
Non-Interactive Verifiable Secret Sharing
For Monotone Circuits

Ge Bai1, Ivan Damg̊ard2, Claudio Orlandi2, and Yu Xia1

1 IIIS, Tsinghua University?

2 Aarhus University

Abstract. We propose a computationally secure and non-interactive verifiable secret sharing scheme
that can be efficiently constructed from any monotone Boolean circuit. By non-interactive we mean that
the dealer needs to be active only once, where he posts a public message as well as a private message
to each shareholder. In the random oracle model, we can even avoid interaction between shareholders.
By efficient, we mean that we avoid generic zero-knowledge techniques. Such efficient constructions
were previously only known from linear secret sharing schemes (LSSS). It is believed that the class
of access structures that can be handled with polynomial size LSSS is incomparable to the class that
can be recognized by polynomial size monotone circuits, so in this sense we extend the class of access
structures with efficient and non-interactive VSS.

1 Introduction

Secret-Sharing. Secret sharing schemes are fundamentally important tools in many areas of cryptography,
because they allow us to strike a balance between confidentiality and security against loss of data, by storing
shares of the data in separate locations. This is useful, e.g., when storing cryptographic keys.

A secret sharing scheme is defined by two algorithms: a probabilistic sharing algorithm which takes a
secret message m as input and produces n shares s1, ..., sn; and a reconstruction algorithm that takes a
subset of shares {si|i ∈ I} as input and outputs m, provided I is a qualified set. The family of qualified sets
is called the access structure of the scheme. An access structure A is always monotone: if I ∈ A and I ⊂ J
then J ∈ A. We also require that if a set J is not qualified, then the subset of shares {si|i ∈ J} gives no
information on m. More precisely, in a perfect scheme, such a subset has distribution independent of m. Or
in case of computational secret sharing, an unqualified set of shares has a distribution that can be simulated
with computationally indistinguishable distribution without knowing m. In a perfect scheme, shares must
be at least as large as the secret, while in computational secret sharing they can be much smaller, which is
a main motivation for considering computational schemes.

Naturally, we want the total size of the shares to be minimal, and certainly polynomial in n, and also we
would like the sharing algorithm to run in time polynomial in n.3

Access Structures. In the following, we will speak of the access structure characterised by (for instance) a
monotone Boolean circuit with n input bits: we think of the input bits as being in 1-1 correspondence with
n players, and a player subset I can then be translated to a bit string by setting the bits corresponding to
members of I to 1 and the rest to 0. The access structure characterised by the formula now consists of those
subsets whose corresponding bit string causes the formula to output 1. This notion generalises naturally to
any other computational model that computes monotone functions of bit strings.

Verifiable Secret-Sharing. One well-known and natural extension of secret sharing is verifiable secret
sharing (VSS), where the party generating the shares (called the dealer in the following), and in addition
some unqualified subset of the players (or shareholders) may be corrupted by a malicious adversary. We now
execute a protocol in which the dealer sends shares to the players and some verification is performed. If the

? Work done while visiting Aarhus University.
3 However, since there are doubly exponentially many (families of) access structures, an easy counting argument

shows that we cannot hope to handle all access structures with polynomial time sharing algorithms.

sharing phase is successful, all honest players must output a share, and otherwise they all reject. Later, any
qualified player subset can go together and reconstruct the secret.

We now want the following properties: if the dealer is corrupt and the sharing phase is successful, the
secret is well defined in the sense that any qualified subset will later reconstruct the same secret. If the
dealer is honest, the sharing is always successful, and the secret is what the dealer intended; furthermore no
unqualified player subset has any information on the secret (information theoretically or computationally).
A VSS can be seen as a distributed commitment scheme that allows to open the committed information even
if the dealer is not present.

This is an important property and can prevent different attacks depending on the scenario: one can
imagine using a VSS as a distributed commitment scheme where we want the commitment to be binding.
Think of a powerful cheating dealer who can “shut down” players arbitrarily; VSS guarantees that such a
dealer cannot change its mind and control the output of the reconstruction by shutting down selected players.
A perhaps more practically oriented application is in multiparty computation: consider a client with some
secret input that he wants to supply to a multiparty computation run by a set of servers. A natural solution
that will handle malicious attacks is to VSS the input among the servers. However, if this takes place in an
asynchronous environment like the Internet, we clearly need a scheme with as little interaction as possible,
ideally a client should be able to just post some information and then leave.

Non-Interactive VSS. The amount of interaction needed for the sharing phase of a VSS depends on the
model for communication that is assumed. In this paper, we focus on the model where players have public
encryption keys and hold corresponding secret keys, and where no secure channels are assumed to be given
“for free”. But we assume that the dealer can publish information that all honest players will agree on (using,
e.g., a bulletin-board or a broadcast channel). In this model, we clearly cannot get security without making
computational assumptions. Moreover, the best we can hope for in terms of interaction is that the dealer
publishes a single message, and each player then computes his output from this message and his secret key.
We call such a scheme non-interactive. A slightly stronger property that many non-interactive schemes are
born to satisfy is public verifiability. Namely, anyone, even outside the scheme, but with access to the public
information, can perform the verification. One may also aim for a weaker property called non-interactive with
complaints, where the scheme is only non-interactive if corrupt players behave honestly – but (motivated by
the Internet scenario explained above) we require that even if interaction is needed, the dealer does not need
to take part in this.

Our Contributions. In this paper, we present two VSS protocols with computational security, the first is
non-interactive with complaints, while the second is non-interactive and publicly verifiable in the random
oracle model (used for the Fiat-Shamir heuristic). Both schemes are built on top of the same locally verifiable
scheme, which is our main technical contribution and is based on the standard RSA assumption.

The complexity of the scheme is polynomial in the size of a monotone Boolean circuit characterising
the access structure. It is the first scheme with this property and it allows us to efficiently handle access
structures that cannot be done efficiently with linear schemes. We emphasise that although we assume that
some set-up information is available, we do not use generic non-interactive zero-knowledge (which could be
used to solve the problem in a rather trivial way). In particular the communication complexity of our scheme
does not depend on the circuit complexity of the dealer’s computation when he generates shares, only on
the security parameter and the number of fan-outs in the circuit characterising the access structure.

Related Work. The notion of information theoretic secret sharing was independently discovered by Blak-
ley [Bla79] and by Shamir [Sha79], who constructed efficient schemes for simple threshold access structures.
The introduction of general secret sharing is due to Ito, Saito and Nishiziki [ISN89]. Later, Benaloh and Le-
ichter [BL90] constructed schemes that are efficient in the size of a Boolean formula characterising the target
access structure. Karchmer and Wigderson [KW93] introduced the notion of a monotone linear span program
(MSP) and showed that any MSP induces a linear secret sharing scheme (with complexity polynomial in the
size of the MSP) for the access structure characterised by the MSP. In fact, any linear secret sharing scheme
can be seen as being derived from an MSP, including the schemes by Shamir and Benaloh-Leichter.

2

This gives us efficient secret sharing schemes for any access structure that can be characterized by an
MSP of size polynomial in the number of players. If one now wants to extend the class of access structures
we can handle efficiently, it is natural to consider those characterized by polyomial size Boolean circuits
(rather than formulas as considered in [BL90]). The reason for this is that the classes of access structures
characterised by polynomial size MSPs, respectively monotone Boolean circuits are incomparable as far as
we know, and hence being able to construct secret sharing schemes efficiently from monotone circuits would
indeed give us something new. However, we know no such construction resulting in a perfect scheme. On
the other hand, Vinod et al. [VNS+03] proposed a construction yielding computational security (based on
an unpublished idea by Yao [Yao89]).

As for construction of verifiable secret sharing schemes, all constructions we know of are schemes that
start from a regular secret sharing scheme and add verifiability on top. In a model where there are secure
point-to-point channels between all pairs of players, this can be done with perfect security for any linear
scheme, under certain conditions on the access structure [CDM00]. One can even convert any secret sharing
in a black-box fashion to VSS with statistical security [CDD00] but the construction uses a lot of interaction
and generic zero-knowledge techniques to some extent. In the communication model we consider in this paper,
any linear scheme cane made verifiable under computational assumptions. The basic idea was first proposed
by Pedersen [Ped92] based on Shamir’s scheme, but the principle easily extends to any linear scheme. The
resulting VSS is “almost” non-interactive with complaints, i.e., the dealer needs to help resolve conflicts if
there are complaints. This problem was resolved in [DT07]. The notion of publicly verifiable secret sharing
is introduced by Stadler in [Sta96].

Technical Overview. Our main result is to extend the class of access structures we can handle efficiently
and verifiably, in the same way that [VNS+03] extended what we can do with regular secret sharing. We do
so by constructing a verifiable version of the scheme from [VNS+03]4. Prior to our work, no such construction
was known.

The idea is that the dealer runs (a version of) the sharing scheme from [VNS+03], resulting in each player
receiving his share. But in addition he also makes public a “tag” for each share (which is constructed in such
a way as to preserve computational privacy). Every shareholder can check the share they received against the
public tag. Furthermore, it is now possible (very simplistically speaking) to run the reconstruction algorithm
on the set of all tags and make checks under way such that if the “homomorphic reconstruction” does not
abort, then the set of actual shares is indeed a consistent sharing of a well defined secret.

We obtain this by constructing a symmetric encryption scheme (as required in the secret sharing scheme
from [VNS+03]) and a tagging scheme that “lives” in the same RSA group and has certain convenient
homomorphic properties.

This does not yet ensure that everything will always be fine: the dealer could make a good set of tags,
but send an incorrect share to one or more of the players. A player P can detect that he has been sent a
bad share, but this will not be clear to the other players: they have only seen a ciphertext meant for P and
cannot tell if the dealer is corrupt or P is complaining for no good reason.

We can resolve this in two different ways, in both cases by using a specific encryption scheme for sending
shares to players. The first approach is to use an encryption scheme that has so-called verifiable opening,
allowing P to reveal his share along with a proof that this was indeed what the dealer sent him in encrypted
form. This technique was introduced in [DT07] and formalized in [DHKT08]. This gives a scheme that is non-
interactive with complaints. The second approach is to use an encryption scheme we suggest that is designed
to allow the dealer to give an efficient proof (in the random oracle model) that the shares he encrypts indeed
correspond to the tags he publishes. This gives a non-interactive scheme with only a small computational
overhead compared to the work needed to compute shares in a non-verified way.

Roadmap. Section 2 introduces the notation and some preliminaries which will be used in the rest of the
paper. Section 3 briefly reviews the computational secret sharing scheme of Vinod et al. Section 4 introduces

4 On the way to our result, as a secondary contribution, we also prove that the construction of [VNS+03] satisfies a
strong, simulation based notion of privacy, while the original paper only argues for a weaker, “one-way” definition
of privacy.

3

the notion of locally verifiable secret sharing and presents our novel construction. Finally in Section 5 we
discuss how to combine the locally verifiable scheme with different kind of encryption schemes to achieve a
non-interactive publicly verifiable scheme and a non-interactive scheme with complaints.

2 Notation and Preliminaries

Basic Notation. We use the shorthand [m,n] for {m,m + 1, . . . , n − 1, n} and [n] for [1, n]. If S is a set
x ← S is a random element from S, if A is an algorithm y ← A(x) is the output of A run on input x
on an uniformly random tape. If S ⊆ [n], then s = set2bits(S) is an n-bit string where the i-th bit of s
is 1 iff i ∈ S. We call a function f : N → R negligible if for all c, for all big enough κ, f(κ) < κ−c. We
use negl(κ) for a generic negligible function. We say two families of distributions U0 = {U0,κ}κ∈N, U1 =
{U1,κ}κ∈N are computationally indistinguishable if for all probabilistic polynomial time (PPT) distinguisher
D, |Pr[D(Ub,κ) = b]− 1

2 | = negl(κ) and we write U0 ≈c U1 for short.

Access Structure. An access structure A of [n] is a monotone subset A ⊆ 2[n]. Given a set I ⊆ [n] we
say that I is a qualified set if I ∈ A or that I is an unqualified set if I 6∈ A. We say that a Boolean circuit
C : {0, 1}n → {0, 1} describes A if C(set2bits(I)) = 1⇔ I ∈ A.

Circuits. We use the following notation for circuits: a circuit C : {0, 1}n → {0, 1} is described by ` > n
wires {w1, . . . , w`}i∈[`] and λ gates {gi}i∈[λ]. We call {wi}[1,n] the input wires, {wi}[n+1,`−1] the internal
wires and we call w` the output wire. Every internal wire connects exactly two gates, while the input wires
and the output wire are only connected to one gate (therefore, there are exactly λ = (2`+ n+ 1)/3 gates).
Wires carry values: at the beginning all wires are initialized to ⊥, and we say a wire is assigned if wi 6= ⊥.

Each gate gi is described by a tuple from [`]3 (representing pointers to their input/output wires) and a
type typei ∈ {and, or, fanout}, which determines the semantic of the wires: if gi has type typei ∈ {and, or},
then gi has two input wires (wiLI

, wiRI
) (for left input and right input) and one output wire wiO . Finally, if

gi has type typei = fanout, then gi has one input wire wiI and two output wires (wiLO
, wiRO

). We assume
(without loss of generality) that the output wire w` is not the output of a fan-out gate.

We say that a gate is ready to be evaluated if: both wiLI
6= ⊥ and wiRI

6= ⊥ when typei = and; either
wiLI

6= ⊥ or wiRI
6= ⊥ when typei = or; wiI 6= ⊥ when typei = fanout. Finally, we say that a gate is assigned

if all its output wires have been assigned.
The type of a gate determines how a circuit is evaluated. To exemplify our notation, we describe how to

evaluate a simple Boolean circuit C : {0, 1}n → {0, 1} on input x ∈ {0, 1}n.

1. Parse the input x = (x1, . . . , xn) ∈ {0, 1}n and assign wi = xi for all i ∈ [n];
2. While w` = ⊥, find the first gate gi which is ready to be evaluated :

– If typei = and: Assign wiO = wiLI
∧ wiRI

;
– If typei = or: Assign wiO = wiLI

∨ wiRI
;

– If typei = fanout: Assign wiLO
= wI and wiRO

= wI ;
3. Output w`;

Finally, we call (`and, `or, `fanout) respectively the number of (and, or, fanout) gates in the circuit.

3 Computational Secret Sharing

In this section we review the basic definitions of a computational secret-sharing scheme and present the
construction of Vinod et al. [VNS+03] in our notation. A computational secret-sharing scheme (CS3) is a
tuple of algorithms π = (Setup,Share,Rec) which are defined and used as follows:

Setup: The randomized setup algorithm pp← Setup(1κ) (run once and for all) outputs some public system
parameters pp for the secret sharing scheme (which contains, among other things, some message space
M from which the secret can be chosen)5.

5 In case where no trusted party exists to run this setup, a secure computation protocol can be used instead. We
note that our setup algorithm will output an RSA modulus, and that several efficient protocols for this task exist,
depending on the desired security guarantees and threshold.

4

Share: A dealer can share a secret messagem ∈M with n parties P1, . . . , Pn according to an access structure
described by a circuit C : {0, 1}n → {0, 1} by running the randomized algorithm (s0, s1, . . . , sn) ←
Sharepp(C,m) which outputs n + 1 shares s0, s1, . . . , sn. The dealer sends to each party Pi the shares
(s0, si). Sometimes we refer to s0 as the public share and to the si’s, i ∈ [n] as the private shares.

Reconstruct: A set of parties {Pi}i∈I such that C(set2bits(I)) = 1 can reconstruct the secret message m
by running m← Recpp(s0, {si}i∈I).

Intuitively, we want such a scheme to be correct (any qualified set of parties can reconstruct the secret m)
and private (any unqualified set of parties does not learn any information about m). This can be formalized
as follows:

Definition 1 (Correctness). A CS3 π is correct if for all m ∈M, for all circuits C describing an access
structure A, and for all I ∈ A,

Pr[m 6= Recpp(s0, {si}i∈I)] ≤ negl(κ)

Where (s0, s1, . . . , sn) ← Sharepp(C,m), pp ← Setup(1κ) and the probabilities are taken over the choices of
all algorithms.

In the following definition we ask for privacy in a strong, simulation based sense, while in the original
work [VNS+03] only a weaker “one-way” version of privacy is considered.

Definition 2 (Privacy). A CS3 π is private if for all circuits C describing an access structure A, and for
all I 6∈ A, there exist a PPT simulator Sim such that for all m ∈M:

Sim(pp, C, I) ≈c (s0, {si}i∈I)

where pp← Setup(1κ), (s0, s1, . . . , sn)← Sharepp(C,m)

Remarks on the model. Note that at this point we make the assumption that there are secure point-
to-point channels between the dealer and the parties. This assumption will be removed in Section 5 where
we will show two techniques for distributing the shares which make the overall scheme verifiable against a
malicious dealer.

Constructing CS3s. Vinod et al. [VNS+03] proposed a CS3 with the following communication complexity:
|s0| = O(|C| + κ · `fanout) and si = O(κ) for all i ∈ [n]. Their scheme uses a symmetric encryption scheme
(G,E,D), where the key space and message space of the encryption scheme are the group used by the secret
sharing scheme (for instance, the group of κ-bit strings with bitwise XOR of strings as the group operation).

Setup: The setup algorithm outputs a cyclic group G (which we write here in multiplicative notation) which
is used both as the message space M and as the working group for the scheme, as well as an IND-CPA
secure symmetric encryption scheme (G,E,D) where the key space and the message space is G.

Share: To share a secret m ∈ G with an access structure described by a circuit C among n parties, the
dealer runs the following algorithm:
1. Assign w` = m and let s0 = C;
2. While wj = ⊥ for some j ∈ [n] (the input wires), find the first assigned gate gi and:

– If typei = and: Secret share the value of the output wire between the two input wires i.e., pick a
random wiLI

← G and assign wiRI
= wiO · (wiLI

)−1;
– If typei = or: Copy the value of the output wire to both input wires i.e, assign wiLI

= wiO and
wiRI

= wiO ;
– If typei = fanout: Assign a fresh key to the input wire, and append encryptions of the output

wires to the public share i.e., compute k ← G(1κ), ciLO
= E(k,wiLO

) and ciRO
= E(k,wiRO

);
finally, assign wiI = k and let s0 = s0||(i, ciLO

, ciRO
);

3. Let si = wi for all i ∈ [n], and output (s0, s1, . . . , sn);

5

Reconstruct: To reconstruct a secret m given a set of shares (s0, {si}i∈I) from some qualified set I run
the following algorithm:
1. Assign wi = si for all i ∈ I and recover C from s0.
2. While w` = ⊥, find the first gate gi which is ready to be evaluated and:

– If typei = and: Assign wiO = wiLI
· wiRI

;
– If typei = or: Assign wiO = wiLI

if wiLI
6= ⊥ or wiO = wiRI

otherwise;
– If typei = fanout: Recover (i, ciLO

, ciRO
) from s0 and assign

wiLO
← D(wiI , ciLO

) and wiRO
← D(wiI , ciRO

)

3. Output w`;

The scheme is correct by inspection. Privacy can be proven by constructing a simulator Sim who runs
the sharing scheme for a random secret m′, and then arguing that any distinguisher can be used to break the
IND-CPA security of the underlying encryption scheme. We will prove this in detail for the locally verifiable
variant of this scheme construction (see proof of Theorem 1).

4 Locally Verifiable Secret-Sharing Scheme

In this section we show how to make the CS3 of Vinod et al. [VNS+03] verifiable i.e., even if the dealer
is corrupt, we want to make sure that the secret message is well defined. In particular, we need to make
sure that the output of the reconstruction phase does not depend on which of the possibly many set of
qualified parties reconstructs the secret. Thus we define a locally verifiable computational secret-sharing
scheme (VCS3) by adding an algorithm as follows:

Verification: The randomized algorithm f ← Verpp(s0, si) outputs a flag bit f ∈ {true, false} which
indicates whether (s0, si) is a valid share for party Pi.

We now ask the following property:

Definition 3 (Local Verifiability). We say a CS3 scheme is locally verifiable if for all n ∈ Z, for all cir-
cuits C describing an access structure, and for all PPT algorithms D∗ the following holds: Let pp← Setup(1κ)
and (s0, s1, . . . , sn) ← D∗(pp). If ∀i ∈ [n],Verpp(s0, si) = true, then with a overwhelming probability there
exists a value m ∈ M such that Recpp(s0, {si}i∈I) = m for all qualified sets I ∈ A (where A is defined in
s0).

Remarks on the Model. It is clear that without some degree of interaction between the parties, it is
impossible to achieve even a locally verifiable scheme. Think of a setting with two parties P1, P2 and a
simple access structure A = {{P1}, {P2}}. Now the dealer can simply send s1 6= s2 to the two parties, which
will therefore reconstruct to two different secrets. Therefore in this section we make the assumption that
there is a broadcast channel from the dealer to the parties, which ensures that all parties Pi receive the same
public share s0. The private shares si’s are still sent over private channels from the dealer to the parties.
Note that local verifiability does not say anything about what to do when one of the parties rejects her share.
We deal with complaints later in Section 5.

Feasibility of locally verifiable CS3. Note that it would be possible to enhance any CS3 scheme (such
as the one presented in Section 3) with the local verifiability property described above by sending to each
party, together with si, a non-interactive zero-knowledge proof (NIZK) that si was computed correctly (this
could be achieved by generating the crs for the NIZK during the setup phase, and letting the dealer append
a commitment to m and the randomness used in Share, and then the Ver algorithm simply checks the
NIZK). However the communication of the resulting verifiable scheme would depend on the dealer’s local
computation (i.e., the circuit complexity of the original Share algorithm) and thus add a very significant
overhead. In the following, we look for a solution which avoids this problem and essentially preserves both
the communication and computational complexity of the original scheme by Vinod et al.

6

Locally Verifiable CS3. We present here our locally verifiable CS3. The scheme is based on the standard
RSA assumption. Intuitively, we make the scheme locally verifiable by having the dealer publish some “tags”
of all the private shares in the public share, using some function ti = Tag(si). Now, since Tag is deterministic,
every party can check that their private share is consistent with the public tag. In addition, the Tag function
and the Recpp function are designed so that they “commute”, meaning that (from a very high level point
of view) it is possible to compute the reconstruction function on the tags (instead of the actual values) and
verify if the obtained tag is equal to the published one i.e.,

Tag(m) = Recpp(s0,Tag(s1), . . . ,Tag(sn))

4.1 Building Blocks

The group. The scheme works in an RSA group Z∗N where the RSA modulus is generated during the setup
phase (hence its factorization is unknown to both the dealer and the parties).5 All operations are carried out
in the group Z∗N , hence if x ∈ Z∗N and e ∈ Z we write “y = xe” instead of “y = xe mod N”.

The tags. The scheme uses a “tag” function Tag(x) = xτ where τ is a prime number larger than N which is
generated by the dealer – it is easy to see that Tag is multiplicatively homomorphic i.e., Tag(x) · Tag(y) =
Tag(x · y).

The encryption scheme. We also use a symmetric encryption scheme (G,E,D) where G outputs a random
k ← Z∗N ; The encryption function c ← E(k,m) chooses a random prime ρ > n and outputs it together
with σ = kρ · m; The decryption function m ← D(k, c) outputs m = σ · k−ρ. We note a useful property
of our encryption scheme and the Tag function, namely that they commute nicely: if D(k, (ρ, σ)) = m then
D(Tag(k), ρ,Tag(σ)) = Tag(m) since

D(Tag(k), ρ,Tag(σ)) = Tag(σ) · Tag(k)−ρ = στ · (kτ)−ρ = (σ · k−ρ)τ

= Tag(m) (1)

Later in the proof we will need the following property from this scheme (intuitively, the Lemma says that
the scheme is one-way secure under single-query chosen plaintext attack):

Lemma 1. Consider the following game: 1) a challenger runs k ← G(1κ) 2) the adversary picks a value
m ∈ Z∗N ; 3) the challenger picks a random r ∈ Z∗N and sends (E(k,m),E(k, r)) to the adversary; 4) the
adversary outputs r′; For all PPT adversary, r′ 6= r except with negligible probability if the RSA problem is
hard.

Proof. In step 3) the adversary receives a 4-tuple from Z∗N composed of

(ρ0, σ0 = kρ0 ·m, ρ1, σ1 = kρ1 · r)

We first claim that an adversary who computes r′ = r can be used to compute k efficiently in the following
way: let a, b be the values such that a · ρ0 + b · ρ1 = 1 (which are guaranteed to exist since ρ0, ρ1 are different
primes). Then

(σ0 ·m−1)a · (σ1 · r−1)b = ka·ρ0+b·ρ1 = k

Now the reduction solves the RSA instance (e, y = xe) by setting ρ0 = e, σ0 = m · y, sampling a random
prime ρ1 and a random element σ1 from Z∗N . Note that this is the exact distribution that the adversary was
expecting since this is equivalent to the choice of a random r = y−1 · σ1 in the game, and r is uniformly
distributed in Z∗N (unless some of the random choices are not invertible mod N , but in that case the reduction
can trivially factor N).6

6 (Note that the scheme would not be secure if the adversary could make 2 CPA queries, since in that case it could
recover k in the same way as the reduction does.)

7

The extractor. Finally, Ext : Z∗N → {0, 1}µ is an extractor which extracts the µ = log(κ) hard-core bits of
the RSA function from some value in Z∗N (the least significant log(κ) bits will do [ACGS88]).

4.2 The Construction

We are now ready to give the details of our construction:

Setup: Generate an RSA modulus N and a random prime number τ > N which defines the function
Tag(x) = xτ and output pp = (N, τ);

Share: To share a secret m ∈ {0, 1}µ with an access structure described by a circuit C among n parties,
the dealer runs the following algorithm.
1. Assign w` ← Z∗N
2. Compute u = Ext(w`)⊕m;
3. Compute t` = Tag(w`);
4. Let s0 = (C, u, τ, t`);
5. While wj = ⊥ for some j ∈ [n] (the input wires), find the first assigned gate gi and:

– If typei = and: Share the value of the output wire between the two input wires i.e., pick a random
wiLI

← Z∗N and assign wiRI
= wiO · (wiLI

)−1; In addition, compute the tags for two input wires
tiLI

= Tag(wiLI
) and tiRI

= Tag(wiRI
);

– If typei = or: Copy the value of the output wire to both input wires i.e., assign wiLI
= wiO and

wiRI
= wiO ; In addition, copy tiLI

= tiO and tiRI
= tiO ;

– If typei = fanout: Assign a fresh key to the input wire, and append encryptions of the output
wires to the public share i.e., compute k ← G(1κ), ciLO

← E(k,wiLO
) and ciRO

← E(k,wiRO
);

finally, assign wiI = k, compute tiI = Tag(wiI) and let s0 = s0||(ciLO
, ciRO

, tiLO
, tiRO

);
6. Let si = wi for all i ∈ [n], append s0 = s0||(t1, . . . , tn);

Verification: Upon receiving (s0, si) party Pi runs the algorithm Verpp(s0, si) described here:
1. From s0, recover (C, u, τ, t`), ti for every i ∈ [n], and ciLO

, ciRO
, tiLO

, tiRO
for every fanout gate gi;

2. If ti 6= Tag(si) stop and output false; else:
3. Assign wi = ti for all i ∈ [n].
4. While w` = ⊥, find the first gate gi whose input wires are all assigned and:

– If typei = and: Assign wiO = wiLI
· wiRI

;
– If typei = or: If wiLI

6= wiRI
stop and output false; else assign wiO = wiLI

;
– If typei = fanout: Parse (ciLO

, ciRO
) = (ρiLO

, σiLO
, ρiRO

, σiRO
). If D(wiI , (ρiLO

,Tag(σiLO
)) 6= tiLO

or D(wiI , (ρiRO
,Tag(σiRO

)) 6= tiRO
stop and output false; else assign wiLO

= tiLO
and wiRO

=
tiRO

.
5. Stop and output false if w` 6= t`;
6. Else output true;

Reconstruct: To reconstruct a secret m given a set of shares (s0, {si}i∈I) from some qualified set I run
the following algorithm.
1. Assign wi = si for all i ∈ I and recover C from s0.
2. While w` = ⊥, find the first gate gi which is ready to be evaluated and:

– If typei = and: Assign wiO = wiLI
· wiRI

;
– If typei = or: If wiLI

6= ⊥, assign wiO = wiLI
, else wiO = wiRI

.
– If typei = fanout: Recover (ciLO

, ciRO
) from s0 and assign

(wiLO
, wiRO

)← (D(wiO , ciLO
),D(wiI , ciRO

))

3. Output m = u⊕ Ext(w`);

The scheme satisfies correctness by inspection. We here state the theorems about the privacy and local
verifiability, as well as giving a brief high-level overview of the proofs. The full proofs are presented in the
following two subsections.

8

Theorem 1. This construction is private according to Definition 2 under the assumption that the RSA
problem is hard.

The proof of this theorem proceeds in the following steps: it can be seen that the scheme is secure if the
circuit contains no fanout gates, since in this case (roughly speaking) the adversary is given (xτ ,Ext(x)⊕m)
and is asked to output some information about m. Any such adversary can be used to break the RSA function
xτ since Ext extracts the hard-core bits. To deal with the fanout gates we construct a series of hybrids where
at each step we decompose the circuit C into a circuit C∗ which does not contain any fanout gate and a
circuit C ′ which takes two extra inputs (both set to be the output of C∗ and one fanout gate less than the
original circuit C. It is possible to argue that an adversary which succeeds in breaking the security for the
original circuit C can be used to break the security of the scheme run on the circuit C ′ with one less fanout
gate, roughly thanks to the security of the encryption scheme used in the construction of the fanout gates
and the fact that the rest of the circuit C∗ does not contain any fanout gate.

Theorem 2. This construction is locally verifiable according to Definition 3.

The proof of this theorem proceeds by first noting that the tag function is a permutation and hence the
set of tags uniquely defines a set of numbers mod N that are supposed to act as the “wire values” wi in the
circuit C. One then checks that the verification ensures that the values on wires going into a gate correctly
correspond to the value on the output wire. For fanout gates this check crucially relies on the observation
above (1), that the tag function commutes with the encryption scheme. Hence, if everything checks out, the
public data must correspond to a correct execution of the sharing algorithm, and therefore by the correctness
property all qualified sets will reconstruct the same secret.

4.3 Proof of Privacy (Theorem 1)

Proof. We construct the simulator Sim as following:

1. Sim samples r ← {0, 1}µ;
2. Sim runs (s0, s1, . . . , sn)← Sharepp(C, r)
3. Sim outputs (s0, {si}i∈I).

We now prove that the output of Sim is computationally indistinguishable from the distribution of the real
output.

From Decision to Search. Since τ is a prime number larger than N the function Tag is a one-way
permutation. The only difference between a the real view and the simulated view is that in the real view
u = Ext(w`)⊕m whereas in the simulated view u is a uniformly random value. Since Ext extracts the hard
core bits of the RSA function Tag, any distinguisher D that distinguishes between the real view and the
simulated view can be turned into an algorithm D′ that outputs w`. We now prove that computing w` is
impossible without breaking the RSA assumption.

Without Fanout Gates. We start by noting that if the circuit C had no fanout gates, then it is com-
putationally hard to find the value w`: Without fanout gates the value corresponding to the output wire
w` is simply the product of a subset of the input wires wi i.e., w` =

∏
i∈S si for some set S (note the set

may not be unique, in which case we consider the first such set in lexicographical order). In the privacy
game the adversary only sees shares for an unqualified set i.e., the adversary receives {si}i∈I for some I such
that C(set2bits(I)) = 0, meaning that T = S \ I 6= ∅. Now an adversary who computes w` can be turned
into an adversary who computes y =

∏
i∈T si, which is equivalent to breaking the one-way property of the

permutation Tag. In particular, since Tag is homomorphic, given such an adversary a reduction can solve an
RSA instance (τ, y = xτ) by choosing |T | − 1 random si’s, defining the last si such that y =

∏
i∈T si and

computing the respective tags. Note that the same argument can be made for any internal wire: let Ci(x)
be the circuit which outputs the same value as gate gi in C, then if Ci(set2bits(I)) = 0 then no adversary
can output the value wiO .

9

Removing Fanout Gates. The core of the proof is to show how we can “get rid of” the fanout gates by
decomposing C into circuits without any fanout gates. We proceed as follows: C∗`fanout is a circuit which takes
an input of length n∗`fanout = n+ 2`fanout wires (the input wires plus all the output wires of the fanout gates)
and contains all gates that can be reached from the output wire without traversing any fanout gate. As the
next step, we take the input wire of the first fanout gate encountered in the previous process, and we define
C∗`fanout−1 as the circuit which takes an input of length n∗`fanout−1 = n + 2(`fanout − 1) and contains all gates
that can be reached from this wire without traversing any fanout gate. The process stop with C∗0 which is
guaranteed to take an input of length at most n∗0 = n, that is its input is the same as the original circuit C
and in particular none of its inputs come from the output of any fanout gates.

We now define the values xn+1 = xn+2 = C∗0 (x1, . . . , xn), xn+3 = xn+4 = C∗1 (x1, . . . , xn∗1) up to
xn+2`fanout−1 = xn+2`fanout = C∗`fanout−1(x1, . . . , xn∗`fanout−1

). It is convenient to define, given a set I such that

x = set2bits(I), a set I∗ such that set2bits(I∗) = (x1, . . . , xn+2`fanout). It is now clear by inspection that

C(x) = C∗`fanout(x1, . . . , xn∗`fanout
) ∀x

Crucially all the circuits (C∗0 , . . . , C
∗
`fanout

) do not contain any fanout gates. We construct also circuits
(C ′0, . . . , C

′
`fanout

), where C ′j takes an input of size at most n′j = n+ 2j and has exactly `fanout− j fanout gates.
We define C ′`fanout = C∗`fanout and C ′j−1 to be equal to

C ′j(x1, . . . , xn′j−1
, C∗j (x1, . . . , xn′j−1

), C∗j (x1, . . . , xn′j−1
))

It is clear by inspection that C = C ′0.

After the heavy but necessary notation, we are ready for showing our reduction. We construct a series of
adversaries Dj who get as input

(s0, s1, . . . , sn+2j)← Sharepp(C
′
j , r)

We have already argued that no adversary can output the value corresponding to the output wire (which
is necessary to distinguish between the real and simulated execution) if the circuit does not contain any
fanout gates, which implies that D`fanout cannot either without breaking the RSA assumption. We then show
that if Dj−1 succeeds in outputting the value of the output wire for C ′j−1 with noticeable probability then we
can construct Dj who outputs the value of the output wire for C ′j as well. Using standard hybrid arguments
we can therefore conclude that the adversary D = D0 can only succeed in breaking privacy by breaking the
RSA assumption.

The reduction goes as follows: Dj gets as input all the shares s′i for all i ∈ I∗ ∩ [n + 2j], where
(s′0, s

′
1, . . . , s

′
n+2·j)← Sharepp(C

′
j , r). Remember that C(set2bits(I)) = 0.

Now the Dj needs to construct a sharing for the circuit C ′j−1 which is of the format expected by Dj−1.
Intuitively this is done by adding a single fanout gate to the circuit and running the share procedure for the
circuit C∗j . The complication here is that the shares (s∗0, s

∗
1, . . . , s

∗
n+2j−2) for the circuit C∗j must be consistent

with the existing shares for all known shares i.e., it must be that s∗i = s′i i ∈ I∗ ∩ [n+ 2j].

Case 1: (the output of C∗j is 1)
The easier case is when C∗j (set2bits(I∗ ∩ [n + 2j − 2])) = 1 since in this case no values associated
with the fanout gate we are introducing are supposed to stay hidden from Dj−1 – in this case Dj
runs the reconstruction procedure for C∗j using the known shares and, since C∗ does not contain any
fanout gate, the reconstruction boils down to multiplying the shares for any qualified set Sj for C∗j i.e.,
kj =

∏
i∈Sj

s′i and compute encryptions ciLO
← E(kj , s

′
n+2j−1), ciRO

← E(kj , s
′
n+2j). Finally Dj sets

s∗0 = s′0||(ciLO
, ciRO

) and s∗i = s′i and gives these values as input to Dj−1.

Now Dj simply outputs whatever Dj−1 outputs and wins the game: In this case the values received by
Dj−1 are distributed exactly as in the real experiment, and therefore the probability with which Dj−1
will output the value for the output wire is exactly exactly the same.

10

Case 2: (the output of C∗j is 0, but s′n+2j−1 and s′n+2j are known anyway)
This case happens if, for example, both outputs of the fanout gate are input to OR gates which evaluate
to 1. Since in the construction we set both input values of an OR gate to be equal to its output, this
means that both Dj and Dj−1 know these values. In this case Dj will simply choose a random k and
encrypt those shares as above. Since C∗j (set2bits(I∗∩[n+2j−2])) = 0 and C∗j does not contain any fanout
gate, this implies that Dj cannot tell the difference without breaking the RSA assumption. Note that in
this case we are not relying on the security of the encryption scheme – having access to both encrypted
output Dj can actually recover k. The point here is that since k =

∏
i∈Sj

s′i and the adversary does not

know at least one of these s′i’s, we can conclude that an adversary which distinguishes successfully can
be used to break the one-wayness of of Tag.

Case 3: (the output of C∗j is 0 and at least one between s′n+2j−1 and s′n+2j is not known)
The case where C∗j (set2bits(I∗ ∩ [n + 2j − 2])) = 1 and at least one between s′n+2j−1 and s′n+2j is not
known is the most interesting, since in this case we rely on the security of the encryption scheme. Wlog
say that Dj−1 knows s′n+2j−1 but not s′n+2j (the case where both are unknown follow in a straightforward
way): now Dj−1 invokes the one-query CPA oracle for the encryption scheme with s′n+2j−1 and receives
ciLO

← E(k, s′n+2j−1) and ciRO
← E(k, r), and if Dj outputs the value of the output wire Dj−1 can

reconstruct r and therefore break the security of the encryption scheme.

4.4 Proof of Verifiability (Theorem 2)

Proof. To prove local verifiability we first observe that since Tag is a permutation, given any y there exist a
single x such that Tag(y) = x.

Given any qualified set I ⊆ [n] such that C(set2bits(I)) = 1 we define a set I ′ ⊆ [`] such that i ∈ I ′

if wi = 1 during the (plain, Boolean) evaluation of C(set2bits(I)). Let wVi the values assigned to the wires
during the verification phase, and wRi the values assigned to the wires during the reconstruction phase using
the (qualified) set I. We prove that if Verpp(s0, si) = true for all i ∈ [n], then for all i ∈ I ′ it holds that
Tag(wRi) = wVi .

We prove this by induction. Thanks to Step 2 in Ver, it holds that

Tag(wRi) = wVi for all i ∈ I ⊂ I ′

Now take the next wire i ∈ I ′ \ I and wlog assume that i is the output of a gate gj that only takes inputs
from wires with index in [n+ i] ∩ I ′ (one can always reorder the wires to make sure that this happens). We
can now argue that:

– If gj is an AND gate, then the value on wire i = jO is a function of the values on wires jLI and jRI , and
since i ∈ I ′ it must also be the case that jLI and jRI are in I ′ ∩ [n+ i] (the output of the AND gate is
set only if both input wires are set), which allows to use the induction hypothesis. By induction it holds
that Tag(wRjLI

) = wVjLI
and Tag(wRjRI

) = wVjRI
. Now since wRjO = wRjLI

· wRjRI
and also wVjO = wVjLI

· wVjRI

and, since the Tag function is homomorphic this implies that:

Tag(wRjO) = Tag(wRjLI
· wRjRI

) = wVjLI
· wVjRI

= wVjO

– If gj is an OR gate, then the value on wire i = jO is a function of the values on wires jLI and jRI , and
since i ∈ I ′ it must also be the case that at least one between jLI and jRI are in I ′ ∩ [n+ i] (the output
of the OR gate is set only if at least one of the input wires are set), which allows to use the induction
hypothesis: by induction it holds that at least one between Tag(wRjLI

) = wVjLI
and Tag(wRjRI

) = wVjRI

holds. During the verification phase wVjO = wVjLI
only if wVjLI

= wVjRI
, instead during the construction

phase wRjO might be set to wRjLI
or wRjLI

depending on which qualified set is being used. But since Tag
is a permutation, Tag(a) = Tag(b) implies that a = b, and therefore during the reconstruction we have
that if wRjLI

6= ⊥ and wRjRI
6= ⊥ then wRjLI

= wRjRI
and therefore

Tag(wRjO) = Tag(wRjLI
) = wVjLI

= wVjO

11

– If gj is a fanout gate, then the value on the wire i = jLO (the case where i = jRO can be argued
exactly in the same way) is a function of the value on the wire jI and in the public share s0. During the
verification phase wVjLO

= tjLO
only if tjLO

= D(wVjI , ρjLO
,Tag(σjLO

)) while in the reconstruction phase

wRjLO
= D(wRjI , cjLO

). By induction it holds that Tag(wRjI) = wVjI . Using the fact that the encryption
scheme and the Tag function commute we show that:

Tag(wRjLO
) = D(wRjI , cjLO

)τ = D((wRjI)τ , ρjLO
, στjLO

)

= D(wVjI , ρjLO
,Tag(σjLO)) = wVjLO

Since ` ∈ I ′ (the set is qualified), this finally implies that Tag(wR`) = wV` , and thanks to Step 5 in the
Ver algorithm we can conclude that wV` = t` and therefore the value wR` is the same for all qualified sets.
Finally, since m = u ⊕ Ext(wR`) is a deterministic function of u and wR` , we can conclude that all qualified
sets reconstruct the same secret m.

5 Globally Verifiable Secret Sharing Schemes

In the previous section we have presented a scheme where each player can check whether the private
share received from the dealer is consistent with the public share. In this section we present two possible
ways of implementing private channels from the dealer to the players, which also allow to deal with the case
where the dealer is cheating and the honest players need to reach an agreement.

In both extensions, we let the setup algorithm output some additional parameters and decryption keys
for all players. Now the dealer, instead of sending shares privately to each player, appends encryptions of
the shares to the tags of the shares which are sent over the broadcast channel, and each player can recover
her own share.

In the first proposal, we use an encryption scheme with the property that it is possible to verify, given an
encryption and a tag, whether they contain the same value. This is done using efficient non-interactive zero-
knowledge proofs by compiling efficient sigma-protocols for the statement using the Fiat-Shamir heuristic.
Doing so makes the scheme non-interactive and publicly-verifiable, since everyone can check that the dealer
sent correct shares to all players. In the second proposal, we let the dealer encrypt the shares using an
encryption scheme which has a special property, namely it allows the receiver to prove to a third party what
has been received: this scheme gets rid of the random oracle model, but requires each (complaining) party
to send a single message to all other parties using a broadcast channel.

Notation. We need to redefine the syntax and the functioning of the setup phase and the sharing phase
(the reconstruction phase is unchanged and the syntax of the verification phase differs for the two schemes).
The scheme uses a public key encryption scheme (Gen,Enc,Dec).

Setup: The setup algorithm for the globally-verifiable CS3 outputs

(pp, {di}i∈[n])← gvSetup(1κ)

where di is the decryption key for Pi (the corresponding encryption key for Pi can be derived from (pp, i)).
The decryption keys are sent to the owner using private channels, where the public parameters are made
public; The algorithm gvSetup(1κ) simply runs pp′ ← Setup(1κ) to generate the public parameters for
our underlying locally verifiable scheme and n copies of Genpp(1

κ) to generate n encryption/decryption
key pairs (ei, di), and finally outputs pp = (pp′, e1, . . . , en).

Share: The share algorithm for the globally-verifiable CS3 outputs

s← gvSharepp(C,m)

and the dealer broadcasts s; The algorithm gvSharepp(C,m) simply runs Sharepp(C,m) to generate
(s0, s1, . . . , sn), generates zi ← Encpp(ei, si) for all i ∈ [n] and outputs s = (s0, z1, . . . , zn).

12

We need also to redefine correctness and privacy as follows:

Definition 4 (Correctness). A globally verifiable CS3 π is correct if for all m ∈ M, for all circuits C
describing an access structure A, and for all I ∈ A,

Pr[m 6= Recpp(s, {di}i∈I)] ≤ negl(κ)

where s← gvSharepp(C,m), (pp, {di}i∈[n])← gvSetup(1κ) and the probabilities are taken over the choices of
all algorithms.

It is trivial to see that combining a correct locally verifiable CS3 with an encryption scheme with a correct
decryption leads to a correct globally verifiable CS3.

Definition 5 (Privacy). A globally verifiable CS3 π is private if for all circuits C describing an access
structure A, and for all I 6∈ A, there exist a PPT simulator Sim such that for all m ∈M,

Sim(pp, C, I) ≈c (s, {di}i∈I)

where (pp, {di}i∈[n])← gvSetup(1κ), s← gvSharepp(C,m).

It is trivial to see that combining a private locally verifiable CS3 with a semantically secure encryption
scheme leads to a private globally verifiable CS3.

5.1 Non-Interactive and Publicly-Verifiable Scheme

Our first proposal is a non-interactive and publicly-verifiable VCS3. The syntax of the verification scheme
here is:

Verification: The verification algorithm f ← niVerpp(s) outputs a bit f ∈ {true, false} which indicates
whether s is a valid sharing or not. Note that anyone can run the verification phase i.e., one does not
need to know any of the decryption keys di to run this algorithm.

The scheme should satisfy the following property:

Definition 6 (Public-Verifiability). We say a CS3 scheme is publicly verifiable if for all n ∈ Z, for all
circuits C describing an access structure, and for all PPT algorithms D∗ the following holds: Let (pp, d1, . . . , dn)←
Setup(1κ) and s ← D∗(pp). If niVerpp(s) = true, then with a overwhelming probability there exists a value
m ∈M such that Recpp(s, {di}i∈I) = m for all qualified sets I ∈ A (where A is defined in s).

We construct the verification algorithm for this scheme, niVer, by replacing Step 2 in Ver (defined in
Section 4.2) with the following:

3. If ∃i ∈ [n]s.t.,Tag(Decpp(di, ei)) 6= ti stop and output false; else:

This condition can be checked efficiently using the NIZKs. Soundness of the NIZKs together with the
local verifiability of the underlying scheme implies public verifiability.

We finally describe how we construct the encryption scheme (Gen,Enc,Dec) and the NIZKs πi. The scheme
is essentially ElGamal encryption in the RSA group. We choose N = pq where p = 2p′ + 1, q = 2q′ + 1 for
primes p′, q′. This ensures that the subgroup G of numbers with Jacobi symbol 1 mod N is cyclic of order
2p′q′, and we let g be a generator of G. The encryption scheme we will construct is secure when applied to
messages in G. We therefore need to slightly change the VSS constructed above so that wire values and tags
are chosen from G and not from all of Z∗N . Since Jacobi symbols can be computed efficiently, one can always
check that the dealer chooses his values correctly. The encryption scheme now works as follows:

Generation: In the set-up we sample a random decryption key di ∈ ZN and output the corresponding
encryption key ei = gdi ;

13

Encryption: sample a random r ∈ ZN and output zi = (αi, βi) = (gr, ei
r · si);

Decryption: output si = βi · α−dii ;

We now need to construct a NIZK that allows a prover with witness di to persuade a verifier who knows
(τ, ei, ti, αi, βi) that

(g, ei, α
τ
i , β

τ
i · t−1i)

is a DDH tuple: note that when the dealer is honest this is indeed the case, i.e., the tuple in question is:

(g, gdi , gr·τ , gdi·r·τ · (sτi /sτi)) = (g, gdi , gr·τ , g(r·τ)·di)

Very efficient sigma-protocols for this language are well-known (see e.g. [HL10]), which can be made non-
interactive in the random oracle model using the Fiat-Shamir Heuristic.

5.2 Non-Interactive Scheme (with Complaints)

The main disadvantage of the previous solution is that it requires the random oracle model for the NIZKs.
Our second proposal instead uses one-round complaints to ensure verifiability. The idea here is that every
player retrieves her share from the public encryptions, and if the share does not match the public tag, the
player can complain by broadcasting some information that allows all other parties to check that the dealer
cheated. In particular we do not wish to allow a corrupt player to unfairly accuse an honest dealer, and the
“proof of cheating” should not disclose any other information. Both these properties can be achieved using
a technique introduced in [DT07] and formalized in [DHKT08]. We refer to [DHKT08] for the details of this
method, and we only sketch the high-level idea here: The idea is to let the dealer encrypt the shares using an
identity-based encryption scheme with verifiable secret keys (IBE-VSK): in this setting the decryption key of
each player is the master secret key for the IBE scheme (and the encryption key is the corresponding public
key). When the dealer encrypts the shares for all the parties, he does so using a unique id as the identity
in the IBE scheme. Each player can decrypt by generating the secret key skid corresponding to this id and
then perform the IBE decryption. To complain, the player can broadcast the secret key skid, and all other
parties are now able to retrieve the share and check whether it is consistent with the tag. The security of
the IBE scheme implies that revealing skid does not disclose any information about the encrypted shares in
other sessions. In addition, the VSK property allows all other players to verify that skid is indeed the secret
key corresponding to the id for the public key of that player, and was not maliciously generated to accuse an
honest dealer. We note that VSK is a mild assumption, and every proposed efficient IBE satisfies the VSK
property [DT07,DHKT08].

14

References

ACGS88. Werner Alexi, Benny Chor, Oded Goldreich, and Claus P Schnorr. RSA and Rabin functions: Certain
parts are as hard as the whole. SIAM Journal on Computing, 17(2):194–209, 1988.

BL90. Josh Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions. In Proceedings on
Advances in cryptology, pages 27–35. Springer-Verlag New York, Inc., 1990.

Bla79. George Robert Blakley. Safeguarding cryptographic keys. In National Computer Conference, pages 313–
317. IEEE Computer Society, 1979.

CDD00. Ronald Cramer, Ivan Damg̊ard, and Stefan Dziembowski. On the complexity of verifiable secret sharing
and multiparty computation. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 325–334. ACM, 2000.

CDM00. Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-party computation from any linear
secret-sharing scheme. In Advances in Cryptology–EUROCRYPT 2000, pages 316–334. Springer, 2000.

DHKT08. Ivan Damg̊ard, Dennis Hofheinz, Eike Kiltz, and Rune Thorbek. Public-key encryption with non-
interactive opening. In Topics in Cryptology–CT-RSA 2008, pages 239–255. Springer, 2008.

DT07. Ivan Damg̊ard and Rune Thorbek. Non-interactive proofs for integer multiplication. In Advances in
Cryptology–EUROCRYPT 2007, pages 412–429. Springer, 2007.

HL10. Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols. Springer, 2010.
ISN89. Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access structure.

Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 72(9):56–64, 1989.
KW93. Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in Complexity Theory Conference,

pages 102–111, 1993.
Ped92. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

Advances in Cryptology–CRYPTO91, pages 129–140. Springer, 1992.
Sha79. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
Sta96. Markus Stadler. Publicly verifiable secret sharing. In Advances in Cryptology–EUROCRYPT96, pages

190–199. Springer, 1996.
VNS+03. V. Vinod, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and Kwangjo Kim. On the power of com-

putational secret sharing. In Progress in Cryptology – INDOCRYPT 2003, 4th International Conference
on Cryptology in India, New Delhi, India, December 8-10, 2003, Proceedings, pages 162–176, 2003.

Yao89. Andrew C. Yao. Unpublished manuscript. Presented at Oberwolfach and DIMACS workshops., 1989.

15

	Non-Interactive Verifiable Secret Sharing For Monotone Circuits

