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Abstract. In this paper we present a new attack on cryptosystems
based on ideal lattices. We show that, if there is one polynomially large
entry in the transformation matrix from trapdoor basis to public basis,
then we can obtain the trapdoor basis. The key point is that some class
of matrices satisfies multiplication commutative law.
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1 Introduction

Cryptosystems based on lattices are important cryptosystems, and most useful
are those based on ideal lattices. The lattice has a trapdoor basis which is hidden.
and a public basis which is published. The transformation matrix from trapdoor
basis to public basis is a unimodular matrix, that is, both itself and its inverse
matrix are integer matrices. Such transformation matrix is also hidden. How
large is the transformation matrix ? For ordinary lattice, the common view is
that the transformation matrix can be polynomially large without security worry.
For ideal lattice, the common view is that the transformation matrix “ had better
supper-polynomially large”, and a good type is Hermite Normal Form (HNF).
However, there is no conclusion what kind of danger is if the transformation
matrix is polynomially large.

In this paper we present a new attack on cryptosystems based on ideal lat-
tices. We show that, if there is only one polynomially large entry in the trans-
formation matrix from trapdoor basis to public basis, then we can obtain the
trapdoor basis. The key point is that some class of matrices satisfies multiplica-
tion commutative law.

2 Preliminaries

2.1 Notations and Definitions

We denote the rational numbers by Q and the integers by Z. We specify that
n-dimensional vectors of Qn and Zn are row vectors. We take Qn×n and Zn×n as



2 Yupu Hu and Zhizhu Lian

n×n matrices. A matrix U ∈ Zn×n is called a unimodular matrix if U−1 ∈ Zn×n.
In this case the determinant of U is ±1.

We consider the polynomial ring R = Z[X]/(Xn+1), and identify an element
u ∈ R with the coefficient vector of the degree-(n − 1) integer polynomial that
represents u. In this way, R is identified with the integer lattice Zn. Addition
in this ring is done component-wise in their coefficients, and multiplication is
polynomial multiplication modulo the ring polynomial Xn + 1.

For x ∈ R,〈x〉 = {x · u : u ∈ R} is the principal ideal in R generated by x
(alternatively, the sub-lattice of Zn corresponding to this ideal).

2.2 A Class of Matrices and Its Multiplication Commutative Law

Suppose X ⊂ Zn×n is a class of such matrices:
a0 a1 · · · an−1

−an−1 a0 · · · an−2

...
...

. . .
...

−a1 −a2 · · · a0

 ,

where each entry ai,j ∈ Z. X satisfies multiplication commutative law, namely,
for A,B ∈ X, we have AB = BA.

2.3 Ideal Lattice and Its {Trapdoor Basis, Public Basis}

The user randomly chooses a vector a = (a0, a1, · · · , an−1) ∈ Zn, where each
entry of a is polynomially large. Then the trapdoor basis of the ideal lattice is
the matrix

BTrap =


b0 b1 · · · bn−1

−bn−1 b0 · · · bn−2

...
...

. . .
...

−b1 −b2 · · · b0

 .

In other words, the ideal lattice is the principal ideal 〈a〉. Then the user takes a
unimodular matrix U ∈ Zn×n, and computes the public basis

BPub = UBTrap.

He publishes BPub and hides BTrap.

3 Our attack

3.1 Step 1: Obtaining A Linear Equation of The Unit Matrix

Now our knowledge is BPub, and we want to obtain BTrap.
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First, we take a matrix X ∈ X, and compute the product BPubX. By con-
sidering Multiplication Commutative Law, we have

BPubX = (UX)BTrap,

although we don’t know U and BTrap.
Second, we compute matrix Y = BPubX(BPub)−1 ∈ Qn×n. By considering

Multiplication Commutative Law, we have

Y = UBTrapX(BTrap)−1U−1 = UXU−1 ∈ Zn×n.

Finally, we obtain a linear equation of U:

UX−YU = 0. (3.1)

Of course such linear equation is of reduced rank. If the rank is n2 − 1, then
the thing tends simple. We can search all possible values of one entry of U, under
the assumption that this entry is polynomially large. For each possible value of
this entry, we obtain unique value of U. For this corresponding value of U, we
make following 3 checks:
• whether det(U) = ±1,
• whether U−1BPub ∈ X,
• whether each entry of U−1BPub is polynomially large.
Whenever it passes the check, we can take U−1BPub as a trapdoor basis. The

cryptosystem has been broken, although it is possible that U−1BPub 6= BTrap.
However, we find it is almost sure that the rank of the above linear equation

is n2 − n (we will explain the reason later). So we must use another method to
obtain U.

3.2 Step 2: Obtaining and Solving Another Linear Equation
Modular Some Integer

Suppose the rank of equation (3.1) is n2 − n. We denote

U =


u1 u2 · · · un

un+1 un+2 · · · u2n

...
...

. . .
...

un(n−1)+1 un(n−1)+2 · · · un2

 .

Suppose un2 is polynomially large.
First, we convert the linear equation into the following form:

u1

u2

...
un(n−1)

 = V


un(n−1)+1

un(n−1)+2

...
un2

 ,
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where each entry of V is from Q.
Second, we take v0 as the smallest common denominator of entries of V, and

take V(0) = v0V, so that V(0) is an integer matrix. Because u1, u2, . . . , un(n−1)

are integers, each entry of

V(0)


un(n−1)+1

un(n−1)+2

...
un2


must be a multiple of v0.

Finally, we solve the linear equation modular v0,

V(0)


un(n−1)+1

un(n−1)+2

...
un2

 mod v0 =


0
0
...
0

 . (3.2)

V(0) has n(n − 1) rows and n columns, so that it is almost sure that the
rank of this equation is n − 1. By searching all possible values of un2 , we
obtain all possible mod v0 values of (un(n−1)+1, un(n−1)+2, . . . , un2). Here we
need a condition: when un2 takes true value, corresponding mod v0 value of
(un(n−1)+1, un(n−1)+2, . . . , un2) is respectively true value of un(n−1)+1, un(n−1)+2, . . . , un2 .
In other words, true values of {un(n−1)+1, un(n−1)+2, . . . , un2} are all within the
interval [−v0/2, v0/2). This can be easily satisfied if we take X sufficiently large.
For example if we find v0 larger than any entry of BPub, then the condition is
satisfied with large probability.

3.3 Step 3: Solving the Former Linear Equation

For each possible solution {un(n−1)+1, un(n−1)+2, . . . , un2} of equation (3.2), we
can obtain corresponding solution u1, u2, . . . , un2 of equation (3.1). Then we
make above 3 checks. Whenever it passes the check, we can take U−1BPub as a
trapdoor basis. The cryptosystem has been broken.


