, we need to reconstruct consistent views for the remaining
parties. This is possible from the reconstructability of the protocol Πf .

We next evaluate the communication complexity of our protocol. We require to commit to n views using
the instance-dependent commitment scheme with equivocation parameter set to the size of the maximum
view maxi |Vi|. To achieve equivocation of t̂ bits, the communication complexity of our instance-dependent
commitment scheme (including decommitments) isO(s) ·poly(κ)+ t̂ ·poly(κ, d, log s). Therefore, our total
communication complexity of our adaptive zero-knowledge proof is

n∑
i=1

[
O(s) · poly(κ) + |Vi| · poly(κ, d, log s)

]
= nO(s) · poly(κ) + CΠpoly(κ, d, log s)

where CΠ is the communication complexity of Πf . Therefore, we have the following theorem.

Theorem 7.2. Suppose that Πf realizes functionality f with perfect t-robustness and perfect t-privacy (in
the semi-honest model) where n = ct for some constant c > 1. Then there exists an adaptive zero-knowledge
proof for the NP relation R with soundness error 2−t and communication complexity O(st) · poly(κ) +
CΠpoly(κ, d, log s) where s is the size of the circuit that verifies the NP relation and d is the depth of the
circuit.

To obtain our most efficient construction, we rely on the variant of [BGW88] presented in [AL11] com-
bined with the modification of the circuit presented in [IKOS09]. Given an NP relationR, this modification
allows us to assume (without loss of generality) that the input to the circuit verifying theR is of size s where
it includes the intermediate values in all the wires in the computation using the real witness ω in addition
to ω itself. Such a circuit will have the size O(s) and depth O(1) and the corresponding communication
complexity of the MPC protocol Π will be CΠ = O(ns)poly(κ). We plug this in our main theorem and set
t = ω(log κ) for negligible soundness. Therefore, we have the following corollary,

Corollary 7.3. Assume the existence of one-way functions. Then, for any NP relationR that can be verified
by a circuit of size s (using bounded fan-in gates), there exists an adaptive zero-knowledge proof with
communication complexity O(s) · poly(κ, log s).
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One could optimize the parameters even further by relying on more efficient multiparty protocols, such
as the ones presented in [DI06]. However, since committing to any message using any of our instance-
dependent commitment scheme requires Ω(spoly(κ)) bits of communication, we will not be able to obtain
a “constant-rate” ZK using our technique and hence do not pursue such optimizations.
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A Adaptive Security

In the following, we present the notion of two-party adaptive security [Can00].

Execution in the real model. Each party Pi begins with an input xi ∈ {0, 1}∗, a random tape ri and
the security parameter κ. An adaptive real-life adversary A is a probabilistic polynomial-time interactive
Turing machine that starts with a random tape rA and security parameter κ. The environment Z is another
probabilistic polynomial-time interactive Turing machine that starts with an input z, a random tape rZ and
the security parameter κ.

At the outset of the protocol, A receives some initial information from Z . Next the computation con-
tinues in rounds. Before each round, if there exists an uncorrupted party, the adversary A might choose to
corrupt one of the parties or both. Next, A activates the party that is supposed to be active in this round
according to the protocol. At each round, A sees all messages sent by the parties (that is, the conversation
between the parties is visible to the adversary).

Upon corrupting a party, the adversary learns its input and its random tape. In addition, Z learns the
identity of the corrupted party and hands some auxiliary information toA. If the adversary is malicious, once
a party is corrupted, it follows the adversarys instructions from this point. If the adversary is semi-honest,
the corrupted party continues following the protocol. At the end of the computation, the parties locally
generate their outputs. Uncorrupted parties output their output as specified by the protocol and corrupted
parties output a special symbol⊥. In addition the adversary outputs an arbitrary function of its internal state.
(Without loss of generality, this output consists of all the information seen in the execution: the random tape
rA, the information received from the environment and the corrupted parties views of the execution.

Next, a postexecution corruption process begins. Z learns the outputs. Next, Z and A interact in at
most two rounds, where in each round Z can generate a “corrupt P1” or “corrupt P2” message and hand it
to A. Upon receipt of this message, A hands Z the internal state of the party. At the end of this process, Z
outputs its entire view of the interaction with the parties and A.

Let REALΠ,A,Z(κ, x0, x1, z, r) the output of Z on input z, random tape rZ and a security parameter
κ upon interacting with A and parties P0, P1 that engage in protocol Π on inputs rA and (x0, r0), (x1, r1),
respectively, where r = (rZ , rA, r0, r1). Let REALΠ,A,Z(κ, x0, x1, z) denote a random variable describing
REALΠ,A,Z(κ, x0, x1, z, r) where the random tapes are chosen uniformly. Let REALΠ,A,Z denote the
distribution ensemble:

{REALΠ,A,Z(κ, x0, x1, z)}x0,x1,z∈{0,1}∗,κ∈N.

Execution in the ideal model. Each party Pi has input xi and no random tape is needed. An adaptive
ideal-process adversary S is a probabilistic polynomial-time interactive Turing machine that starts with a
random tape rS and the security parameter κ. The environment Z is another probabilistic polynomial-time
interactive Turing machine that starts with an input z, a random tape rZ and the security parameter κ. In
addition, there is an incorruptible trusted party T . The ideal process proceeds as follows:

First corruption phase: S receives some auxiliary information from Z . Next, S proceeds in at most two
iterations, where in each iteration S may decide to corrupt one of the parties. Once a party is corrupted,
its input becomes known to S. In addition,Z learns the identity of the corrupted party and hands some
auxiliary information to S.

Computation phase: In the semi-honest setting, uncorrupted parties forward their input to the trusted party.
In the malicious setting, corrupted parties hand T the values chosen by S. Let y0, y1 be the values
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handed to T . T computes f(y0, y1) and hands P1 the value f(y0, y1)1 and P2 the value f(y0, y1)2.

Second corruption phase: S continues to another corruption phase, where it might choose to corrupt one
of the parties based on its random tape and the information it gathered so far. Once a party is corrupted,
S learns its input, Z learns the identity of the corrupted party and hands S some auxiliary information.

Output: Each uncorrupted party Pi outputs f(y0, y1)i. Corrupted parties output a special symbol ⊥. The
adversary S outputs an arbitrary function of its internal state. Z learns all outputs.

Post-execution corruption phase: After the outputs are generated, S proceeds in at most two rounds with
Z , where in each round,Z can generate a “corrupt Pi” message and hand it to S. For any such request,
S generates some arbitrary answer and it might choose to corrupt any of the parties. The interaction
continues until Z halts with an output.

We denote by IDEALf,S,Z(κ, x0, x1, z, r) the output of Z on input z, random tape rZ and security param-
eter κ upon interacting with S and parties P0, P1, running an ideal process with inputs rS and x0, x1, re-
spectively, where r = (rZ , rS). Let IDEALf,S,Z(κ, x0, x1, z) denote a random variable describing IDEAL
f,S,Z(κ, x0, x1, z, r) when the random tapes rZ and rS are chosen uniformly. Let IDEALf,S,Z denote the
distribution ensemble:

{IDEALf,S,Z(κ, x0, x1, z)}x0,x1,z∈{0,1}∗,κ∈N
Then we define security as follows.

Definition A.1. Let Π be a protocol computing a functionality f . We say that Π securely computes the
functionality f in the presence of adaptive semi-honest/malicious adversaries if for every probabilistic
polynomial-time adaptive semi-honest/malicious real-life adversary A and for every environment Z , there
exists a probabilistic polynomial-time semi-honest/malicious ideal adversary S , such that:

REALΠ,A,Z
c
≈ IDEALf,S,Z .

Adaptive zero-knowledge. As explained in [LZ11], when considering zero-knowledge as a special case
of secure computation, it is most natural to define an adaptive zero knowledge proof of knowledge func-
tionality of the form FR ((x, ω), λ) 7→ (−, (x, b)) where b = 1 if R(x, ω) = 1 and b = 0 if R(x, ω) = 0.
However, since the goal here is to design adaptive zero-knowledge Lindell and Zarosim considered a sim-
plified definition that is more in line with the standard setting of zero-knowledge proof systems (that are not
necessarily proofs of knowledge).

Recall that in the standard setting of zero-knowledge, indistinguishability of the real world from the
ideal world is only required for instances x ∈ L. For these instances the trusted party always returns 1, and
therefore the trusted party can be omitted from the ideal world.

In this case the real-life model is as defined above where the input of the verifier is an instance x ∈
{0, 1}κ (where κ is the security parameter) and the input of the prover is a pair (x, ω) ∈ {0, 1}κ×{0, 1}p(κ)

for a polynomial p(·). The output of the uncorrupted prover is an empty string and the output of the uncor-
rupted verifier is a bit specified by the protocol.

In the ideal process, the ideal process adversary S receives the instance x that is guaranteed to be in the
language as input and interacts with the environment and corrupted parties. Thus, only 3 stages are needed:
first corruption stage, output stage and postexecution corruption stage (since there is no computation stage,
there is also no need for a second corruption stage).
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The distribution REALΠ,A,Z denotes the distribution ensemble

{REALΠ,A,Z(κ, x, ω, z)}x∈L,ω∈Rxz∈{0,1}∗,κ∈N

and IDEALf,S,Z denote the distribution ensemble:

{IDEALZK
f,S,Z(κ, x, ω, z)}x∈L,ω∈Rxz∈{0,1}∗,κ∈N.

Definition A.2. Let L be a language. We say that 〈P,V〉 is an adaptive zero-knowledge proof system (AZK)
for L if 〈P,V〉 is an interactive proof system for L and for any PPTreal-life adversary A and any PPT
environment Z , there exists a probabilistic PPT adaptive ideal-process adversary S, such that

REALΠ,A,Z
c
≈ IDEALZK

f,S,Z .

B On Reconstructability of the [BGW88] Scheme for n ≥ 4t+ 1

In this Section, we argue the reconstructability of the [BGW88] scheme. We will use the variant of the
[BGW88] scheme that allows active corruptions of up to t < n/4 parties. The reason for relying on this
variant is that it admits a simpler protocol for computing the “product” of shared values in the presence of
malicious adversaries, as shown in [AL11]. Roughly speaking, when n ≥ 4t+1 it is possible to leverage the
fact that a Reed Solomon code with parameters (n = 4t+ 1, k = 2t+ 1, d = 2t+ 1) allows the correction
of up to t errors.

We briefly recall the [BGW88] protocol at a high-level. In an initial phase, all parties share their private
inputs using a t-out-of-n verifiable secret sharing (VSS) protocol. They then evaluate the circuit gate by
gate, where given the shares for the input wires of a gate they compute the shares of the output. For every
addition gate, this computation simply entails each party adding their shares locally. Multiplication on the
other hand requires more effort. Typically the shares all lie on a polynomial of degree t in some finite field
and this property needs to be maintained. For addition gates, adding the shares maintains this property. The
same property holds for multiplication-by-a-constant gates. In essence, any linear function can be evaluated
this way, where after the initial phase all computation are local, and in the final step the parties exchange the
shares of the output wires and each party reconstructs the output.

However, when multiplying two shared values by simply multiplying the corresponding shares, then
the resulting shares would lie on a polynomial of degree 2t. Nevertheless, when considering only passive
adversaries the parties can locally multiply their shares and then execute a “degree-reduction” step. In this
step the parties jointly evaluate A × s, where A is a fixed matrix and s is the vector of shares, to obtain
shares that will lie on a polynomial of degree t and reconstruct to the same secret as s. In essence, using the
shares as private inputs, the parties compute the linear function A · s. As mentioned before such functions
can be computed securely (even in the active security case).

The approach needed for multiplication gates in the malicious case is slightly modified. It suffices to
argue how one can compute a matrix multiplication on the shares. As in the passive case, the parties first
locally compute the product of their shares and then secret share these products using a VSS scheme. They
then multiply the local shares with A to obtain shares of the output for which they share with all the parties.
Given the shares of each coordinate in the output each party tries to reconstruct the output. In the passive
case, this is simple as all parties are semi-honest. However, in the malicious case there could be up to
t incorrect shares for each coordinate in the output vector. In this case, the parties rely on Reed-Solomon
codes to correct the errors. A subtle point here is that the initial shares are themselves products of shares that
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lie on t-degree polynomial which means that the product lies on 2t-degree polynomial. Hence, one needs to
verify if the error correction threshold is maintained to obtain the Reed-Solomon code. Specifically, since
there are n = 4t + 1 shares of a Reed Solomon code with distance 2t + 1, the maximum number of errors
that can be corrected is 4t+1−(2t+1)

2 = t errors which is the maximum number of corruptions and therefore
the protocol follows.

Given this variant of the [BGW88] protocol, we argue that it satisfies reconstructability. Recall that
reconstructability requires that given any set of t indices i1, . . . , it and the corresponding views Vi1 , . . . , Vit
that are consistent within an execution of protocol Πf , then using a witness w ∈ Rx it is possible to
reconstruct the views for all the remaining parties. Namely, Vj for j 6∈ {i1, . . . , it}, such that V1, . . . , Vn
are pairwise consistent (with respect to x and Πf ). In essence, this set of remaining views demonstrates
an execution using honest parties. We remark that reconstructability as stated here is simpler than a more
general variant that requires to generate views of the remaining honest parties even after t parties have been
maliciously corrupted. In our case, the inital t views are views of parties following the protocol honestly.

Given the witness w we observe that it is possible to obtain the actual values transmitted in every wire
in the circuit by simply computing the circuit. Now, since the computation proceeds gate by gate, we can
think of the view Vi as comprising of sub-views describing the messages exchanged in the computation of
each gate. The (sub-)view for each gate for party Pi contains its input, which are the shares corresponding
to the values of the input wires, the shares corresponding to the value in the output wire and the messages
exchanged between the parties. If the output of a gate is fed as input to a subsequent gate, the share is
carried forward. Therefore, it suffices to show that it is possible to extend the (sub-)view corresponding to
each gate in a consistent way to the remaining parties. We demonstrate this for each gate where we show
that if we have the output shares corresponding to all parties, and the actual values for the input and output
wires of that gate, then we can generate the inputs shares to all parties, that will be consistent with an honest
behavior and with views Vi1 , . . . , Vit . Then since the output shares for all parties corresponding to each
output wires are in each view Vij we can backtrack gate by gate and obtain input shares for each wire. This
process ends with giving input shares to all parties corresponding to the input wires of the circuit. The shares
corresponding to the input wires were computed using the sharing phase of the VSS protocol. To complete
the reconstructability we show that the views from the VSS sharing phase can be extended as well.

It follows from the preceeding discussion that it suffices to demonstrate reconstructability for addition
gates, multiplication gates and the VSS secret sharing protocol. We provide the reconstruction procedure
without arguing correctness. Given the actual values of each wire and the views of the t parties the recon-
struction is unique. There are special values α1, . . . , αn in the field F where αi is associated with player Pi.
All parties know this value corresponding to every other player.

Reconstructability of addition gates: Recall that the addition gates are computed internally by simply
adding the shares corresponding the input wires. Let the output value be c and the two input values be a
and b where a + b = c. In the view Vij for computing an addition gate, there will be the input shares
(aij , bij ) corresponding to the two input wires and all shares (c1, . . . , cn) corresponding to the output wire
that reconstruct to the value c. We need to extend the views of the t parties to the remaining parties. This
is easily achieved by first computing the unique degree-t polynomial g1(x) such that g1(αij ) = aij for all
j ∈ [t] and g1(0) = a and then setting the input shares corresponding a for the remaining parties as g1(αj)
for party Pj . Analogously, g2(x) can be computed for input wire carrying the value b. It will follow that if
ci’s were computed correctly, i.e. corresponding to some polynomial g3(x) such that g3(αj) = cj for every
j, then reconstruction will be correct.
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Reconstructability of the VSS secret sharing protocol. We need to show that given the views of parties
Pi1 , . . . , Pit for the secret-sharing phase of the VSS protocol we can reconstruct the views of the parties.
We describe the protocol below and deliberately leave the conflict resolution part as we require to only
demonstrate reconstruction when we have views consistent with honest parties.

Recall that in the VSS protocol, party Pi proceeds as follows:

1. It receives two polynomials fi(x) and gi(x) from the Dealer.

2. It sends fi(αj) and gi(αj) to Pj for all j ∈ [n].

3. It outputs fi(0) as its share.

The functions fi, gi are chosen by the Dealer so as to satisfy S(x, αi) is the function fi(x) and S(αi, x) is
the function gi(x) for every i, where S(x, y) is a bivariate polynomial in degree t and S(0, z) is the degree
t polynomial q(z) where q(0) is the secret s.

The view of party Pij contains fij (x), gij (x), (f1(αij ), . . . , fn(αij )) and (g1(αij ), . . . , gn(αij )). Given
fi1(0), . . . , fit(0) and the secret s, it is possible reconstruct the degree-t polynomial q(z) as q(i) = fi(0)
and q(0) = s. Given the t polynomials fi1(x), . . . , fit(x) and q(z) it is possible to reconstruct the unique
t-degree bivariate polynomial S. From S we can reconstruct the view of all parties.

Reconstructability of multiplication gates: As mentioned before, multiplication involves the following
steps for party Pj with input shares aj , bj :

1. Compute cj = aj · bj .

2. Use the VSS secret sharing protocol to share cj with all parties. Let gj(x) be the degree-2t polynomial
where Pi receives gj(αi) and gj(0) = cj . Notice that the secret sharing uses a degree 2t instead of
t. This is because the values cj lie on a degree 2t polynomial if the aj’s and bj’s lie on a degree t
polynomial.

3. After receiving g1(αj), . . . , gn(αj), compute A · vj were vj = (g1(αj), . . . , gn(αj)) and send it to all
parties.

4. After receiving (v1, . . . , vn), apply Reed Solomon decoding to correct all errors in vectors ui for every
i where ui is the vector containing the ith entries of v1, . . . , vn (in other words, it is the ith column in
the matrix B where B contains vj in the jth row). Let the corrected vectors be u∗i for every i ∈ [n].

5. Apply the share-reconstruction to each vector u∗i to obtain ci and then apply the share-reconstruction
once again on (c1, . . . , cn) to obtain c.

From the preceding description, we have that the view of partyPij contains aij , bij , (g1(αij ), . . . , gn(αij )),
(v1, . . . , vn) and c the value in the output wire. Given the vectors (v1, . . . , vn) and A it is possible to obtain
gi(αj) for every i and j by simply computing A−1 · B and checking the entry (i, j) where recall B is the
matrix with vi in the ith row. These values will define unique polynomials gj for the remaining n− t parties
from which cj values can be computed as gj(0). Next given aij and bij for every j ∈ [t] and the actual
values in the wires a and b we can compute the remaining shares aj and bj as in the case with addition by
constructing the unique degree t polynomials g and g′ such that g(αij ) = aij and g′(αij ) = bij for every
j ∈ [t] and g(0) = a and g′(0) = b.
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We remark here that the Reed Solomon decoding will always result in a syndrome of all 0’s vector
with no errors as reconstruction is required only when all parties are honest. Therefore, producing a view
for the decoding procedure will be similar for the passive adversary case where we reconstruct a t-degree
polynomial and output the value at 0.
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