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Abstract. Many efficient cryptographic hash function design strategies
have been explored recently, not least because of the SHA-3 competition.
Almost exclusively these design are geared towards good performance
for long inputs. However, various use cases exist where performance on
short inputs matters more. An example is HMAC, and such functions also
constituting the bottleneck of various hash-based signature schemes like
SPHINCS, or XMSS which is currently under standardization. Secure
functions specifically designed for such applications are scarce. In this
paper, we fill this gap by proposing two short-input hash functions (or
rather simply compression functions) exploiting instructions on modern
CPUs that support the AES. To our knowledge these proposals are the
fastest on modern high-end CPUs, reaching throughputs below one cycle
per hashed byte even for short inputs while still having a very low latency
of no more than 60 cycles. Under the hood, this results comes with several
innovations.

First, we study whether the number of rounds for said functions can be
reduced if collision resistance is not expected, but only second-preimage
resistance. The conclusions is: only a little.

Second, since their inception AES-like designs allow for supportive security
arguments by means of counting and bounding the number of active S-
boxes. However, this ignores powerful attack vectors using truncated
differentials, of which rebound attacks are a popular example. With our
design, we develop for the first time a general tool-based method to
include arguments against attack vectors using truncated differentials.

Keywords: Cryptographic hash functions, second-preimage resistance,
AES-NI, hash-based signatures, post-quantum

1 Introduction

Cryptographic hash functions are often constructed with collision resistance in
mind. Consider e.g. the SHA-3 competition, which involved a large part of the
research community, where collision resistance was one of the main requirements.
Sometimes, cryptographic functions are designed with collision resistance as the
main or only requirement, see e.g. VSH [12].



This is however in contrast to a sizable and perhaps even growing set of
applications that do require cryptographic hashing, but explicitly do not require
collision resistance. Universal one-way hash functions (UOWHF) [4] are, in
principle, candidate functions, but they will not suffice for many applications.

Consider as an example the proof for the HMAC construction. In its first
version from the 90s it does require collision resistance from its hash function [3],
but in later versions the collision resistance requirement is dropped in favor of
milder requirements [2].

Another example are hash-based signature schemes originally introduced by
Lamport [27]. Modern versions like XMSS [10], which is currently submitted
as a draft to the IETF and features short signatures sizes, and the state-less
scheme SPHINCS [7], are getting more and more attention as they are a robust
candidate for quantum-resistant signature schemes, i.e. believed to be secure in
the presence of hypothetical quantum computers. One of the main advantages
of such schemes are that their security reduces to the security properties of the
hash function(s) used.

All of the schemes mentioned require many calls to a hash function, but only
process comparably short inputs. For instance in SPHINCS-256, some 500.000
calls to two hash functions are needed to reach a post-quantum security level of
128 bits. One of those functions compresses a 512-bit string to a 256-bit string
and is used in a Merkle-tree construction, while the other maps a 256-bit string
to a 256-bit string.

Secure short-input keyed hash functions also found applications in protecting
against hash flooding denial of service attacks. This has been addressed with the
SipHash [I] family, but the security requirements are much lower for this setting.

All the examples above share the fact that they do not require collision
resistance from their underlying hash function(s), and also only process short
inputsﬂ However, almost all hash functions designs are mostly geared towards
good performance on long messages and, as we will show, perform rather poorly
on short inputs.

Contributions. In this paper we explicitly consider second-preimage and preim-
age resistance as sole design goals for cryptographic hash functions, and pay
attention on the short-input performance. We also aim to shed light on the follow-
ing question: How much faster can a hash function become if collision resistance
is dropped from the list of requirements? To that end we limit ourselves to one
particular design strategy that is fairly well understood and scalable: AES-like
designs.

On the practical side we propose two concrete compression function construc-
tions and reach performances better than 1 cycle per byte (cpb) on various Intel
architectures. Competitive designs are considerable slower than that, and even
those speeds also only reached for long messages. Our proposals share strong
similarities with the permutation AESQ that is used in the CAESAR candidate
PAEQ [9].

3 For HMAC, one of the two calls to the hash function used is always for a short input.



On the theoretical side, there are several contributions that come along with
this new proposal: Firstly, we study if the number of rounds for said proposal
can be reduced if collision resistance is not expected, but only second-preimage
resistance. The conclusions is that only one round (5 instead of 6) can be saved.

Secondly, we describe new ways to bound the applicability of attacks. Tra-
ditionally, resistance of key-less constructions like cryptographic hash functions
against collision attacks is almost solely based on arguments that are also found
for keyed constructions like block ciphers. Two possibilities are:

1. A bound on the probability of the best differential trail, denoted p, is com-
pared with the amount of degrees of freedom f. Assuming “ideal message
modification” it is then argued that all available degrees of freedom are spent
magically, i.e. the resulting probability is much higher, namely py = p - 27.
The number of rounds is then chosen to make sure that ps is below some
security requirement.

2. Again start with a bound on the probability of the best differential trail
denoted by p. Choose a number of rounds r; to make sure that p is low
enough for the required security level, i.e. logy(1/p). Then add ro number
of rounds for which are bypassed, based on experience and/or estimates, by
so-called message modification technique. The resulting number of rounds
r = 11 + 19 is then expected to help carry over the security expectations
stemming from r; rounds in the keyed setting to r rounds in the key-less
setting.

Examples can be found in various SHA-3 candidate submission like Grgstl [16],
ECHO [f], Luffa [13], or the later proposed hash function constructions PHO-
TON [18] or SPN-Hash [I1I]. There are however various problems with these
approaches. In particular, they do not consider truncated differential trails, and
as such do not cover rebound attacks, and sometimes would require too many
rounds to satisfy, especially with option (1) from above. Thus, approach (1) is
too conservative and at the same time ignores (one of) the most power full attack
vectors. And approach (2) is based on assumptions about message modification
ability of an adversary (essentially solving systems of equations that get harder
and harder with more rounds) while at the same time still ignoring (one of) the
most power full attack vectors.

To somewhat remedy this situation we propose a way to include truncated
differentials in the arguments of type (2) from above. Using this as security
arguments for collision attacks is already novel, and we extend this method to
also cover our new second-preimage attack vector.

Finally we remark at this point that both implementations and parts of the
code used for the security analysis of Haraka are publicly available at [25].



2 Specification of Haraka

Haraka exists in two variants denoted Haraka-512/256 and Haraka-256/256 with
signatures

Haraka-512/256 : F3'? — F3°°  and

Haraka-256/256 : F3°¢ — F2°6, 1)

For both variants we claim 256-bit (second)-preimage resistance respectively
128-bit in the presence of quantum computers, but we make no claims about
other non-random properties.

The main components are two permutations denoted 7512 and 7a56 on 512 bits
and 256 bits, respectively. Both Haraka-512/256 and Haraka-256/256 rely on the
well-known Davies-Meyer construction using a permutation with a feed-forward
(applying the XOR operation) of the input. As such, they are defined as

Haraka-512/256(x) = trunc(ms12(z) @ ) and

2
Haraka-256/256 () = mos6(x) @ z, @

where trunc : F3'2 — F356 is a particular truncation function (described below).

2.1 Specification of 7515 and w56

In the following, we give our specification of the permutations used in Haraka. In
Section [3] we give our security analysis of the constructions and, based on this,
motivate our design choices in Section

The constructions of 7512 and mesg are iterated, thus applying a round function
several times to obtain the full permutation. The permutations w512 and ma56
operate on states which have the same size as respective inputs. Due to the
similarity of the permutations, much of their description is common to both. In
general, we let b denote the number of blocks of the state, so for 7512 we have
b = 4 while for 756 we have b = 2.

Denote the total number of rounds by T" and denote by R; the round with
index t = 0,...,T — 1. The state before applying R; is denoted S*, and thus S°
is the initial state. As both 7510 and ma56 use the AES round function, states are
arranged in matrices of bytes, and we use subscripts to denote the column index,
starting from column zero being the leftmost one. The state size is 4 x 4b bytes,
80 4 x 16 for 7512 and 4 x 8 for ma56. When we talk about a block, we refer to a
16-byte string consisting of columns w4;]| - - - ||€4;43 for i =0,...,b— 1.

When a stream of bytes is loaded into the state, the order is column first,
such that the first byte of the input stream is in the first row of the first column,
while the last byte of the stream is in the last row of the last column.

Let aes denote the parallel application of m AES rounds to each of the b
blocks of the state. As such, for t =0,...,T — 1, the round function for 7512 is
R; = mixsi5 0 aes while for ma56 it is R; = mixas6 0 @aes. Thus, in both cases, a
single round consists of m rounds of the AES applied to each block of the state,



followed by a linear mixing function. Round constants are injected via the aes
operations (see below). The total number of rounds T' = 5 while using m = 2
AES rounds for both Haraka-512/256 and Haraka-256/256.

One of the differences between w515 and ma5g are the specifics of the linear
mixing used. In both cases, the mixing itself is comprised of simply permuting the
state columns. For 7512, the sixteen columns of the state are permuted such that
each output block contains precisely one column from each of the b = 4 input
blocks. For w56 on the other hand we have b = 2 so we obtain the most even
distribution of the columns by mapping two columns from each of the b = 2 input
blocks to each of the b = 2 output blocks. More specifically, letting xql| - - - || 215
denote the columns for a state of w512, the columns are permuted by mixs;2 as

zoll -+ 215 = zsllzi||lz7l|zis||lzsl|zol| w1zl zal|ze |21 | 215 || 25 ]| 22| 210[| 76 [ 714
(3)
Likewise for mas¢ the eight columns denoted zg|| - - - ||x7 are permuted by mixasg
as
zol| -+ [|w7 = mo|zallz1||z5]| 22| 26|23 |27 (4)

The round functions for both permutations are depicted in Figure

xo 1 To T3 Ty Ts5 Ze x7 xrs 9 Ti10 T11 X12 T13 T14 T15
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(a) For 512

Zo Z1 Z2 z3 T4 Ts5 Z6 x7

(b) For 256

Fig. 1: Depictions of round functions R; for m512 (a) and for mas6 (b). Each x;
denotes a column of 4 bytes of the state.

Round Constants. Let ¢ be a 32-bit value with a 1 in position 0 and zeroes
elsewhere. In the m AES rounds applied via aes in round Ry, the round constants
used (via the round key for the AES rounds) are

shifto; (C) ||Sh ifto; (C) ||Shift2t (C) ||Shift2t (C)
ShiftQtJrl (C) ||Shift2t+1 (C) ||Shift2t+1 (C) ||Shift2t+1 (C)

Shift2t+m_1 (C) HShiftgH_m_l (C) ||Shift2t+m_1 (C) Hshiftzt_l'_m_l (C)



where shifty(v) denotes left-shift of a value v by k positions. We remark that
each of the b parallel applications all use the same round constants for each of
the mT applications of the AES round function. We note also that those mT
round constants are obtained by simply left-shifting ¢ by one position after each
AES round.

Truncation Function. Let z € F3!? be some input to the truncation function
trunc. Then trunc(z), which is used in Haraka-512/256, is obtained as concate-
nating two columns from each block: The least significant two from the first two
blocks; the two most significant columns from the last two blocks. As such

trunc(zol| - - - [|15) = @2 |zs]|we |27 |28 || 2| 12]| 13 (6)

3 Security against Truncated Differential Attacks

The three most commonly defined security requirements for a cryptographic hash
functions are

— Preimage resistance: Given an output y it should be computationally
infeasible to find any input x such that y = H(z),

— Second-preimage resistance: Given z,y = H(z) it should be computa-
tionally infeasible to find any 2’ # = such that y = H(z'), and

— Collision resistance: Finding two distinct inputs z, 2’ such that H(z) =
H(z") should be computationally infeasible.

For any ideal hash function generic attacks exist, which are able to find a
(second-)preimage with a complexity of 2™ and collisions with a complexity of
27/2 where n is the output size of the hash functions in bits. Quantum computers
can improve upon this by using Grover’s algorithm [I7] to further reduce the
complexity of finding a (second-)preimage to 27/2 Tt is also known that this is
the optimal bound for quantum computing.

In the following sections we discuss common attack vectors which will aid in
choosing appropriate parameters for Haraka to achieve the desired security prop-
erties. We focus on the second-preimage resistance, since the main applications
of Haraka do not require collision resistance.

3.1 Preliminaries

Differential cryptanalysis is one of the most powerful tools in evaluating the
security of cryptographic hash functions. It is also a very natural attack vector as
both collision and second-preimage resistance require the attacker to efficiently
find two distinct inputs yielding the same output.

Definition 1. A differential trail @) is a sequence of differences

ap 2% oy .. fret, ar (7)

in the states for the application of the function on two distinct inputs.



Definition 2. The differential probability of a differential trail Q is defined as

T-1
DP(Q) = PI“(O{() —> Q] = ... OéT) = H PI‘(Oét — Oét+1) (8)
t=0

and gives the probability, taken over random choices of the inputs, that the pair
follows the differential trail. The last equality holds if we assume independent
rounds.

The AES round function uses the SubBytes, ShiftRows and MixColumns
operations, which we also denote as SB, SR and MC, respectively. For our further
analysis we are also interested in how truncated differentials [24] propagate
through MixColumns. One property of MixColumns is that the branch number
is 5, i.e. if we have one active byte at the input we will always get four active
bytes at the output. In general if an input column contains a active bytes to
MixColumns, then the probability of having b active bytes in the corresponding
output column, where a + b > 5, can be approximated with 2(—98.

Differential Trails. One way to estimate DP(Q) for the best trail is to count
the minimum number of active S-boxes. As the maximum differential probability
for the AES S-box is 27° this allows to give an upper bound on DP(Q). While
the number of active S-boxes gives a good estimate for the costs of an attack
in the block cipher setting, this is only partially true for cryptographic hash
functions. Consider a pair of inputs (z,x @ «) as input to a non-linear function,
like the AES S-box, then S(x @ K)® S(z® a® K) =  holds only with a certain
probability if the key K is unknown. This can be very useful in the block cipher
settings, where it gives a bound on the probability of the best differential trail.

In the case of hash functions there is no secret key and an attacker has full
control over the input bits. This allows him to choose the pair (z,z @ «) such
that S(z) ® S(z ® a) = 8 holds with probability 1. The limit of this approach
is only restricted by the number of free and independent values, referred to as
degrees of freedom. This means that the probability of a differential trail can be
very low and contain many active S-boxes, but if the conditions are easy to fulfill
and the attacker has enough degrees of freedom an attack can be very efficient.

A popular technique to count the number of active S-boxes for AES-based
designs is based on mized integer linear programming (MILP) [29032]. The
basic idea is to express the restrictions on the differences given by the round
transformations as linear equations and generate a optimization problem which
can be solved with any MILP optimizer, e.g. Gurobi [I9] or CPLEX [21]. We use
this technique later to find the minimum number of active S-boxes for Haraka,
which aids us in choosing our parameters.

3.2 Capabilities of the Attacker

One of the main difficulties in the design of hash functions is to estimate the
security margin one expects against a powerful attacker. While bounds on the



probability of differential trails can be useful in the block cipher setting, they
have little meaning for hash functions. There is no secret input and the attacker
can freely choose the messages. This degrees of freedom can be used to solve
conditions imposed by a differential trail and lead to surprisingly efficient attacks.

This was partially addressed in the design of Fugue [20] and SPN-hash [IT].
The former assumes that an attacker can improve the probability of a differential
trail by using the degrees of freedom directly, i.e. if one has f degrees of freedom
the probability can be improved by 2f. SPN-hash assumes the attacker can
bypass r, rounds by estimates from existing attacks and the total number of
rounds is then given by r = r1 + ro, where r; is chosen such that the probability
of the best differential is low enough for the required security level. A mayor
drawback of this approaches is that they do not resemble the capabilities of an
attacker in practice, which can either lead to too conservative estimates while
also ignoring important attack vectors.

The most powerful collision attacks on AES-based hash functions, like the
rebound attack [28], use truncated differentials combined with a clever use of
the degrees of freedom to reduce the attack complexity. Arguing security against
these type of attacks is a difficult task, as one has to estimate the limits of an
attacker to use the available degrees of freedom in a smart way to reduce the
attack complexity. Additionally, in the second-preimage scenario the attacker has
much less control as the actual values of the state are fixed and the conditions
are instead solved by carefully choosing the differential trails. In the following we
propose a new method to better bound the capabilities of an attacker in practice
under reasonable assumptions.

Truncated Differentials. While the MILP model to count the number of
active S-boxes already uses truncated differentials, it does not cover the costs of
propagation of those. When an attacker tries to utilize a truncated differential
the transitions through MixColumns are probabilistic and, if not controlled by
the attacker, will determine the attack complexity similar to the outbound phase
in the rebound attack.

Independent of the number of rounds, the best we can achieve is a security level
of 256 bits, as an attacker can always use a (fully active) truncated differential
with probability =~ 1 and the probability that this gives a valid second-preimage
is 27256,

Utilizing Degrees of Freedom. The previous model still ignores the fact that
a powerful attacker can utilize the available degrees of freedom to reduce the
attack complexity. To take this into account we assume the attacker is able to
use all degrees of freedom in an optimal way, i.e. the attacker has an algorithm
to solve any condition in constant time, as long as there are enough independent
degrees of freedom left.

Without any further restrictions we can not achieve any level of security in
this model, as the attacker can always use a truncated differential which is active
in all bytes and has a probability of 1 and then use the degrees of freedom to



guarantee that f(x) ® f(z ® «) = 0. However, it is very unlikely that an attacker
can utilize the degrees of freedom unrestricted over many rounds as, after already
two rounds each byte of the state depends on all the others in AES-like designs.

We suggest a more restrictive model of the attacker, in which he is still given
all the previous capabilities but can only solve the conditions for ¢ consecutive
rounds of the cipher. This means, the attacker chooses a state S* and then is
allowed to solve any conditions for S¥=9,... 8¥+4 in constant time, as long as
there are still degrees of freedom available. The remaining conditions which can
not be solved form our security level. We can formulate this as a MILP problem
with the goal to find the lowest attack complexity over all possible states S* (for
more details and the application to Haraka see Section .

This model for truncated differential attacks resembles how collision attacks
on cryptographic hash functions actually work in practice. The attacker can
control how the differences propagate over a part of the state and tries to minimize
the conditions in the remaining rounds [2833]. The currently best known attacks
on AES-based hash functions utilize the degrees of freedom for up to three
(AES) rounds to reduce the complexity of an attack [31/22]. These results can
not be carried over directly to our construction as we compose our state of four
individual AES states.

However, in the collision setting the attacker can choose both the values and
differences freely, while the second-preimage scenario is much more restrictive
and less degrees of freedom are available. We suggest ¢ = 2, allowing our idealized
attacker to cover a generous 4 rounds with the degrees of freedom to have a
comfortable security margin.
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Fig. 2: Truncated model utilizing degrees of freedom for 7' = 3, m = 2,q = 3. For
finding a collision the attacker would have full control over the middle rounds.
As there are only 352 conditions the attack costs for an idealized attacker would
be 216, The four AES states A, B, C, D are ordered clockwise starting at the top
left as A, C, D, B.

4 Analysis of Haraka

In the following we give the security claims for Haraka and the security analysis
which lead to the proposed parameters.



Security Claims. We claim second-preimage resistance of 256-bits for Haraka.
As will been seen later in the paper, for only one additional round (a performance
penalty of around 20%) we claim 128-bit of collision resistance. We make no claims
about near-collision or other generalizations of this property and distinguishers
of the underlying permutation, because such properties do not seem to be needed
in applications like HMAC or hash-based signature schemes. Overall, this leads
to a conjectured post-quantum security level of 128-bits against both collision
and second-preimage attacks.

Non-randomness that might slightly speed-up second-preimage attacks is not
excluded by our models and bounds, but we conjecture this to be negligible. To
support our conjecture, consider as an example the slight speed-up of second-
preimage attacks [I4JI5] on the SHA-3 candidate Hamsi [26] which use a very
strong non-random property of the compression function. No such strong property
seem likely to exist for our proposals.

4.1 Second-Preimage Resistance

Generic Attacks. As the output size n = 256, a generic attack exists with a
complexity of 2256 resp. 2!2® on a quantum computer.

For iterative hash functions, a generic attack exists which improves upon the
naive brute force approach [23]. However, this attacks requires long messages
and are not applicable to our construction.

Basic Differential Second-Preimage Attack for Weak Messages. For
finding a second-preimage the attacker can use a differential trail @ leading to a
collision, i.e. f(z @ ) = y. However, as the values of the state are fixed by the
output Y, all differentials trails hold either with probability 1 or 0. For a random
message the probability that an attacker succeeds is bounded by DP(Q) and if
@ does not give a second-preimage for y then the attacker has to try a different
trail Q' # Q.

Counting the number of active S-boxes gives a bound on the maximum
value of DP(Q) and can give some insights on the security. For Haraka-512/256
the best differential trails have a probability of DP(Q) = 2778 respectively
27840 for trails leading to a collision. Correspondingly for Haraka-256/256, those
probabilities are 27480 and 27639 respectively. For the number of active S-boxes
in our construction see Table[ll Note that this corresponds to previous work that
studied second-preimage attacks for MD4 [35] and SHA-1 [30].

Truncated Model. We used the model presented in Section [3:2] to find the
optimal number of rounds for our constructions. We denote the input column j
to MixColumns (resp. SubBytes) in round r as MCj (SB). We remark that in the
following, consider the number of rounds 7" and the number of AES rounds per
round m as variables.



Table 1: Lower bound on number of active S-boxes in a differential trail which
have no additional conditions respectively which lead to a collision for 7512 ((a)
respectively (b)) and for w56 ((c) respectively (d)). The cell color indicates the
number of active S-boxes per total number of AES rounds (more transparent
means fewer active).
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We define the costs for an attacker to follow a truncated differential, starting
at state S* as

where

Ve k<r<T-mVj:0<j<4b

T-m 4b

CTrunc = Z Z CKACj (9)

Vr:0<r<kVj:0<j5<4b

r=0 j=0

3
Clic, = (4= MCi,,;) -8
=0

3
Cc, = (4— Z SBii4j) -8
i=0

An additional requirement is that the input and output difference in the
non-truncated part of the state are equal to get a valid second-preimage, i.e.



x® a = Ansia(x ® «) which we denote as Cconision- The optimization goal is
minimize: Ccolision + CTrunc- (10)

The requirements for Haraka are that each attack under this model costs
at least 2256, We use the previous model to determine the security level of our
construction for different number of rounds T and m. For every parameter set we
use the MILP model to find the lowest attack costs by searching over all possible
starting states S*. The results can be found in Table

If we don’t allow the attacker to utilize any degrees of freedom T'=4,m = 2
would be sufficient for Haraka-512/256 resp. T' = 2, m = 2 for Haraka-256,/256.
(see Table. However, as discussed in the previous section this approach would be
very optimistic. Taking into account the assumptions we make on the capabilities
of an attacker utilizing the degrees of freedom at least 5 rounds are required (see
Table [3)). The solving time increases quickly with the number of rounds and for
the standard parameters (T’ =5, m = 2, ¢ = 2) it takes around 17 minutesﬁ to
find the lower bound for an attack for all possible starting points S*.

Table 2: Bounds on the best attack in our truncated setting without utilizing
degrees of freedom over multiple rounds.

(a) Security for ms12 (b) Security for mas6

m m
1 2 3 4 5 1 2 3 4 5

0 32 48 64 64 0 0 0 0 128
32 128 96 96 96 0 256 176 192 192
48 192 176 192 192 184 256 240 256 256
112 256 256 256 256 176 256 256 256 256
128 256 256 256 256 256 256 256 256 256
208 256 256 256 256 240 256 256 256 256
224 256 256 256 256 256 256 256 256 256

N O TR W g
N TR W[

In Figure [2| we give an example how this attack model works in practice. The
attacker starts in this case at S® and can control ¢ = 3 rounds in both directions.
When finding a collision the attacker has control over the full state, therefore he
has enough degrees of freedom available to fulfill the conditions for the transitions
through MixColumns. The only remaining part is the transition in the first round
which happens with a probability of 2716,

Other Preimage and Second-preimage Attacks. Relevant are meet-in-the-
middle (MITM) attacks that are a popular attack vector for preimage attacks
and in turn also suitable to find second-preimages. Perhaps the most relevant

4 Using Gurobi 6.5.0 (linux64), Intel(R) Core(TM) i7-4770S CPU @ 3.10GHz, 16GB
RAM



Table 3: Security bounds on the best attack in our truncated setting utilizing
additional degrees of freedom over g rounds for 7515 and ma56 using m = 2.
Non-bold entries do not obtain the generic bounds and in the case of collision
resistance values above 128 would be outperformed by generic attacks.

(a) Second-preimage 7512 (b) Collision 7512
T 1 2 3 4 5 6 T 1 2 3 4 5 6
g=1 0 96 144 256 256 256 g=1 0 48 136 176 256 256
gq=2 0 0 96 128 256 256 g=2 0 0 40 96 168 256
qg=3 0 0 0 96 128 256 qg=3 0 O 0 32 96 160
(c) Second-preimage mas¢ (d) Collision mas6
T 1 2 3 4 5 6 T 1 2 3 4 5 6
g=1 0 176 192 256 256 256 g=1 0 168 176 240 256 256
g=2 0 128 128 192 256 256 g=2 0 64 112 160 256 256
g=3 0 0 128 128 192 256 q=3 0 0 64 112 176 256

literature pointer here is an attack on the 5-round reduced output transformation
of Grgstl [34]. We did not find a way to extend attacks, even in relaxed settings,
beyond T' = 4 rounds.

4.2 Collision Resistance

While we do not require collision resistance, we would still like to discuss the secu-
rity level of our construction with respect to this criteria in the following. Similar
to our arguments for second-preimage security we can apply our truncated model
for finding collisions. The best collision attacks on AES-based hash functions are
based on the rebound attack and covered by our model. However, for finding
a collision an attacker can freely choose the complete internal state and not
only the differences, which translates to more degrees of freedom. Therefore the
expected security level is lower for the same number of rounds (see Table [3).

Nonetheless, the best generic attack also has a lower complexity of 228,
compared to the second-preimage case, which might suggest that one only requires
2128 in our truncated model. However, it is likely that the more relaxed collision
setting allows to exploit this after using up all degrees of freedom. Consequently,
we suggest to also aim for a security level of 225 in our truncated model, which
requires adding one round for Haraka-512/256.

4.3 Design Choices

In the following we interpret our security analysis which lead to the proposed
parameters and design choices. We remind again that 7' denotes the number of
rounds of either w519 or mo56, and m denotes the number of AES rounds applied
to each of the b blocks in each round.



Round Parameters T and m. One of the first questions which arise is how the
number of AES rounds and frequency of mixing the individual states influences
the security bounds. From our analysis there is a strong indication that m = 2 is
an optimal choice (see Table , as it gives the best trade-off between number of
active S-boxes and the total number of required AES rounds T'mb. We propose
T = 5, as this gives the required security parameters in our truncated model
even when assuming a very powerful attacker controlling more rounds than the
best known attacks are capable of.

Mixing Layers. For the mixing layer, a variety of choices were considered.
The main criteria here were that the layer should be efficiently implementable
(see Section , while still contributing to a highly secure permutation. Other
potential candidates for the mixing layer are discussed in Appendix [A] With
respect to our criteria, for most choices of T and m, using the proposed mixsio
and mixgsg give a significant higher number of active S-boxes compared to other
approaches.

Truncation Pattern for Haraka-512/256. There are many possible choices
for the truncation pattern for Haraka-512/256. In our analysis we consider
truncation patterns which truncate row-wise or column-wise, as these are most
efficient to implement, due to the way words are stored in memory. For example,
a single column makes up 4 adjacent bytes in memory, thus allowing for more
efficient access. A row can likewise be accessed by first transposing the block.
The pattern we chose is taking the two least significant columns of the first two
states and the two most significant columns of the last two states. This compared
favorably to row-wise patterns or choosing the same two columns from each state.

5 Implementation Aspects and Performance

The compression functions Haraka-512/256 and Haraka-256/256 have been de-
signed with particular target platforms in mind. Specifically, we consider archi-
tectures with hardware acceleration for the AES. To that end, we assume the
existence of an instruction pipeline that can execute a single round of the AES
with a latency of Laes cycles and an inverse throughput of T,.l instructions per
cycle. Table [f] gives the latencies and inverse throughputs for a single round of the
AES on our target platforms. We remark that our Haswell test machine has an
i7-4600M CPU at 2.90GHz; the Skylake machine has an i7-6700 CPU at 3.40GHz.
We furthermore expect Haraka to be efficiently implementable on ARMv8 due to
the support of AES instructions. We remark that the Turbo Boost technology
has been switched off for all our performance measurements.

Naturally, when encrypting a single block with the AES, one must wait Laes
cycles each time the block is encrypted for one round. However, if the inverse
throughput Ti2! is low compared to Laes, and if additional independent data

aes
blocks are available for processing, one can use this data independency to better



Table 4: Latency and inverse throughput for AES instructions on target platforms

Architecture  Laes Ta;sl

Haswell 7 1
Skylake 4 1

utilize the AES pipeline. Thus, in theory, if using k = Laes - Tyee independent

blocks for the AES, one can encrypt each of those blocks for a single round in
just (k — 1) - Thed + Laes cycles, while m rounds of the AES can be completed for

all k blocks in just (k — 1) - Tyed + Laes - m cycles, as illustrated in Figure

aes

cycles
’ aesenc(v1, 1) | aesenc(v1, 2) ‘ aesenc(vi, m)
’ aesenc(vz, 1) | aesenc(vz, 2) ‘ aesenc(vz, m)
Toes
’ aesenc(vs, 1) | aesenc(vs, 2) ‘ aesenc(vy, m)
Laes

Fig. 3: Pipelined AES instructions. A box aesenc(v, i) denotes the application of
the ith AES round to a block v.

5.1 General Construction Considerations

With the above observations in mind, and with the numbers of Table [ it was
clear from the beginning that our states for Haraka-512/256 and Haraka-256/256
should use b > 1, because otherwise using the AES instruction on the state would
lead to non-optimal pipeline utilization. In Appendix[A] we discuss considerations
regarding the mode of operation for the permutations used in our compression
function designs, and how we ended with the choice of using a permutation
in a avies-Meyer style operation, but where for Haraka-512/256 the output is
truncated to obtain the 2 : 1 compression ratio.

5.2 Multiple Inputs

As described above, the theoretically optimal choice of state blocks would equal
Laes - Thea - However, as detailed, the Haraka variants use varying number of
blocks. To that end, we consider for both Haraka-512/256 and Haraka-256/256
the parallel application of the corresponding function to multiple inputs, assuming
that such are available for processing. For example, if k = Laes - Thee = 7, With
a state size of b = 4 blocks, one could process two independent inputs x and z’
in parallel, thus artificially extending the state to b = 8 blocks, allowing better

pipeline utilization. We denote the number of parallel inputs processed by P. For



each of our constructions and target platforms, there will be an optimal choice
of P which allows good AES pipeline utilization while, at the same time, keeping
the full context in low-level cache.

5.3 Implementation of Linear Mixing

Consider the case where P = 1, i.e. when considering a single input. Even if the
number of blocks in the state is less than Laes - Thee ; @ number of the instructions
used for the linear mixing can be hidden after the aes operation. For example,
while the instruction to encrypt the mth AES round of R; is still being executed
for one or more blocks, while other blocks have already finished, instructions
pertaining to the mixing of the finished blocks can be executed while the AES
instructions for the remaining blocks are allowed to finish. To that end, more so
than otherwise, choosing instructions for the linear mixing layer with low latency
and high throughput is important.

For the implementation of mixs;2 and mixss4, we make use of the punpckhdq
and punpckldq instructions. On both Haswell and Skylake, those instructions
have a latency of 1 clock cycle and an inverse throughput of 1 instruction/cycle.
The mix512 mixosg approaches have the property that each output block contains
columns from each of the input blocks. This is not the case for the other approaches
to linear mixing considered (see Appendix , and indeed our analysis show that
our approach yields better security properties.

In the case of Haraka-512/256 where the state has b = 4 blocks, mixs12 uses
eight instructions in the mixing layer. In the case of Haraka-256/256, where the
state size is b = 2 blocks, the implementation of mixoss can be made with just
one application of each of punpckhdq and punpckldg.

Table 5: Performance of Haraka-512/256 and Haraka-256,/256 (in cpb) on Haswell
and Skylake as a function of the number of rounds 7. In all cases, the number of
AES rounds per round is fixed to m = 2. The numbers are taken as the minimum
over choices of P in the range P =1,...,16.

Haraka-512/256 Haraka-256/256
Haswell Skylake Haswell Skylake

T

1 0.28 0.17 0.21 0.15
2 0.59 0.38 0.41 0.26
3 0.85 0.50 0.64 0.42
4 1.17 0.64 0.86 0.57
5
6
7
8

1.46 0.76 1.07 0.70
1.72 0.90 1.27 0.82
2.01 1.02 1.47 0.95
2.28 1.15 1.66 1.09




5.4 Discussion of Performance

In the following, we discuss the performance results of the Haraka construction,
both with respect to varying parameters for the construction itself, but also in
the light of other similar constructions of different kinds.

Table [5| gives performance figures for Haraka-512/256 and Haraka-256/256,
using m = 2 but with a varying number of rounds, on both the Haswell and
Skylake microarchitectures. As is evident, with 7' =5, we obtain a performance
as high as 0.76 cpb for Haraka-512/256 on Skylake, while on Haswell we obtain
1.46 cpb. For Haraka-256/256, the corresponding numbers with T'= 5, as is our
parameter choice, are 1.07 cpb and 0.70 cpb, respectively.

It is interesting to compare against the corresponding functions H and F' from
the SPHINCS-256 construction [7], which have identical functional signatures and
similar design criteria. Here, AVX2 implementations utilizing 8-way parallelization
(i.e. using P = 8) lead to a performance of 1.63 cpb for their H function and 1.64
cpb for their F' function on Haswell. By employing the availability of AVX-512
on Skylake, it is reasonable to assume that on this platform, the SPHINCS-256
functions would have their performance doubled. Meanwhile, we remark that even
under this assumption, in both the cases of Haswell and Skylake, our functions
perform favorably in comparison to those of SPHINCS-256.

In some applications, it is likely that several inputs will not be available for
processing in parallel. To that end, it is interesting to compare the performance
for Haraka using P = 1 to the corresponding functions from SPHINCS-256. In
this case, from Table [ we see that Haraka-256/256 performs very well with
0.97 cpb and 0.66 cpb on Haswell and Skylake, respectievly, while the numbers
for Haraka-512/256 are 1.77 cpb on Haswell and 0.95 cpb on Skylake. From
benchmarking the corresponding SPHINCS-256 functions on the same machines,
using AVX2 implementations and P = 1, we obtain a performance of 11.58
cpb on Haswell and 10.97 cpb on Skylake for their H function, and respectively
11.76 and 11.22 cpb for their F' function on Haswell and Skylake respectievly.
Thus, when several inputs are not available to draw on for parallelization, our
Haraka-512/256 and Haraka-256,/256 constructions perform at least 6.5 times
better than those from SPHINCS-256 on our target platforms.

In Table [6] we compare the performance not only with the SPHINCS-256
functions, but also a wide selection of other functions that are to an extent similar
to our Haraka construction. As an example, we compare against a wide range of
generic hash functions including some with implementations based on AES-NI, as
well as all SHA-3 finalists. We also compare against ChaChal2 which is also used
in SPHINCS-256, as well as the SipHash PRF construction. Furthermore, we
compare against a range of other compression function constructions including the
Hirose, AbreastDM and TandemDM so-called double-block constructions which
were implemented using AES-256 as the underlying block cipher. In some cases,
generic hash functions were converted directly to compression functions by simply
modifying the existing code to strip away the overhead associated with supporting
arbitrary input sizes. We remark that while generic hash functions are designed
to accept inputs of arbitrary lengths, they obtain their stable performance only



Table 6: Performance comparison for various primitives on the Haswell and
Skylake platforms. The primitives are divided in three categories: AES-NI-based
hash function implementations; Others (including hash functions, stream ciphers
and PRFs); and Compression functions. For the latter, some implementations are
directly derived from the code of the corresponding hash function but reducing it
to a compression function taking a 64-byte input. Numbers for entries marked by
a t are from eBACS [6] (other numbers are obtained by running SUPERCOP).
For Haraka performance numbers, we use P = 1 for a fairer comparison. For the
double-block constructions marked (IV), we mean variants where the chaining
input is used as additional message input.

Haswell Skylake
Type Primitive 64-byte 4-KiB 64-byte 4-KiB
AES-NI ECHO-256 20.38  4.78 18.30  4.26
Grgstl-256 3222 9.73 28.92  8.50
Fugue-256 58.19  14.86 53.38  14.26
Other ChaChal2 3.69 0.80 3.47 0.79
Salsa20' 6.62  1.48 6.38  1.35
SipHash-2-4 2.12 1.42 2.16 1.41
SipHash-4-8 3.88 2.77 3.97 2.83
BLAKE2S 5.30 5.45 4.77 4.92
BLAKE2B 10.88 5.11 7.92 3.47
Skein-512-256 13.59  5.89 13.08  5.50
BLAKE-256 16.67 7.74 15.19 6.93
SHA-256 28.75  12.75 1947  7.80
Keccak[c = 512] 24.28 10.51 20.31 9.22
JH-256 28.64  14.05 28.20 13.93
LANE-256 89.41  29.96 70.28  23.40
Whirlpool 68.72  35.91 50.81  27.39
Compression Haraka-256/256  0.97 - 0.66 -
Haraka-512/256 1.77 — 0.95 —
SPHINCS-256-F 11.76 — 11.22 —
SPHINCS-256-H 11.58 — 10.97 -
Hirose (IV) 8.38 — 6.47 —
AbreastDM (IV) 13.45 — 12.97 —
TandemDM (IV) 16.33 — 12.91 —
Hirose 16.64 - 13.05 -
Grgstl-256 24.20 — 19.64 —
Abreast DM 26.77 — 25.73 —
TandemDM 32.44 - 25.69 -
Fugue-256 53.23 — 49.72 —
SHA-256 14.97 — 12.56 —
Keccak[c = 512] 27.94 — 19.67 —
Whirlpool 29.56 - 21.28 —

LANE-256 30.77 — 23.66 —




Table 7: Number of calls to the AES round function, and number of calls to the
AES key schedule assistant function, for AES-NI-based primitives

Primitive Key length # aesenc +# aeskeygenassist
Haraka-512/256 — 40 0
Haraka-256 /256 — 20 0
ECHO-256 - 256 0
Grgstl-256 — 240 0
Fugue-256 - 198 0
Hirose 256 112 52
Hirose (IV) 256 56 26
TandemDM 256 112 104
TandemDM (IV) 256 56 52
AbreastDM 256 112 104
AbreastDM (IV) 256 56 52

for inputs much longer than 64 bytes, due to their overhead associated with
e.g. initialization, as is also evident from the table. To that end, we give their
performance for both the short input of 64 bytes (thus matching the input size of
Haraka-512/256), as well as a long input of 4 KiB. We note that even comparing
against the performance for long messages of 4 KiB, the performance compares
favorably to the Haraka constructions. We remark that for all entries in Table [f]
that are based on AES, we give in Table [7] a count on the number of calls to the
AES round function as well as to the instruction for performing one round of the
AES key schedule.

6 Conclusion and Remarks on Future Work

Together with in-depth implementation considerations of modern CPU design,
we presented the seemingly fastest proposal for compression/short-input hashing
on such platforms, with a performance of less than 1 cpb on a Skylake desktop
CPU, both with and without parallelization across multiple inputs. Despite
exploring a larger design-space, the design ended up having strong similarities
with the permutation AESQ that is used in the CAESAR candidate PAEQ [9].
Our implemetations for Haraka, as well as code for security analysis, is available
to check out at [25].

We remark that our design is optimized for short inputs, and long-message
performance is out of scope for this paper. Nevertheless, when our compression
function is put into one of the well-understood domain extention methods like the
Sponge construction [§], the resulting long-message speed would still be below 2
cycles per byte, and hence would also be very competitive.

In contrast to competing designs that were the fastest so far, we can give
arguments in favor of its security against important classes of attacks that goes
beyond statements such as: “Nobody seems to be able to break more rounds”. As
a novelty, we also consider attacks using truncated differentials that are bounded,
and thus for the first time also go beyond the argument using bounds on the



number of active S-boxes. This, of course, does not rule out attacks outside of
the models that we consider, and hence more cryptanalysis is needed to establish
more trust in the proposal. Particularly, MITM-style attacks will be an important
attack vector to consider, as no good bounding mechanisms are available yet.

Returning to our initial question: How much faster can a hash function become
if collision resistance is dropped from the list of requirements? In our proposal we
drop from 6 rounds to 5 rounds and still retain security against second-preimage
attacks. We can conclude that the performance gains are rather limited for the
class of hash function design strategies that we consider, namely AES-like designs.
This particularly holds when aiming at pre-quantum security levels that are
higher than those for collision resistance, namely 256 bits rather than 128 bits.
The reason why aiming at higher security levels makes sense is that there is
evidence that (at least for generic attacks) the post-quantum security levels will
in both cases be 128 bits. Of course, this argument does not consider non-generic
attacks that use capabilities of hypothetical quantum computers, and we leave
investigations in this direction as future work.
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A Considerations Regarding Modes of Operation and
Linear Mixing

When designing the general constructions for the compression functions, we
initially had three approaches in mind:

1. Davies-Meyer construction with a block cipher (referred to as dm),
2. Davies-Meyer construction with a permutation (referred to as dmperm), and
3. Sponge construction (referred to as sponge).

For the first construction, we used a state of two blocks initialized to zero.
As part of the round function R;, we would apply two parallel calls the AES as
part of the aes operation. The actual bits of the message would be taken into the
state over several rounds via a simple message expansion procedure. While the
block cipher approach led to a small context size, the simplicity of the message
expansion implied the possibility for the attacker to control differences injected
even after many rounds, thus obtaining collisions by difference cancellation. While
this can potentially be mitigated by a more complex message expansion, this
would in turn lead to harder analysis and slower implementations.

In order to avoid the negative consequences on security from a too simple
message expansion, and to performance from a too complex message expansion, we
opted to abandon the block cipher-based approach of (1) in favor of a permutation-
based approach. In particular, we load the full message into the state of the
permutation from the beginning. As such, the state size for Haraka-512/256 must
be at least 64 bytes, while that of Haraka-256/256 must be at least 32 bytes,
or, equivalently b = 4 and b = 2 blocks, respectively. With this, we considered
two general approaches, namely (2) and (3) above. Firstly, one approach is to
use a Davies-Meyer construction where the message is loaded into the state



which has the size of the domain in bits. This is the approach we landed on, and
that described in Section 2] above. Finally, with a Sponge-based approach, one
would choose the state size to be larger than the size of the domain. The state is
initialized to some constant, e.g. all zeroes. The message is XORed into the most
significant | M| bits of the state, and a permutation is applied. The output is now
taken as e.g. the most significant 256 bits in the case of both Haraka-512/256
and Haraka-256/256.

While the dm approach above was found to lead to significantly poorer security
margins, in comparison to the dmperm and sponge approaches, we nevertheless
implemented all three approaches in C.

For the sponge approach, we used a state consisting of 6 blocks, or, equivalently,
96 bytes. For dm, we used a state of 2 blocks, initialized to zero. The message
expansion consisted of shuffling message bits and XORing them to other message
bits, so, in other words, a simple linear expansion. In all cases, the permutation
applied in each round had the form of aes (consisting of m rounds of the AES
applied in parallel to each block of the state) followed by a linear mixing. Here, we
focus on a fixed mixing layer (in particular using the blend mixing detailed below)
while, in Section we describe considerations regarding different approaches
to the linear mixing.

In our consideration here, the mixing layer is implemented by using the blend
(or pblendw) instruction which is available in Intel CPUs supporting SSE 4.1.
The blend instruction itself takes in two block operands and an 8-bit mask w.
Let y = blend,, (a, b) be the blend operation on operands a and b using mask w.
Then the ¢th least significant 16-bit word of y is determined as the corresponding
word of either a or b, depending on the value of the ith bit of w. As such, blend
gives us essentially a way to mix two blocks without permuting the byte positions.
The mixing using blend is now defined as using blend,, on block i with block
1 + 1 modulo the number of blocks of the state. Fixing m = 2, i.e. using two
AES rounds per round, Figure [4] details the performance using the three general
construction approaches dm, dmperm and sponge, described above. The numbers
are taken as the minimum over choices of P in the range P = 1,...,16. Note,
that the optimal choice for a particular value of P may not be constant across
choices of the number of rounds T'. Evidently, the dm approach has the best
overall performance. The sponge approach is significantly slower than the dmperm
approach when T' > 3. To that end, and combined with the observation regarding
the security properties of the dm approach, this led to the overall choice of the
dmperm construction used for both Haraka-512/256 and Haraka-256/256.

For the linear mixing layer, we considered several possible approaches:

1. The mixs;2 and mixas approaches described in Section 2] using the punpckhdq
and punpckldq instructions;

2. The blend approach, as described above, using the pblendw instruction; and

3. Using a combination of a block-wise byte shuffle and XOR (denoted shuffle-
xor) with the following state block, i.e. where block ¢ updated with a byte
shuffle and XORed with block ¢ + 1 modulo the number of blocks, to obtain
the updated block. This approach uses the pshufb and pxor instructions.
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Fig. 4: Performance using m = 2 for each of the three general Haraka-512/256
constructions considered
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Fig. 5: Effect of applying one round of the mixing layers on the state of m512.

The effect of each of this operations applied to the state of 7512 can be seen in
Figure [5| On both the Haswell and Skylake microarchitectures, the instructions
used for those three approaches all have a latency of one clock cycle, while the
inverse throughput varies from e.g. 0.33 instructions/cycle for the XOR operation
to 1 instruction/cycle for the punpckhdq and punpckldq instructions.
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Fig. 6: Performance of Haraka-512/256 using m = 2 for each of the three ap-
proaches to linear mixing considered



Figure[6] gives a performance comparison of the three approaches to the linear
mixing layer. As shown, with the exception of the mixsi2 operation on Haswell,
all other approaches have comparable performance for both Haswell and Skylake.
Concludingly, it makes sense to choose the approach yielding the best security
properties, namely the mixs12 and mixss6 operations.
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