
Tightly Secure CCA-Secure Encryption

without Pairings

Romain Gay1, Dennis Hofheinz2, Eike Kiltz3, and Hoeteck Wee1

1 ENS, CNRS, INRIA, and PSL, Paris, France
rgay,wee@di.ens.fr

2 Ruhr-Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
Dennis.Hofheinz@kit.edu

Abstract. We present the first CCA-secure public-key encryption scheme based on DDH where the
security loss is independent of the number of challenge ciphertexts and the number of decryption queries.
Our construction extends also to the standard k-Lin assumption in pairing-free groups, whereas all prior
constructions starting with Hofheinz and Jager (Crypto ’12) rely on the use of pairings. Moreover, our
construction improves upon the concrete efficiency of existing schemes, reducing the ciphertext overhead
by about half (to only 3 group elements under DDH), in addition to eliminating the use of pairings.

We also show how to use our techniques in the NIZK setting. Specifically, we construct the first tightly
simulation-sound designated-verifier NIZK for linear languages without pairings. Using pairings, we can
turn our construction into a highly optimized publicly verifiable NIZK with tight simulation-soundness.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that
of semantic security against chosen-plaintext attacks (CPA) [15]: it is infeasible to learn
anything about the plaintext from the ciphertext. On the other hand, there is a general
consensus within the cryptographic research community that in virtually every practical
application, we require semantic security against adaptive chosen-ciphertext attacks (CCA)
[32, 13], wherein an adversary is given access to decryptions of ciphertexts of her choice.

In this work, we focus on the issue of security reduction and security loss in the construc-
tion of CPA and CCA-secure public-key encryption from the DDH assumption. Suppose we
have such a scheme along with a security reduction showing that attacking the scheme in
time t with success probability ε implies breaking the DDH assumption in time roughly t
with success probability ε/L; we refer to L as the security loss. In general, L would depend
on the security parameter λ as well as the number of challenge ciphertexts Qenc and the
number decryption queries Qdec, and we say that we have a tight security reduction if L
depends only on the security parameter and is independent of both Qenc and Qdec. Note that
for typical settings of parameters (e.g., λ = 80 and Qenc, Qdec ≈ 220, or even Qenc, Qdec ≈ 230

in truly large settings), λ is much smaller than Qenc and Qdec.
In the simpler setting of CPA-secure encryption, the ElGamal encryption scheme al-

ready has a tight security reduction to the DDH assumption [29, 6], thanks to random self-
reducibility of DDH with a tight security reduction. In the case of CCA-secure encryption,

the best result is still the seminal Cramer-Shoup encryption scheme [11], which achieves
security loss Qenc.

4 This raises the following open problem:

Does there exist a CCA-secure encryption scheme with a tight security reduction to
the DDH assumption?

Hofheinz and Jager [17] gave an affirmative answer to this problem under stronger (and
pairing-related) assumptions, notably the 2-Lin assumptions in bilinear groups, albeit with
large ciphertexts and secret keys; a series of follow-up works [24, 26, 5, 16] leveraged tech-
niques introduced in the context of tightly-secure IBE [10, 7, 19] to reduce the size of cipher-
text and secret keys to a relatively small constant. However, all of these works rely crucially
on the use of pairings, and seem to shed little insight on constructions under the standard
DDH assumption; in fact, a pessimist may interpret the recent works as strong indication
that the use of pairings is likely to be necessary for tightly CCA-secure encryption.

We may then restate the open problem as eliminating the use of pairings in these prior
CCA-secure encryption schemes while still preserving a tight security reduction. From a
theoretical stand-point, this is important because an affirmative answer would yield tightly
CCA-secure encryption under qualitatively weaker assumptions, and in addition, shed insight
into the broader question of whether tight security comes at the cost of qualitative stronger
assumptions.

Eliminating the use of pairings is also important in practice as it allows us to instantiate
the underlying assumption over a much larger class of groups that admit more efficient
group operations and more compact representations, and also avoid the use of expensive
pairing operations. Similarly, tight reductions matter in practice because as L increases, we
should increase the size of the underlying groups in order to compensate for the security
loss, which in turn increases the running time of the implementation. Note that the impact
on performance is quite substantial, as exponentiation in a r-bit group takes time roughly
O(r3).

1.1 Our Results

We settle the main open problem affirmatively: we construct a tightly CCA-secure encryption
scheme from the DDH assumption without pairings. Moreover, our construction improves
upon the concrete efficiency of existing schemes, reducing the ciphertext overhead by about
half, in addition to eliminating the use of pairings. We refer to Figure 2 for a comparison
with prior works.

Overview of our construction. Fix an additively written group G of order q. We rely on
implicit representation notation [14] for group elements: for a fixed generator P of G and for
a matrix M ∈ Zn×tq , we define [M] := MP ∈ Gn×t where multiplication is done component-
wise. We rely on the Dk-MDDH Assumption [14], which stipulates that given [M] drawn

from a matrix distribution Dk over Z(k+1)×k
q , [Mx] is computationally indistinguishable from

a uniform vector in Gk; this is a generalization of the k-Lin Assumption.

4 We ignore contributions to the security loss that depend only on a statistical security parameter.

2

We outline the construction under the k-Lin assumption over G, of which the DDH as-
sumption is a special case corresponding to k = 1.

In this overview, we will consider a weaker notion of security, namely tag-based KEM
security against plaintext check attacks (PCA) [31]. In the PCA security experiment, the
adversary gets no decryption oracle (as with CCA security), but a PCA oracle that takes as
input a tag and a ciphertext/plaintext pair and checks whether the ciphertext decrypts to
the plaintext. Furthermore, we restrict the adversary to only query the PCA oracle on tags
different from those used in the challenge ciphertexts. PCA security is strictly weaker than
the CCA security we actually strive for, but allows us to present our solution in a clean and
simple way. (We show how to obtain full CCA security separately.)

The starting point of our construction is the Cramer-Shoup KEM, in which EncKEM(pk, τ)
outputs the ciphertext/plaintext pair

([y], [z]) = ([x>M>], [x>M>kτ]), (1)

where kτ = k0 + τk1 and pk := ([M], [M>k0], [M
>k1]) for M ←r Z(k+1)×k

q . The KEM is
PCA-secure under k-Lin, with a security loss that depends on the number of ciphertexts Q
(via a hybrid argument) but independently of the number of PCA queries [11, 1].

Following the “randomized Naor-Reingold” paradigm introduced by Chen and Wee on
tightly secure IBE [10], our starting point is (1), where we replace kτ = k0 + τk1 with

kτ =
λ∑
j=1

kj,τj

and pk := ([M], [M>kj,b]j=1,...,λ,b=0,1), where (τ1, . . . , τλ) denotes the binary representation of
the tag τ ∈ {0, 1}λ.

Following [10], we want to analyze this construction by a sequence of games in which we
first replace [y] in the challenge ciphertexts by uniformly random group elements via random
self-reducibility of MDDH (k-Lin), and then incrementally replace kτ in both the challenge
ciphertexts and in the PCA oracle by kτ + m⊥RF(τ), where RF is a truly random function
and m⊥ is a random element from the kernel of M, i.e., M>m⊥ = 0. Concretely, in Game
i, we will replace kτ with kτ + m⊥RFi(τ) where RFi is a random function on {0, 1}i applied
to the i-bit prefix of τ . We proceed to outline the two main ideas needed to carry out this
transition. Looking ahead, note that once we reach Game λ, we would have replaced kτ with
kτ + m⊥RF(τ), upon which security follows from a straight-forward information-theoretic
argument (and the fact that ciphertexts and decryption queries carry pairwise different τ).

First idea. First, we show how to transition from Game i to Game i+1, under the restriction
that the adversary is only allowed to query the encryption oracle on tags whose i+1-st bit is 0;
we show how to remove this unreasonable restriction later. Here, we rely on an information-
theoretic argument similar to that of Cramer and Shoup to increase the entropy from RFi
to RFi+1. This is in contrast to prior works which rely on a computational argument; note
that the latter requires encoding secret keys as group elements and thus a pairing to carry
out decryption.

3

More precisely, we pick a random function RF′i on {0, 1}i, and implicitly define RFi+1 as
follows:

RFi+1(τ) =

{
RFi(τ) if τi+1 = 0

RF′i(τ) if τi+1 = 1

Observe all of the challenge ciphertexts leak no information about RF′i or ki+1,1 since they
all correspond to tags whose i+ 1-st bit is 0. To handle a PCA query (τ, [y], [z]), we proceed
via a case analysis:

– if τi+1 = 0, then kτ +RFi+1(τ) = kτ +RFi(τ) and the PCA oracle returns the same value
in both Games i and i+ 1.

– if τi+1 = 1 and y lies in the span of M, we have

y>m⊥ = 0 =⇒ y>(kτ + m⊥RFi(τ)) = y>(kτ + m⊥RFi+1(τ)),

and again the PCA oracle returns the same value in both Games i and i+ 1.
– if τi+1 = 1 and y lies outside the span of M, then y>ki+1,1 is uniformly random given

M,M>ki+1,1. (Here, we crucially use that the adversary does not query encryptions with
τi+1 = 1, which ensures that the challenge ciphertexts do not leak additional information
about ki+1,1.) This means that y>kτ is uniformly random from the adversary’s view-point,
and therefore the PCA oracle will reject with high probability in both Games i and i+ 1.
(At this point, we crucially rely on the fact that the PCA oracle only outputs a single
check bit and not all of kτ + RF(τ).)

Via a hybrid argument, we may deduce that the distinguishing advantage between Games i
and i+ 1 is at most Q/q where Q is the number of PCA queries.

Second idea. Next, we remove the restriction on the encryption queries using an idea of
Hofheinz, Koch and Striecks [19] for tightly-secure IBE in the multi-ciphertext setting, and
its instantiation in prime-order groups [16]. The idea is to create two “independent copies”
of (m⊥,RFi); we use one to handle encryption queries on tags whose i + 1-st bit is 0, and

the other to handle those whose i + 1-st bit is 1. We call these two copies (M∗
0,RF

(0)
i) and

(M∗
1,RF

(1)
i), where M>M∗

0 = M>M∗
1 = 0.

Concretely, we replace M ←r Z(k+1)×k
q with M ←r Z3k×k

q . We decompose Z3k
q into

the span of the respective matrices M,M0,M1, and we will also decompose the span of
M⊥ ∈ Z3k×2k

q into that of M∗
0,M

∗
1. Similarly, we decompose M⊥RFi(τ) into M∗

0RF
(0)
i (τ) +

M∗
1RF

(1)
i (τ). We then refine the prior transition from Games i to i+ 1 as follows:

– Game i.0 (= Game i): pick y← Z3k
q for ciphertexts, and replace kτ with kτ+M∗

0RF
(0)
i (τ)+

M∗
1RF

(1)
i (τ);

– Game i.1: replace y←r Z3k
q with y←r span(M,Mτi+1

);

– Game i.2: replace RF
(0)
i (τ) with RF

(0)
i+1(τ);

– Game i.3: replace RF
(1)
i (τ) with RF

(1)
i+1(τ);

4

basis for Z3k
q

basis for span(M⊥)

M M0 M1

M∗0 M∗1

Fig. 1. Solid lines mean orthogonal, that is: M>M∗0 = M>
1M

∗
0 = 0 = M>M∗1 = M>

0M
∗
1.

– Game i.4 (= Game i+ 1): replace y←r span(M,Mτi+1
) with y←r Z3k

q .

For the transition from Game i.0 to Game i.1, we rely on the fact that the uniform distribu-
tions over Z3k

q and span(M,Mτi+1
) encoded in the group are computationally indistinguish-

able, even given a random basis for span(M⊥) (in the clear). This extends to the setting with
multiple samples, with a tight reduction to the Dk-MDDH Assumption independent of the
number of samples.

For the transition from Game i.1 to i.2, we rely on an information-theoretic argument
like the one we just outlined, replacing span(M) with span(M,M1) and M⊥ with M∗

0 in
the case analysis. In particular, we will exploit the fact that if y lies outside span(M,M1),
then y>ki+1,1 is uniformly random even given M,Mki+1,1,M1,M1ki+1,1. The transition from
Game i.2 to i.3 is completely analogous.

From PCA to CCA. Using standard techniques from [11, 23, 21, 8, 4], we could transform our
basic tag-based PCA-secure scheme into a “full-fledged” CCA-secure encryption scheme by
adding another hash proof system (or an authenticated symmetric encryption scheme) and
a one-time signature scheme. However, this would incur an additional overhead of several
group elements in the ciphertext. Instead, we show how to directly modify our tag-based
PCA-secure scheme to obtain a more efficient CCA-secure scheme with the minimal addi-
tional overhead of a single symmetric-key authenticated encryption. In particular, the overall
ciphertext overhead in our tightly CCA-secure encryption scheme is merely one group ele-
ment more than that for the best known non-tight schemes [23, 18].

To encrypt a message M in the CCA-secure encryption scheme, we will (i) pick a random
y as in the tag-based PCA scheme, (ii) derive a tag τ from y, (iii) encrypt M using a one-
time authenticated encryption under the KEM key [y>kτ]. The naive approach is to derive
the tag τ by hashing [y] ∈ G3k, as in [23]. However, this creates a circularity in Game i.1
where the distribution of [y] depends on the tag. Instead, we will derive the tag τ by hashing
[y] ∈ Gk, where y ∈ Zkq are the top k entries of y ∈ Z3k

q . We then modify M0,M1 so that
the top k rows of both matrices are zero, which avoids the circularity issue. In the proof of
security, we will also rely on the fact that for any y0,y1 ∈ Z3k

q , if y0 = y1 and y0 ∈ span(M),
then either y0 = y1 or y1 /∈ span(M). This allows us to deduce that if the adversary queries
the CCA oracle on a ciphertext which shares the same tag as some challenge ciphertext,
then the CCA oracle will reject with overwhelming probability.

Alternative view-point. Our construction can also be viewed as applying the BCHK IBE→PKE
transform [8] to the scheme from [19], and then writing the exponents of the secret keys in the
clear, thereby avoiding the pairing. This means that we can no longer apply a computational

5

assumption and the randomized Naor-Reingold argument to the secret key space. Indeed, we
replace this with an information-theoretic Cramer-Shoup-like argument as outlined above.

Prior approaches. Several approaches to construct tightly CCA-secure PKE schemes ex-
ist: first, the schemes of [17, 2, 3, 25, 24, 26] construct a tightly secure NIZK scheme from a
tightly secure signature scheme, and then use the tightly secure NIZK in a CCA-secure PKE
scheme following the Naor-Yung double encryption paradigm [30, 13]. Since these approaches
build on the public verifiability of the used NIZK scheme (in order to faithfully simulate a
decryption oracle), their reliance on a pairing seems inherent.

Next, the works of [10, 7, 19, 5, 16] used a (Naor-Reingold-based) MAC instead of a signa-
ture scheme to design tightly secure IBE schemes. Those IBE schemes can then be converted
(using the BCHK transformation [8]) into tightly CCA-secure PKE schemes. However, the
derived PKE schemes still rely on pairings, since the original IBE schemes do (and the BCHK
does not remove the reliance on pairings).

In contrast, our approach directly fuses a Naor-Reingold-like randomization argument
with the encryption process. We are able to do so since we substitute a computational
randomization argument (as used in the latter line of works) with an information-theoretic
one, as described above. Hence, we can apply that argument to exponents rather than group
elements. This enables us to trade pairing operations for exponentiations in our scheme.

Efficiency comparison with non-tightly secure schemes. We finally mention that our DDH-
based scheme compares favorably even with the most efficient (non-tightly) CCA-secure
DDH-based encryption schemes [23, 18]. To make things concrete, assume λ = 80 and a
setting with Qenc = Qdec = 230. The best known reductions for the schemes of [23, 18] lose a
factor of Qenc = 230, whereas our scheme loses a factor of about 4λ ≤ 29. Hence, the group
size for [23, 18] should be at least 22·(80+30) = 2220 compared to 22·(80+9) = 2178 in our case.
Thus, the ciphertext overhead (ignoring the symmetric encryption part) in our scheme is
3 · 178 = 534 bits, which is close to 2 · 220 = 440 bits with [23, 18].5

Perhaps even more interestingly, we can compare computational efficiency of encryption
in this scenario. For simplicitly, we only count exponentiations and assume a naive square-
and-multiply-based exponentiation with no further multi-exponentiation optimizations.6 En-
cryption in [23, 18] takes about 3.5 exponentiations (where we count an exponentiation with
a (λ + log2(Qenc + Qdec))-bit hash value7 as 0.5 exponentiations). In our scheme, we have
about 4.67 exponentiations, where we count the computation of [M>kτ] – which consists of
2λ multiplications – as 0.67 exponentiations.) Since exponentiation (under our assumptions)
takes time cubic in the bitlength, we get that encryption with our scheme is actually about
29% less expensive than with [23, 18].

5 In this calculation, we do not consider the symmetric authenticated encryption of the actual plaintext (and a
corresponding MAC value), which is the same with [23, 18] and our scheme.

6 Here, optimizations would improve the schemes of [23, 18] and ours similarly, since the schemes are very similar.
7 It is possible to prove the security of [23, 18] using a target-collision-resistant hash function, such that |τ | = λ.

However, in the multi-user setting, a hybrid argument is required, such that the output size of the hash function
will have to be increased to at least |τ | = λ+ log2(Qenc +Qdec).

6

Reference |pk| |ct| − |m| security loss assumption pairing

CS98 [11] O(1) 3 O(Q) DDH no
KD04, HK07 [23, 18] O(1) 2 O(Q) DDH no
HJ12 [17] O(1) O(λ) O(1) 2-Lin yes
LPJY15 [24, 26] O(λ) 47 O(λ) 2-Lin yes
AHY15 [5] O(λ) 12 O(λ) 2-Lin yes
GCDCT15 [16] O(λ) 10 (resp. 6k + 4) O(λ) SXDH (resp. k-Lin) yes

Ours §4 O(λ) 3 (resp. 3k) O(λ) DDH (resp. k-Lin) no

Fig. 2. Comparison amongst CCA-secure encryption schemes, where Q is the number of ciphertexts, |pk| denotes the size (i.e
the number of groups elements, or exponent of group elements) of the public key, and |ct|−|m| denotes the ciphertext overhead,
ignoring smaller contributions from symmetric-key encryption. We omit [19] from this table since we only focus on prime-order
groups here.

However, of course we should also note that public and secret key in our scheme are
significantly larger (e.g., 4λ + 3 = 323 group elements in pk) than with [23, 18] (4 group
elements in pk).

Extension: NIZK arguments. We also obtain tightly simulation-sound non-interactive zero-
knowledge (NIZK) arguments from our encryption scheme in a semi-generic way.

Let us start with any designated-verifier quasi-adaptive NIZK (short: DVQANIZK) ar-
gument system Π for a given language. Recall that in a designated-verifier NIZK, proofs can
only be verified with a secret verification key, and soundness only holds against adversaries
who do not know that key. Furthermore, quasi-adaptivity means that the language has to be
fixed at setup time of the scheme. Let ΠPKE be the variant of Π in which proofs are encrypted
using a CCA-secure PKE scheme PKE. Public and secret key of PKE are of course made part
of CRS and verification key, respectively. Observe that ΠPKE enjoys simulation-soundness,
assuming that simulated proofs are simply encryptions of random plaintexts. Indeed, the
CCA security of PKE guarantees that authentic ΠPKE-proofs can be substituted with sim-
ulated ones, while being able to verify (using a decryption oracle) a purported ΠPKE-proof
generated by an adversary. Furthermore, if PKE is tightly secure, then so is ΠPKE.

When using a hash proof system for Π and our encryption scheme for PKE, this imme-
diately yields a tightly simulation-sound DVQANIZK for linear languages (i.e., languages of
the form {[Mx] | x ∈ Ztq} for some matrix M ∈ Zn×tq with t < n) that does not require
pairings. We stress that our DVQANIZK is tightly secure in a setting with many simulated
proofs and many adversarial verification queries.

Using the semi-generic transformation of [22], we can then derive a tightly simulation-
sound QANIZK proof system (with public verification), that however relies on pairings.
We note that the transformation of [22] only requires a DVQANIZK that is secure against
a single adversarial verification query, since the pairing enables the public verifiability of
proofs. Hence, we can first optimize and trim down our DVQANIZK (such that only a single
adversarial verification query is supported), and then apply the transformation. This yields
a QANIZK with particularly compact proofs. See Figure 3 for a comparison with relevant
existing proof systems.

7

Reference type |crs| |π| sec. loss assumption pairing

CCS09 [9] NIZK O(1) 2n+ 6t+ 52 O(Qsim) 2-Lin yes
HJ12 [17] NIZK O(1) � 500 O(1) 2-Lin yes
LPJY14 [25] QANIZK O(n+ λ) 20 O(Qsim) 2-Lin yes
KW15 [22] QANIZK O(kn) 2k + 2 O(Qsim) k-Lin yes
LPJY15 [27] QANIZK O(n+ λ) 42 O(λ) 2-Lin yes

Ours §6.2 DVQANIZK O(t+ kλ) 3k + 1 O(λ) k-Lin no
Ours §6.3 QANIZK O(k2λ+ kn) 2k + 1 O(λ) k-Lin yes

Fig. 3. (DV)QANIZK schemes for subspaces of Gn of dimension t < n. |crs| and |π| denote the size (in group elements) of the
CRS and of proofs. Qsim is the number of simulated proofs in the simulation-soundness experiment. The scheme from [22] (as
well as our own schemes) can also be generalized to matrix assumptions [14], at the cost of a larger CRS.

Roadmap. We recall some notation and basic definitions (including those concerning our
algebraic setting and for tightly secure encryption) in Section 2. Section 3 presents our basic
PCA-secure encryption scheme and represents the core of our results. In Section 4, we present
our optimized CCA-secure PKE scheme. Our NIZK-related applications are presented in
Section 6.

2 Preliminaries

2.1 Notations

If x ∈ Bn, then |x| denotes the length n of the vector. Further, x←r B denotes the process
of sampling an element x from set B uniformly at random. For any bit string τ ∈ {0, 1}∗,
we denote by τi the i’th bit of τ . We denote by λ the security parameter, and by negl(·)
any negligible function of λ. For all matrix A ∈ Z`×kq with ` > k, A ∈ Zk×kq denotes
the upper square matrix of A and A ∈ Z`−k×kq denotes the lower ` − k rows of A. With
span(A) := {Ar | r ∈ Zkq} ⊂ Z`q, we denote the span of A.

2.2 Collision resistant hashing

A hash function generator is a PPT algorithm H that, on input 1λ , outputs an efficiently
computable function H : {0, 1}∗ → {0, 1}λ.

Definition 1 (Collision Resistance). We say that a hash function generator H outputs
collision-resistant functions H if for all PPT adversaries A,

Advcr
H(A) := Pr[x 6= x′ ∧ H(x) = H(x′)|H←r H(1λ), (x, x′)← A(1λ,H)] = negl(λ).

2.3 Prime-order groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a
description G = (G, q, P) of an additive cyclic group G of order q for a λ-bit prime q, whose
generator is P .

8

We use implicit representation of group elements as introduced in [14]. For a ∈ Zq,
define [a] = aP ∈ G as the implicit representation of a in G. More generally, for a matrix
A = (aij) ∈ Zn×mq we define [A] as the implicit representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be an
element in G. Note that from [a] ∈ G it is generally hard to compute the value a (discrete
logarithm problem in G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Zq, one can efficiently
compute [ax] ∈ G and [a+ b] ∈ G.

2.4 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) Assumption [14].

Definition 2 (Matrix Distribution). Let k, ` ∈ N, with ` > k. We call D`,k a matrix
distribution if it outputs matrices in Z`×kq of full rank k in polynomial time. We write Dk :=
Dk+1,k.

Without loss of generality, we assume the first k rows of A←r D`,k form an invertible matrix.
The D`,k-Matrix Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw])
and ([A], [u]) where A←r D`,k, w←r Zkq and u←r Z`q.

Definition 3 (D`,k-Matrix Diffie-Hellman Assumption D`,k-MDDH). Let D`,k be a ma-
trix distribution. We say that the D`,k-Matrix Diffie-Hellman (D`,k-MDDH) Assumption holds
relative to GGen if for all PPT adversaries A,

Advmddh
D`,k,GGen(A) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]| = negl(λ),

where the probability is taken over G ←r GGen(1λ), A←r Dk,w←r Zkq ,u←r Z`q.

For each k ≥ 1, [14] specifies distributions Lk, SCk, Ck (and others) over Z(k+1)×k
q such

that the corresponding Dk-MDDH assumptions are generically secure in bilinear groups and
form a hierarchy of increasingly weaker assumptions. Lk-MDDH is the well known k-Linear
Assumption k-Lin with 1-Lin = DDH. In this work we are mostly interested in the uniform
matrix distribution U`,k.

Definition 4 (Uniform distribution). Let `, k ∈ N, with ` > k. We denote by U`,k the
uniform distribution over all full-rank `× k matrices over Zq. Let Uk := Uk+1,k.

Lemma 1 (Uk-MDDH⇔ U`,k-MDDH). Let `, k ∈ N, with ` > k. For any PPT adversary A,
there exists an adversary B (and vice versa) such that T(B) ≈ T(A) and Advmddh

U`,k,GGen(A) =

Advmddh
Uk,GGen(B) .

9

Proof. This follows from the simple fact that a U`,k-MDDH instance ([A], [z]) can be trans-
formed into an Uk-MDDH instance ([A′] = [TA], [z′] = [Tz]) for a random (k+ 1)× ` matrix
T. If z = Aw, then z′ = TAw = A′w; if z is uniform, so is z′. Similarly, a Uk-MDDH in-
stance ([A′], [z′]) can be transformed into an U`,k-MDDH instance ([A] = [T′A′], [z] = [T′z′])
for a random `× (k + 1) matrix T′. ut

Among all possible matrix distributions D`,k, the uniform matrix distribution Uk is the
hardest possible instance, so in particular k-Lin⇒ Uk-MDDH.

Lemma 2 (D`,k-MDDH⇒ Uk-MDDH, [14]). Let D`,k be a matrix distribution. For any PPT
adversary A, there exists an adversary B such that T(B) ≈ T(A) and Advmddh

D`,k,GGen(A) =

Advmddh
Uk,GGen(B).

Let Q ≥ 1. For W←r Zk×Qq ,U←r Z`×Qq , we consider the Q-fold D`,k-MDDH Assumption
which consists in distinguishing the distributions ([A], [AW]) from ([A], [U]). That is, a
challenge for the Q-fold D`,k-MDDH Assumption consists of Q independent challenges of the
D`,k-MDDH Assumption (with the same A but different randomness w). In [14] it is shown
that the two problems are equivalent, where (for Q ≥ ` − k) the reduction loses a factor
`− k. In combination with Lemma 1 we obtain the following tighter version for the special
case of D`,k = U`,k.

Lemma 3 (Random self-reducibility of U`,k-MDDH, [14]). Let `, k,Q ∈ N with ` > k.
For any PPT adversary A, there exists an adversary B such that T(B) ≈ T(A) +Q ·poly(λ)
with poly(λ) independent of T(A), and

AdvQ-mddh
U`,k,GGen(A) ≤ Advmddh

U`,k,GGen(B) +
1

q − 1

where AdvQ-mddh
U`,k,GGen(B) := |Pr[B(G, [A], [AW]) = 1] − Pr[B(G, [A], [U]) = 1]| and the proba-

bility is over G ←r GGen(1λ), A←r U`,k,W←r Zk×Qq ,U←r Z`×Qq .

2.5 Public-Key Encryption

Definition 5 (PKE). A Public-Key Encryption (PKE) consists of three PPT algorithms
PKE = (ParamPKE,GenPKE,EncPKE,DecPKE):

– The probabilistic key generation algorithm GenPKE(1λ) generates a pair of public and secret
keys (pk, sk).

– The probabilistic encryption algorithm EncPKE(pk,M) returns a ciphertext ct.
– The deterministic decryption algorithm DecPKE(pk, sk, ct) returns a message M or ⊥,

where ⊥ is a special rejection symbol.

We define the following properties:

Perfect correctness. For all λ, we have

Pr

[
DecPKE(pk, sk, ct) = M

∣∣∣∣ (pk, sk)←r GenPKE(1λ);
ct←r EncPKE(pk,M)

]
= 1.

10

Multi-ciphertext CCA security [6]. For any adversary A, we define

Advind-cca
PKE (A) :=

∣∣Pr
[
b = b′

∣∣b′ ← ASetup,DecO(·),EncO(·,·)(1λ)
]
− 1/2

∣∣
where Setup sets Cenc := ∅, samples (pk, sk)←r GenKEM(1λ) and b←r {0, 1}, and returns
pk. Setup must be called once at the beginning of the game.

DecO(ct) returns DecPKE(pk, sk, ct) if ct /∈ Cenc, ⊥ otherwise.

If M0 and M1 are two messages of equal length, EncO(M0,M1) returns EncPKE(pk,Mb)
and sets Cenc := Cenc ∪ {ct}.
We say PKE is IND-CCA secure if for all PPT adversaries A, the advantage Advind-cca

PKE (A)
is a negligible function of λ.

2.6 Key-Encapsulation Mechanism

Definition 6 (Tag-based KEM). A tag-based Key-Encapsulation Mechanism (KEM) con-
sists of three PPT algorithms KEM = (GenKEM,EncKEM,DecKEM):

– The probabilistic key generation algorithm GenKEM(1λ) generates a pair of public and
secret keys (pk, sk).

– The probabilistic encryption algorithm EncKEM(pk, τ) returns a pair (K,C) where K is a
uniformly distributed symmetric key in K and C is a ciphertext, with respect to the tag
τ ∈ T .

– The deterministic decryption algorithm DecKEM(pk, sk, τ, C) returns a key K ∈ K.

We define the following properties:

Perfect correctness. For all λ, for all tags τ ∈ T , we have

Pr

[
DecKEM(pk, sk, τ, C) = K

∣∣∣∣ (pk, sk)←r GenKEM(1λ);
(K,C)←r EncKEM(pk, τ)

]
= 1.

Multi-ciphertext PCA security [31]. For any adversary A, we define

Advind-pca
KEM (A) :=

∣∣Pr
[
b = b′

∣∣b′ ← ASetup,DecO(·,·,·),EncO(·)(1λ)
]
− 1/2

∣∣
where Setup sets Tenc = Tdec := ∅, samples (pk, sk) ←r GenKEM(1λ), picks b ←r {0, 1},
and returns pk. Setup is called once at the beginning of the game.

The decryption oracle DecO(τ, C, K̂) computes K := DecKEM(pk, sk, τ, C). It returns 1 if

K̂ = K ∧ τ /∈ Tenc, 0 otherwise. Then it sets Tdec := Tdec ∪ {τ}.
EncO(τ) computes (K,C) ←r EncKEM(pk, τ), sets K0 := K and K1 ←r K. If τ /∈ Tdec ∪
Tenc, it returns (C,Kb), and sets Tenc := Tenc ∪ {τ}; otherwise it returns ⊥.

We say KEM is IND-PCA secure if for all PPT adversaries A, the advantage Advind-pca
KEM (A)

is a negligible function of λ.

11

2.7 Authenticated Encryption

Definition 7 (AE [18]). An authenticated symmetric encryption (AE) with message-space
M and key-space K consists of two polynomial-time deterministic algorithms (EncAE,DecAE):

– The encryption algorithm EncAE(K,M) generates C, encryption of the message M with
the secret key K.

– The decryption algorithm DecAE(K,C), returns a message M or ⊥.

We require that the algorithms satisfy the following properties:

Perfect correctness. For all λ, for all K ∈ K and M ∈M, we have

DecAE(K,EncAE(K,M)) = M.

One-time Privacy and Authenticity. For any PPT adversary A,

Advae-ot
AE (A) :=

∣∣∣∣Pr

[
b′ = b

∣∣∣∣K ←r K; b←r {0, 1}
b′ ←r Aot-EncO(·,·),ot-DecO(·)(1λ,M,K)

]
− 1/2

∣∣∣∣
is negligible, where ot-EncO(M0,M1), on input two messages M0 and M1 of the same
length, EncAE(K,Mb), and ot-DecO(φ) returns DecAE(K,φ) if b = 0, ⊥ otherwise. A is
allowed at most one call to each oracle ot-EncO and ot-DecO, and the query to ot-DecO
must be different from the output of ot-EncO. A is also given the description of the key-
space K as input.

3 Multi-ciphertext PCA-secure KEM

In this section we describe a tag-based Key Encapsulation Mechanism KEMPCA that is
IND-PCA-secure (see Definition 6).

For simplicity, we use the matrix distribution U3k,k in our scheme in Figure 4, and prove it
secure under the Uk-MDDH Assumption (⇔ U3k,k-MDDH Assumption, by Lemma 1), which
in turn admits a tight reduction to the standard k-Lin Assumption. However, using a matrix
distribution D3k,k with more compact representation yields a more efficient scheme, secure
under the D3k,k-MDDH Assumption (see Remark 1).

3.1 Our construction

Remark 1 (On the use of the Uk-MDDH Assumption). In our scheme, we use a matrix distri-
bution U3k,k for the matrix M, therefore proving security under the U3k,k-MDDH Assumption
⇔ Uk-MDDH Assumption (see Lemma 2). This is for simplicity of presentation. However,
for efficiency, one may want to use an assumption with a more compact representation, such
as the CI3k,k-MDDH Assumption [28] with representation size 2k instead of 3k2 for U3k,k.

12

GenKEM(1λ):

G ←r GGen(1λ); M←r U3k,k
k1,0, . . . ,kλ,1 ←r Z3k

q

pk :=
(
G, [M],

(
[M>kj,β]

)
1≤j≤λ,0≤β≤1

)
sk := (kj,β)1≤j≤λ,0≤β≤1

Return (pk, sk)

EncKEM(pk, τ):

r←r Zkq ; C := [r>M>]

kτ :=
∑λ
j=1 kj,τj

K := [r> ·M>kτ]
Return (C,K) ∈ G1×3k ×G

DecKEM(pk, sk, τ, C):

kτ :=
∑λ
j=1 kj,τj

Return K := C · kτ

Fig. 4. KEMPCA, an IND-PCA-secure KEM under the Uk-MDDH Assumption, with tag-space T = {0, 1}λ. Here,
GGen is a prime-order group generator (see Section 2.3).

game y uniform in: k′τ used by EncO and DecO justification/remark

G0 span(M) kτ actual scheme

G1 Z3k
q kτ U3k,k-MDDH on [M]

G2.i Z3k
q kτ + M⊥RFi(τ|i) G1 ≡ G2.0

G2.i.1 τi+1 = 0 : span(M,M0)
kτ + M⊥RFi(τ|i)

U3k,k-MDDH on [M0]

τi+1 = 1 : span(M,M1) U3k,k-MDDH on [M1]

G2.i.2 τi+1 = 0 : span(M,M0)
kτ + M∗0RF

(0)
i+1(τ|i+1) + M∗1RF

(1)
i (τ|i)

Cramer-Shoup
τi+1 = 1 : span(M,M1) argument

G2.i.3 τi+1 = 0 : span(M,M0)
kτ + M∗0RF

(0)
i+1(τ|i+1) + M∗1RF

(1)
i+1(τ|i+1)

Cramer-Shoup
τi+1 = 1 : span(M,M1) argument

G2.i+1 Z3k
q kτ + M⊥RFi+1(τ|i+1) U3k,k-MDDH on [M0]

and [M1]

Fig. 5. Sequence of games for the proof of Theorem 1. Throughout, we have (i) kτ :=
∑λ
j=1 kj,τj ; (ii) EncO(τ) =

([y],Kb) where K0 = [y>k′τ] and K1 ←r G; (iii) DecO(τ, [y], K̂) computes the encapsulation key K := [y> ·k′τ]. Here,

(M∗0,M
∗
1) is a basis for span(M⊥), so that M⊥1 M

∗
0 = M⊥0 M

∗
1 = 0, and we write M⊥RFi(τ|i) := M∗0RF

(0)
i (τ|i) +

M∗0RF
(1)
i (τ|i). The second column shows which set y is uniformly picked from by EncO, the third column shows the

value of k′τ used by both EncO and DecO.

3.2 Security proof

Theorem 1. The tag-based Key Encapsulation Mechanism KEMPCA defined in Figure 4 has
perfect correctness. Moreover, if the Uk-MDDH Assumption holds in G, KEMPCA is IND-PCA
secure. Namely, for any adversary A, there exists an adversary B such that T(B) ≈ T(A) +
(Qdec +Qenc) · poly(λ) and

Advind-pca
KEMPCA

(A) ≤ (4λ+ 1) ·Advmddh
Uk,GGen(B) + (Qdec +Qenc) · 2−Ω(λ),

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Theorem 1. Perfect correctness follows readily from the fact that for all r ∈ Zkq and
C = r>M>, for all k ∈ Z3k

q :
r>(M>k) = C · k.

13

Setup: G0,G1, G2.i

Tenc = Tdec := ∅; b←r {0, 1}
G ←r GGen(1λ); M←r U3k,k

M⊥ ←r U3k,2k s.t. M>M⊥ = 0

Pick random RFi : {0, 1}i → Z2k
q

k1,0, . . . ,kλ,1 ←r Z3k
q

For all τ ∈ {0, 1}λ, kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τ|i)

Return pk :=(
G, [M],

(
[M>kj,β]

)
1≤j≤λ,0≤β≤1

)

EncO(τ): G0, G1,G2.i

r←r Zkq ; y := Mr; y←r Z3k
q

K0 := [y> · k′τ]; K1 ←r G
If τ /∈ Tdec ∪ Tenc, return (C := [y],Kb), and set
Tenc := Tenc ∪ {τ}.
Otherwise, return ⊥.

DecO(τ, C := [y], K̂): G0,G1,G2.i

K := [y> · k′τ]

Return

{
1 if K̂ = K ∧ τ /∈ Tenc
0 otherwise

Tdec := Tdec ∪ {τ}

Fig. 6. Games G0,G1,G2.i (for 1 ≤ i ≤ λ) for the proof of multi-ciphertext PCA security of KEMPCA in Figure 4.
In each procedure, the components inside a solid (dotted) frame are only present in the games marked by a solid
(dotted) frame.

We now prove the IND-PCA security of KEMPCA. We proceed via a series of games
described in Figure 6 and 7 and we use Advi to denote the advantage of A in game Gi. We
also give a high-level picture of the proof in Figure 5, summarizing the sequence of games.

Lemma 4 (G0 to G1). There exists an adversary B0 such that T(B0) ≈ T(A) + (Qenc +
Qdec) · poly(λ) and

|Adv0 −Adv1| ≤ Advmddh
Uk,GGen(B0) +

1

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Here, we use the MDDH assumption to “tightly” switch the distribution of all the chal-
lenge ciphertexts.
Proof of Lemma 4. To go from G0 to G1, we switch the distribution of the vectors [y]
sampled by EncO, using the Qenc-fold U3k,k-MDDH Assumption on [M] (see Definition 4 and
Lemma 3).

We build an adversary B′0 against the Qenc-fold U3k,k-MDDH Assumption, such that
T(B′0) ≈ T(A) + (Qenc +Qdec) · poly(λ) with poly(λ) independent of T(A), and

|Adv0 −Adv1| ≤ AdvQenc-mddh
U3k,k,GGen(B

′
0).

This implies the lemma by Lemma 3 (self-reducibility of U3k,k-MDDH), and Lemma 1 (U3k,k-
MDDH⇔ Uk-MDDH).

Upon receiving a challenge (G, [M] ∈ G3k×k, [H] := [h1| . . . |hQenc] ∈ G3k×Qenc) for the
Qenc-fold U3k,k-MDDH Assumption, B′0 picks b←r {0, 1}, k1,0, . . . ,kλ,1 ←r Z3k

q , and simulates
Setup, DecO as described in Figure 6. To simulate EncO on its j’th query, for j = 1, . . . , Qenc,
B′0 sets [y] := [hj], and computes Kb as described in Figure 6. ut

14

Lemma 5 (G1 to G2.0). |Adv1 −Adv2.0| = 0.

Proof of Lemma 5. We show that the two games are statistically equivalent. To go from G1

to G2.0, we change the distribution of k1,β ←r Z3k
q for β = 0, 1, to k1,β + M⊥RF0(ε), where

k1,β ←r Z3k
q , RF0(ε)←r Z2k

q , and M⊥ ←r U3k,2k such that M>M⊥ = 0. Note that the extra
term M⊥RF0(ε) does not appear in pk, since M>(k1,β + M⊥RF0(ε)) = M>k1,β. ut

Lemma 6 (G2.i to G2.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i such that
T(B2.i) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv2.i −Adv2.i+1| ≤ 4 ·Advmddh
Uk,GGen(B2.i) +

4Qdec + 2k

q
+

4

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Proof of Lemma 6. To go from G2.i to G2.i+1, we introduce intermediate games G2.i.1, G2.i.2

and G2.i.3 defined in Figure 7. We prove that these games are indistinguishable in Lemma 7,
8, 9, and 10.

Lemma 7 (G2.i to G2.i.1). For all 0 ≤ i ≤ λ− 1, there exists an adversary B2.i.0 such that
T(B2.i.0) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv2.i −Adv2.i.1| ≤ 2 ·Advmddh
Uk,GGen(B2.i.0) +

2

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the chal-
lenge ciphertexts. We proceed in two steps, first, by changing the distribution of all the
ciphertexts with a tag τ such that τi+1 = 0, and then, for those with a tag τ such that
τi+1 = 1. We use the MDDH Assumption with respect to an independent matrix for each
step.
Proof of Lemma 7. To go from G2.i to G2.i.1, we switch the distribution of the vectors [y]
sampled by EncO, using the Qenc-fold U3k,k-MDDH Assumption.

We introduce an intermediate game G2.i.0 where EncO(τ) is computed as in G2.i.1 if
τi+1 = 0, and as in G2.i if τi+1 = 1. Setup, DecO are as in G2.i.1. We build adversaries B′2.i.0
and B′′2.i.0 such that T(B′2.i.0) ≈ T(B′′2.i.0) ≈ T(A) + (Qenc + Qdec) · poly(λ) with poly(λ)
independent of T(A), and

Claim 1: |Adv2.i −Adv2.i.0| ≤ AdvQenc-mddh
U3,k,GGen (B′2.i.0).

Claim 2: |Adv2.i.0 −Adv2.i.1| ≤ AdvQenc-mddh
U3k,k,GGen(B

′′
2.i.0).

This implies the lemma by Lemma 3 (self-reducibility of U3k,k-MDDH), and Lemma 1
(U3k,k-MDDH⇔ Uk-MDDH).

Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G3k×k, [H] := [h1| . . . |hQenc] ∈
G3k×Qenc) for the Qenc-fold U3k,k-MDDH Assumption with respect to M0 ←r U3k,k, B′2.i.0 does
as follows:

15

Setup: G2.i, G2.i.1, G2.i.2 , G2.i.3

Tenc = Tdec := ∅; b←r {0, 1}
G ←r GGen(1λ); M←r U3k,k
M⊥ ←r U3k,2k s.t. M>M⊥ = 0

M0,M1 ←r U3k,k

M∗0,M
∗
1 ←r U3k,k s.t.

span(M⊥) = span(M∗0,M
∗
1)

M>M∗0 = M>
1M

∗
0 = 0 = M>M∗1 = M>

0M
∗
1

Pick random RFi : {0, 1}i → Z2k
q .

Pick random RF
(0)
i+1 : {0, 1}i+1 → Zkq

and RF
(1)
i : {0, 1}i → Zkq

Pick random RF
(0)
i+1,RF

(1)
i+1 : {0, 1}i+1 → Zkq .

k1,0, . . . ,kλ,1 ←r Z3k
q

For all τ ∈ {0, 1}λ, kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τi)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i (τ|i)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i+1(τ|i+1)

Return pk :=
(
G, [M],

(
[M>kj,β]

)
1≤j≤λ,0≤β≤1

)

EncO(τ): G2.i, G2.i.1,G2.i.2,G2.i.3

y←r Z3k
q

If τi+1 = 0 : r←r Zkq ; r0 ←r Zkq ;y := Mr + M0r0
If τi+1 = 1 : r←r Zkq ; r1 ←r Zkq ;y := Mr + M1r1

K0 := [y> · k′τ];
K1 ←r G
If τ /∈ Tdec ∪ Tenc, return (C := [y],Kb) and set
Tenc := Tenc ∪ {τ}.
Otherwise, return ⊥.

DecO(τ, C := [y], K̂): G2.i,G2.i.1,G2.i.2,G2.i.3

K := [y>k′τ]

Return

{
1 if K̂ = K ∧ τ /∈ Tenc
0 otherwise

Tdec := Tdec ∪ {τ}.

Fig. 7. Games G2.i (for 0 ≤ i ≤ λ),G2.i.1, G2.i.2 and G2.i.3 (for 0 ≤ i ≤ λ − 1) for the proof of Lemma 6. For all
τ ∈ T , we denote by τ|i the i-bit prefix of τ . In each procedure, the components inside a solid (dotted, gray) frame
are only present in the games marked by a solid (dotted, gray) frame.

Setup: B′2.i.0 picks M ←r U3k,k, k1,0, . . . ,kλ,1 ←r Z3k
q , and computes pk as described in

Figure 7. For each τ queried to EncO or DecO, it computes on the fly RFi(τ|i) and

k′τ := kτ + M⊥RFi(τ|i), where kτ :=
∑λ

j=1 kj,τj , RFi : {0, 1}i → Z2k
q is a random function,

and τ|i denotes the i-bit prefix of τ (see Figure 7). Note that B′2.i.0 can compute efficiently
M⊥ from M.

EncO: To simulate the oracle EncO(τ) on the j’th query, for j = 1, . . . , Qenc, B′2.i.0 computes
[y] as follows:

if τi+1 = 0 : r←r Zkq ; [y] := [Mr + hj]
if τi+1 = 1 : [y]←r G3k

This way, B′2.i.0 simulates EncO as in G2.i.0 when [hj] := [M0r0] with r0 ←r Zkq , and as in
G2.i when [hj]←r G3k.

DecO: Finally, B′2.i.0 simulates DecO as described in Figure 7.

Therefore, |Adv2.i −Adv2.i.0| ≤ AdvQenc-mddh
U3k,k,GGen(B

′
2.i.0).

To prove Claim 2, we build an adversary B′′2.i.0 against the Qenc-fold U3k,k-MDDH As-
sumption with respect to a matrix M1 ←r U3k,k, independent from M0, similarly than B′2.i.0.
ut

16

Lemma 8 (G2.i.1 to G2.i.2). For all 0 ≤ i ≤ λ− 1,

|Adv2.i.1 −Adv2.i.2| ≤
2Qdec + 2k

q
,

where Qdec is the number of times A queries DecO.

Here, we use a variant of the Cramer-Shoup information-theoretic argument to move
from RFi to RFi+1, thereby increasing the entropy of k′τ computed by Setup. For the sake of
readability, we proceed in two steps: in Lemma 8, we move from RFi to an hybrid between
RFi and RFi+1, and in Lemma 9, we move to RFi+1.
Proof of Lemma 8. In G2.i.2, we decompose span(M⊥) into two subspaces span(M∗

0) and
span(M∗

1), and we increase the entropy of the components of k′τ which lie in span(M∗
0). To

argue that G2.i.1 and G2.i.2 are statistically close, we use a Cramer-Shoup argument [11].

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that with probability
at least 1− 2k

q
over the random coins of Setup, (M‖M0‖M1) forms a basis of Z3k

q . Therefore,

we have span(M⊥) = Ker(M>) = Ker
(
(M‖M1)

>
)
⊕ Ker

(
(M‖M0)

>
)
. We pick uniformly

M∗
0 and M∗

1 in Z3k×k
q that generates Ker

(
(M‖M1)

>
)

and Ker
(
(M‖M0)

>
)
, respectively (see

Figure 1.1). This way, for all τ ∈ {0, 1}λ, we can write

M⊥RFi(τ|i) := M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i),

where RF
(0)
i , RF

(1)
i : {0, 1}i → Zkq are independent random functions.

We define RF
(0)
i+1 : {0, 1}i+1 → Zkq as follows:

RF
(0)
i+1(τ|i+1) :=

{
RF

(0)
i (τ|i) if τi+1 = 0

RF
(0)
i (τ|i) + RF′

(0)
i (τ|i) if τi+1 = 1

where RF′
(0)
i : {0, 1}i → Zkq is a random function independent from RF

(0)
i . This way, RF

(0)
i+1 is

a random function.

We show that the outputs of EncO and DecO are statistically close in G2.i.1 and G2.i.2.
We decompose the proof in two cases (delimited with �): the queries with a tag τ ∈ {0, 1}λ
such that τi+1 = 0, and the queries with a tag τ such that τi+1 = 1.

Queries with τi+1 = 0:
The only difference between G2.i.1 and G2.i.2 is that Setup computes k′τ using the random

function RF
(0)
i in G2.i.1, whereas it uses the random function RF

(0)
i+1 in G2.i.2 (see Figure 7).

Therefore, by definition of RF
(0)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 0, k′τ is the same in

G2.i.1 and G2.i.2, and the outputs of EncO and DecO are identically distributed. �

17

Queries with τi+1 = 1:
Observe that for all y ∈ span(M,M1) and all τ ∈ {0, 1}λ such that τi+1 = 1,

G2.i.2︷ ︸︸ ︷
y>
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i) + M∗

0RF
′(0)
i (τ|i)

)
= y>

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
+ y>M∗

0RF
′(0)
i (τ|i)︸ ︷︷ ︸

=0

=

G2.i.1︷ ︸︸ ︷
y> ·

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
where the second equality uses the fact that M>M∗

0 = M>
1M

∗
0 = 0 and thus y>M∗

0 = 0.
This means that:

– the output of EncO on any input τ such that τi+1 = 1 is identically distributed in G2.i.1

and G2.i.2;
– the output of DecO on any input (τ, [y], K̂) where τi+1 = 1, and y ∈ span(M,M1) is the

same in G2.i.1 and G2.i.2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to
τi+1 = 1, and y /∈ span(M,M1). We introduce intermediate games G2.i.1.j, and G′2.i.1.j for
j = 0, . . . , Qdec, defined as follows:

– G2.i.1.j: DecO is as in G2.i.1 except that for the first j times it is queried, it outputs 0 to
any ill-formed query. EncO is as in G2.i.2.

– G′2.i.1.j: DecO as in G2.i.2 except that for the first j times it is queried, it outputs 0 to any
ill-formed query. EncO is as in G2.i.2.

We show that:

G2.i.1 ≡ G2.i.1.0 ≈s G2.i.1.1 ≈s . . . ≈s G2.i.1.Qdec
≡ G′2.i.1.Qdec

≈s G′2.i.1.Qdec−1 ≈s . . . ≈s G′2.i.1.0 ≡ G2.i.2

where we denote statistical closeness with ≈s and statistical equality with ≡.
It suffices to show that for all j = 0, . . . , Qdec − 1:

Claim 1: in G2.i.1.j, if the j+1-st query is ill-formed, then DecO outputs 0 with overwhelming
probability 1− 1/q (this implies G2.i.1.j ≈s G2.i.1.j+1, with statistical difference 1/q);

Claim 2: in G′2.i.1.j, if the j+1-st query is ill-formed, then DecO outputs 0 with overwhelming
probability 1− 1/q (this implies G′2.i.1.j ≈s G′2.i.1.j+1, with statistical difference 1/q)

where the probabilities are taken over the random coins of Setup.
Let us prove Claim 1. Recall that in G2.i.1.j, on its j+1-st query, DecO(τ, [y], K̂) computes

K := [y>k′τ], where k′τ :=
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
(see Figure 7). We prove that

that if (τ, [y], K̂) is ill-formed, then K is completely hidden from A, up to its j + 1-st query
to DecO. The reason is that the vector ki+1,1 in sk contains some entropy that is hidden from

18

A. This entropy is “released” on the j+ 1-st query to DecO if it is ill-formed. More formally,
we use the fact that the vector ki+1,1 ←r Z3k

q is identically distributed as ki+1,1 + M∗
0w,

where ki+1,1 ←r Z3k
q , and w←r Zkq . We show that w is completely hidden from A, up to its

j + 1-st query to DecO.

– The public key pk does not leak any information about w, since

M>(ki+1,1 + M∗
0w) = M>ki+1,1.

This is because M>M∗
0 = 0.

– The outputs of EncO also hide w.
• For τ such that τi+1 = 0, k′τ is independent of ki+1,1, and therefore, so does EncO(τ).
• For τ such that τi+1 = 1, and for any y ∈ span(M,M1), we have:

y>(k′τ + M∗
0w) = y>k′τ (2)

since M>M∗
0 = M>

1M
∗
0 = 0, which implies y>M∗

0 = 0.
– The first j outputs of DecO also hide w.
• For τ such that τi+1 = 0, k′τ is independent of ki+1,1, and therefore, so does DecO([y], τ, K̂).

• For τ such that τi+1 = 1 and y ∈ span(M,M1), the fact that DecO(τ, [y], K̂) is
independent of w follows readily from Equation (2).
• For τ such that τi+1 = 1 and y /∈ span(M,M1), that is, for an ill-formed query, DecO

outputs 0, independently of w, by definition of G2.i.1.j.

This proves that w is uniformly random from A’s viewpoint.
Finally, because the j + 1-st query (τ, [y], K̂) is ill-formed, we have τi+1 = 1, and y /∈

span(M,M1), which implies that y>M∗
0 6= 0. Therefore, the value

K = [y>(k′τ + M∗
0w)] = [y>k′τ + y>M∗

0︸ ︷︷ ︸
6=0

w]

computed by DecO is uniformly random over G from A’s viewpoint. Thus, with probability
1− 1/q over K ←r G, we have K̂ 6= K, and DecO(τ, [y], K̂) = 0.

We prove Claim 2 similarly, arguing than in G′2.i.1.j, the value K := [y>k′τ], where k′τ :=(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
, computed by DecO(τ, [y], K̂) on its j + 1-st query, is

completely hidden from A, up to its j + 1-st query to DecO, if (τ, [y], K̂) is ill-formed. The
argument goes exactly as for Claim 1. � ut

Lemma 9 (G2.i.2 to G2.i.3). For all 0 ≤ i ≤ λ− 1,

|Adv2.i.2 −Adv2.i.3| ≤
2Qdec

q
,

where Qdec is the number of times A queries DecO.

19

Proof of Lemma 9. In G2.i.3, we use the same decomposition span(M⊥) = span(M∗
0,M

∗
1)

as that in G2.i.2. The entropy of the components of k′τ that lie in span(M∗
1) increases from

G2.i.2 to G2.i.3. To argue that these two games are statistically close, we use a Cramer-Shoup
argument [11], exactly as for Lemma 8.

We define RF
(1)
i+1{0, 1}i+1 → Zkq as follows:

RF
(1)
i+1(τ|i+1) :=

{
RF

(1)
i (τ|i) + RF′

(1)
i (τ|i) if τi+1 = 0

RF
(1)
i (τ|i) if τi+1 = 1

where RF′
(1)
i : {0, 1}i → Zkq is a random function independent from RF

(1)
i . This way, RF

(1)
i+1 is

a random function.
We show that the outputs of EncO and DecO are statistically close in G2.i.1 and G2.i.2.

We decompose the proof in two cases (delimited with �): the queries with a tag τ ∈ {0, 1}λ
such that τi+1 = 0, and the queries with tag τ such that τi+1 = 1.
Queries with τi+1 = 1:
The only difference between G2.i.2 and G2.i.3 is that Setup computes k′τ using the random

function RF
(1)
i in G2.i.2, whereas it uses the random function RF

(1)
i+1 in G2.i.3 (see Figure 7).

Therefore, by definition of RF
(1)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 1, k′τ is the same in

G2.i.2 and G2.i.3, and the outputs of EncO and DecO are identically distributed. �
Queries with τi+1 = 0:
Observe that for all y ∈ span(M,M0) and all τ ∈ {0, 1}λ such that τi+1 = 0,

G2.i.3︷ ︸︸ ︷
y>
(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i) + M∗

1RF
′(1)
i (τ|i)

)
= y>

(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
+ y>M∗

1RF
′(1)
i (τ|i)︸ ︷︷ ︸

=0

=

G2.i.2︷ ︸︸ ︷
y> ·

(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
where the second equality uses the fact M>M∗

1 = M>
0M

∗
1 = 0, which implies y>M∗

1 = 0.
This means that:

– the output of EncO on any input τ such that τi+1 = 0 is identically distributed in G2.i.2

and G2.i.3;
– the output of DecO on any input (τ, [y], K̂) where τi+1 = 0, and y ∈ span(M,M0) is the

same in G2.i.2 and G2.i.3.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to
τi+1 = 0, and y /∈ span(M,M0). The rest of the proof goes similarly than the proof of
Lemma 8. See the latter for further details. � ut

20

Lemma 10 (G2.i.3 to G2.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i.3 such
that T(B2.i.3) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv2.i.3 −Adv2.i+1| ≤ 2 ·Advmddh
Uk,GGen(B2.i.3) +

2

q − 1

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the chal-
lenge ciphertexts, as for Lemma 7. We proceed in two steps, first, by changing the distribution
of all the ciphertexts with a tag τ such that τi+1 = 0, and then, the distribution of those with
a tag τ such that τi+1 = 1, using the MDDH Assumption with respect to an independent
matrix for each step.
Proof of Lemma 10. To go from G2.i.3 to G2.i+1, we switch the distribution of the vectors [y]
sampled by EncO, using the Qenc-fold U3k,k-MDDH Assumption. This transition is symmetric
to the transition between G2.i and G2.i.1 (see the proof of Lemma 7 for further details).

Finally, we use the fact that for all τ ∈ {0, 1}λ, M∗
0RF

(0)
i+1(τ|i) + M∗

1RF
(1)
i+1(τ|i+1) is identically

distributed to M⊥RFi+1(τ|i+1), where RFi+1 : {0, 1}i+1 → Z2k
q is a random function. This is

because (M∗
0,M

∗
1) is a basis of span(M⊥). ut

The proof of Lemma 6 follows readily from Lemma 7, 8, 9, and 10. ut

Lemma 11 (G2.λ). Adv2.λ ≤ Qenc

q
.

Proof of Lemma 11. We show that the joint distribution of all the values K0 computed by
EncO is statistically close to uniform over GQenc . Recall that on input τ , EncO(τ) computes

K0 := [y>(kτ + M⊥RFλ(τ))],

where RFλ : {0, 1}λ → Z2k
q is a random function, and y←r Z3k

q (see Figure 6).
We make use of the following properties:

Property 1: all the tags τ queried to EncO, such that EncO(τ) 6= ⊥, are distinct.
Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ Tenc}. This is because

for all queries (τ, [y], K̂) to DecO such that τ ∈ Tenc, DecO(τ, [y], K̂) = 0, independently
of RFλ(τ), by definition of G2.λ.

Property 3: with probability at least 1− Qenc

q
over the random coins of EncO, all the vectors

y sampled by EncO are such that y>M⊥ 6= 0.

We deduce that the joint distribution of all the values RFλ(τ) computed by EncO is

uniformly random over
(
Z2k
q

)Qenc
(from Property 1), independent of the outputs of DecO

(from Property 2). Finally, from Property 3, we get that the joint distribution of all the
values K0 computed by EncO is statistically close to uniform over GQenc , since:

K0 := [y>(kτ + M⊥RFλ(τ)) = [y>kτ + y>M⊥︸ ︷︷ ︸
6=0 w.h.p.

RFλ(τ)].

21

This means that the values K0 and K1 are statistically close, and therefore, Adv3 ≤ Qenc

q
. ut

Finally, Theorem 1 follows readily from Lemmas 4, 5, 6, and 11. ut

4 Multi-ciphertext CCA-secure Public Key Encryption scheme

4.1 Our construction

We now describe the optimized IND-CCA-secure PKE scheme. Compared to the PCA-secure
KEM from Section 3, we add an authenticated (symmetric) encryption scheme (EncAE,DecAE),
and set the KEM tag τ as the hash value of a suitable part of the KEM ciphertext (as
explained in the introduction). A formal definition with highlighted differences to our PCA-
secure KEM appears in Figure 8.

We prove the security under the Uk-MDDH Assumption, which admits a tight reduction
to the standard k-Lin Assumption.

GenPKE(1λ):

G ←r GGen(1λ); H←r H(1λ); M←r U3k,k
k1,0, . . . ,kλ,1 ←r Z3k

q

pk :=
(
G, [M],H,

(
[M>kj,β]

)
1≤j≤λ,0≤β≤1

)
sk := (kj,β)1≤j≤λ,0≤β≤1

Return (pk, sk)

EncPKE(pk,M):

r←r Zkq ; y := Mr
τ := H([y])
kτ :=

∑λ
j=1 kj,τj

K := [r> ·M>kτ]
φ := EncAE(K,M)
Return ([y], φ)

DecPKE(pk, sk, ([y], φ)):

τ := H([y]); kτ :=
∑λ
j=1 kj,τj ; K := [y>kτ]

Return DecAE(K,φ).

Fig. 8. PKECCA, an IND-CCA-secure PKE. We color in blue the differences with KEMPCA, the IND-PCA-secure
KEM in Figure 4. Here, GGen is a prime-order group generator (see Section 2.3) , and AE := (EncAE,DecAE) is an
Authenticated Encryption scheme with key-space K := G (see Definition 7).

Theorem 2. The Public Key Encryption scheme PKECCA defined in Figure 8 has perfect
correctness, if the underlying Authenticated Encryption scheme AE has perfect correctness.
Moreover, if the Uk-MDDH Assumption holds in G, AE has one-time privacy and authen-
ticity, and H generates collision resistant hash functions, then PKECCA is IND-CCA secure.
Namely, for any adversary A, there exist adversaries B, B′, B′′ such that T(B) ≈ T(B′) ≈
T(B′′) ≈ T(A) + (Qdec +Qenc) · poly(λ) and

Advind-cca
PKECCA

(A) ≤ (4λ+ 1) ·Advmddh
Uk,GGen(B) + ((4λ+ 2)Qdec +Qenc) ·Advae-ot

AE (B′′)
+ Advcr

H(B′) +Qenc(Qenc +Qdec) · 2−Ω(λ),
(3)

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

22

We note that the Qenc and Qdec factors in (3) are only related to AE. Hence, when using
a statistically secure (one-time) authenticated encryption scheme, the corresponding terms
in (3) become exponentially small.

Remark 2 (Extension to the multi-user CCA security). We only provide an analysis in the
multi-ciphertext (but single-user) setting. However, we remark (without proof) that our anal-
ysis generalizes to the multi-user, multi-ciphertext scenario, similar to [6, 17, 19]. Indeed, all
computational steps (not counting the steps related to the AE scheme) modify all cipher-
texts simultaneously, relying for this on the re-randomizability of the Uk-MDDH Assumption
relative to a fixed matrix M. The same modifications can be made to many PKECCA si-
multaneously by using that the Uk-MDDH Assumption is also re-randomizable across many
matrices Mi. (A similar property for the DDH, DLIN, and bilinear DDH assumptions is used
in [6], [17], and [19], respectively.)

5 Security proof of PKECCA

Theorem 3. The Public Key Encryption scheme PKECCA defined in Figure 8, Section 3
has perfect correctness, if the underlying Authenticated Encryption scheme AE has perfect
correctness. Moreover, if the Uk-MDDH Assumption holds in G, AE has one-time privacy and
authenticity, and H generates collision resistant hash functions, then PKECCA is IND-CCA
secure. Namely, for any adversary A, there exist adversaries B, B′, B′′ such that T(B) ≈
T(B′) ≈ T(B′′) ≈ T(A) + (Qdec +Qenc) · poly(λ) and

Advind-cca
PKECCA

(A) ≤ (4λ+ 1) ·Advmddh
Uk,GGen(B) + ((4λ+ 2)Qdec +Qenc) ·Advae-ot

AE (B′′)
+ Advcr

H(B′) +Qenc(Qenc +Qdec) · 2−Ω(λ),
(4)

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

We note that the Qenc and Qdec factors in (4) are only related to AE. Hence, when using a
statistically secure authenticated encryption scheme, the corresponding terms in (4) become
exponentially small.
Proof of Theorem 3. Perfect correctness follows from the perfect correctness of AE and the
fact that for all r ∈ Zkq and y = Mr, for all k ∈ Z3k

q :

r>(M>k) = y> · k.

We now prove the IND-CCA security of PKECCA. We proceed via a series of games
described in Figures 9 and 10 and we use Advi to denote the advantage of A in game Gi.

Lemma 12 (G0 to G1). There exist adversaries B0 and B′0 such that T(B0) ≈ T(B′0) ≈
T(A) + (Qenc +Qdec) · poly(λ) and

|Adv0 −Adv1| = Qdec ·Advae-ot
AE (B0) + Advcr

H(B′0) +
Qenc(Qenc +Qdec)

qk
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

23

Setup: G0, G1,G2, G3.i,G4

Cenc := ∅; b←r {0, 1}
Tenc = Tdec := ∅
G ←r GGen(1λ); H←r H(1λ); M←r U3k,k;

M⊥ ←r U3k,2k s.t. M>M⊥ = 0

Pick random RFi : {0, 1}i → Z2k
q

k1,0, . . . ,kλ,1 ←r Z3k
q

For τ ∈ {0, 1}λ, write kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τ|i)

Return pk :=
(
G, [M],H,

(
[M>kj,β]

)
1≤j≤λ,0≤β≤1

)

EncO(M0,M1): G0 , G1, G2,G3.i,G4

r←r Zkq ; y := Mr; y←r Z3k
q ;

τ := H([y]); K := [y> · k′τ]
φ0 := EncAE(K,M0); φ1 := EncAE(K,M1)

Return ([y], φb) and set Cenc := Cenc ∪ {([y], φb, τ)}.

If τ /∈ Tenc ∪ Tdec, return ([y], φb)
and set Tenc := Tenc ∪ {τ}. Otherwise, return ⊥.

DecO([y], φ): G0 , G1,G2,G3.i , G4

τ := H([y]); K := [y> · k′τ]

If ([y], φ, τ) ∈ Cenc, return ⊥;
otherwise, return DecAE(K,φ).

If ([y], φ, τ) ∈ Cenc or ∃([y′], φ′, τ ′) ∈ Cenc
with τ ′ = τ and y′ 6= y, return ⊥;
otherwise, return DecAE(K,φ).
Set Tdec := Tdec ∪ {τ}.

If τ /∈ Tenc, return DecAE(K,φ); else, return ⊥.
Set Tdec := Tdec ∪ {τ}.

Fig. 9. Games G0,G1,G2,G3.i (for 1 ≤ i ≤ λ),G4 for the proof of multi-ciphertext CCA security of PKECCA in
Figure 8. In each procedure, the components inside a solid (dotted, light gray, gray) frame are only present in the
games marked by a solid (dotted, light gray, gray) frame. We color in blue the differences with Figure 6, for the
security proof of KEMPCA.

Here, we use the collision resistance of H and the one-time authenticity of AE to restrict
the oracles DecO and EncO.
Proof of Lemma 12. First, we use the one-time authenticity of AE to argue that if A queries
DecO on a vector [y] such that y /∈ span(M), then, DecO outputs ⊥, with overwhelming
probability over the random coins of Setup. Second, we use the collision resistance of H to
argue that:
(i) if A queries DecO on ([y′], φ′), where for some previous output ([y], φ) of EncO, we have:
H([y]) = H([y′]) and y′ 6= y, then, with overwhelming probability over the random coins of
A, Setup and EncO: DecO outputs ⊥;
(ii) every time EncO outputs a tag, it is fresh (it has not been output by EncO or queried to
DecO before), with overwhelming probability over its random coins.

We introduce intermediate games G0.j, for j = 0, . . . , Qdec, defined as follows: DecO is as
in G0 except that for the first j times it is queried, it outputs ⊥ to any query ([y], τ, φ) such
that y /∈ span(M). Setup and EncO are as in G0.

We build adversaries B0.j for j = 0, . . . , Qdec − 1, and B′0 such that T(B0,j) ≈ T(B′0) ≈
T(A) + (Qenc +Qdec) · poly(λ), where poly(λ) is independent of T(A), and such that

Claim 1: |Adv0.j −Adv0.j+1| ≤ Advae-ot
AE (B0.j), for j = 0, . . . , Qdec − 1.

Claim 2: |Adv0.Qdec
−Adv1| ≤ Advcr

H(B′0).

This implies the lemma.

24

Let us prove Claim 1. It suffices to show that in G0.j, with overwhelming probability over
the random coins of Setup, DecO outputs ⊥ to its j + 1-st query if it contains [y] such that
y /∈ span(M).

Recall that in G0.j, on its j + 1-st query ([y], φ), DecO computes

K := [y> · kτ], where kτ :=
λ∑
ρ=1

kρ,τρ ,

and returns DecAE(K,φ) (unless ([y], φ) ∈ Cenc, in which case it outputs ⊥, see Figure 9). We
prove that this value K is hidden from A up to its j+ 1-st query to DecO. Then, we use the
one-time authenticity of AE to argue that DecAE(K,φ) = ⊥ with overwhelming probability.

To prove K is hidden from A, we show that the vectors k1,0,k1,1 in sk contain some
entropy that is hidden from A. More formally, we use the fact that the vectors k1,β ←r Z3k

q

are identically distributed than k1,β + M⊥w for β = 0, 1, where k1,β ←r Z3k
q , w←r Zkq , and

M⊥ ←r U3k,2k such that M>M⊥ = 0. We show that w is hidden from A, up to its j + 1-st
query to DecO.

– The public key pk does not leak any information about w, since

M>(k1,β + M⊥w) = M>k1,β.

This is because M>M⊥ = 0.
– The outputs of EncO also hide w, since for any y ∈ span(M), we have:

y>(kτ + M⊥w) = y>k′τ (5)

since M>M⊥ = 0 which implies y>M⊥ = 0.
– The first j outputs of DecO also hide w.
• For y ∈ span(M), DecO([y], φ) is independent of w, from Equation (5).
• For y /∈ span(M), DecO([y], φ) = ⊥, independently of w, by definition of G0.j.

Therefore, the value
K = [y>(kτ + M⊥w)] = [y>kτ + y>M⊥︸ ︷︷ ︸

6=0

w]

computed by DecO on its j + 1-st query, is uniformly random over G from A’s view, since
y /∈ span(M)⇔ y>M⊥ 6= 0.

Then, by one-time authenticity of AE, there exists an adversary B0.j such that T(B0,j) ≈
T(A) + (Qenc +Qdec) · poly(λ), where poly(λ) is independent of T(A), and

|Adv0.j −Adv0.j+1| ≤ Advae-ot
AE (B0.j).

Let us prove Claim 2. It suffices to show that in G0.Qdec
:

(i) if DecO is queried on ([y], φ), and there exists ([y′], φ′) output previously by EncO, with
H([y]) = H([y′]) and y′ 6= y, then, with overwhelming probability over the random coins of

25

A, Setup and EncO: DecO outputs ⊥;
(ii) every time EncO outputs a tag, it is fresh (it has not been output by EncO or queried to
DecO before), with overwhelming probability over its random coins.

We define B′0 as follows. Upon receiving a challenge H←r H(1λ) for the collision resistance
of H, B′0 picks b←r {0, 1}, k1,0, . . . ,kλ,1 ←r Z3k

q , and simulates Setup, EncO and DecO as in
G0.Qdec

.
(i) Suppose B′0 receives some [y] through a DecO query, such that there is a [y′] from an

earlier EncO query with H([y]) = H([y′]), and y 6= y′. Then, we distinguish the following
cases:

Case 1: y 6= y′. Then there is a collision H([y]) = H([y′]) that B′0 can directly output.
Case 2: y = y′ (but y 6= y′). Then, y /∈ span(M) (because y 6= y′), and DecO outputs ⊥,

as would happen both in G0.Qdec
and G1.

(ii) First, note that with probability at least 1 − Qenc(Qenc+Qdec)
qk

over its random coins,

EncO samples vectors [y] whose upper parts [y] are fresh (they are distinct from those
previously sampled by EncO, or queried to DecO). Therefore, conditioned on this fact, if B′0
samples τ := H([y]) that is not fresh, i.e there exists a pair ([y′],H([y′]) = τ) previously
output by EncO or queried to DecO (along with some symmetric ciphertext φ), then we have
H([y]) = H([y′]), and [y] 6= [y′], that is, B′0 finds a collision.

Summarizing, both games G0.Qdec
and G1 proceed identically (as simulated by B′0), unless

(i) Case 1 occurs, or (ii) EncO samples a tag that was output or queried before, in which
case B′0 finds a collision, with overwhelming probability over its random coins. ut

Lemma 13 (G1 to G2). There exists an adversary B1 such that T(B1) ≈ T(A) + (Qenc +
Qdec) · poly(λ) and

|Adv1 −Adv2| = Advmddh
Uk,GGen(B1) +

1

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

In Lemma 13, we use the MDDH assumption to “tightly” switch the distributions of all the
challenge ciphertexts, as for Lemma 4 in Section 3.

Lemma 14 (G2 to G3.0). |Adv2 −Adv3.0| = 0.

The proofs of Lemma 13 and 14 are almost identical to those of Lemma 4 and 5, respec-
tively. See the latter for further details.

Lemma 15 (G3.i to G3.i+1). For all 0 ≤ i ≤ λ − 1, there exist adversaries B3.i and B′3.i
such that T(B3.i) ≈ T(B′3.i) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv3.i −Adv3.i+1| ≤ 4 ·Advmddh
Uk,GGen(B3.i) + 4Qdec ·Advae-ot

AE (B′3.i) +
4

q − 1
+

2k

q
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

26

Proof of Lemma 15. To go from G3.i to G3.i+1, we introduce intermediate games G3.i.1, G3.i.2

and G3.i.3 defined in Figure 10. We prove that these games are indistinguishable in Lemma 16,
17, 18, and 19.

Setup: G3.i, G3.i.1, G3.i.2 , G3.i.3

Cenc := ∅; b←r {0, 1}
G ←r GGen(1λ); H←r H(1λ); M←r U3k,k
M⊥ ←r U3k,2k s.t. M>M⊥ = 0

M0,M1 ←r U2k,k

M∗0,M
∗
1 ←r U3k,k s.t.

span(M⊥) = span(M∗0,M
∗
1)

M>M∗0 =
(

0
M1

)>
M∗0 = 0

M>M∗1 =
(

0
M0

)>
M∗1 = 0

Pick random RFi : {0, 1}i → Z2k
q .

Pick random RF
(0)
i+1 : {0, 1}i+1 → Zkq

and RF
(1)
i : {0, 1}i → Zkq

Pick random RFi+1 : {0, 1}i+1 → Z2k
q .

k1,0, . . . ,kλ,1 ←r Z3k
q

For all τ ∈ {0, 1}λ, kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τ|i)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i (τ|i)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i+1(τ|i+1)

Return pk :=
(
G, [M],H,

(
[M>kj,β]

)
1≤j≤λ,0≤β≤1

)

EncO(M0,M1): G3.i, G3.i.1,G3.i.2,G3.i.3

r←r Zkq ; y := Mr; τ := H([y])

If τi+1 = 0 : r0 ←r Zkq ;y := Mr + M0r0
If τi+1 = 1 : r1 ←r Zkq ;y := Mr + M1r1

K := [y> · k′τ]
φ0 := EncAE(K,M0); φ1 := EncAE(K,M1)
Cenc := Cenc ∪ {([y], φb, τ)}.
Return ([y], φb, τ).

DecO([y], φ): G3.i,G3.i.1,G3.i.2,G3.i.3

τ := H(y); K := [y>k′τ]
Return DecAE(K,φ) if ([y], φ, τ) /∈ Cenc, ⊥ otherwise.

Fig. 10. Games G3.i (for 0 ≤ i ≤ λ),G3.i.1, G3.i.2 and G3.i.3 (for 0 ≤ i ≤ λ − 1) for the proof of Lemma 15. For all
τ ∈ T , we denote by τ|i the i-bit prefix of τ . In each procedure, the components inside a solid (dotted, gray) frame
are only present in the games marked by a solid (dotted, gray) frame. We color in blue the differences with Figure 7,
for the security proof of KEMPCA.

Lemma 16 (G3.i to G3.i.1). For all 0 ≤ i ≤ λ− 1, there exists an adversary B3.i.0 such that
T(B3.i.0) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv3.i −Adv3.i.1| ≤ 2 ·Advmddh
Uk,GGen(B3.i.0) +

2

q − 1
,

where poly(λ) is independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the chal-
lenge ciphertexts, as for Lemma 7 in Section 3. We proceed in two steps, first, by changing

27

the distribution of all the ciphertexts with a tag τ such that τi+1 = 0, and then, for those with
a tag τ such that τi+1 = 1. We use the MDDH Assumption with respect to an independent
matrix for each step.
Proof of Lemma 16. The proof of this lemma is essentially as the proof of Lemma 7, in
Section 3. The difference is that now, only the lower part of the vectors [y] sampled by EncO
is randomized using the Qenc-fold U2k,k-MDDH Assumption. The upper part of [y] is used to
compute the tag τ . We call y and y the upper and lower part of y, respectively.

We introduce an intermediate game G3.i.0 where EncO first picks r ←r Zkq , computes

[y] := [Mr], τ := H([y]), and computes the rest of its output as in G3.i.1 if τi+1 = 0, and
as in G3.i if τi+1 = 1; Setup and DecO are as in G3.i.1. We build adversaries B′3.i.0 and B′′3.i.0
such that T(B′3.i.0) ≈ T(B′′3.i.0) ≈ T(A) + (Qenc +Qdec) · poly(λ) with poly(λ) independent of
T(A), and

Claim 1: |Adv3.i −Adv3.i.0| ≤ AdvQenc-mddh
U2k,k,GGen(B

′
3.i.0).

Claim 2: |Adv3.i.0 −Adv3.i.1| ≤ AdvQenc-mddh
U2k,k,GGen(B

′′
3.i.0).

This implies the lemma by Lemma 3 (self-reducibility of U2k,k-MDDH), and Lemma 1
(U2k,k-MDDH⇔ Uk-MDDH).

Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G2k×k, [H] := [h1| . . . |hQenc] ∈
G2k×Qenc) for the Qenc-fold U2k,k-MDDH Assumption with respect to M0 ←r U2k,k, B′3.i.0 does
as follows:

Setup: B′3.i.0 picks M ←r U3k,k, k1,0, . . . ,kλ,1 ←r Z3k
q , H ←r H(1λ), and computes pk as

described in Figure 10. For each τ computed while simulating EncO or DecO, B′3.i.0 com-
putes on the fly RFi(τ|i), k′τ := kτ + M⊥RFi(τ|i), where RFi : {0, 1}i → Z2k

q is a random

function, kτ :=
∑λ

j=1 kj,τj , and τ|i denotes the i-bit prefix of τ (see Figure 10). Note that

B′3.i.0 can compute efficiently M⊥ from M.
EncO(M0,M1): on the j’th query, for j = 1, . . . , Qenc, B′3.i.0 samples r ← Zkq , computes

[y] := [Mr], τ := H([y]), and computes [y] as follows:

if τi+1 = 0 : [y] := [Mr + hj]
if τi+1 = 1 : [y]←r G2k

This way, B′3.i.0 simulates EncO as in G3.i.0 when [hj] := [M0r0] with r0 ←r Zkq , and as in
G3.i when [hj]←r G2k.

DecO(C, φ): Finally, B′3.i.0 simulates DecO as described in Figure 10.

Therefore, |Adv3.i −Adv3.i.0| ≤ AdvQenc-mddh
U2k,k,GGen(B

′
3.i.0).

To prove Claim 2, we build an adversary B′′3.i.0 against the Qenc-fold U2k,k-MDDH As-
sumption with respect to a matrix M1 ←r U2k,k, independent from M0, similarly than B′3.i.0.
ut

Lemma 17 (G3.i.1 to G3.i.2). For all 0 ≤ i ≤ λ − 1, there exists an adversary B3.i.1 such
that T(B3.i.1) ≈ T(A) + (Qenc +Qdec) · poly(λ), and

|Adv3.i.1 −Adv3.i.2| ≤ 2Qdec ·Advae-ot
AE (B3.i.1) +

2k

q

28

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Here, we use a computational variant of the Cramer-Shoup information-theoretic argu-
ment to move from RFi to RFi+1, thereby increasing the entropy of k′τ , as in Lemma 8, in
Section 3. For the sake of readability, we proceed in two steps: in Lemma 17, we move from
RFi to an hybrid between RFi and RFi+1, and in Lemma 18, we move to RFi+1.
Proof of Lemma 17. In G3.i.2, we decompose span(M⊥) into two spaces span(M∗

0) and
span(M∗

1), and we increase the entropy of the vector k′τ computed by EncO and DecO.
More precisely, the entropy of the components of k′τ that lie in span(M∗

0) increases from
G3.i.1 to G3.i.2. To argue that these two games are computationally indistinguishable, we use
a Cramer-Shoup argument [11], together with the one-time authenticity of AE.

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that with probability
1− 2k

q
over the random coins of Setup, (M‖

(
0

M0

)
‖
(

0
M1

)
) forms a basis of Z3k

q . Therefore, we

have span(M⊥) = Ker(M>) = Ker
(
(M‖

(
0

M1

)
)>
)
⊕ Ker

(
(M‖

(
0

M0

)
)>
)
.

We pick uniformly M∗
0 and M∗

1 in Z3k×k
q that generates Ker

(
(M‖

(
0

M1

)
)>
)

and Ker
(
(M‖

(
0

M0

)
)>
)
,

respectively. This way, for all τ ∈ {0, 1}λ, we can write

M⊥RFi(τ|i) := M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i),

where RF
(0)
i , RF

(1)
i : {0, 1}i → Zkq are independent random functions.

We define RF
(0)
i+1 : {0, 1}i+1 → Zkq as follows:

RF
(0)
i+1(τ|i+1) :=

{
RF

(0)
i (τ|i) if τi+1 = 0

RF
(0)
i (τ|i) + RF′

(0)
i (τ|i) if τi+1 = 1

where RF′
(0)
i : {0, 1}i → Zkq is a random function independent from RF

(0)
i . This way, RF

(0)
i+1 is

a random function.

We show that the outputs of EncO and DecO are computationally indistinguishable in
G3.i.1 and G3.i.2. We decompose the proof in two cases (delimited with �): the queries with
a tag τ ∈ {0, 1}λ such that τi+1 = 0, and the queries with a tag τ such that τi+1 = 1.

Queries with τi+1 = 0:
The only difference between G3.i.1 and G3.i.2 is that Setup computes k′τ using the random

function RF
(0)
i in G3.i.1, whereas it uses the random function RF

(0)
i+1 in G3.i.2 (see Figure 10).

Therefore, by definition of RF
(0)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 0, k′τ is the same in

G3.i.1 and G3.i.2, and the outputs of EncO and DecO are identically distributed. �

29

Queries with τi+1 = 1:
Observe that for all y ∈ span(M,

(
0

M1

)
) and all τ ∈ {0, 1}λ such that τi+1 = 1,

G3.i.2︷ ︸︸ ︷
y>
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i) + M∗

0RF
′(0)
i (τ|i)

)
= y>

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
+ y>M∗

0RF
′(0)
i (τ|i)︸ ︷︷ ︸

=0

=

G3.i.1︷ ︸︸ ︷
y> ·

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
where the second equality uses the fact M>M∗

0 =
(

0
M1

)>
M∗

0 = 0 and thus y>M∗
0 = 0.

This means that:

– the output of EncO on any input τ such that τi+1 = 1 is identically distributed in G3.i.1

and G3.i.2;
– the output of DecO on any input ([y], φ) where τ = H([y]), τi+1 = 1, and y ∈ span(M,

(
0

M1

)
)

is the same in G3.i.1 and G3.i.2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to
τi+1 = 1, and y /∈ span(M,

(
0

M1

)
). We introduce intermediate games G3.i.1.j, and G′3.i.1.j for

j = 0, . . . , Qdec, defined as follows:

– G3.i.1.j: DecO is as in G3.i.1 except that for the first j times it is queried, it outputs ⊥ to
any ill-formed query. EncO is as in G3.i.2.

– G′3.i.1.j: DecO is as in G3.i.2 except that for the first j times it is queried, it outputs ⊥ to
any ill-formed query. EncO is as in G3.i.2.

We show that:

G3.i.1 ≡ G3.i+1.0 ≈c G3.i.1.1 ≈c . . . ≈c G3.i.1.Qdec
≡ G′3.i.1.Qdec

≈c G′3.i.1.Qdec−1 ≈c . . . ≈c G′3.i.1.Qdec
≡ G3.i.2

where we denote computational indistinguishability with ≈c and statistical equality with ≡.
It suffices to show that for all j = 0, . . . , Qdec−1, there exist adversaries B3.i.1.j and B′3.i.1.j

against the one-time authenticity of AE, such that T(B3.i.1.j) ≈ T(B′3.i.1.j) ≈ T(A) + (Qenc +
Qdec) · poly(λ), with poly(λ) independent of T(A), and such that:

Claim 1: in G3.i.1.j, if the j+1-st query is ill-formed, then DecO outputs ⊥ with overwhelm-
ing probability 1−Advae-ot

AE (B3.i.1.j) (this implies G3.i.1.j ≈c G3.i.1.j+1).
Claim 2: in G′3.i.1.j, if the j+1-st query is ill-formed, then DecO outputs 0 with overwhelming

probability 1−Advae-ot
AE (B′3.i.1.j) (this implies G′3.i.1.j ≈c G′3.i.1.j+1),

where the probabilities are taken over the random coins of Setup.
We prove Claim 1 and 2 as in Lemma 8, in Section 3, arguing that the encapsulation key

K computed by DecO on an ill-formed j + 1-st query, is completely hidden from A, up to

30

its j + 1-st query to DecO. The reason is that the vector ki+1,1 in sk contains some entropy
that is hidden from A, and that is “released” on the j + 1-st query, if it is ill-formed. Then,
we use the one-time authenticity of AE to argue that DecO outputs ⊥ with overwhelming
probability over the random coins of Setup. ut

Lemma 18 (G3.i.2 to G3.i.3). For all 0 ≤ i ≤ λ − 1, there exists an adversary B3.i.2 such
that T(B3.i.2) ≈ T(A) + (Qenc +Qdec) · poly(λ),

|Adv3.i.2 −Adv3.i.3| ≤ 2Qdec ·Advae-ot
AE (B3.i.2)

where Qenc, Qdec are the number of times A queries DecO, and poly(λ) is independent of
T(A).

Proof of Lemma 18. In G3.i.3, we use the same decomposition span(M⊥) = span(M∗
0,M

∗
1) as

that in G3.i.2. The entropy of the component of k′τ that lies in span(M∗
1) increases from G3.i.2

to G3.i.3. That is, we use a random function RF
(1)
i+1 : {0, 1}i+1 → Zkq in place of the random

function RF
(1)
i : {0, 1}i → Zkq . To argue that these two games are computationally indistin-

guishable, we use a computational variant of the Cramer-Shoup argument [11], exactly as in
the proof of Lemma 17.

We define RF
(1)
i+1 → Zkq as follows:

RF
(1)
i+1(τ|i+1) :=

{
RF

(1)
i (τ|i) + RF′

(1)
i (τ|i) if τi+1 = 0

RF
(1)
i (τ|i) if τi+1 = 1

where RF′
(1)
i : {0, 1}i → Zkq is a random function independent from RF

(1)
i . This way, RF

(1)
i+1 is

a random function.
We show that the outputs of EncO and DecO are computationally indistinguishable in

G3.i.1 and G3.i.2, similarly that in the proof of Lemma 9, in Section 3 (see the latter for further
details). ut

Lemma 19 (G3.i.3 to G3.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B3.i.3 such
that T(B3.i.3) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv3.i.3 −Adv3.i+1| ≤ 2 ·Advmddh
Uk,GGen(B3.i.3) +

2

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ)
is independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the chal-
lenge ciphertexts. As for Lemma 16, we proceed in two steps, and we use an independent
matrix from U2k,k for each step.
Proof of Lemma 19. To go from G3.i.3 to G3.i+1, we switch the distribution of the vector
[y] sampled by EncO, using the Qenc-fold U2k,k-MDDH Assumption (equivalent to the Uk-
MDDH Assumption, see Lemma 1). This transition is symmetric to the transition between

31

G3.i and G3.i.1, and we defer to the proof of Lemma 16 for further details. Finally, we use
the fact that for all τ ∈ {0, 1}λ, M∗

0RF
(0)
i+1(τ|i) + M∗

1RF
(1)
i+1(τ|i+1) is identically distributed

to M⊥RFi+1(τ|i+1), where RFi+1 : {0, 1}i+1 → Z2k
q is a random function. This is because

(M∗
0,M

∗
1) is a basis of span(M⊥). ut

The proof of Lemma 15 follows readily from Lemmas 16, 17, 18, and 19. ut

Lemma 20 (G3.λ to G4). There exists an adversary B3.λ such that T(B3.λ) ≈ T(A) +
(Qenc +Qdec) · poly(λ), and

|Adv3.λ −Adv4| ≤ QdecQenc ·Advae-ot
AE (B3.λ),

where Qenc, Qdec are the number of times A queries DecO, and poly(λ) is independent of
T(A).

Here, we use the one-time authenticity of AE to restrict the decryption oracle DecO.
Proof of Lemma 20. We use the one-time authenticity of AE to argue that with overwhelming
probability over the random coins of Setup, DecO outputs ⊥ on any input ([y′], φ′) such that
for some previous output ([y], φ) of EncO, H([y′]) = H([y]).

We introduce intermediate games G3.λ.j for j = 0, . . . , Qdec, defined as G3.λ, except that
on its first j query, DecO is as in G4, that is, it outputs ⊥ to any query with a tag τ previously
output by EncO.

We show that :

G3.λ ≡ G3.λ.0 ≈c G3.λ.1 ≈c . . . ≈c G3.λ.Qdec
≡ G4,

where ≈c denotes computational indistinguishability, and ≡ denotes statistical equivalence.
Namely, we build adversaries B3.λ.j for j = 0, . . . , Qdec− 1, such that T(B3.λ.j) ≈ T(A) +

(Qenc +Qdec) · poly(λ), where poly(λ) is independent of T(A), and

|Adv3.λ.j −Adv3.λ.j+1| ≤ Qenc ·Advae-ot
AE (B3.λ.j).

This implies the lemma.
It suffices to show that in G3.λ.j, with overwhelming probability over the random coins

of A, Setup and EncO: DecO outputs ⊥ to its j + 1-st query if it contains [y?] such that
H([y?]) = H([y]), for [y] that was output previously by EncO.

We build B3.λ.j as follows.

Setup : Upon receiving the description of K := G, B3.λ.j picks M←r U3k,k, k1,0, . . . ,kλ,1 ←r

Z3k
q , H←r H(1λ), and outputs pk as in G4 (see Figure 9). It also picks j? ←r {1, . . . , Qenc},

and b←r {0, 1}.
EncO(M0,M1) : On the j?’th query, B3.λ.j picks y ←r Z3k

q , calls ot-EncO(Mb,Mb) to get
φb := EncAE(K?,Mb), for a random K? ←r G. The rest of the simulation goes as in G4 (see
Figure 9), that is: if H([y]) /∈ Tenc∪Tdec, B3.λ.j returns ([y,], φb), sets Tenc := Tenc∪{H([y])}
and Cenc := Cenc ∪ {([y], φb)}, otherwise, it returns ⊥. The other j 6= j? queries are
simulated as in G4.

32

DecO([y], φ): the first j queries are simulated as in G4, the last Qenc − j − 1 as in G3.λ.
For the j + 1-st query ([y?], φ?), B3.λ.j calls ot-DecO([y?], φ?) to get DecAE(K?, φ?). The
rest of the simulation goes as in G3.i, that is, if ([y?], φ?) ∈ Cenc or ∃([y], φ) ∈ Cenc with
H([y?]) = H([y]) and y? 6= y, B3.λ.j returns ⊥. Otherwise, it returns DecAE(K?, φ?).
Finally, it sets Tdec := Tdec ∪ {H([y?])}.

Assume the j + 1-st query ([y?], φ?) to DecO is such that DecO([y?], φ?) = ⊥ in G4, but
not in G3.λ.j. In particular, that means that there exists ([y], φ) ∈ Cenc such that y = y?

and φ 6= φ?. Then, with probability 1/Qenc over the choice of j?, ([y], φ) is the j?’th query
of EncO. In that case, we show that A’s view is simulated as in G3.λ.j if ot-DecO is the real
decryption oracle, and as in G4 if it is the “always ⊥” function. This implies the lemma.

Indeed, the key K? := [y?>(kτ? + M⊥RFλ(τ
?))] for τ ? := H([y?]) is random, independent

from A’s view up to its j + 1-st query on DecO (except what leaks through EncAE(K?,Mb)).
This is because:

1. with probability 1/q over the random coins of B3.λ.j, y? ←r Z3k
q /∈ span(M).

2. for all [y] contained in EncO outputs or DecO queries that don’t output ⊥, prior to the
j + 1-st DecO query, we have H([y]) 6= τ ?, by definition of G3.λ.j. That is, the tag τ ? is
“fresh”. Therefore, the key

K? := [y?>(kτ? + M⊥RFλ(τ
?))] = [y>kτ? + y?>M⊥︸ ︷︷ ︸

6=0

RFλ(τ
?)]

is random, independent of A’s view up to its j + 1-st query (except what leaks through
EncAE(K?,Mb)).

This proves that
|Adv3.λ.j −Adv3.λ.j+1| ≤ Qenc ·Advae-ot

AE (B3.λ.j).
ut

Lemma 21 (G4). There exists an adversary B4 such that T(B4) ≈ T(A) + (Qenc + Qdec) ·
poly(λ), such that

Adv4 ≤ Qenc ·Advae-ot
AE (B4) +

Qenc

q
,

where Qenc and Qdec are the number of times A queries DecO, and poly(λ) is independent of
T(A).

Proof of Lemma 21. First, we show that the joint distribution of all the values K computed
by EncO is statistically close to uniform over GQenc . Then, we use the one-time privacy of AE
on each one of the Qenc symmetric ciphertexts.

Recall that on input τ , EncO(τ) computes

K := [y>(kτ + M⊥RFλ(τ))],

where RFλ : {0, 1}λ → Z2k
q is a random function, and y←r Z3k

q .
We make use of the following properties:

33

Property 1: all the tags τ computed by EncO(M0,M1), such that EncO(M0,M1) 6= ⊥, are
distinct.

Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ Tenc}. This is because
for all queries ([y], φ) to DecO such that H([y]) ∈ Tenc, DecO([y], φ) = ⊥, independently
of RFλ(τ), by definition of G4.

Property 3: with probability at least 1− Qenc

q
over the random coins of EncO, all the vectors

y sampled by EncO are such that y>M⊥ 6= 0.

We deduce that the joint distribution of all the values RFλ(τ) computed by EncO is

uniformly random over
(
Z2k
q

)Qenc
(from Property 1), independent of the outputs of DecO

(from Property 2). Finally, from Property 3, we get that the joint distribution of all the
values K computed by EncO is statistically close to uniformly random over GQenc , since:

K := [y>(kτ + M⊥RFλ(τ)) = [y>kτ + y>M⊥︸ ︷︷ ︸
6=0 w.h.p.

RFλ(τ)].

Therefore, we can use the one-time privacy of AE to argue that all symmetric ciphertexts φb
computed by EncO don’t reveal b (this uses a Qenc-hybrid argument). ut

Finally, Theorem 3 follows readily from Lemmas 12, 13,14, 15, 20, and 21. ut

6 Tightly secure, Quasi-adaptive Zero-Knowledge arguments for
Linear Subspaces

Here, we show how we can apply our PCA-secure KEM of Section 3 to obtain tightly se-
cure, (Designated-Verifier) Quasi-Adaptive Non-Interactive Zero-Knowledge arguments ((DV)QANIZK)
for linear subspaces, with strong simulation soundness. In Section 6.1, we recall the defini-
tions of QANIZK and DVQANIZK arguments. In Section 6.2, we give a generic construction
of a DVQANIZK argument for linear language, from a PCA-secure KEM and a concrete in-
stantiation of this generic construction, using the PCA-secure KEM presented in Section 3.
Finally, in Section 6.3, we give a QANIZK argument for linear language, which is more
efficient than simply upgrading the DVQANIZK in Section 6.2 with pairings.

6.1 Quasi-adaptive Non-Interactive Zero-Knowledge

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the common reference
string (CRS) is allowed to depend on the specific language for which proofs have to be
generated [20]. The CRS is generated in a specific way and contains a fixed part par, produced
by an algorithm Genpar, and a language-dependent part crs. However, for the zero-knowledge
property there should exist a single simulator for the entire class of languages.

For public parameters par produced by Genpar, let Dpar be a probability distribution over
a collection of relations R = {Rρ} parametrized by a string ρ with an associated language
Lρ = {y : ∃x s.t. Rρ(y, x) = 1}.

34

We now give a formal definition of QANIZK for Dpar in its tag-based variant. The tag-
based version can be transformed into a standard QANIZK using a one-time signature.

Definition 8 (QANIZK Argument). A Quasi-adaptive Non-Interactive Zero Knowledge
Argument (QANIZK) Π for a language distribution Dpar consists of five PPT algorithms
Π = (Genpar,Gencrs,Prove, Sim,Ver):
– The probabilistic key generation algorithm Genpar(1

λ) returns the public parameters par.
– The probabilistic algorithm Gencrs(par, ρ) returns a common reference string crs, and a

trapdoor trap. We assume that crs implicitly contains par and ρ, and that it defines a
tag-space T . (This is the classical QANIZK setting.) If T is not specified then T = {ε}
and tags can be ignored in all algorithms.

– The probabilistic proving algorithm Prove(crs, τ, x, y) returns a proof π, with respect to tag
τ ∈ T .

– The probabilistic verification algorithm Ver(crs, τ, y, π) returns 1 or 0, where 1 means that
π is a valid proof of y ∈ Lρ.

– The probabilistic proving algorithm Sim(crs, trap, τ, y) returns a proof π for some y ∈ Y
(not necessarily in Lρ) with respect to tag τ ∈ T .

We require that the algorithms satisfy the following properties:

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all (x, y)
with Rρ(y, x) = 1, all τ ∈ T , we have

Pr[Ver(crs, τ, y, π) = 1|(crs, trap)←r Gencrs(par, ρ);π ←r Prove(crs, τ, x, y)] = 1.

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all
(crs, trap) output by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1, all τ ∈ T , the distributions

Prove(crs, τ, x, y) and Sim(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove, Sim).
Unbounded Simulation Soundness [33, 12]. For all PPT adversaries A,

Advuss
Π (A) := Pr

[
win = 1|ASetup,SimO(·,·),VerO(·,·,·)]

is negligible, where Setup sets win := 0, Tsim := ∅, then samples par ←r Genpar(λ); ρ ←r

Dpar; (crs, trap) ←r Gencrs(par, ρ) and returns crs. We require that Setup must be called
once at the beginning of the game.
SimO(τ, y) returns π := Sim(crs, trap, τ, y) and sets Tsim := Tsim ∪ {τ}.
VerO(τ, y, π) sets win = 1 if Ver(crs, τ, y, π) = 1 ∧ y /∈ Lρ ∧ τ /∈ Tsim. VerO is called at
most once.

Now, we give the definition of Designated-Verifier QANIZK (DVNIZK) arguments in their
tag based variant. Roughly speaking, a DVQANIZK is a QANIZK where a secret verification
key vk is needed to verify the membership of an instance, unlike a regular QANIZK where
only the crs is needed.

35

Definition 9 (DVQANIZK Argument). A Designated-Verifier, Quasi-adaptive Non-
Interactive Zero Knowledge Argument (DVQANIZK) Π for a language distribution Dpar

consists of five PPT algorithms Π = (Genpar,Gencrs,Prove, Sim,Ver):

– The probabilistic key generation algorithm Genpar(1
λ) returns the public parameters par.

– The probabilistic algorithm Gencrs(par, ρ) returns a common reference string crs, a trapdoor
trap, and a verification key vk. We assume that crs implicitly contains par and ρ, and that
it defines a tag-space T . If T is not specified then T = {ε} and tags can be ignored in all
algorithms.

– The probabilistic proving algorithm Prove(crs, τ, x, y) returns a proof π, with respect to tag
τ ∈ T .

– The probabilistic verification algorithm Ver(crs, vk , τ, y, π) returns 1 or 0, where 1 means
that π is a valid proof of y ∈ Lρ.

– The probabilistic proving algorithm Sim(crs, trap, τ, y) returns a proof π for some y ∈ Y
(not necessarily in Lρ) with respect to tag τ ∈ T .

We require that the algorithms satisfy the following properties:

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all (x, y)
with Rρ(y, x) = 1, all τ ∈ T , we have

Pr[Ver(crs, vk, τ, y, π) = 1|(crs, trap, vk)←r Gencrs(par, ρ);π ←r Prove(crs, τ, x, y)] = 1.

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all
(crs, trap) output by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1, all τ ∈ T , the distributions

Prove(crs, τ, x, y) and Sim(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove, Sim).

Strong Unbounded Simulation Soundness. For all PPT adversaries A,

Advuss
Π (A) := Pr

[
∃(τ ?, y?, π?) ∈ Qver s.t.
y? /∈ Lρ ∧ VerO(τ ?, y?, π?) = 1

∣∣ASetup,SimO(·,·),VerO(·,·,·)
]

is negligible, where Setup sets Qver = Tsim = Tver := ∅, samples par ←r Genpar(λ); ρ ←r

Dpar; (crs, trap, vk)←r Gencrs(par, ρ) and returns crs. Setup is called once at the beginning
of the game.

SimO(τ, y): if τ /∈ Tver∪Tsim, it returns π := Sim(crs, trap, τ, y) and sets Tsim := Tsim∪{τ};
otherwise, it returns ⊥.

VerO(τ, y, π) returns 1 if Ver(crs, vk, τ, y, π) = 1 ∧ τ /∈ Tsim, 0 otherwise. Then it sets
Qver := Qver ∪ {(τ, y, π)}, Tver := Tver ∪ {τ}.

Unbounded Simulation Soundness. This property is defined as Strong Unbounded Sim-
ulation Soundness except the adversary is only allowed one call to VerO. This is the
standard notion of unbounded simulation soundness [33, 12].

36

6.2 Generic construction of DVQANIZK argument for linear subspace, with
strong simulation soundness

In this section we describe a tightly-secure, Designated-Verifier Quasi-adaptive Non-Interactive
Zero Knowledge Argument for linear subspaces with strong unbounded simulation-soundness
(see Definition 9).

We use Genpar = GGen. That is, Genpar(1
λ) returns par = G, where G = (G, q, g) contains

a cyclic group G generated by g of order q (see Section 2.3). The probability distribution
Dpar returns a matrix ρ = [M] ∈ Gn×t, for integers n > t. We consider the case of witness
sampleable (WS) [20] distributions, where there exist an efficiently sampleable distribution
D′par that outputs M′ ∈ Zn×tq such that [M′] has the same distribution as [M]. Note that this
slightly restricts the set of languages that can be handled. Given par and ρ, the language
LM is defined as

LM =
{

[y] ∈ Gn : ∃ x ∈ Ztq s.t. y = Mx
}
.

The DVNIZK construction is given in Figure 11. When instantiated with the IND-PCA-

Gencrs(par, [M] ∈ Gn×t):
(pk, sk)←r GenKEM(1λ)
k←r Znq
crs :=

(
[M>k], pk

)
trap := k
vk := (k, sk)
Return (crs, trap, vk).

Prove(crs, τ, [y],x): // y = Mx

(C,K)←r EncKEM(pk, τ)
[u] := [x> ·M>k] +K
Return (C, [u])

Sim(crs, trap, τ, [y]):

(C,K)←r EncKEM(pk, τ)
[u] := [y>k] +K
Return (C, [u])

Ver(crs, vk, τ, [y], (C, [u])):

K := DecKEM(pk, sk, τ, C)
Return 1 if K 6= ⊥ ∧ [u] = [y> · k] + K, 0
otherwise.

Fig. 11. DVQANIZK argument Πdv
uss with strong unbounded simulation-soundness, where KEMPCA :=

(GenKEM,EncKEM,DecKEM) is an IND-PCA-secure KEM with key space K := G.

secure KEM from Figure 4 (Section 3) we obtain the DVQANIZK argument described in
Figure 12.

Theorem 4. The DVQANIZK argument Πdv
uss defined in Figure 11 has perfect zero-knowledge.

Suppose in addition that the underlying KEM KEMPCA has perfect completeness, then, so
does Πdv

uss. Finally, if KEMPCA is IND-PCA-secure, then, Πdv
uss has strong unbounded simu-

lation soundness. Namely, for any adversary A, there exists an adversary B with T(A) ≈
T(B) + (Qsim +Qver) · poly(λ) such that

Advuss
Πdv

uss
(A) ≤ Advind-pca

KEMPCA
(B) +

Qver

q
,

where Qsim, Qver, is the number of times A queries SimO, VerO, respectively, and poly(λ) is
independent of T(A).

37

Gencrs(G, [M] ∈ Gn×t):
B←r U3k,k; k←r Znq ; k1,0, . . . ,kλ,1 ←r Z3k

q

crs :=
(

[M>k], [B],
(
[B>kj,β]

)
1≤j≤λ,0≤β≤1

)
trap := k

vk :=
(
k, (kj,β)1≤j≤λ,0≤β≤1

)
Return (crs, trap, vk).

Prove(crs, τ, [y],x): // y = Mx

r←r Zkq ; kτ :=
∑λ
j=1 kj,τj

t := Br
[u] := [x> ·M>k + t> · kτ]
Return ([t], [u]) ∈ G3k+1

Sim(crs, trap, τ, [y]):

r←r Zkq ; kτ :=
∑λ
j=1 kj,τj

t := Br
[u] := [y>k + r> ·B>kτ]
Return ([t], [u]) ∈ G3k+1

Ver(crs, vk, τ, [y], ([t], [u])):

kτ :=
∑λ
j=1 kj,τj

Return 1 if [u] = [y> · k + t>kτ], 0 otherwise.

Fig. 12. DVQANIZK argument Πdv
uss with strong unbounded simulation-soundness under the Uk-MDDH Assumption

(⇔ U3k,k-MDDH Assumption, by Lemma 1) and tag-space T = {0, 1}λ.

Setup: G0,G1

Qver = Tver = Tsim := ∅
(pk, sk)←r GenKEM(1λ); k←r Znq
[M]←r Dpar

Return crs := ([M>k], pk).
//crs defines the tag-space T = {0, 1}λ.

SimO([y], τ): G0, G1

(K,C)←r EncKEM(pk, τ)

K′ := K; K′ ←r G
[u] := [y>k] +K′

If τ /∈ Tsim ∪ Tver, return π := (C, [u]) and set
Tsim := Tsim ∪ {τ}; otherwise return ⊥.

VerO(τ, [y], π := (C, [u])): G0, G1

K := DecKEM(sk, τ, C)
Return 1 if τ /∈ Tsim∧K 6= ⊥∧ [u] = [y>k]+K, 0 otherwise.
Tver := Tver ∪ {τ}; Qver := Qver ∪ {(τ, [y], π)}

Fig. 13. Games G0,G1 for the proof of Theorem 4. In each procedure, the components inside a solid frame are only
present in the games marked by a solid frame.

Proof of Theorem 4. Perfect completeness and perfect zero-knowledge follow readily from
the correctness of KEMPCA, and the fact that for all x ∈ Ztq and y = Mx, for all k ∈ Znq :

x>(M>k) = y>k.

We proceed to establish strong unbounded simulation soundness (see Definition 8), via a
series of games described in Figure 13. We use Advi to denote the advantage of A in Game
i.

Lemma 22. There exists an adversary B such that T(B) ≈ T(A) + (Qsim + Qver) · poly(λ)
and

|Adv0 −Adv1| ≤ 2Advind-pca
KEMPCA

(B),

where Qsim, Qver, is the number of times A queries SimO, VerO, respectively, and poly(λ) is
independent of T(A).

38

Here, we use the PCA-security of KEMPCA to change the distribution of the simulated
proofs.
Proof of Lemma 22. In G1, we switch the distribution of the value of [u] computed by SimO
to a uniformly random element, using the IND-PCA security of KEMPCA.

We build adversary B as follows.

Setup: B calls the Setup oracle for the multi-ciphertext PCA security game (see Definition 6),
and gets pk, the public key of the KEM, which contains the description of a prime-
order group G. Then, B samples M ←r D′par (recall that Dpar is WS, thus, [M] follows
distribution Dpar), k←r Znq , and returns (G, crs := ([M>k], pk), [M]).

SimO(τ, [y]): B calls EncO(τ) and gets (C,Kb) if τ /∈ Tver ∪ Tsim, ⊥ otherwise. In the former
case, B computes [u] := [y>k] +Kb and returns (C, [u]) to A.

VerO(τ, [y], (C, [u])): B computes K̂ := [u] − [y>k], and returns DecO(τ, C, K̂). Note that
when τ /∈ Tsim, we have:

DecO(τ, C, K̂) = 1 iff [u] = [y>k] +K, with K = DecKEM(τ, C) 6= ⊥.

If τ ∈ Tsim, DecO(τ, C, K̂) = 0.

This way, when b = 0 in the IND-PCA-security game, B simulates the game G0, and when
b = 1, it simulates G1. Note that B can efficiently compute M⊥ from M, and therefore, it can
efficiently check the winning condition of A. Therefore, |Adv0 −Adv1| ≤ 2Advind-pca

KEMPCA
(B).

ut

Lemma 23. Adv1 ≤ Qver

q
, where Qver is the number of times A queries VerO.

Proof of Lemma 23. We bound Adv1 via an information-theoretic argument. We introduce
intermediate games G1.j, for j = 0, . . . , Qver, where Qver is the number of times A queries
VerO, defined as follows: VerO is as in G1 except that for the first j times it is queried, it
outputs 0 independently of its inputs. SimO is as in G1.

We show that:
G1 ≡ G1.0 ≈s G1.1 ≈s . . . ≈s G1.Qver

where we denote statistical closeness with ≈s and statistical equality with ≡.
It suffices to show that for all j = 0, . . . , Qver − 1, in G1.j, VerO outputs 0 to its j + 1-st

query, with overwhelming probability 1 − 1/q over the random coins of Setup (this implies
G1.j ≈s G1.j+1, with statistical difference 1/q).

The intuition is that the vector k in vk contains some entropy that is hidden to the
adversary. Indeed, in G1, each simulated proof (C, [u]) leaks no information about k, since
[u] is uniformly random. More formally, we use the fact that k←r Znq is identically distributed
to k + M⊥w, where k ←r Znq , w ←r Zn−tq , and M⊥ ←r Un,n−t such that M>M⊥ = 0. We
show that w is completely hidden from A, up to its j + 1-st query to VerO.

– The crs contains no information about w, since M>(k + M⊥w) = M>k.
– For all simulated proofs (C, [u]), u←r Zq is independent from k.

39

– The first j times it is queried, VerO outputs 0, independently of its input, by definition
of G1.j.

Suppose that the j+1-st query of A to VerO is: (τ ?, [y?], π?) such that VerO(τ ?, [y?], π?) =
1 ∧ [y?] /∈ LM. This implies that π? := (C?, [u?]) is such that [u?] = [y?>(k + M⊥w)] + K?

where K? := DecKEM(sk, τ, C?); and y?>M⊥ 6= 0.

This means that A has to guess the uniformly random value

[y?>k + y?>M⊥w︸ ︷︷ ︸
6= 0, independent from A’s view

] +K?

in order to win the game, which succeeds with probability 1/q over the random coins of
Setup. ut

This completes the proof of Theorem 4. ut

6.3 Tightly secure, QANIZK argument for linear subspace, with unbounded
simulation soundness

In this section, we show how to adapt the DVQANIZK argument for linear subspace pre-
sented in Section 6.2, to a (publicly verifiable) QANIZK argument. The intuition behind
our QANIZK construction is as follows. We use a (non-generic) technique from [22] to up-
grade a DVQANIZK with unbounded simulation soundness to a QANIZK with unbounded
simulation soundness using the Kernel Diffie-Hellman Assumption over pairing groups. Ap-
plying this technique to the DVQANIZK of Section 6.2 already leads to a QANIZK but
as the above transformation only requires unbounded simulation soundness (in contrast to
strong unbounded simulation soundness) we can apply the transformation to a simplified
DVQANIZK leading to considerable efficiency improvements.

In Section 6.3, we recall the definition of pairing groups and recall the definition of the
Kernel-Diffie-Hellman Assumption [28], which is the computational analogue of the MDDH
Assumption. In Section 6.3, we give a QANIZK argument for linear languages.

Pairing groups. Let GGen be a probabilistic polynomial time (PPT) algorithm that on
input 1λ returns a description PG = (G1,G2, q, P1, P2) of asymmetric pairing groups where
G1, G2, GT are cyclic group of order q for a λ-bit prime q, P1 and P2 are generators of G1 and
G2, respectively, and e : G1×G2 → GT is an efficiently computable (non-degenerate) bilinear
map. Define PT := e(P1, P2), which is a generator of GT . We again use implicit representation
of group elements. For s ∈ 1, 2, T and a ∈ Zq, define [a]s = aPs ∈ Gs as the implicit
representation of a in Gs . Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing
e. For two matrices A, B with matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .

The Kernel-Diffie-Hellman assumption Dk-KerMDH [28] is a natural computational ana-
logue of the Dk-MDDH Assumption.

40

Definition 10 (Dk-Kernel Diffie-Hellman Assumption Dk-KerMDH). Let Dk be a ma-
trix distribution and s ∈ {1, 2}. We say that the Dk-Kernel Diffie-Hellman (Dk-KerMDH)
Assumption holds relative to GGen in group Gs if for all PPT adversaries A,

Advkmdh
Dk,GGen(A) := Pr[c>A = 0 ∧ c 6= 0 | [c]3−s ←r A(G, [A]s)] = negl(λ),

where the probability is taken over G ←r GGen(1λ), A←r Dk.

Note that we can use a non-zero vector in the kernel of A to test membership in the
column space of A. This means that the Dk-KerMDH assumption is a relaxation of the
Dk-MDDH assumption, as captured in the following lemma from [28].

Lemma 24 ([28]). For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KerMDH.

Our construction. In this section we describe a Tightly-secure, Quasi-adaptive Non-
Interactive Zero Knowledge Argument for linear spaces with unbounded simulation sound-
ness (see Definition 8).

We use Genpar = GGen. That is, Genpar(1
λ) returns par = PG, where PG = (G1,G2, q, P1, P2)

describes asymmetric pairing groups (see Section 6.3). The probability distribution Dpar re-
turns a matrix ρ = [M]1 ∈ Gn×t

1 , for integers n > t. We again consider the case of witness
sampleable (WS) distributions, see Section 6.2. Given par and ρ, the language LM is defined
as

LM =
{

[y]1 ∈ Gn
1 : ∃ x ∈ Ztq s.t. y = Mx

}
.

Our QANIZK construction is given in Figure 14.

Gen(par, [M]1 ∈ Gn×t1):

A,B←r Dk
K←r Zn×(k+1)

q

K1,0, . . . ,Kλ,1 ←r Zk×(k+1)
q

crs :=
(

[A]2, [KA]2, [B]1, [M
>K]1,(

[Kj,bA]1, [B
>
Kj,b]1

)
1≤j≤λ,0≤b≤1

)
trap := K
Return (crs, trap)
//crs defines tag-space T = {0, 1}λ

Prove(crs, τ, [y]1,x): // y = Mx

r←r Zkq ; t := Br

u := x> ·M>K + r> ·
∑λ
j=1 B

>
Kj,τj

Return π := ([t]1, [u]1) ∈ Gk1 ×G1×(k+1)
1

Verify(crs, τ, [y], π):

Parse π = ([t]1, [u]1)
Compute Kτ :=

∑λ
j=1 Kj,τj

Check: e([u]1, [A]2) = e([y>]1, [KA]2) +
e([t>]1, [KτA]2)

Sim(crs, trap = K, τ, [y]1):

r←r Zkq ; t := Br

u := y> ·K + r> ·
∑λ
j=1 B

>
Kj,τj

Return π := ([t]1, [u]1) ∈ Gk1 ×G1×(k+1)
1

Fig. 14. QANIZK argument Πuss with (adaptive) unbounded simulation-soundness for WS distributions under the
Dk-MDDH Assumption and tag-space T = {0, 1}λ.

41

Theorem 5. The protocol Πuss defined in Figure 14 has perfect completeness and per-
fect zero-knowledge. Suppose in addition that the distribution of the matrix M is witness
sampleable. Then, under the Dk-MDDH Assumption in G1, and the Dk-KerMDH Assump-
tion in G2, the protocol has adaptive unbounded simulation soundness (see Definition 8).
Namely, for any adversary A, there exist adversaries B and C such that T(C) ≈ T(B) ≈
T(A) +Qsim · poly(λ) such that

Advuss
Πuss

(A) ≤ Advkmdh
Dk,GGen(B) + 4λAdvmddh

Dk,GGen(C) + 2−Ω(λ),

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A).

Setup: G0,G1, G2,i

win := 0; Tsim := ∅; PG ←r GGen(1λ); [M]1 ←r Dpar;

M←r D′par,
M⊥ ←r Un,n−t s.t. M>M⊥ = 0
Pick random RFi : {0, 1}i → Zn−tq

A,B←r Dk; a⊥ ←r Uk+1,1 s.t. A>a⊥ = 0

K←r Zn×(k+1)
q

K1,0, . . . ,Kλ,1 ←r Zk×(k+1)
q

crs :=
(

[A]2, [KA]2, [B]1, [M
>K]1,(

[Kj,bA]2, [B
>
Kj,b]1

)
1≤j≤λ,0≤b≤1

)
For all τ ∈ {0, 1}λ, Kτ :=

∑λ
j=1 Kj,τj

K′τ := K + M⊥RFi(τ|i)(a
⊥)

>

Return crs

SimO(τ, [y]): G0,G1,G2,i

r←r Zkq ; t := Br
[u]1 := [y>K′τ]1 + [t>Kτ]1

Return ([t]1, [u]1) ∈ Gk1 × G1×(k+1)
1 and set

Tsim := Tsim ∪ {τ}.

VerO(τ, [y]1, ([t]1, [u]1)): G0 , G1,G2,i

If e([u]1, [A]2) = e([y>]1, [K
′
τA]2) + e([t>]1, [KτA]2),

set win = 1.

If [u]1 = [y> ·K′τ]1 + [t> ·Kτ]1,
set win = 1.

Fig. 15. Games G0,G1,G2,i(0 ≤ i ≤ λ) for the proof of Theorem 5. Here, τ|i denotes the i-bit prefix of τ . In each
procedure, a solid (dotted, gray) frame indicates that the command is only executed in the game marked by a solid
(dotted, gray) frame.

Proof of Theorem 5. Perfect completeness and perfect zero-knowledge follow readily from
the fact that for all x ∈ Ztq and y = Mx, for all K ∈ Zn×(k+1)

q :

x>(M>K) = y>K.

We proceed to establish adaptive unbounded simulation soundness. We show that for
any adversary A against the simulation soundness, there exist adversaries B and C such that
T(C) ≈ T(B) ≈ T(A) +Qsim · poly(λ), and

Advuss
Πuss

(A) ≤ Advkmdh
Dk,GGen(B) + 4λ ·Advmddh

Dk,GGen(C) + 2−Ω(λ),

where Qsim is the number of times A queries SimO and poly(λ) is independent of T(A).
We proceed via a series of games and we use Advi to denote the advantage of A in Game

Gi.

42

Lemma 25 (G0 to G1). There exists an adversary B such that T(B) ≈ T(A)+Qsim·poly(λ),
and

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen(B),

where Qsim is the number of times A queries SimO and poly(λ) is independent of T(A).

Here, we use the Kernel Diffie-Hellman Assumption to change the oracle VerO.

Proof of Lemma 25. To bound |Adv0 − Adv1|, it suffices to bound the probability that
A produces ([y]1, ([t]1, [u]1)) that passes VerO in G0 but not in G1. We may rewrite the
verification equation in G0 as

e([u]1, [A]2) = e([y>]1, [K
′
τA]2) + e([t>]1, [KτA]2)⇔ e([u]1 − [y>K′τ]1 − [t>Kτ]1, [A]2) = 0

Observe that for any ([y]1, ([t]1, [u]1)) that passes verification equation in G0 but not in
G1 the value

[u]1 − [y>K′τ]1 − [t>Kτ]1

is a non-zero vector in the kernel of A, which is hard to sample under the D-KerMDH
assumption. This means that

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen(B).

ut

Lemma 26 (G1 to G2.0).

Adv1 = Adv2.0.

Proof of Lemma 26. We show that the two games are statistically equivalent. To go from
G1 to G2.0, we change the distribution of K ←r Znk×(k+1)

q to K + M⊥RF0(ε)(a
⊥)
>
, where

K ←r Zn×(k+1)
q , RF0(ε) ←r Zn−tq , M⊥ ←r Un,n−t such that M>M⊥ = 0, and a⊥ ←r Uk+1,k

such that A>a⊥. Note that the extra term M⊥RF0(ε)(a
⊥)
>

does not appear in crs, since

M>(K + M⊥RF0(ε)(a
⊥)
>

) = M>K, and (K + M⊥RF0(ε)(a
⊥)
>

)A = KA. ut

Lemma 27 (G2.i to G2.i+1). For all 0 ≤ i ≤ λ− 1, there exists an adversary B2.i such that
T(B2.i) ≈ T(A) +Qsim · poly(λ) and

|Adv2.i −Adv2.i+1| ≤ 4 ·Advmddh
Dk,GGen(B2.i) +

4

q − 1
,

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A).

43

Overview of the proof of Lemma 27: Here, we use the Dk-MDDH Assumption to increase the
entropy in the simulated proofs, to move from RFi to RFi+1. We argue that these two games
are computationally indistinguishable similarly than in Lemma 3 in [10], or Lemma 3.5 in
[7]. Roughly, the idea is to build an adversary B2.i against the Dk-MDDH Assumption, that
guesses the value β of the i+1-st bit of the tag contained in A’s query to VerO, and program
the matrix Ki+1,1−β to embed an MDDH challenge in the simulated proofs. This way, the
entropy of all simulated proof for a tag τ such that τi+1 = 1− β increases. Formally, we use
RFi+1 : {0, 1}i+1 → Zn−tq , defined by

RFi+1(τ|i+1) :=

{
RFi(τ|i) if τi+1 = β

RFi(τ|i) + RF′i(τ|i) if τi+1 = 1− β,

where RF′i : {0, 1}i → Zn−tq is a random function independent from RFi.
The Dk-MDDH Assumption tells us that we can switch a vector [Br]1 in the span of

some rank k matrix [B]1 to a uniformly random vector [w]1 in Gk+1
1 . However, to go from

RFi to RFi+1, we need to switch vectors [Br]1 to vectors with higher entropy, that are neither
uniform nor in the span of [B]1, but of the form [Br + d]1, where [d]1 is an arbitrary vector
(whose distribution is neither uniform over Gk+1

1 , nor uniform over span([B]1)). Therefore, we
apply the Dk-MDDH Assumption twice: once to change these vectors to uniformly random,
and once again to change them to vectors of the form [Br + d]1, where [d]1 is arbitrarily
chosen.
Proof of Lemma 27. We build an adversary B′2.i against the following assumption: B′2.i receives
the description of a pairing group PG together with a matrix [B]1, where B ←r Dk. Then
B′2.i has access to an oracle O2MDDH, that takes as input a vector [d]1 ∈ Gk+1

1 and sends back
either

Case 1: [h]1 = [Bu]1 or Case 2: [h]1 = [Bu + d]1,

where u←r Zkq .
As explained in the overview, if B′2.i calls O2MDDH at most Qsim times, this assumption

reduces to the Qsim-fold Dk-MDDH with a security loss of 2. Roughly, to prove this reduction,
we apply the Qsim-fold Dk-MDDH Assumption twice as follows:

[Bu]1 ≈MDDH [v]1 ≡ [v + d]1 ≈MDDH [Bu + d]1,

where u ←r Zkq , v ←r Zk+1
q , [d]1 is an efficiently computable vector, ≈MDDH denotes com-

putational indistinguishability under the Qsim-fold Dk-MDDH Assumption, and ≡ denotes
statistical equivalence.

Upon receiving PG, and [B]1 ∈ Gk+1×k
1 , B′2.i, does the following:

– Setup :
B′2.i sets win := 0, Tsim := ∅, M←r D′ρ, M⊥ ←r Un,n−t such that M>M⊥ = 0, A←r Dk,
a⊥ ←r Uk+1,1 such that A>a⊥ = 0, K←r Zn×(k+1)

q . Then, it picks β ←r {0, 1}, which is a
guess for τ ?i+1, the i+1-st bit of the tag τ ? ofA’s query to VerO. For all (j, b) 6= (i+1, 1−β),

it picks Kj,b ←r Zk×(k+1)
q . It also picks K̂←r Zk×(k+1)

q , and implicitly defines

Ki+1,1−β := K̂ + B
>−1

B>ek+1(a
⊥)>,

44

where ek+1 is the k + 1-st vector of the canonical basis of Zk+1
q . Finally, it returns

crs :=
(

[A]2, [KA]2, [B]1, [M
>K]1,

(
[Kj,bA]2, [B

>
Kj,b]1

)
(j,b) 6=(i,1−β),

[Ki+1,1−βA]2 = [K̂A]2, [B
>
Ki,1−b]1 = [B

>
K̂ + B>ek+1(a

⊥)>]1

)
.

– SimO(τ, [y]1) : to simulate the ρ’th query, for ρ = 1, . . . , Qsim, B′2.i does as follows:

If τi+1 = β : B′2.i defines on the fly RFi(τ|i) where RFi : {0, 1}i → Zn−tq is a random
function, and τ|i denotes the i-bit prefix of τ (see Figure 15). Then it computes

r←r Zkq ; [t]1 := [B · r]1

K′τ := K + M⊥RFi(τ|i)(a
⊥)
>
; Kτ :=

∑λ
j=1 Kj,τj (note that B′2.i knows the Kj,τj ex-

plicitly, since τi+1 6= 1 − β); [u]1 := [y> · K′τ]1 + [t>Kτ]1. It returns ([t]1, [u]1) to
A.

If τi+1 = 1− β : B′2.i defines on the fly RFi(τ|i) and RF′i(τ|i), where RF′i : {0, 1}i → Zn−tq

is a random function independent of RFi.
Then it sends [dρ]1 := [y>M⊥RF′i(τ|i) · ek+1]1 to its oracle O2MDDH to get back

Case 1: [hρ]1 := [Bwρ]1 or Case 2: [hρ]1 := [Bwρ + y>M⊥RF′i(τ|i) · ek+1]1,

Then it sets
r←r Zkq ; [t]1 := [Br]1 + [hρ]1

K′τ := K + M⊥RFi(τ|i)(a
⊥)
>
;

[u]1 := [y> ·K′τ]1 + [t>
∑
j 6=i+1

Kj,τj + t>K̂ + (Br + hρ)
>ek+1(a

⊥)
>
]1

It returns ([t]1, [u]1) to A.
– VerO(τ ?, [y?]1, ([t

?]1, [u
?]1)) :

If τ ?i+1 6= β, abort. Otherwise, defines on the fly RFi(τ
?
|i); computes K′τ? := K+M⊥RFi(τ

?
|i)(a

⊥)
>
;

Kτ? :=
∑λ

j=1 Kj,τ?j
(note that B′2.i knows the Kj,τ?j

explicitly since τ ?i+1 = β 6= 1− β) and
returns the boolean value:

y> ·M⊥ 6= 0 ∧ τ /∈ Tsim ∧ [u]1 = [y>K′τ?]1 + [t>Kτ?]1

Let us analyze the simulation of Setup, SimO, and VerO by B′2.i. We show that if B′2.i
guesses β successfully, in Case 1, it simulates G2.i, and in Case 2, it simulates G2.i+1 (recall
that the cases refer to the possible output distributions of the oracle O2MDDH).

First, the crs generated by B′2.i in both Case 1 and Case 2 is distributed as in G2.i or G2.i+1

(the crs is identically distributed in these two games), since the two following distributions
are identical:

Kj+1,β and K̂ + B
>−1

B>ek+1(a
⊥)
>
,

where Kj+1,β ←r Zk×(k+1)
q , K̂←r Zk×(k+1)

q .

45

Now, let us analyze the simulation of SimO. In both Case 1 and Case 2, the vectors [t]1
are distributed as in G2.i and G2.i+1 (vectors [t]1 are identically distributed in these two
games) since the two following distribution are equivalent:

[B · r]1, r←r Zkq and [B · r + hρ]1, r←r Zkq

since in Case 1 and 2, we have hρ := Bwρ with wρ ←r Zkq . Now we prove that in Case 1, the
vectors [u]1 are distributed as in G2.i, and that in Case 2, they are distributed as in G2.i+1.

For queries with τi+1 = β: this is straightforward since RFi+1(τ|i+1) = RFi(τ|i), i.e, G2.i

and G2.i+1 are identically distributed for these queries.
For queries with τi+1 = 1− β: We use the following notation:

[u\i+1]1 := [y>(K + M⊥RFi(τ|i)(a
⊥)>)]1 + [t>

λ∑
j 6=i+1

Kj,τj]1.

In Case 1, B′2.i computes:

[u]1 := [u\i+1]1 + [t>K̂ +
(
Br + Bwρ

)>
ek+1(a

⊥)
>
)]1

= [u\i+1]1 + [t>
(
K̂ + (Br + Bwρ)

>︸ ︷︷ ︸
=[t>]1

B
>−1

B>ek+1(a
⊥)
>
)

]1

= [u\i+1]1 + [t>
(
K̂ + B

>−1
B>ek+1(a

⊥)
>
)

︸ ︷︷ ︸
=Ki+1,τi+1

]1

= [u\i+1]1 + [t>Ki+1,τi+1
]1︸ ︷︷ ︸

in G2.i

In Case 2, B′2.i computes:

[u]1 := [u\i+1]1 + [t>K̂ +
(
Br + Bwρ + y>M⊥RF′i(τ|i)ek+1

)>
ek+1(a

⊥)
>
)]1

= [u\i+1]1 + [t>
(
K̂ + B

>−1
B>ek+1(a

⊥)
>
)

︸ ︷︷ ︸
=Ki+1,τi+1

+ y>M⊥RF′i(τ|i)(a
⊥)>]1

= [u\i+1]1 + [t>Ki+1,τi+1
]1 + [y>M⊥RF′i(τ|i)(a

⊥)>]1︸ ︷︷ ︸
in G2.i+1

Finally, if B′2.i guesses β = τ ?i+1 correctly (this happens with probability 1/2), it simulates
VerO as in G2.i and G2.i+1 (VerO’s outputs are identically distributed in these two games),
in both Case 1 and Case 2.

Therefore, B′2.i, which runs in T(B′2.i) ≈ T(A) +Qsim · poly(λ), with poly(λ) independent
of T(A), can use adversary A to differentiate Case 1 from Case 2 with probability at least

46

|Adv2.i−Adv2.i+1|
2

. As we explained at the beginning of the proof, this implies the existence
of an adversary B′′2.i such that T(B′′2.i) ≈ T(A) + Qsim · poly(λ) with poly(λ) independent of
T(A), and such that

|Adv2.i −Adv2.i+1| ≤ 4AdvQsim-mddh
Dk,GGen (B2.i).

The factor 4 comes from security loss 2 for guessing β = τ ?i+1, and 2 to reduce to the Qsim-fold
Dk-MDDH Assumption. This implies the Lemma by random self-reducibility of Dk-MDDH,
[14]. ut

Lemma 28 (G2.λ). Adv2.λ ≤ 1/q.

Proof of Lemma 28. We bound Adv2.λ via an information-theoretic argument. Recall that
VerO(τ ?, [y∗], π∗ = ([t?]1, [u

?]1)) outputs 1 if the following properties are satisfied:

Property 1 : τ ? /∈ Tsim
Property 2 : y? /∈ span(M)

Property 3 : [u]1 :=
[
y?>
(
K + M⊥RFλ(τ

?)(a⊥)
>)]

1
+ [t?>Kτ?]1, where RFλ : {0, 1}λ →

Zn−tq is a random function.

We show that the value y?>M⊥RFλ(τ
?) ∈ G1 is completely hidden from A, up to its

query to VerO.
We first look at what the adversary’s view leaks about the value RFλ(τ

?).

– The crs contains no information about RFλ(τ
?).

– If τ ? /∈ Tsim, then RFλ(τ
?) is independent of {RFλ(τ), τ ∈ Tsim}, because RFλ is a random

function, and therefore, RFλ(τ
?) is independent of the outputs of DecO.

Thus, if Property 1 and 2 are satisfied, the value

y∗>M⊥︸ ︷︷ ︸
6=0 by Property 1

· RFλ(τ
?)︸ ︷︷ ︸

uniformly random, by Property 2

is a uniformly random over G1 from A’s viewpoint. Therefore, Property 3 holds with prob-
ability at most 1/q over the random choice of RFλ(τ

?). This proves Adv1,λ ≤ 1/q. ut
Finally, Theorem 5 follows readily from Lemmas 25-28. ut

Acknowledgments. We would like to thank Jie Chen for insightful and inspiring dis-
cussions. This work was supported by a Sofja Kovalevskaja Award of the Alexander von
Humboldt Foundation, NSF Award CNS-1445424 sponsored by Columbia University, the
German Israel Foundation, DFG grants HO 4534/2-2 and HO 4534/4-1, ERC Project aS-
CEND (639554), and ERC Project ERCC (FP7/615074). This work was done in part while
the first and last authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and NSF grant CNS-1523467.

47

References

1. M. Abdalla, F. Benhamouda, and D. Pointcheval. Public-key encryption indistinguishable under plaintext-
checkable attacks. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 332–352. Springer, Mar. / Apr.
2015.

2. M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Constant-size structure-preserving
signatures: Generic constructions and simple assumptions. In X. Wang and K. Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 4–24. Springer, Dec. 2012.

3. M. Abe, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Tagged one-time signatures: Tight security and
optimal tag size. In K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 312–331.
Springer, Feb. / Mar. 2013.

4. M. Abe, R. Gennaro, and K. Kurosawa. Tag-KEM/DEM: A new framework for hybrid encryption. Journal of
Cryptology, 21(1):97–130, Jan. 2008.

5. N. Attrapadung, G. Hanaoka, and S. Yamada. A framework for identity-based encryption with almost tight
security. Cryptology ePrint Archive, Report 2015/566, 2015. http://eprint.iacr.org/2015/566.

6. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs and
improvements. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer, May
2000.

7. O. Blazy, E. Kiltz, and J. Pan. (hierarchical) identity-based encryption from affine message authentication. In
J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 408–425. Springer,
Aug. 2014.

8. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. SIAM
Journal on Computing, 36(5):1301–1328, 2007.

9. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent chosen
plaintext and adaptive chosen ciphertext attacks. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 351–368. Springer, Apr. 2009.

10. J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 435–460. Springer, Aug. 2013.

11. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

12. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero knowledge.
In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Aug. 2001.

13. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391–437,
2000.

14. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman assumptions.
In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer,
Aug. 2013.

15. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299,
1984.

16. J. Gong, J. Chen, X. Dong, Z. Cao, and S. Tang. Extended nested dual system groups, revisited. Cryptology
ePrint Archive, Report 2015/820, 2015. http://eprint.iacr.org/.

17. D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In R. Safavi-Naini and R. Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 590–607. Springer, Aug. 2012.

18. D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 553–571. Springer, Aug. 2007.

19. D. Hofheinz, J. Koch, and C. Striecks. Identity-based encryption with (almost) tight security in the multi-
instance, multi-ciphertext setting. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 799–822. Springer,
Mar. / Apr. 2015.

20. C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In K. Sako and P. Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Dec. 2013.

21. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and T. Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 581–600. Springer, Mar. 2006.

22. E. Kiltz and H. Wee. Quasi-adaptive NIZK for linear subspaces revisited. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer, Apr. 2015.

23. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 426–442. Springer, Aug. 2004.

48

24. B. Libert, M. Joye, M. Yung, and T. Peters. Concise multi-challenge CCA-secure encryption and signatures with
almost tight security. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 1–21. Springer, Dec. 2014.

25. B. Libert, T. Peters, M. Joye, and M. Yung. Non-malleability from malleability: Simulation-sound quasi-adaptive
NIZK proofs and CCA2-secure encryption from homomorphic signatures. In P. Q. Nguyen and E. Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 514–532. Springer, May 2014.

26. B. Libert, T. Peters, M. Joye, and M. Yung. Compactly hiding linear spans: Tightly secure constant-size
simulation-sound QA-NIZK proofs and applications. Cryptology ePrint Archive, Report 2015/242, 2015.
http://eprint.iacr.org/2015/242.

27. B. Libert, T. Peters, M. Joye, and M. Yung. Compactly hiding linear spans: Tightly secure constant-
size simulation-sound qa-nizk proofs and applications. Cryptology ePrint Archive, Report 2015/242, 2015.
http://eprint.iacr.org/.

28. P. Morillo, C. Ràfols, and J. L. Villar. Matrix computational assumptions in multilinear groups. IACR Cryptology
ePrint Archive, 2015:353, 2015.

29. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. Journal of the
ACM, 51(2):231–262, 2004.

30. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In 22nd
ACM STOC, pages 427–437. ACM Press, May 1990.

31. T. Okamoto and D. Pointcheval. REACT: rapid enhanced-security asymmetric cryptosystem transform. In
Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Conference 2001, San Francisco, CA,
USA, April 8-12, 2001, Proceedings, pages 159–175, 2001.

32. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.
In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Aug. 1992.

33. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40th FOCS,
pages 543–553. IEEE Computer Society Press, Oct. 1999.

49

