
Spectral characterization of iterating lossy mappings

Joan Daemen1,2

1 STMicroelectronics
2 Radboud University

Abstract. In this paper we study what happens to sets when we iteratively apply lossy (round) map-
pings to them. We describe the information loss as imbalances of parities of intermediate distributions
and show that their evolution is governed by the correlation matrices of the mappings. At the macro-
scopic level we show that iterating lossy mappings results in an increase of a quantity we call total
imbalance. We quantify the increase in total imbalance as a function of the number of iterations and of
round mapping characteristics. At the microscopic level we show that the imbalance of a parity located
in some round, dubbed final, is the sum of distinct terms. Each of these terms consists of the imbalance
of a parity located at the output of a round, multiplied by the sum of the correlation contributions of
all linear trails between that parity and the final parity. We illustrate our theory with experimental
data. The developed theory can be applied whenever lossy mappings are repeatedly applied to a state.
This is the case in many modes of block ciphers and permutations for, e.g., iterated hashing or self-
synchronizing stream encryption. The main reason why we have developed it however, is for applying
it to study the security implications of using non-uniform threshold schemes as countermeasure against
differential power and electromagnetic analysis.

Keywords: iterative lossy mappings, correlation matrices, non-uniformity

1 Introduction

Differential power analysis (DPA) is a class of statistical attacks allowing to extract the key out
of cipher implementations exploiting dependence of the power consumption on the data being pro-
cessed. As a countermeasure to be used in hardware implementations, so-called threshold schemes
have been proposed [11,12]. These schemes are a special case of masking schemes, where the sen-
sitive intermediate variables are represented by a number c of shares and the represented value,
dubbed native, is the (bitwise) sum of those shares. A threshold scheme is designed such that any
combinatorial circuit in the implementation takes as input at most c − 1 shares. If the sharing is
uniform, i.e., if the missing share is uniformly distributed, the power consumption of such a com-
binatorial circuit is independent of the native value for the same reason that the one-time pad is
provably secure. From this it is easy to prove that a threshold scheme is provably secure against
first-order DPA as long as the shares are uniform.

We have proposed to apply a 3-share threshold schemes to the Keccak-f permutation [3] to
be used for keyed modes of Keccak or Keccak-f itself [2]. However, the threshold sharing we
proposed for the non-linear layer is not uniform. Concretely, our shared implementation of the non-
linear step χ is not invertible and it seems no invertible 3-share threshold scheme exists for χ. This
implies that if we start with a uniformly shared state, it is no longer uniform after an iteration. We
have proposed different fixes for this problem[4]. In fact, the loss of uniformity can be compensated
by some extra circuitry and injecting 4 random bits per round. However, some of us felt that this
may be unnecessary. To better understand this, we thought it would be good to take a closer look
at this loss of uniformity. The result of these investigations lead to some theory that is not specific
for the threshold sharing setting and insights specific for threshold sharing. This paper reports on
the former.



Although non-uniformity threshold schemes is the trigger for this work, it can be applied to
other settings. For example Merkle-Damgård based or sponge-based hashing, self-synchronizing
stream ciphers or ciphers with a non-invertible state-updating function. An example of the latter is
the sponge function Gluon[1]. Gluon was already investigated in [14], that can be considered prior
art to this work. As opposed to [14] that concentrates on macroscopic aspects, we start from the
spectral domain and make extensive use of correlation matrices to derive macroscopic metrics for
non-uniformity in a second stage.

1.1 Overview
Section 2 explains how distributions over GF(2)n can be fully characterized by the imbalances of
their parities. The array of imbalances is called the imbalance spectrum and the link between the
probability distribution and the imbalance spectrum is the Walsh-Hadamard transformation. We
derive how to compute the spectrum of the product of independent distributions and of a projected
distribution.

Section 3 recalls correlation matrices of Boolean mappings and linear trails in iterative map-
pings. It provides expressions for the occurrence of imbalances in (iterative) Boolean mappings and
iterative mappings and their propagation through them. These expressions are the basis for the
remainder of the paper.

Section 4 defines macroscopic non-uniformity metrics for distributions and mappings: the total
imbalance (contribution) and collision probability. It shows that under independence assumptions,
iteratively applying lossy mappings to a variable accumulates the imbalance contributions of the
lossy mappings in the total imbalance of the variable.

In Section 5 we characterize the distributions, spectra and total imbalance that result when sam-
pling GF(2)n both for the cases with and without replacement and the corresponding distributions
of random mappings.

In Section 6 we show that for some classes of mappings, i.e., lossy round functions, it is easy to
determine their so-called collision profile that fully determines their total imbalance. We illustrate
this with an example.

Finally, in Section 7 we provide some experimental evidence that the independence assumptions
of Section 4 are reasonable.

1.2 Conventions and notation
We consider distributions over domains of type GF(2)n, i.e., sets of n-bit vectors. We denote them
by a capital, e.g., X. For a given n-bit value x, we denote Pr(X = x), the probability that X = x,
by X(x).

We use the Kronecker delta function with a slightly different notation than usual for clarity:
δ(x = y). This function takes two arguments x and y and is 1 if x = y and zero otherwise.

If x is an n-bit vector and y is an m-bit vector x||y denotes the n +m-bit vector with first n
components those of x and m last components those of y.

For quantities a and b, we use a ≫ b to indicate that a is much larger than b. When using addi-
tion and summation, the kind of addition (in GF(2)n, in R, . . .) performed is implicitly determined
by the type of summands.

We use vectors and matrices and their products. The vectors are supposed to be column vectors
and the transpose operation applied to a vector or matrix switches rows and columns. The transpose
of vector v is denoted as vT and the transpose of matrix M is denoted as MT. We denote the n×n
unity matrix by In. The component of a vector v with index i is denoted as vi and the element in
a matrix M in row with index r and column with index c is denoted as Mr,c.
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2 Distributions and their (imbalance) spectrum

In this section we show how distributions can be characterized in the spectral domain by means
of imbalances in certain parities. Large imbalances can give rise to cryptanalytic or side-channel
attacks.

2.1 Parities, imbalances and spectrum

Definition 1. A distribution X over GF(2)n is uniform if X(x) = 2−n for all x ∈ GF(2)n.

We can describe distributions over GF(2)n with imbalances over parities that are defined by
n-dimensional binary vectors called masks.

Definition 2. The parity of a vector x defined by a mask v is the linear function vTx from GF(2)n
to GF(2) given by

vTx =
∑
i

vixi ,

where the summation corresponds to the addition in GF(2).

Definition 3. The imbalance X̃(v) of a mask v for a distribution X is given by

X̃(v) =
∑
x

X(x)(−1)v
Tx . (1)

Imbalances range between −1 (parity is always 1) and +1 (parity is always 0). If it is zero we say
it is balanced.

Filling in v = 0 in Equation (1) yields X̃(0) = 1. Naturally, X̃(0) is the imbalance of the
constant function zero and so equal to 1. This leads us to the following definition.

Definition 4. The spectrum of a distribution with X̃(0) omitted is the reduced spectrum and
denoted by X̂.

Let L be a mapping from the space of binary vectors to the space of real-valued vector that
transforms a binary vector of dimension n to a real-valued vector of dimension 2n. L is defined by

L : GF(2)n → IR2n : a 7→ L(x) ⇔ ∀u ∈ GF(2)n : L(x)u = (−1)u
Tx . (2)

Since L(x⊕y) = L(x) ·L(y), L is a group homomorphism from ⟨GF(2)n,+⟩ to ⟨(R\{0})2n , ·⟩, where
‘ · ’ denotes the component-wise product.

L(x) contains the 2n parities of an n-bit vector x. Equivalently, it contains the parities of the
distribution X over GF(2)n that has probability 1 in x and zero elsewhere: Pr(X = x) = δ(x = a).
We can express the spectrum of a distribution X in terms of L:

X̃ =
∑
x

X(x)L(x) . (3)
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2.2 The Walsh-Hadamard transform

From Equation (1), it is clear that the vector X̃ of values X̃(v) for all v can be obtained by applying
the Walsh-Hadamard transform [8] to X. This transform is a linear transformation operating on a
vector space R2n that can be modelled as multiplication by a square matrix W with 2n rows and
columns. The rows and columns are not indexed by integers but rather by n-bit binary vectors and
the element in row v and column x is given by (−1)v

Tx = L(x)v. So we have X̃ = W ×X. Clearly,
vTx = xTv so W is symmetric: WT = W.

We can define an inner product ⟨A,B⟩ with A and B vectors in R2n . Assuming A and B are
column arrays containing coordinates with respect to an orthonormal basis, this inner products is
given by ⟨A,B⟩ = ATB =

∑
iAiBi. Two vectors A and B are orthogonal if their inner product is

zero.
A transformation M is said to be orthogonal if for all vectors A and B it holds that ⟨MA,MB⟩ =

⟨A,B⟩. It is easy to see that this is the case if the columns of M form an orthonormal basis, i.e.,
if we denote two columns of M by Mi and Mj , we have Mi

TMj = δ(i = j). This can be expressed
more compactly as MTM = I2n .

The Walsh-Hadamard transform can be decomposed in an orthogonal transformation and an
expansion by 2n/2. We have W = 2n/2W̌ and W̌W̌T = I2n . The inverse of W is therefore given by
W−1 = 2−nWT = 2−nW. It follows that we can reconstruct a distribution X from its spectrum X̃
in the following way:

X(x) = 2−n
∑
v

X̃(v)(−1)v
Tx , (4)

or equivalently
X = 2−n

∑
v

X̃(v)L(v) .

2.3 Product of independent distributions

Let X be a distribution of a 2n-bit string x and Y a distribution of a 2m bit string y, with X and
Y independent and let z be the joint distribution of x and y. Then the distribution Z of z is given
by:

Z(z = (x, y)) = X(x)Y (y) .

For the imbalances this implies the following:

Z̃(v = (vx, vy)) = X̃(vx)Ỹ (vy) .

This can be generalized to the concatenation of s string with independent distributions. Let x =
(x(0), x(1), . . . , x(s−1)) and v = (v(0), v(1), . . . , v(s−1)). We have:

X̃(v) =
∏
i

X̃(i)(v(i)) . (5)

Note that in the product on the right hand side of Equation (5), only factors with v(i) ̸= 0 can
be different from 1. We call these active component masks. Moreover, for X̃(v) to be non-zero, all
terms in the product on the right hand side shall be different from zero. In words, for vTx to be
imbalanced, all parities v(i)

Tx(i) must be imbalanced. This implies that X̃(v) = 0 as soon as there
is a single parity v(i)

Tx(i) that is balanced.
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2.4 Projection of a distribution

Consider now the distribution of a subset of the bits of a string x. We denote this by the term
projection. We consider the projection reducing x to its first k bits denoted by x(u) and denote the
last n− k bits by x(u). We have

X(u)(x(u)) =
∑
x(u)

X(x(u)||x(u)) ,

and for the spectrum:
X̃(u)(v(u)) = X̃(v(u)||0) .

So the spectrum of the projection of X is just a truncation of the spectrum of X. This can be
generalized by defining x(u) = Zx with Z a binary projection matrix with k rows and n columns:

X(u)(x(u)) =
∑
x

δ(x(u) = Zx)X(x) ,

and for the spectrum:
X̃(u)(v(u)) = X̃(ZTv(u)) . (6)

It may be the case that for a non-uniform distribution X, the projection is uniform. This is in
fact the case if the spectrum is zero for all masks v that can be formed as ZTv(u). So global
non-uniformity and local uniformity are not mutually exclusive.

3 Lossy mappings and their impact on local imbalance

In this section we show how mappings from GF(2)n to GF(2)m transform the spectrum of variables.

3.1 Correlation matrices and linear trails

The correlation between two Boolean functions with domain GF(2)n can be expressed by a corre-
lation coefficient that ranges between −1 and 1:

Definition 5. The correlation coefficient C(g(x), h(x)) associated with a pair of Boolean functions
g(x) and h(x) is given by

C(g(x), h(x)) = 2 · Pr(g(x) = h(x))− 1 ,

or equivalently
C(g(x), h(x)) =

∑
x

(−1)g(x)+h(x) .

The structure of input-output correlations of a Boolean mapping f(x) form an equivalent rep-
resentation in the spectral domain. In particular, this contains the correlations between Boolean
functions uTf(x) on the one hand and vTx on the other. This structure is the correlation matrix[5].

The correlation between an input mask v and an output mask u of a Boolean mapping is defined
as:

C(uTf(x), vTx) =
∑
x

(−1)u
Tf(x)+vTx .

Definition 6 ([5]). The correlation matrix Cf of an n-bit to m-bit mapping f is a 2n×2m matrix
with element Cf

u,w in row u and column w equal to C(uTf(x), wTx).
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Row u of a correlation matrix can be interpreted as

(−1)u
Tf(x) =

∑
w

Cf
u,w(−1)w

Tx .

This expresses an output parity with respect to the basis of input parities.
A correlation matrix Cf defines a linear map with domain R2n and range R2m . Clearly, we have

L(f(x)) = CfL(x) .

In words, applying a Boolean function f to a Boolean vector x and multiplying the corresponding
vector L(x) with the correlation matrix Cf are just different representations of the same operation.
This is illustrated in Fig. 1.

x

⇕ L

L(x) with L(x)v = (−1)x
Tv

-
f

-
Cf

y = f(x)

⇕ L

L(y) = C(f)L(x)

Fig. 1. The equivalence of a Boolean mapping and its correlation matrix.

Let F be a Boolean mapping that is the composition of a number of Boolean mappings fi:

F = fr ◦ . . . ◦ f2 ◦ f1 .

We call the mappings fi round mappings.
The correlation matrix of F is the product of the correlation matrices of the round mappings

fi. We have
CF = Cfr × . . .× Cf2 × Cf1 .

An r-round linear trail Q [5], denoted by

Q = (q0, q1, q2, . . . qr) ,

consists of the chaining of r successive correlations of the type C(qi
Tfi(x), qi−1

Tx). To this linear
trail corresponds a correlation contribution coefficient CQ ranging between −1 and +1 defined as:

CQ =
∏
i

Cfi
qi,qi−1

.

From this we can derive following lemma.

Lemma 1 ([5]). The correlation between uTF (x) and wTx is the sum of the correlation contribu-
tion coefficients of all r-round linear trails Q with initial selection vector w and terminal selection
vector u.

C(uTF (x), wTx) =
∑

q0=w,qr=u

CQ .
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3.2 Propagation of imbalance through a mapping

Let f be a Boolean mapping from GF(2)n to GF(2)m and X is a distribution over GF(2)n, the
domain of this mapping. Then the distribution Y of y = f(x) is given by:

Pr(Y = y) =
∑
x

δ(f(x) = y)Pr(X = x) . (7)

Given an input x with a given spectrum X̃, we can compute the spectrum Ỹ of y = f(x) by
applying the inverse Walsh-Hamadard transform to get X, apply Equation (7) to X to get Y and
then apply the Walsh-Hadamard transform again to get Ỹ . However, we can also do it in a single
step using the correlation matrix.

Lemma 2. Given a Boolean mapping f and the spectrum X̃ of its input x, the spectrum Ỹ of its
output y = f(x) is given by

Ỹ = Cf × X̃ .

Proof. The spectrum of Y can be written as:

Ỹ =
∑
y

Pr(Y = y)L(y) .

For the probabilities of Y we have:

Pr(Y = y) =
∑
x

Pr(X = x)δ(y = f(x)) .

Filling this in yields:

Ỹ =
∑
y

(∑
x

Pr(X = x)δ(y = f(x))

)
L(y) .

Re-ordering and re-grouping this gives:

Ỹ =
∑
x

Pr(X = x)

(∑
y

δ(y = f(x))L(y)

)
=
∑
x

Pr(X = x)L(f(x))

=
∑
x

Pr(X = x)CfL(x)

= Cf
∑
x

Pr(X = x)L(x)

= Cf X̃ .

⊓⊔

In a correlation matrix, row 0 contains correlations where the output mask is all-zero. It imme-
diately follows that in the correlation matrix of any mapping, all elements in row 0 are zero, except
the element in column 0, that contains the correlation between two constant functions both equal
to zero and is hence one. Column 0 contains correlations of output parities with input parities with
zero input mask. An input x that is uniformly distributed has a spectrum that is all-zero for all
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non-zero masks and 1 in the zero mask. So column 0 contains the spectrum Ỹ of y = f(x) given a
uniformly distributed x.

Analogous to the reduced spectrum of a distribution, we can now define the reduced correlation
matrix C∗f of a mapping f as Cf with row 0 and column 0 removed. This technique was also used
by Jérémy Parriaux [13]. For an n-bit to m-bit mapping, C∗f has 2m − 1 rows and 2n − 1 columns.
Moreover, we denote the first column of the correlation matrix, with the element in row 0 removed,
by If and call it the imbalance vector of f . It is simply the reduced spectrum Ŷ of y = f(x) with
x uniformly distributed. Note that for a balanced mapping the imbalance vector If is all-zero. We
have: [

1

Ŷ

]
=

[
1 0

If C∗(f)

]
×
[
1

X̂

]
.

We can now re-formulate Lemma 2 in terms of reduced spectra, correlation matrix and imbalance
vector:

Lemma 3. Given a Boolean mapping f and an input x with reduced spectrum X̂, the reduced
spectrum Ŷ of y = f(x) is given by

Ŷ = If + C∗f × X̂ .

In other words, the reduced spectrum of y = f(x) consists of the sum of two terms. The first term
is the imbalance vector of f and independent of x and the second term is the reduced spectrum of
x multiplied by the reduced correlation matrix of f .

3.3 Propagation of imbalance through iterative mappings

Applying Lemma 3 to an iterative mapping F = fr ◦ . . . ◦ f2 ◦ f1 yields following expression:

Ŷ =
∑

1≤i≤r

 ∏
i<j≤r

C∗fj

× Ifi

+

 ∏
1≤j≤r

C∗fj

× X̂ . (8)

When in Equation (8) considering the imbalance of an individual mask in Ỹ , we can express it using
linear trails Q by applying Lemma 1 to the products of the round mapping correlation matrices:

Ŷ (u) =
∑

1≤i≤r

∑
w

 ∑
Q with qi=w and qr=u

CQ

× Ifi [w] +
∑
w

 ∑
Q with q0=w and qr=u

CQ

× X̂(w) . (9)

So from Equation (9) it follows that the imbalance of a mask u equals the sum of the products of
the non-zero components Ifi [w] of the imbalance vectors of all previous rounds, each one multiplied
by the sum of the correlation contributions of the linear trails from w to u. Note that the effect
of the imbalance vector of the last round, Ifr [w] is immediate: Ỹ (u) = Ifr [u] + other terms. The
contribution of components of the imbalance vector of the penultimate round, Ifr−1 [w] is diluted
by the multiplication of correlations over fr−1. In particular, a component Ifr−1 [w] contributes
C

fr−1
u,w Ifr−1 [w]. Note that contributions can be constructive or destructive as the imbalances and

correlations are signed. The contribution of components of earlier rounds becomes more and more
diluted as the distance to the final round grows. They are multiplied by the correlation contribution
of linear trails and typically cryptographic round functions are designed to not exhibit multiple-
round linear trails with high correlation contribution. Equation (9) is useful when studying the
possible loss of security due to non-uniformity of threshold scheme anti-DPA mechanisms [4].
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4 Lossy mappings and their impact on macroscopic imbalance

In this section we define macroscopic non-uniformity metrics for distributions and study their
evolution through iterative mappings. We repeatedly apply transformations fi from a fixed set of
transformations with known imbalance contribution. This is similar to but different from studying
the cycle structure of a single transformation f . In the latter case iteration leads to cycles while in
the case of different transformations no such cycles appear.

4.1 Collision probability and total imbalance

The norm of a vector A is defined as
√

⟨A,A⟩. It turns out that a useful measure for the non-
uniformity of a distribution X is the square of its norm, when seen as a vector, i.e., ||X||2 = ⟨X,X⟩.
This quantity coincides with the collision probability of X, defined as:

Definition 7. The collision probability Prcoll(X) of a distribution X is the probability that two
elements independently chosen according to the distribution X are the same. It is given by:

Pr
coll

(X) =
∑
x

X(x)2 = ||X||2 .

The negative of the binary logarithm of the collision probability is the so-called collision entropy
[15]. It can be shown that the collision entropy forms a lower bound for the more familiar Shannon
entropy by Jensen’s inequality [16].

As the Walsh-Hadamard transform is the composition of an orthogonal transformation and a
scaling, we have ||X̃||

2
= 2n||X||2, or equivalently:∑

v

X̃(v)
2
= 2n Pr

coll
(X) . (10)

In other words, the sum of the squared imbalances over all masks for a given distribution X is fully
determined by its collision probability.

The squared norm of the reduced spectrum is the sum of the non-trivial squared imbalances
and it plays a central role in our analysis.

Definition 8. The total imbalance ϕX of a distribution X is the squared norm of its reduced
spectrum:

ϕX = ||X̂||
2
=
∑
u ̸=0

X̃(u)
2
.

Clearly, the total imbalance is fully determined by the collision probability through Equation (10):

ϕX = 2n Pr
coll

(X)− 1 . (11)

The collision probability and total imbalance reach a minimum with a uniform distribution. A
uniform distribution over GF(2)n has collision probability 2−n and total imbalance 0. Uniformity
of a distribution can be expressed alternatively as having an all-zero reduced spectrum.

The collision probability and total imbalance reach a maximum when the distribution is only
non-zero for a single element in the domain. In that case the collision probability equals 1 and the
total imbalance equals 2n − 1

For the collision probability of the product of independent distributions, it is trivial to prove
following lemma.
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Lemma 4. The collision probability of a distribution that is the product of a number of independent
distributions is the product of those of the component distributions

Pr
coll

(X) =
∏
i

Pr
coll

(X(i)) .

4.2 Collision probability and imbalance contribution

We define the collision probability for a mapping f analogous to that of a distribution. It is the
collision probability of the distribution Y of y = f(x) if x has the uniform distribution.

Definition 9. The collision probability Prcoll(f) of a mapping f is the probability that f(x) = f(x′)
holds for two randomly and uniformly chosen inputs x and x′.

Similarly we can define the imbalance contribution in terms of its collision probability.

Definition 10. The imbalance contribution ϕf of a mapping f is its collision probability multiplied
by 2m, minus 1:

ϕf = 2m Pr
coll

(f)− 1 .

Clearly, the imbalance contribution of a mapping f is simply the squared norm of its imbalance
vector If .

We can now define balancedness of a mapping f .

Definition 11. A mapping f is balanced if it transforms an input with a uniform distribution into
an output with uniform distribution. Equivalently, a mapping is balanced if its imbalance contribution
is zero, or equivalently, its imbalance vector is zero.

Given two transformations f and g operating on domains GF(2)m and GF(2)k respectively,
their Cartesian product h = f × g operates on GF(2)m+k and is defined as h(x, y) = (f(x), g(y)).
Transformation h simply consists of the parallel application of f and g.

The collision probability of h = f × g is simply the product of those of f and g.

Lemma 5. If h = f × g then Prcoll(h) = Prcoll(f)Prcoll(g).

Proof. Consider x = (x(f), x(g)) and y = (y(f), y(g)). We have h(x) = h(y) iff f(x(f)) = f(y(f)) and
g(x(g)) = g(y(g)). It follows immediately that the probability of a collision in h is the product of
the collision probabilities in f and g. ⊓⊔

The following corollary is useful for computing the collision probability of S-box layers.

Corollary 1. If h is the parallel application of a number of mappings fi, then Prcoll(h) =
∏

i Prcoll(fi).

For imbalance contributions this translates to:

ϕf =
∏
i

(ϕfi + 1)− 1 .

The properties of the serial composition of two transformations h = g◦f depends on the specific
way f and g interact and in general not easy to determine exactly. In the special case that one of f
and g is a permutation, the composed transformation simply inherits the collision probability and
imbalance contribution of the other one.
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4.3 Total imbalance evolution through a lossy mapping

From Lemma 3, we see that the reduced spectrum after f consists of the sum of the imbalance
vector If and the spectrum before f multiplied by the reduced correlation matrix of f . Making
some independence assumptions allows us to say something about the expected total imbalance
after f .

First, we quantify the effect of the multiplication with C∗f on the (squared) norm of a vector.
It is well known that a permutation f has an orthogonal correlation matrix [5] and for that case
multiplication by the correlation matrix, or its reduced version, does not impact the norm. The
mappings we are interested in are not invertible and have some imbalance contribution. We now
show that multiplication by C∗f tends to multiply the norm with 1− ϕf

2n−1 . We will denote this by
cf .

Lemma 6. The expected value over the space of all possible input vectors X with ||X||2 = 1 of
||C∗f ×X||2 is exactly 1− ϕf

2n−1 = cf .

Proof. For readability we will denote C∗f by C in this proof and use Econdition(X)(f(X)) to ex-
press the expected value of f(X) chosen uniformly with only restriction that X satisfies the
mentioned condition. Let Y = C∗f × X. We have ||Y ||2 = ||CX||2 = (CX)TCX = XTCTCX.
Let UDV be the singular value decomposition of C[10]. Here U and V are orthonormal matri-
ces and D a diagonal matrix with on the diagonal the singular values di of C. Then we have
||Y ||2 = V XTDTUTUDVX = V XTD2V X and hence E||X||2=1(||Y ||2) = E||X||2=1(V XTD2V X).
If we denote V X by X ′, X ′ has the same norm as X as V is an orthonormal matrix. We now have
(with xi denoting the components of X ′:

E||X′||2=1(X
′TD2X ′) = E∑

i x
2
i=1(x

2
i d

2
i ) =

∑
i d

2
i

2n − 1
.

So cf equals the average of the squared singular values of the reduced correlation matrix C∗f .
The sum of the squared singular values of a matrix equals the sum of squared elements of

that matrix [10]. So
∑

i d
2
i =

∑
u ̸=0,w ̸=0C

2
u,w. As the only non-zero element in the first row of any

correlation matrix is the element in column zero, we have
∑

i d
2
i =

∑
u,w C2

u,w −
∑

uC
2
u,0. Each

row in a correlation matrix has norm 1, so this becomes
∑

iD
2
i = 2n − 1 − ϕf . It follows that

cf = 1− ϕf

2n−1 . ⊓⊔

It follows that the term C∗f × X̂ has an expected imbalance contribution cfϕX . Second, we
assume that If is independent of C∗f × X̂. We think this is a reasonable assumption as they have
different origins. In that case the squared norm of the sum of the two vectors is the sum of the
squared norms of the vectors. We have:

ϕY ≈ ϕf + cfϕX .

4.4 Total imbalance evolution in iterative mappings

If we make the same independence assumptions for Equation (8) we obtain:

ϕY =
∑

1≤i≤r

 ∏
i<j≤r

cfj

× ϕfi

+

 ∏
1≤j≤r

cfj

× ϕX . (12)
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In typical use cases we have r ≪ 2n/ϕfj implying r ≪ (1− cfj ) and hence
∏

j cfj ≈ 1. This allows
simplifying Equation (12) to:

ϕY ≈
∑

1≤i≤r

ϕfi + ϕX .

The expected total imbalance of Y is simply the sum of the imbalance contributions of the round
mappings fi plus the total imbalance of X. In other words, the total imbalance increases linearly
with the number of rounds by simply accumulating their imbalance contributions. Similarly, the
collision probability increases linearly and hence the collision entropy decreases logarithmically with
the number of rounds.

Assuming all fi have the same imbalance contribution ϕf , Equation (12) simplifies to:

ϕY =
1− cf

r

1− cf
ϕf + cf

rϕX .

If the mappings fi are not invertible we have cfi < 1 and for r going to infinity this expression
becomes

ϕY =
ϕf

1− cf
= 2n − 1 .

This corresponds with Y having a peak distribution equal to 1 in a single value and zero elsewhere.

5 Sampling noise and random mappings

In many applications one samples from a set. Even if the sampling is done according to a uniform
distribution, the resulting sets will exhibit imbalance and have non-zero total imbalance (unless
every element from the domain happens to be sampled exactly one time). In this section we char-
acterize the distributions that result from random sampling of GF(2)n, in a way similar to [6].
We consider two types of sampling: with and without replacement. It turns out that a random
mapping can be modeled as a sampling. An injective random mapping corresponds to sampling
without replacement and in absence of an injectivity requirement it corresponds to sampling with
replacement.

5.1 Sampling with replacement and random transformations

In sampling with replacement, we take z independent samples from GF(2)n. Let U be the multi-set
containing the z samples. It is well known that if z ≫ 1, the number of times a given value x
occurs in U , its cardinality, has a Poisson distribution with λ = z2−n [7]. Hence, the components
of X(x) are distributed according to a Poisson distribution scaled by a factor z−1:

Pr
(
X(x) =

i

z

)
=

zi2−ni

i!
e−z2−n

.

We can compute the distribution of the imbalance of a non-zero parity v using the expression
X̃(v) = z−1

∑
x∈U (−1)v

Tx. The imbalance is given by 1− 2p/z with p the number of elements x in
U with parity 1 in v. Each element of U is independent and the probabilities of this parity being
1 or −1 are both 1/2. It follows that the number p has a binomial distribution with mean z/2 and
variance z/4. So for non-zero v, X̃(v), has a distribution with mean 0 and variance z−1. If z ≫ 1,
this distribution has a normal shape.

The expected collision probability is z−1+(1−z−1)2−n. The term z−1 is the probability of taking
the same instance among the samples and the second term is the complement of that probability

12



multiplied by the probability that two independent samples collide. Applying Equation (11) yields
an expected total imbalance equal to (2n − 1)z−1.

The set of images of a random mapping from GF(2)n to GF(2)m simply coincides with that
of a random sample with replacement of 2n elements out of 2m and hence the expected collision
probability is 2−n + (1 − 2−n)2−m and the expected imbalance contribution (2m − 1)2−n. For a
random transformation we have n = m and this becomes 2−n+1 − 2−2n and 1 − 2−n respectively.
Remarkably, a random transformation has an imbalance contribution close to 1.

When applying Lemma 4 we see that parallel composition of mappings with an imbalance
contribution lower than that of a random transformation may result in a mapping with imbalance
contribution higher than that of a random transformation. For example, parallel application of d
S-boxes with imbalance contribution 1 results in an S-box layer with imbalance contribution 2d−1.

The effect of projection on total imbalance depends on the shape of the spectrum. Assuming
that the imbalances have a (near) flat distribution, projection from n to k bits reduces the total
imbalance by dividing it by a factor (2n − 1)/(2k − 1) ≈ 2n−k.

5.2 Sampling without replacement and random injective mappings

In sampling without replacement, the sample set U contains z different elements from GF(2)n,
with z ≤ 2n. It follows that X(x) has a two-valued distribution with value 0 in 2n − z elements
and z−1 in z elements. The collision probability equals Prcoll(X) = z−1 and the total imbalance is
z−12n − 1. Note that if the size of the sample and the domain are equal, i.e. z = 2n, we have a
uniform distribution and the total imbalance becomes zero.

We can compute the distribution of the imbalance of a non-zero parity v using the expression
X̃(v) = z−1

∑
x∈U (−1)v

Tx. The imbalance is given by 1 − 2p/z with p the number of elements x
in U with parity 1 in v. The number p has the probability distribution of p successes in z draws
from a set of 2n without replacement, where the total number of successes in the set is 2n−1. This
is given by the hypergeometric distribution [7]:

Pr(p = i) =

(
2n−1

i

)(
2n−1

z−i

)(
2n

z

) .

This distribution has mean z/2 and variance (1− z2−n) z4 . It follows that for non-zero v, X̃(v) has
a distribution with mean 0 and variance (1 − z2−n)z−1. If z ≫ 1, this distribution has a normal
shape.

The collision probability is equal to z−1: one over the size of the sample. The total imbalance
hence equals z−12n − 1.

The collision probability of an injective mapping (implying m ≥ n) coincides with that of a
sample without replacement. The size of the sample is given by z = 2−n, so we have Prcoll(f) = 2−n

and ϕf = 0. An injective mapping with n = m is a permutation and it has total imbalance 0 and
collision probability 2−n.

5.3 Summary of this section

We summarize the results of this section in Table 1.

6 Imbalance contribution of mappings with known collision profile

In this section we deal with mappings where the non-uniformity can be quantitatively characterized
by a so-called collision profile. It turns out that this fully determines the collision probability and
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with replacement without replacement
scaled Poisson two-valued

X(x) Pr(X = i
z
) = λi

i!
e−λ Pr(X = 0) = 1− z

2n

with λ = z
2n

Pr(X = 1
z
) = z

2n

very close to normal very close to normal
X̃(v) mean: 0 mean: 0

variance: z−1 variance: (1− z2−n)z−1

Prcoll(X) mean: z−1 + (1− z−1)2−n equals z−1

ϕX mean: z−1(2n − 1) equals z−12n − 1

ϕX if z = 2n mean: 1− 2−n equals 0

Table 1. Statistical characteristics of samples with size z.

imbalance contribution. We also provide some experimental evidence of the theoretically predicted
evolution of the total imbalance.

6.1 Collision profile and implications
Definition 12. The collision partition of a mapping f is the one defined by f(x) = f(y). In other
words, two elements x and y of the domain are in the same subset if and only if f(x) = f(y). We
call the subsets of the partition collision sets and a collision set with i elements an i-collision.
Based on the collision partition of a transformation f we can define its collision profile.
Definition 13. The collision profile of a transformation f is the list (Cf [1], Cf [2], . . .) where Cf [i]
denotes the number of i-collisions in f .
Clearly, the total number of inputs in i-collisions is iCf [i] and so it follows that

∑
i iCf [i] = 2n.

The collision probability of a mapping f is determined by its collision profile.
Lemma 7. The collision probability of an n-bit to m-bit mapping f with known collision profile is
given by:

Pr
coll

(f) =
1

22n

∑
i

i2Cf [i] .

Proof. The probability equals the number of cases (x, y) leading to a collision divided by the total
number of cases:

Pr
coll

(f) =
1

22n

∑
x,y

δ(f(x) = f(y)) .

In other words:
Pr
coll

(f) =
1

22n

∑
x,y

δ(x and y are in the same collision set) .

The number of colliding pairs (x, y) in an i-collision set is i2, hence:

Pr
coll

(f) =
1

22n

∑
i

i2Cf [i] .

⊓⊔

The value of the imbalance contribution follows from this:
Corollary 2. The imbalance contribution of an n-bit to m-bit mapping f with known collision
profile is given by:

ϕf =
1

22n−m

∑
i

i2Cf [i]− 1 .
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6.2 Example: a round function with lossy S-boxes

Assume we have a round function consisting of a lossy nonlinear S-box layer N and a linear layer
L and we wish to determine its total imbalance. First, thanks to the invertibility of the linear
layer, the total imbalance of the round function is the total imbalance of the lossy S-box layer.
Second, for an S-box of reasonable width, it is easy to determine the collision profile and hence
its collision probability. This allows determining the collision probability of the non-linear layer.
Assume we have m identical S-boxes of width n. Then the collision probability of the nonlinear
layer is Prcoll(N) = Prcoll(S)

n. Translated to total imbalances this gives: ϕN = 2nmPrcoll(S)
m − 1.

Let now Prcoll(S) be 2−a: the S-box reduces the set of 2m inputs to a set with the same collision
probability as a set of 2a elements. Then we have ϕN = 2n(m−a) − 1 and cN = 1 − 2n(m−a)−1

2nm−1 . If
n(m − a) ≫ 1, we have these expressions simplify to ϕN ≈ 2n(m−a) and cN ≈ 1 − 2−na. Assume
we have a block cipher with a block size nm of 128 bits and a 4-bit S-box with Prcoll(S) = 2−3.
Then we have ϕN ≈ 232 and cN ≈ 1− 2−96 ≈ 1. The total imbalance after r rounds is simply 232r
implying a collision probability of 2−96r. This lower bounds the collision entropy, and hence also
the Shannon entropy, to 96− log2(r).

7 Experiments

We did a number of experiments to check the validity of our independence assumptions. More
particularly, we randomly constructed transformations f with domains of size 2e with e ranging
from 22 to 27 and for each of them we tracked the total imbalance when applying randomized
versions of f to it iteratively. We did this by tracking the image set as the number of rounds
increases. We initialize the image set to the full domain and randomize the application of f by
bitwise addition with a constant that is randomly generated for each i but equal for all elements
in the image set.

Initially each element in the image set has probability 2−e and the total imbalance is zero. If
the first iteration of f maps w elements to some element, this element has probability w2−e. In our
experiments we keep track of these probabilities and compute from them the total imbalance.

We studied two types of pseudorandomly generated transformations. Those in the first category
were generated without side conditions. Those in the second category satisfy specific collision pro-
files: only 2−f of the images are possible and each image has 2f pre-images. We composed these of
a random permutation followed by a simple transformation satisfying the collision profile, followed
by a (independently generated) random permutation. The random permutations were generated
with the Fisher-Yates shuffle [9].

Figure 2 illustrates the outcome of our experiments. The continuous lines represent the values
taken by simply multiplying the imbalance contribution of the transformations by the number
of iterations for the random transformation (imbalance contribution 1) and the one that maps
64 values to a single one (imbalance contribution 63). The figure shows that the experimentally
measured total imbalances follows these linear profiles quite closely.

8 Conclusions and acknowledgments

In this paper we have provided a formalism to describe non-uniformity in the spectral domain using
imbalances. The occurrence and propagation of these imbalances can be described by correlation
matrices and linear trails. We have introduced macroscopic metrics for non-uniformity in the form
of total imbalance. When iteratively applying lossy mappings to a variable, its total imbalance
increases linearly with the number of rounds and its entropy decreases logarithmically. The tools we
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Fig. 2. Evolution of total imbalance for different transformations.

provide in this paper are helpful when studying non-invertible cryptographic modes and primitives,
including non-uniform threshold schemes.
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