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Abstract. This paper improves the understanding of linear cryptanal-
ysis by highlighting some previously overlooked aspects. It shows that
linear hulls are sometimes formed already in a single round, and that
overlooking such hulls may lead to a wrong estimation of the linear cor-
relation, and thus of the data complexity. It shows how correlation matri-
ces can be used to avoid this, and provides a tutorial on how to use them
properly. By separating the input and output masks from the key mask
it refines the formulas for computing the expected correlation and the
expected linear potential. Finally, it shows that when the correlation of
a hull is not properly estimated (e.g., by using the correlation of a single
trail as the correlation of the hull), the success probability of Matsui’s
Algorithm 1 drops, sometimes drastically. It also shows that when the
trails composing the hull are properly accounted for, more than a single
key bit can be recovered using Algorithm 1. All the ideas presented in
this paper are followed by examples comparing previous methods to the
corrected ones, and verified experimentally with reduced-round versions
of Simon32/64.
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1 Introduction

Linear cryptanalysis is introduced by Matsui and applied to DES in [10]. The
formalism of linear cryptanalysis is extended in [3,5,12]. These works emphasise
the similarity with the formalism for differential cryptanalysis that existed be-
fore. The linear hull is introduced as the counterpart of a differential. It is often
used to prove the security of block ciphers against cryptanalysis, e.g. in [9]. A
critical study of the linear hull effect is presented in [11]. A different framework
for linear cryptanalysis, called correlation matrices, is introduced in [6].

In this paper, we revisit [6] and apply it to the block cipher Simon reduced
to 3 rounds. Firstly, Simon’s simple structure allows to construct simple and
illustrative examples to highlight the similarities and differences between the
two formalisms for linear cryptanalysis in practice. Secondly, the structure of
Simon is sufficiently different from other mainstream ciphers to highlight the
impact of some theoretical observations.

In Section 3 we follow the ‘classical’ formalism and show that the round
function of Simon exhibits one-round hulls. In Section 4 we repeat the analysis
using correlation matrices and illustrate that these matrices can facilitate the
automatic analysis of ciphers, even when one-round hulls exist.



In Section 5 we present our first theoretical observation. We use the theoret-
ical contributions of [6] to discuss the validity of a popular method to compute
the potential of a linear hull.

In Section 6 we present our second theoretical observation. When several
trails with correlation contributions of comparable magnitude and different signs
exist, the performance of Matsui’s Algorithm 1 strongly depends on the values of
some roundkey bits. When this dependency is taken into account, the algorithm
can be extended to recover multiple roundkey bits [13]. When this fact is ne-
glected, the average success rate of Algorithm 1 drops, sometimes dramatically.
Furthermore, we show a case where increasing the number of known plaintexts
beyond a certain value, leads to a decrease in the success probability of the
attack.

2 Notation and terminology

In this section, we recall some definitions and terminology of linear cryptanalysis
[3, 5, 6, 9, 10,12].

2.1 Boolean functions

We denote the field with two elements by GF(2) and the vector space of dimen-
sion n over this field by GF(2)n. We use + to denote addition in some field. The
field in which the addition is made is always clear from the context.

A boolean function y = f(x) is a function f : GF(2)n → GF(2) mapping
a vector of size n with binary components into a single bit. A boolean vector
function y = F (x) is a function F : GF(2)n → GF(2)m that maps a binary
vector of size n into a binary vector of size m. A permutation is an invertible
boolean vector function. A boolean vector function y = F (x) with output size
m can be viewed as the parallel execution of m boolean functions such that
yi = Fi(x) where 0 ≤ i ≤ m− 1 denotes the bit position.

A keyed boolean vector function y = F (x, k) = Fk(x) is a family of boolean
vector functions, indexed by a key k. An iterative block cipher with r rounds
is a composition of r permutations Fkr−1 ◦ Fkr−2 ◦ . . . ◦ Fk0(x). Observe that
many r-round ciphers contain in fact a reduced extra round, consisting only of
an extra key addition. We will ignore this. In this paper we will assume that the
roundkeys ki are independent. Hence the key of a block cipher, denoted by k, is
defined as the vector consisting of the concatenation of the r roundkeys ki.

2.2 Masks and approximations

Let a, b be two vectors of size n. Then atx =
∑n−1
i=0 ai · xi . We will call a the

mask of x. In practical examples, the masks will often contain many zero bits. In
order to emphasize which bits are nonzero, we will sometimes use the following
set notation:

a = {i1, i2, . . . , iu} ⇔
{
aj = 1,∀j ∈ {i1, i2, . . . , iu}
aj = 0,∀j 6∈ {i1, i2, . . . , iu}



Using this notation, the addition (XOR) of two masks corresponds to the sym-
metric difference operation on the sets.

A linear approximation for a keyed boolean permutation is a tuple (a, b, c)
such that a, b and c are masks for the input, the output and the key, respec-
tively. Let p be the fraction of inputs x for which the equation atx+ btFk(x) +
ctk = 0 holds. The correlation of the linear approximation (a, b, c) is defined
as cor(a, b, c) = 2 · (p − 1

2 ) = 2p − 1 . In general, both p and cor(a, b, c) will
depend on the value of k. When c = 0, we abbreviate the notation (a, b, 0) and
cor(a, b, 0) to (a, b) and cor(a, b).

2.3 Linear hulls and trails

A (linear) trail Ω covering r rounds of an iterative block cipher is a concatenation
of linear approximations each covering a single round such that the output mask
of round i equals the input mask of round i + 1. Hence we can identify the
trail with a vector of r + 1 masks ωi, 0 ≤ i ≤ r Ω = (ω0, ω1, . . . , ωr). Round
i has input mask ωi and output mask ωi+1. The correlation contribution of a
trail Ω is the product of the correlations of the individual rounds: corp(Ω) =∏r−1
i=0 corround i(ωi, ωi+1). In a key-alternating cipher the round consists of a fixed

part g followed by an addition with the round key. We can write:

corround i(ωi, ωi+1) = (−1)ω
t
ikicorg(ωi, ωi+1). (1)

Note, however, that this notation implicitly assumes that to each bit of the
round input a different bit of the roundkey is added . We will say more on this
in Section 5.3. We obtain:

corp(Ω) =
∏
i

(−1)ω
t
ikicorg(ωi, ωi+1) = |corp(Ω)| · (−1)dΩ+

∑
i ω

t
iki , (2)

with dΩ = 1 if
∏
i corg(ωi, ωi+1) is negative; otherwise dΩ = 0.

A linear hull covering r rounds of a block cipher is a tuple (α, β). The hull
is composed of a set of linear trails all having the same input mask and output
mask but that can differ in the intermediate masks. The correlation of a linear
hull is

cor(α, β) =
∑
Ω

ω0=α,ωr=β

corp(Ω) (3)

3 One-round hulls in Simon

In this section, we briefly recall the definition of Simon’s round function. We
prove the existence of one-round hulls, which impact the computation of corre-
lations of multi-round hulls.



3.1 Simon

Simon is a family of lightweight block ciphers designed by the US National Se-
curity Agency and published in 2013 [2]. The Simon2n/mn family of lightweight
block ciphers has 10 members differing in the block and key sizes. All members
of the family have a Feistel structure with round function R employing a non-
linear function f . In each round i, R receives two n-bit input words Xi and Y i,
and outputs two n-bit words Xi+1 and Y i+1. The round function uses three
operations: addition in GF(2)n, bitwise AND, and a left circular shift by j posi-
tions, which we denote by +,&, and ≪ j, respectively. The internal non-linear
function f is defined as:

f(Xi) = [(Xi ≪ 1)&(Xi ≪ 8)] + (Xi ≪ 2).

The output of the round function R on input block (Xi, Y i) is: Ri(Xi, Y i) =
(Y i + f(Xi) + ki, Xi), where i is the round number. The entire cipher is Rr−1 ◦
Rr−2◦ . . .◦R0(X0, Y 0). The structure of the round function of Simon is depicted
in Fig. 1.

3.2 Linear hulls and trails through one round of Simon

We use the notation (a, b, c, d, e) to describe a linear trail through one round of
Simon. Here a and b denote the left and right input masks; c and d denote the
masks at the outputs of the two topmost rotations; e and b denote the left and
right output masks (before the swap operation), cf. Fig. 1.

≪ 1

≪ 8

≪ 2

& �
��+
�
��+
�
��+

?

6

-

-

-s
-s
-s

?

?

?

�

a b

b

b

bb ≫ 2

cc ≫ 1

dd ≫ 8

e b

Fig. 1. Trail through one round of Simon (without the final swap operation). The
dashed box indicates the part of the round that we discuss in Section 4.

We now study the behavior of linear trails over one round of Simon using the
rules of propagation of linear trails introduced in [3,5]. The rule for trail propa-
gation over the branch operation implies the following constraint on a, b, c, d, e:

a+ e = (b≫ 2) + (c≫ 1) + (d≫ 8) (4)



Note that the rule for trail propagation over the addition operation is already
implicit in the way we propagate the b mask through Fig. 1. The output bit z
of a bitwise AND operation z = x AND y is correlated to the 4 linear functions
of the two input bits:

cor(z, 0) = cor(z, x) = cor(z, y) = 1/2, cor(z, x+ y) = −1/2.

It follows that the AND operation in Simon leads to the following constraints
on b, c, d: if a bit in c or d is set, then the bit in b at the corresponding position
needs to be set. This translates to:

c̄ OR b = 1 (5)

d̄ OR b = 1 (6)

The following lemma expresses that some one-round trails come in groups.

Lemma 1. Let (a, b, c, d, e) be a one-round trail over Simon. If there exists an
index i such that bi = bi+7 = 1, then the trail (a, b, c, d, e) satisfies the constraints
(4)–(6) if and only if the trail (a, b, c + (1 ≪ i), d + (1 ≪ (i + 7)), e) satisfies
the constraints (4)–(6).

Proof. For constraint (4) we have:

((c+ (1 ≪ i)) ≫ 1) + ((d+ (1 ≪ (i+ 7))) ≫ 8)

= (c≫ 1) + (1 ≪ (i− 1)) + (d≫ 8) + (1 ≪ (i+ 7− 8))

= (c≫ 1) + (d≫ 8)

Hence both satisfy (4) or neither does. For constraint (5) we see that if bit i
of b is set, then the value of c at position i does not matter. Hence both c and
c+ (1 ≪ i) satisfy (5), or they both don’t satisfy (5). Similar for constraint (6)
and d+ (1 ≪ (i+ 7)). ut

Since the trails in Lemma 1 have the same input masks (a, b) and the same
output masks (e, b), they are in the same one-round linear hull. Fig. 2–Fig. 4
each show two trails derived from one another by means of Lemma 1. Notice
that in each set both trails select exactly the same bits of the roundkeys.

3.3 Correlations and correlation contributions

We now want to compute the correlation contributions of the trails of Fig. 2–
Fig. 4. The usual rule is to assume that all nonlinear functions act independently
and to multiply all the correlations. This results in the following values for the
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Fig. 2. Two trails of a one-round hull.
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Fig. 3. Two trails of a second one-round hull.

{5,13} {7,14}

{5,12} {7,14}

{7,14}

{12} {7,14}

{5,13} {7,14}

{5,12} {7,14}

{7,14}

{12} {7,14}

{13} {14} {6,13} {7,14}

{6} {14}

≪ 1

≪ 8

≪ 2

& m+
m+
m+

?

6

-

-

-r
-r
-r

?

?

?

�

≪ 1

≪ 8

≪ 2

& m+
m+
m+

?

6

-

-

-r
-r
-r

?

?

?

�

Fig. 4. Two trails of a third one-round hull. The trails have nonzero contributions of
the same magnitude and opposite sign. The hull has correlation zero.



correlation contributions of the six trails:

c d cor

Fig. 2 ∅ {14} 2−2

{7} ∅ 2−2

Fig. 3 ∅ ∅ 2−2

{7} {14} 2−2

Fig. 4 {14} ∅ 2−2

{7, 14} {14} −2−2

In each case by adding the correlation contributions of the two trails we obtain
the correct correlation of the hull. However, starting from the observation that
when bi = bi+7 = 1, there are pairs of AND gates that share one input bit, we
can follow a different approach. Let

s = x AND y, t = y AND z

Then we have
s+ t = y AND (x+ z),

which implies the following:

cor(s+ t, x+ z) = cor(s+ t, 0) = cor(s+ t, y) = 1/2

cor(s+ t, x+ y + z) = −1/2

cor(s+ t, x+ y) = cor(s+ t, y + z) = 0

cor(s+ t, x) = cor(s+ t, z) = 0

These values can be used to derive immediately the exact correlations of the
linear hulls of Fig. 2–Fig. 4. Observe that the linear hull of Fig. 4 has correlation
zero, while both trails have a nonzero correlation contribution. Hence, mounting
an attack and using the correlation contribution of a trail as an estimate for the
correlation of this linear hull will likely lead to wrong results.

4 Correlation matrices

In this section, we follow the alternative approach of [6] to compute correlations
and correlation contributions.

4.1 Correlation matrix for Simon

In order not to repeat too much from the previous approach, we concentrate
on the most interesting part of the round function: the AND function combined
with the preceding expanding linear function lin(x) = (x ≪ 1, x ≪ 8). This
part is indicated by a dashed box in Fig. 1. The correlation matrix of a map f
is defined as follows:



Definition 1 (Correlation matrix [6]).

Cf
uw := cor(utf(x), wtx)

For a linear map y = Mx, we have: Cuw = δ(Mtu+w), where δ is the Kronecker-
delta function (which is defined by δ(0) = 1 and δ(x) = 0,∀x 6= 0). This gives
for lin(x):

Clin
uv,w = δ(w + (u≫ 1) + (v ≫ 8)),

where we denote the row index of Clin by uv in order to make it more clear
from the notation this is an expansion function, and hence, the row index of the
matrix (i.e., the output) is twice as long as the column index.

The correlation matrix for a 1-bit AND operation z = x AND y is given by:

CA =

[
cor(0, 0) cor(0, x) cor(0, y) cor(0, x+ y)
cor(z, 0) cor(z, x) cor(z, y) cor(z, x+ y)

]
=

[
1 0 0 0
1
2

1
2

1
2 −

1
2

]
We can express the matrix elements by means of the following formula:

CA
a,bc = (1− a)(1− b)(1− c) +

1

2
a(−1)bc

The 16-bit parallel AND operation is a special case of the boxed map discussed
in [6]. Hence, we obtain:

CAND
a,bc =

∏
i

CA
ai,bici =

∏
i

(
(1− ai)(1− bi)(1− ci) +

1

2
ai(−1)bici

)

In order to compute the correlation matrix for a combined map, we only have
to multiply the correlation matrices of its components [6]:

Cf2◦f1 = Cf2 ×Cf1

For the combination of lin(x) and AND, we obtain:

Cu,w =
∑
xy

CAND
u,xy Clin

xy,w

=
∑
xy

∏
i

(
(1− ui)(1− xi)(1− yi) +

1

2
ui(−1)xiyi

)
δ(w + (x≫ 1) + (y ≫ 8))

The δ-function is nonzero only when y = (w ≪ 8)+(x≪ 7). Hence, we obtain:

Cu,w =
∑
x

∏
i

(
(1− ui)(1− xi)(1− (wi−8 + xi−7)) +

1

2
ui(−1)xi(wi−8+xi−7)

)
(7)



4.2 Examples

We now apply (7) to compute the correlations and correlation contributions
of the linear hulls, respectively trails, shown in Fig. 2–4. Remember that we
consider only the combination of the linear map lin and the AND operation. We
denote the input mask for this combined map by w and the output mask by u.
They are related as follows to the masks (a, b, c, d, e) defining a trail over one
round, cf. Fig. 1:

w = a+ e+ (b≫ 2)

u = b

The hull of Fig. 2 has input w = {6} = 0040x and output u = {7, 14} = 4080x.
Filling out these values in (7), we obtain

C4080,0040 =
∑
x

∏
i=7,14

(
1

2
(−1)xi(wi−8+xi−7)

) ∏
i 6=7,14

(1− xi)(1− (wi−8 + xi−7)) .

From the first factor of the product on the right, we see that in order to obtain a
nonzero contribution, xi must equal 0 for all i except i = 7, 14. Combined with
the second factor we obtain that x7 is free and all other xi = 0. Hence we obtain:

C4080,0040 =
∑
x7

∏
i=7,14

1

2
(−1)xi(wi−8+xi−7)

=
1

4
(−1)0(−1)0︸ ︷︷ ︸

x7=0,trail of Fig. 2, left

+
1

4
(−1)0(−1)0︸ ︷︷ ︸

x7=1,trail of Fig. 2, right

=
1

2

The two terms in the sum are the correlation contributions of the two trails that
are shown in Fig. 2 and that together form the one-round hull.

The hull of Fig. 3 has w = ∅ = 0000x and u = {7, 14} = 4080x. We obtain:

C4080,0000 =
∑
x

∏
i=7,14

(
1

2
(−1)xixi−7

) ∏
i 6=7,14

(1− xi)(1− xi−7)

From the product on the right, we obtain that x7 is free and all other xi = 0.
Hence we obtain

C4080,0000 =
∑
x7

∏
i=7,14

1

2
(−1)xixi−7

=
1

4
(−1)0(−1)0︸ ︷︷ ︸

x7=0,trail of Fig. 3, left

+
1

4
(−1)0(−1)0︸ ︷︷ ︸

x7=1,trail of Fig. 3, right

=
1

2



The hull of Fig. 4 has w = {13} = 2000x and u = {7, 14} = 4080x. We obtain:

C4080,2000 =
∑
x

∏
i=7,14

(
1

2
(−1)xi(wi−8+xi−7)

) ∏
i 6=7,14

(1− xi)(1− (wi−8 + xi−7))

From the product on the right, we obtain that x7 is free, x14 = 1 and all other
xi = 0.

C4080,2000 =
∑
x7

∏
i=7,14

1

2
(−1)xi(wi−8+xi−7)

=
1

4
(−1)0(−1)0 +

1

4
(−1)0(−1)1 = 0

We see that the two trails of this hull have opposite contributions, resulting in
a correlation zero for the hull.

4.3 Conclusion

As expected, this method gives the same results as the method of Section 3.
However, observe that by using correlation matrices, the dependence between
the inputs of the AND operation is taken care of automatically. Observe also
that while the end result of this method is the correlation of the linear hull,
we also obtain the correlation contributions of all the individual trails as the
nonzero terms in the final sum.

5 Expected correlation and potential

Several recent works provide bounds for the security of ARX ciphers and other
ciphers defined at bit-level against linear cryptanalysis by bounding the potential
of linear hulls [15–17]. The bounds on the hulls are computed by summing the
squares of the expected values of the correlation contributions of the linear trails,
which are constructed automatically using mixed-integer linear programming
(MILP) techniques.

Several of these works mention the problem that may arise in the computation
of the correlation contribution of a linear trail when non-linear functions share
inputs. We showed in Section 4 that correlation matrices don’t have this problem.

In this section we address a second problem with the computation of the
potential. Note that this problem doesn’t occur for differential characteristics
and differentials. It is one reason why we do not agree that differential and
linear trails can be treated in exactly the same way, as is claimed e.g. in [17].

5.1 Expected correlation

For a key-alternating cipher, the expected value (over all roundkeys) of the
correlation contribution of a linear trail equals

E[corp(Ω)] = 0 (8)



This follows directly by taking the expectation of (2). Intuitively, (8) might look
contradictory to [10], in particular to Algorithm 1. The apparent contradiction
can be solved as follows. Although [6] writes:

The multiple-round linear expressions described in [10] correspond with
what we call linear trails.

there is in fact a difference. The approximations of [10] are linear expressions in
terms of plaintext bits, ciphertext bits and roundkey bits. In the trails of [6], the
roundkey bits are left out of the expression. It follows that the expected value of
the correlation contribution becomes zero. By (3) we obtain that the expected
value over all roundkeys of the correlation of a linear hull is

E[cor(a, b)] = 0 .

5.2 Potential

Since the data complexity of a linear attack is inversely proportional to the
square of the correlation, it is of importance to know or to bound the value
E[(cor(a, b))2]. In [12], Nyberg calls this quantity the potential of the linear hull,
and gives the following formula to compute it:

E[(cor(a, b))2] =
∑
Ω

ω0=a,ωr=b

(corp(Ω))2 (9)

The potential is also called the Expected Linear Probability (ELP). We briefly
recall here the proof for (9), using our own notation. By definition of expectation,
we have:

E[(cor(a, b))2] =
1

K

∑
k

 ∑
Ω

ω0=a,ωr=b

corp(Ω)


 ∑

Ω′
ω′0=a,ω

′
r=b

corp(Ω′)


Using (2):

=
1

K

∑
Ω

∑
Ω′

(∑
k

(−1)dΩ+dΩ′+
∑
i(ωi+ω

′
i)
tki |corp(Ω)||corp(Ω′)|

)

Since ∑
k

(−1)
∑
i(ωi+ω

′
i)
tki =

{
K if ωi = ω′i,∀i,
0 else,

(10)

we have:
E[(cor(a, b))2] =

∑
Ω

(corp(Ω))2 . (11)

ut



5.3 Additions/corrections

We will now show that if a cipher exhibits one-round hulls as described in Sec-
tion 3, Formula (11) is no longer correct. The existence of one-round hulls implies
that we can have more than one trail corresponding to the same linear mask of
the roundkey. For example, Fig. 2–Fig. 4 each show two different trails corre-
sponding to the same linear mask of the roundkey.

In order to explain the consequences, (1) has to be slightly rewritten, using a
different notation. In fact, we need to distinguish between trails and masks for the
roundkey. From now on, we use κi to denote the mask for the roundkey of round
i, and K to denote the vector of roundkey masks. We use W to denote the vector
of the data masks required to uniquely define the trail: W = (w0, w1, . . . , wr).
Note that the domain of the wi may be larger than the domain of the κi. For
example, in Fig. 1, the data mask wi contains a, b, c and d, while the roundkey
mask κi needs to contain only b.

We denote by l, respectively L, the functions mapping wi to the correspond-
ing κi, respectively W to the corresponding K. These functions are specific to
the cipher. With this notation, (1) becomes:

corround i(wi, wi+1) = (−1)κ
t
ikicorg(wi, wi+1), with κi = l(wi).

When L is one-to-one, formula (11) applies without modifications. However, if L
is a non-injective map, then the sum of (10) become nonzero as soon as K = K′,
which still allows W 6= W ′. Hence (11) becomes:

E[(cor(a, b))2] =
∑
K

∑
W,W ′

L(W )=L(W ′)=K

(corp(W ))(corp(W ′)) .

Converting back, we obtain:

E[(cor(a, b))2] =
∑
K

 ∑
W

L(W )=K

corp(W )


2

(12)

Comparing (9) to (12), we see that the difference between the two values can
take positive as well as negative values. In particular when there are several trails
with correlation contributions of comparable magnitude, the difference can be
significant. Applied to the one-round hulls of Fig. 2–Fig. 4, we get the following
results:

(a, b) E[(cor(a, b))2] with (9) E[(cor(a, b))2] with (12)

({6; 7, 14}, {5, 12; 7, 14}) 2−3 2−2

({5; 7, 14}, {12; 7, 14}) 2−3 2−2

({5, 13; 7, 14}, {12; 7, 14}) 2−3 0

We performed practical experiments and confirmed the values in the rightmost
column.



5.4 Conclusion

Finally, we would like to discuss when (12) has to be used instead of (11),
or in other words: “For which ciphers is the map L from data-input masks to
roundkey masks not one-to-one?” We already demonstrated that Simon is such
a cipher. Also Speck and ciphers using Substitution-Permutation-Substitution
(SPS) round functions like Camellia [1] are in this category.

Perhaps we should conclude that the difference between (11) and (12) points
to a problem with the methodology being used to construct linear trails. Indeed,
it would be possible to define a linear trail by its roundkey mask, and then adapt
the method to compute its correlation contribution to make sure that all terms
are included.

6 On Matsui’s Algorithm 1

In this section, we investigate how the success rate of Matsui’s Algorithm 1 is
influenced by all the trails in the same linear hull. As described already in [13],
this phenomenon can be used to extend Matsui’s Algorithm 1 and to extract
multiple key-bits. We illustrate this for reduced Simon in Section 6.5.

In Section 6.3 and Section 6.4 we study another consequence of this phe-
nomenon: sometimes, the success rate of Matsui’s Algorithm 1 will be worse than
the estimate based on the study of a single trail. Somewhat counter-intuitively,
the success rate of an attack may even decrease when the number of known plain-
texts is increased! As far as we know, this is the first time that an explanation
for such an effect is provided.

First, we describe the background for this special phenomenon: the 4 trails
that constitute a hull over three rounds of Simon (Section 6.1) and the key-
dependence of their correlations (Section 6.2).

6.1 Four trails through three rounds of Simon

Fig. 5 shows two trails through three rounds of Simon-32. Both trails start from
the plaintext bits {8, 10, 16, 28} and end in the ciphertext bit {16}. Hence they
belong to the same 3-round linear hull. Fig. 6 in Appendix A shows two more
trails belonging to this 3-round linear hull. It can be shown that this 3-round
hull doesn’t have any other trails with nonzero correlation contribution. These
4 linear trails are linearly dependent: denoting the vector of roundkey masks of
Trail i by Ωi, we have

Ω1 +Ω2 +Ω3 +Ω4 = 0

All trails involve bits {0, 12} from the first roundkey, bit {14} from the second,
and bit {0} from the third roundkey. Additionally, each of these trails have the
following bits involved:

Trail 1: ∅
Trail 2: bit 8
Trail 3: bit 15
Trail 4: bits 8, 15
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Fig. 5. Two trails in a 3-round linear hull. Trail 1 is shown on the left, Trail 2 on the
right.



We denote by Z the sum of the roundkey bits involved in all trails. The sum of
the roundkey bits involved in Trail 2, 3 and 4, we denote respectively by Z + z0,
Z + z1 and Z + z0 + z1.

6.2 Correlation contributions of the trails

Straightforward computations similar to the computations in Section 3 and Sec-
tion 4 show that the trails have the following correlation contributions:

Trail 1: cor
(1)
p = (−1)Z · 2−4

Trail 2: cor
(2)
p = (−1)Z+z0 · 2−5

Trail 3: cor
(3)
p = (−1)Z+z1+1 · 2−5

Trail 4: cor
(4)
p = (−1)Z+z0+z1 · 2−5

Note that these correlation contributions exist only as intermediate mathemati-
cal results. An attacker who can observe only plaintext and ciphertext bits, can
measure only the sum of the four correlation contributions, i.e. the correlation of
the hull. We suspect that this fact forms the basis of Murphy’s argument against
the probability statements made in the usual definition of a linear hull [11]. We
denote the correlation of the hull by corh and obtain:

corh = (−1)Z · 2−4 + (−1)Z+z02−5 + (−1)Z+z1+12−5 + (−1)Z+z0+z12−5 (13)

= (−1)Z · 2−5
(
2 + (−1)z0 + (−1)z1+1 + (−1)z0+z1

)
(14)

= (−1)Z+z0 · 2−5
(
(−1)z0 · 2 + 1 + (−1)z1+z0+1 + (−1)z1

)
(15)

= (−1)Z+z1 · 2−5
(
(−1)z1 · 2 + (−1)z0+z1 − 1 + (−1)z0

)
(16)

= (−1)Z+z0+z1 · 2−5
(
(−1)z0+z1 · 2 + (−1)z1 + (−1)z0+1 + 1

)
(17)

From (13) we see that the correlation is determined by the values of Z,Z +
z0, Z + z1 + 1, and Z + z0 + z1. Table 1 considers the 8 possible assignments
for these variables and their correlations. We see that for a fixed Z, the value
(−1)Z ·3 ·2−5 is three times more likely to occur than the value (−1)Z+1 ·2−5. In
the following, we will investigate how likely each value is, and show how different
values affect the success rate of Matsui’s Algorithm 1 when different trails are
considered as if they are the only trails.

6.3 Knowing Trail 1 only

We adopt the figures of [10, Table 2] to express the relation between correlation
of a hull, the number of known plaintext and the success rate. Concretely, we
derive from the table that if the hull has correlation c, then using c−2, 4c−2 and
8c−2 known plaintexts, the algorithm achieves success rates of respectively 84%,
98% and 100%.

In order to apply Algorithm 1 using Trail 1, the adversary first computes the
correlation contribution of Trail 1:

cor(1)p = (−1)Z · 2−4 (18)



Table 1. The possible values for corh obtained from (13).

Z z0 z1 corh

0 0 0 3 · 2−5

0 0 1 3 · 2−5

0 1 0 −2−5

0 1 1 3 · 2−5

1 0 0 −3 · 2−5

1 0 1 −3 · 2−5

1 1 0 2−5

1 1 1 −3 · 2−5

Using the assumption that the correlation of the hull is approximately equal to
the correlation contribution of Trail 1, the adversary concludes that a sample of
N = 210 known plaintexts should be sufficient to estimate Z with a success rate
of 98%.

Subsequently, the adversary collects a sample of N known plaintexts and
uses them to compute the experimental correlation ĉ. Depending on the value
of ĉ, the adversary “guesses” a value for the sum (XOR) of the roundkey bits
associated with the trail. Using (18) the adversary is led to believe that the
actual bias can only take the values 2−4 and −2−4 and so the obvious decision
rule is to guess for the XOR of the roundkey bits the value 1 if ĉ < 0, and the
value 0 if ĉ > 0. From (14), however, we obtain:

z0 = 0, z1 = 0→ corh = (−1)Z · 3 · 2−5

z0 = 0, z1 = 1→ corh = (−1)Z · 3 · 2−5

z0 = 1, z1 = 0→ corh = (−1)Z · (−1) · 2−5

z0 = 1, z1 = 1→ corh = (−1)Z · 3 · 2−5

In the first, the second and the last case, the actual correlation is (−1)Z · 3 · 2−5,
which is 50% larger than the value that was obtained using Trail 1 only. Using 210

known plaintexts, the success rate of Algorithm 1 increases from the predicted
98% to 100%.

In the third case, however, not only the magnitude of the correlation has
decreased, but also the sign has changed. This means that Algorithm 1’s estimate
for Z will be usually wrong ! The success rate drops from the predicted 98%
to 100 − 84 = 16%. We conclude that the average success rate of Matsui’s
Algorithm 1 drops from the predicted 98% to

0.75 · 100% + 0.25 · 16% = 79%.

When the data complexity is increased, the estimate of the actual correlation
through the sample correlation is improved. This means that the first term in



the sum increases, while the second one decreases. The success probability in
the general case is given by:

1− 0.75 · φ

− (N2 + 3 ·N · 2−6 − N
2

)√
N
4 − 9 ·N · 2−12

+ 0.25 · φ

− (N2 −N · 2−6 − N
2

)√
N
4 + ·N · 2−12


Differentiating with respect to N shows that the function is maximised with a
success rate of 80% when N = 29.12, and tends to 75% as N tends to 232. So we
get the following observation.
Observation: In an attack based on (the original, non-extended version of)
Matsui’s Algorithm 1 the optimal number of plaintexts can be smaller than the
full codebook. Increasing the number of plaintexts beyond this optimal number
may decrease the success rate of the attack.

6.4 Knowing only one of the Trails 2–4

Similar to the case of Trail 1, we can use the individual correlations presented
in Subsection 6.2. Hence, for Trail 2, the adversary will compute

cor(2)p = (−1)Z+z02−5

and conclude that 212 known plaintexts should be sufficient to estimate Z + z0
with a success rate of 98%. Since the predicted correlation differs only in sign,
the decision rule for the guessed sum of the roundkey bits is as before. Repeating
the success rate analysis and using the numbers from Table 1, we learn that the
success rate with 212 known plaintexts drops from the predicted 98% to

0.5 · 100% + 0.25 · 98% + 0.25 · 0% = 74.5%

The success rate is maximised and saturates with 75% when N grows beyond
212.1 as the middle term tends to 100% and the others stay steady. Similar
computations give for Trail 4 the same result as for Trail 2. For Trail 3, setting
N = 212 gives a reduced success rate of:

0.25 · 100% + 0.5 · 0% + 0.25 · 2% = 25.5%.

A success rate below 50% means that Algorithm 1 will more often produce the
wrong answer.

6.5 Knowing all Trails

When all trails are taken into account, Matsui’s Algorithm 1 can be extended
and recover more than a single bit, cf. also [13]. The approach can be summarized
as follows. The adversary knows now that the correlation of the hull can take 4
values, distanced 2 · 2−5 apart, cf. (13) and Table 1. The adversary divides the
space of possible ĉ outcomes into four regions instead of just two. After collecting
N plaintexts, the adversary computes ĉ and guesses for the key bits the values
that produce the correlation the closest to ĉ. We can compute the success rate
as follows.



If Z = 0 and z0z1 ∈ {00, 01, 11}, then corh = 3 · 2−5. The attack will be suc-
cessful if ĉ > 2−4. When N = 212, this happens with probability 0.98. The
adversary obtains 1 + 3(−1/3 log2(1/3)) = 1 + log2(3) ≈ 2.6 bits of informa-
tion.

If Z = 0 and z0z1 = 10, then corh = −1 · 2−5. The attack will be successful if
−2−4 < ĉ < 0. When N = 212, this happens with probability 0.95. The
adversary obtains 3 bits of information.

If Z = 1 and z0z1 = 10, then corh = 2−5. The attack will be successful if 0 <
ĉ < 2−4. When N = 212, this happens with probability 0.95. The adversary
obtains 3 bits of information.

If Z = 1 and z0z1 ∈ {00, 01, 11}, then corh = −3 · 2−5. The attack will be suc-
cessful if ĉ < −2−4. When N = 212, this happens with probability 0.98. The
adversary obtains 2.6 bits of information.

6.6 Conclusion

It has been observed before that the accuracy of linear attacks can be improved if
multiple trails are taken into account [4,7,8]. The example that we treated in this
section illustrates this for the specific case where we use Matsui’s Algorithm 1
and all trails are in the same linear hull.

When we take the dependencies on the roundkey bits into account, we can
use Algorithm 1 to recover more than 1 key bit as in [13]. However, when we
do not take into account these dependencies, there are cases where Algorithm 1
systematically provides the wrong outcome, no matter how much we increase
the number of known plaintexts. In fact, there are cases where increasing the
number of known plaintexts beyond a certain value will result in a decrease of
the attack’s success rate. Future work should revisit attacks that were using the
correlation of a single trail as an estimate for the correlation of the hull, as well
as attacks using Matsui’s Algorithm 1, to see whether the data complexity needs
to be modified, and whether more key bits can be recovered. In previous sections
we showed how this can be done using correlation matrices, taking into account
conflicting effects that were previously overlooked.

It remains to be investigated how we can extend this analysis to hulls over
more rounds, when it becomes infeasible to enumerate all the trails. Secondly, it
would be interesting to investigate the consequences for Matsui’s Algorithm 2.
Algorithm 2 tries to find the last-round keys that minimise the distance between
the correlation over R − x rounds that is predicted by the adversary and the
experimental correlation computed from ciphertexts and known plaintexts. If
the actual correlation is very far from the predicted correlation, as we observed
here, there could be many wrong keys ranked above the correct key.
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13. Röck, A., Nyberg, K.: Generalization of Matsui’s Algorithm 1 to linear hull for
key-alternating block ciphers. Des. Codes Cryptography 66(1-3), 175–193 (2013),
http://dx.doi.org/10.1007/s10623-012-9679-1



14. Santis, A.D. (ed.): Advances in Cryptology - EUROCRYPT ’94, Workshop on the
Theory and Application of Cryptographic Techniques, Perugia, Italy, May 9-12,
1994, Proceedings, Lecture Notes in Computer Science, vol. 950. Springer (1995)

15. Shi, D., Hu, L., Sun, S., Song, L.: Linear (hull) cryptanalysis of round-reduced
versions of KATAN. Cryptology ePrint Archive, Report 2015/964 (2015), http:
//eprint.iacr.org/

16. Shi, D., Hu, L., Sun, S., Song, L., Qiao, K., Ma, X.: Improved linear (hull) crypt-
analysis of round-reduced versions of SIMON. Cryptology ePrint Archive, Report
2014/973 (2014), http://eprint.iacr.org/

17. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Towards finding the best characteristics of some bit-oriented block ciphers
and automatic enumeration of (related-key) differential and linear characteristics
with predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014),
http://eprint.iacr.org/
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Fig. 6. Two more trails in the same 3-round linear hull as Figure 5. Trail 3 is shown
on the left, Trail 4 on the right.


