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Abstract

Annihilation attacks, introduced in the work of Miles, Sahai, and Zhandry (CRYPTO 2016),
are a class of polynomial-time attacks against several candidate indistinguishability obfuscation
(¢0) schemes, built from Garg, Gentry, and Halevi (EUROCRYPT 2013) multilinear maps. In
this work, we provide a general efficiently-testable property of two branching programs, called
partial inequivalence, which we show is sufficient for our variant of annihilation attacks on several
obfuscation constructions based on GGH13 multilinear maps.

We give examples of pairs of natural NC! circuits, which — when processed via Barrington’s
Theorem — yield pairs of branching programs that are partially inequivalent. As a consequence
we are also able to show examples of “bootstrapping circuits,” used to obtain obfuscations for all
circuits (given an obfuscator for NC! circuits), in certain settings also yield partially inequivalent
branching programs. Prior to our work, no attacks on any obfuscation constructions for these
settings were known.

1 Introduction

An obfuscator is a program compiler which hides all partial implementation details of a program.
This is formalized via the notion of indistinguishability obfuscation [BGIT01]: we say an obfuscator
O is an indistinguishability obfuscator if it holds for every pair Cp, C7 of functionally equivalent
circuits (i.e. computing the same function) that O(Cp) and O(C}) are indistinguishable. A recent
surge of results has highlighted the importance of this notion: virtually “any cryptographic task”
can be achieved assuming indistinguishability obfuscation and one-way functions [SW14].
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All known candidate constructions of indistinguishability obfuscation, e.g. [GGH13b, BGK 14,
AB15], are based on multilinear-maps [GGH13a, CLT13] and [GGH15]!, which have been the sub-
jects of various attacks ([CHL™15, CGH'15a] [CFL"16, HJ16, CLLT16]). Recently Miles, Sahai,
and Zhandry [MSZ16] introduced a new class of polynomial-time? attacks against several obfus-
cation constructions, such as [BR14, BGK™14, AGIS14, MSW14, PST14] and [BMSZ16a], when
instantiated with the GGH13 multilinear maps. Prior attacks on GGH13 multilinear maps required
explicit access to low-level encodings of zero [GGH13a] [HJ16], or a differently represented low-level
encoding of zero, in the form of an encoded matrix with a zero eigenvalue [CGH'15b].

More specifically, Miles et al. [MSZ16] exhibit two simple branching programs that are func-
tionally equivalent, yet their [BGK™ 14]-obfuscations (and similar constructions like [BMSZ16b,
MSW14, AGIS14]) are efficiently distinguishable.® Additionally they show that their attacks ex-
tend to any two branching programs with those two simple programs (respectively) padded into
them. However, the branching programs constructed in [MSZ16], in particular the all-identity
branching program, do not appear in the wild. More specifically, obfuscation constructions for
circuits first convert an NC! circuit into a branching program via Barrington’s transformation that
results in non-trivial branching programs, even if one starts with simple circuits. This brings us to
the following open question:

Are obfuscations of branching programs resulting from Barrington’s Transformation applied to
NC' circuits susceptible to annihilation attacks?

1.1 Owur Contributions

In this work, we are able to answer the above question affirmatively. In particular, our main
contributions are:

e We first define a general and efficiently-testable property of two branching programs called
partial inequivalence (discussed below) and demonstrate an annihilation attack against
[BGK ™ 14]-like-obfuscations of any two (large enough) branching programs that satisfy this

property.

e Next, using implementation in Sage [ST16] (see Appendix A for details on the implementation)
we give explicit examples of pairs of (functionally equivalent) natural NC! circuits, which
when processed via Barrington’s Theorem yield pairs of branching programs that are partially
inequivalent — and thus, attackable.

e As a consequence of the above result, we are also able to show that the “bootstrapping
circuit(s)” technique used to boost O for NC! to iO for P/poly, for a certain choice of the
universal circuit, yield partially inequivalent branching programs in a similar manner — and
are, thus, also attackable.

!The work of [AJNT16] might be seen as an exception to this: Assuming the (non-explicit) existence of indistin-
guishability obfuscation, they provide an explicit construction of an indistinguishability obfuscator.

2Several subexponential-time or quantum-polynomial-time [CDPR16, ABD16, CJL16] attacks on GGH13 multi-
linear maps also been considered. We do not consider these in this paper.

3To avoid repetitions, from now on we will refer to the obfuscation constructions of [BGK ™14, BMSZ16b, MSW14,
AGIS14] by [BGK™14]-like obfuscations.



Given our work, the new attack landscape against GGH13-based obfuscators is depicted in Figure 1.
We refer the reader to [AJNT16, Figure 13] for the state of the art on obfuscation constructions
based on CLT13 and GGH15 multilinear maps.

Our general partial inequivalence condition is broad and seems to capture a wide range of
natural programs. However, we do need the program to be large enough.? Additionally, we require
the program to output 0 on a large number of its inputs. Furthermore, our partial inequivalence
condition is applicable to programs of arbitrary arity, such as single-input branching programs,
dual-input branching programs and so on.”

Finally, our new annihilation attacks are essentially based on linear system solvers and thus quite
systematic. This is in contrast with the attacks of Miles et al. [MSZ16] which required an exhaustive
search operation rendering it hard to extend their analysis for branching programs resulting from
Barrington’s Theorem. Therefore, at a conceptual level, our work enhances the understanding of
the powers and the (potential) limits of annihilation attacks.
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Figure 1: The Attack Landscape for GGH13-based Obfuscators. In all cases, the multilinear
map is [GGH13a]. O means no attack is known. X means a prior attack is known, and we present
more general attacks for this setting. ) means we give the first known attack in this setting.

1.2 Partial Inequivalence and Using it for Annihilation Attacks

Below, after providing some additional backgrounds on multilinear maps and known attacks, we
provide a overview of our annihilation attacks.

Multilinear Maps: Abstractly. As a first approximation, one can say that a cryptographic
multilinear map system encodes a value a € Z, (where p is a large prime) by using a homomorphic
encryption scheme equipped with some additional structure. In other words, given encodings of
a and b, one can perform homomorphic computations by computing encodings of a + b and a - b.
Additionally, each multilinear map encoding is associated with some level described by a value
i € {1...k} for a fixed universe parameter k. Encodings can be added only if they are at the same

“Note that, for our implementation we consider circuits that are quite small, only depth 3, and the resulting
Barrington programs are of length 64. However, using the implementation we then “boost” the attack to a much
larger NC! circuits that suffice for the real-world attack (discussed in Sec. 6) to go through.

SHowever, our Sage-implementation only considers single-input branching programs. The dual-input version of
our example circuits would blow-up the size of the attack-systems by at least a quadratic factor which implies
a corresponding blow-up in running-time and memory-requirements that our current set-up is unable to handle.
Nonetheless, our primary purpose, that is to come up with an example of attackable natural branching programs
(generated from Barrington’s Theorem), is served with single-input implementations.



level: Enc;(a)®Enc;(b) — Enc;(a+b). Encodings can be multiplied: Enc;(a) ®Enc;(b) — Enc;;(a-b)
if ¢ + 7 < Kk but is meaningless otherwise. We naturally extend the encoding procedure and the
homomorphic operations to encode and to compute on matrices, respectively, by encoding each
term of the matrix separately. Finally, the multilinear map system comes equipped with a zero
test: an efficient procedure for testing whether the input is an encoding of 0 at level-x. However,
such zero-test procedure is not perfect as desired when when instantiated with concrete candidate
multilinear maps. In particular we are interested in the imperfection in GGH13 map.

An Imperfection of the GGH13 Multilinear Maps. Expanding a little on the abstraction
above, a fresh multilinear map encoding of a value a € Z, at level i is obtained by first sampling
a random value p from Z, and then encoding Enc;(a + p - p). Homomorphic operations can be
performed just as before, except that the randomnesses from different encodings also get computed
on. Specifically, Enc;(a + u - p) ® Enc;(b+ v - p) yields Enc;(a + b+ (u + v) - p) and multiplication
Enci(a + p - p) ® Encj(b+ v - p) yields Encipj(a- b+ (b-p+a-v+p-v-p)-p)ifi+j <k but
is meaningless otherwise. An imperfection of the zero-test procedure is a feature characterized by
two phenomena:

1. On input Enc,(0+r-p) the zero-test procedure additionally reveals r in a “scrambled” form.

2. For certain efficiently computable polynomials f and a collection of scrambled values {r;} it
is efficient to check if f({r;}) =0 mod p or not for any choice of 7;’s.%

This imperfection has been exploited to perform attacks in prior works, such as the one by Miles
et al. [MSZ16].7

Matrix Branching Programs. A matrix branching program of length ¢ for n-bit inputs is a
sequence BP = {Ao, {Az,o,Az’J}fszeH}, where Ay € {0,1}17°, A4;,’s for i € [{] are in {0,1}°*°

and Agyq € {0,1}%*1. Without providing details, we note that the choice of 5 x 5 matrices comes
from Barrington’s Theorem [Bar86]. We use the notation [n] to describe the set {1,...,n}. Let inp
be a fixed function such that inp(i) € [n] is the input bit position examined in the i*" step of the
branching program. The function computed by this matrix branching program is

0 if Ao~ [T Ai sinpgiy - Aesr =0
fapa) = 10 10 L aimwiir Lot =0,
1 if Ap- Hz’:l Ai,:p[inp(i)} ’ AEJrl 7& 0

where x[inp(i)] € {0,1} denotes the inp(i)*" bit of x.

The branching program described above inspects one bit of the input in each step. More
generally, multi-arity branching programs inspect multiple bits in each step. For example, dual-
input programs inspect two bits during each step. While our general attack condition works for
programs of arbitrary arity, for the sake of simplicity we restrict ourselves to single-input programs
in this introduction.

Exploiting the Imperfection/Weakness. At a high level, obfuscation of a branching program
BP = {Ag, {Aio, Ai1}i_,, Api1} yields a collection of encodings { Mo, {M; o, M;1}o_,, My, 1}, say

50ne can alternatively consider the scrambled values as polynomials over {r;} and then check if f({r;}) is identi-
cally zero in Zj.

"Recent works such as [GMM™T 16, DGGT16], have attempted to realize obfuscation schemes secure against such
imperfection.



all of which are obtained at level-1.° We let {Zj, {Zi,O,Zi,l}le, Zp4+1} denote the randomnesses
used in the generation of these encodings, where each Z corresponds to a matrix of random values
(analogous to r above) in Z,. For every input x such that BP(x) = 0, we have that My ®
@le M wfinp(i)] © Mgy1 is an encoding of 0, say of the form Enc(0 + r; - p) from which r, can be
learned in a scrambled form. The crucial observations of Miles et al. [MSZ16] are: (1) for every
known obfuscation construction, r, is a program dependent function of {Zo,{Zi 0, Zi1 }i_y, Zes1},
and (2) for a large enough m € Z the values {r;, }* ; must be correlated, which in turn implies
that there exists a (program-dependent) efficiently computable function f”¥ and input choices
{aBPym  such that for all k € [m], BP(zPF) = 0 and fBP({rmEp}lel) = 0 mod p.” Further,
just like Miles et al. we are interested in constructing an attacker for the indistinguishability
notion of obfuscation. In this case, given two arbitrarily distinct programs BP and BP’ (such
that Vo, BP(x) = BP'(z)) an attacker needs to distinguish between the obfuscations of BP and
BP'. Therefore, to complete the attack, it suffices to argue that for the sequence of {r; Lp | values
k

obtained from execution of BP’ it holds that, fBP({r;BP,}Z":l) # 0 mod p. Hence, the task of
k

attacking any obfuscation scheme reduces to the task of finding such distinguishing function fBF.
Miles et al. [MSZ16] accomplishes that by presenting specific examples of branching programs,

both of which implement the constant zero function, and a corresponding distinguishing function.

They then extend the attack to other related branching programs that are padded with those

constant-zero programs. The details of their attack [MSZ16] is quite involved, hence we jump

directly to the intuition behind our envisioned more general attacks.

Partial Inequivalence of Branching Programs and Our Attacks. We start with the following
observation. For [BGK™ 14]-like-obfuscations for any branching program BP = {Ag, {40, Ai1}i_q, Aes1}
the value s, = r, mod p looks something like: '°

l+1

¢ i—1 +1
So = H i,z finp(i)] § : H Ajwing(y) * Zieling(i)] * H Az | |
i=1 i=0 \J=0 j=itl
te

where {Zp, {Zi,07Zi,1}f:1,Zé+1} are the randomnesses contributed by the corresponding encod-
ings. Let T denote the value obtained by flipping every bit of z. Now observe that the prod-
uct value A = Hle Qi 2finp(i)] © iz[inp(s)] 15 independent of x. Therefore, u; = sz sz = A -
ty - tz. Absorbing A in the {Z,, Zi’l}le, we have that u, is quadratic in the randomness val-
wes {Z0,{Zi 0, Zi1}i—1, Zes1}, or linear in the random terms ZZ' obtained by multiplying every
choice of Z,7Z' € {Z,, {Zi,o,Zi,l}le, Zp+1}. In other words if BP evaluates to 0 both on inputs
x and 7, the values revealed by two zero-test operations give one linear equation where the co-
efficients of the linear equations are program dependent. Now, if BP implements a “sufficiently
non-evasive” circuit,(e.g. a PRF) such that there exist sufficiently many such inputs z, T for which

8Many obfuscation constructions use more sophisticate leveling structure, typically referred to as so-called “strad-
dling sets”. However we emphasize that, this structure does not affect our attacks. Therefore we will just ignore this
in our setting.

9This follows from the existence of an annihilating polynomial for any over-determined non-linear systems of
equations. We refer to [Kay09] for more details.

100btaining this expression requires careful analysis that is deferred to the main body of the paper. Also, by abuse

of notation let AO,minp(U) = Ao, AHlawinp(Hl) = A4, ZO?'rTnp(O) = Zy and Zg“,xinp(eﬂ) = Zi41-



BP(x) = BP(z) = 0, then collecting sufficiently many values {z5%, ukap}lel, we get a dependent
system of linear relations. Namely, there exist {vZF}7 | such that > 1, v27 u,pp = 0. In other
words, > 1t VEP TyBP - TEEP = 0 mod p, where {I/kBP}lel depends only on the description of the
branching program B5P.

We remark that, in the process of linearization above we increased (by a quadratic factor) the
number of random terms in the system. However, this can be always compensated by using more
equations, because the number of random terms is O(poly(n)) (n is the input length) whereas the
number of choices of input z is 29" which implies that there are exponentially many r, available.

Note that for any branching program BP’ that is “different enough” from BP, we could ex-
pect that Y 7*, vPT - T B T/f,‘j’ » # 0 mod p where 7/ pp are values revealed in executions of an

obfuscation of BP’. This is because the values {V}?P }ir | depend on the specific implementation of
BP through terms of the form H;;B Ajj 2finp(i)] and Hﬁ;l-ﬂ Aj 2finp(i)] I 8z above. Two branching
programs that differ from each other in this sense are referred to as partially inequivalent.'!

Generalizing Partial Inequivalence. We only attempted to observe values mod p as they
sufficed for our desired attacks. However, for (pairs of) branching programs that can not be
distinguished using partial inequivalence, we could attempt to consider looking at terms r, - rz
mod p?. In more detail, we just argued that for a given BP (with sufficiently many x, 7 such that
BP(z) = BP(z) = 0) there always exists a vector {v2F}™ | such that > ;- vBF - rppp - Tgop =0
mod p. However, it may well be possible that for a some BP and BP’ all such {v2F'}7 | are equal.
That’s the exact case when they can not be distinguished via our attack. However, now for a tuple
of inputs x = {z)}7", we have already obtained one value for each program, say 727, v8P ", that
are multiples of p; therefore we can repeat the exact same steps, but now with respect to mod p?
with several such values {yfkp }m’ . for many tuples {x1,X2,...,X,}. In fact, more generally we
can keep repeating this procedure until we get a distinguishing vector. Although, the number of
random variables grow exponentially with the number of such iterations, since we have exponentially
many inputs we can continue this procedure until mod p¢ for ¢ = O(log(n)) for sufficiently non-
evasive functions. However, in practice this growth in system-size can be problematic as it is not
clear how the performance will be for some large value of ¢ (even a large constant) in real-world
implementations. We do not analyze this case formally.'?

1.3 What Programs are Partially Inequivalent? Attack on NC' circuits.

The condition we put on seems to be a quite general one based on our understanding. However
finding evidence analytically seemed like a hard task for a general setting.'® Nonetheless, we manage
to show via implementation in Sage [ST16] (c.f. Appendix A) that the attack works on a pair of
branching programs obtained from a pair of simple NC! circuits, (say Co, C1) (see Sec. 7 for the

Note that the only other constraint we need is that both BP and BP’ evaluates to 0 for sufficiently many inputs,
which we include in the definition(c.f. Def. 4.2) of partial inequivalence.

12The formal analysis would require much involved tensor-product computations than the current one as detailed
in Sec. 4, as the structures of those higher order partial products would become more complicated for those cases.
However, applying (extensions of) the properties of matrix-tensor products (see Sec. 2.2 for details) a similar form of
equations (albeit of larger dimensions) can be obtained that can be analyzed in analogous manner.

13Note that, the analysis of Miles et al. uses 2 X 2 matrices in addition to simple branching programs. These
simplifications allow them to base their analysis on many facts related to the structures of these programs. Our aim
here is to see if the attack works for programs obtained via implementing Barrington’s Theorem. So, unfortunately
it is not clear if their approach can be applicable here as the structure of the programs yielded via Barrington’s
Theorem become too complicated (and much larger in size) to analyze.

6



exact circuits) by applying Barrington’s Theorem. The circuits take 4 bits of inputs and on any
input they evaluate to 0. In our attack we use all possible 16 inputs. Furthermore, we can escalate
the attack to any pair of NC! circuits (Eg, B1) where E, = —~Cy A Dy (b € {0,1}) for practically
any two NC! circuits Dg, D; (we need only one input « for which D(z) = D(Z) = 0). We now take
again a sequence of 16-inputs such that we vary the parts of all the inputs going into Cj, and keep
the part of inputs read by Dy, fixed to . Intuitively, since the input to Dy is always the same, each
evaluation chooses the exactly same randomnesses (that is Z;’s as mentioned above) always. Hence
in the resulting system all the random variables can be replaced by a single random variable. So we
can “collapse” the circuit ~Cy A Dy, effectively to a much smaller circuit namely, =Cj A 0. Finally,
again via our Sage-implementation we show that for circuits -Cy A0 and =C'; A0 the corresponding
branching programs are partially inequivelent.

As a consequence of the above we are also able to show examples of universal circuits U for
which the same attack works. Since the circuit D can be almost any arbitrary NC! circuit, we can,
in particular use any universal circuit U’ and carefully combine that with C' to obtain our attackable
universal circuit U that results in partially inequivalent Barrigton programs when compiled with
any two arbitrary NC! circuits. The details are provided in Sec. 7.3.

1.4 Roadmap

The rest of the paper is organized as follows. We provide basic definitions in Sec. 2. In Sec. 3
we formalize our abstract-attack model that is mostly similar to the attack model considered by
Miles et al. [MSZ16]. In Sec. 4 we formalize partial inequivalence of two branching programs.
In Sec. 5 we describe our annihilation attack in the abstract model for two partially inequivalent
branching programs. In Sec. 6 we then extend the abstract attack to real-world attack in GGH13
setting. Finally in Sec. 7 we provide details on our example NC! circuits for which the corresponding
branching programs generated via Barrington’s Theorem are partially inequivalent.
Additionally, in Appendix A we provide some details on our implementations in Sage.

2 Notations and Preliminaries

2.1 Notation

We denote the set of natural numbers {1,2,...} by N, the set of all integers {...,—1,0,1...} by
Z and the set of real numbers by R. We use the notation [n] to denote the set of first n natural
numbers, namely [n] o {1,...,n}.

For any bit-string = € {0, 1}" we let x[i] denotes the i-th bit. The substring of x corresponding
to some subset S C [n] is denoted by z[S]. For a matrix A we denote its i-th row by A[i, x|, its j-th
column by A[x, j] and the element in the i-th row and j-th column by A[i, j]. The i-th element of
a vector v is denoted by v[i].

Bit-Strings. The compliment of = € {0,1}" is denoted by T and defined as: = def 4n @ x, where
@ denotes the bitwise XOR operation. The hamming weight of € {0,1}" denoted by Ham(z) is
equal to ), x[i] .

Matrices. The transpose of A is denoted by A”. We denote matrix multiplications between two
matrices A and B by A - B whereas scalar multiplications between one scalar a with a matrix (or
scalar) A by aA. A boolean matrix is a matrix for which each of its entries is from {0,1}. A



permutation matrix is a boolean matrix such that each of its rows and columns has exactly one
1. Concatenation of two matrices A, B of dimensions dy x dz and dy X dg is a dy x (dg + d' + 2)
matrix denoted by [A| B]. For multiple matrices Ay, As, ..., A, the concatenation is denoted as
(Ui pn) Ail-

Vectors. Matrices of dimension 1 x d and d x 1 are referred to as row-vectors and column-vectors,
respectively. Unless otherwise mentioned, by default we assume that a vector is a row-vector.
Any matrix operation is also applicable for vectors. For example, the inner product a - b is a

scalar defined as a - b & Zgzl ali]bli], where a and b are row and column vectors of dimension
d respectively. We define the vectorization of any matrix M of dimension d; X dy to be a column
vector of dimension dids x 1 that is obtained by concatenating the rows of the matrix M and then
taking the transpose. We denote:

vec (M) = [M[1,%]| M[2,+]| ---| Mdy,]]".

Note that if M is a column-vector then vec (M) = M and if M is a row-vector then vec (M) = MT.

2.2 Matrix Products

Below, we provide additional notation and background on matrix products that will be needed in
our technical sections.

Definition 2.1 (Matrix Tensor Product (Kronecker Product)). The Tensor Product of a dy X da
matriz A and a dy x di matriz B is a did} x dodly matriz defined as:

ALYB - Al do)B
A®B= : - :
Aldi,1)B -~ Aldy,do]B

where Ali, j]B is a matriz of dimension d| X db that is a scalar product of the scalar Ali,j] and
matriz B.

Property 2.2 (Rule of Mixed Product). Let A, B,C and D be matrices for which the matriz
multiplications A- B and C - D is defined. Then we have:

(A-B)® (C-D)=(A®C) - (B® D).

Property 2.3 (Matrix Equation via Tensor Product). Let A, X and B be matrices such that the
multiplication A - X - B is defined, then we have that:

vec(A-X -B) = (A® BT) - vec(X)
We define a new matrix product.

Definition 2.4 (Row-wise Tensor Product of Matrices). Let A and B be two matrices of dimensions
di X dg and dy x df respectively. Then the row-wise tensor product of A and B is a matriz C' of
dimension di X dadfy such that each row of C is a tensor product of rows of A and B. Formally,

C = AR B where Cli,«] < Ali, ] ® Bli, .



The following fact is straightforward to see.

Fact 2.5 (Concatenation of Row-wise Tensors). Let A &f [A1]| A2| | Ap] and B %ef [B1| B2| -+ | By

be two matrices, then we have:
AN B = [Migpm) jen)Ai X Bj].

Definition 2.6 (Permutation Equivalence). Let A, B be matrices with dimensions dy X da, then A

and B are called permutation equivalent if there exists a permutation matriz P such that A = B - P.
per

We denote by A = B

Property 2.7. For any two matrices A and B of dimensions di x da and dy x dfy respectively we
have that:

per

AXB'= BXA

Proof. Let C " 4 ® B then for any k € [dad}] the k-th column of C' can be written as:
AfL, j1B[1, 4]
C[*v k] =
A[dlvj]B[dlaiL

where i = k mod dj and j = kdgi + 1. For ¢ € [d}], define the matrix
Dy = [Clx, 0] | Clx, b+ dy]] ...| Clx, £+ dy(dy — 1)]].
Observe that we can express B X A as follows:

BRA=[Di|...|Dy)=(ARB)-P

where P is a permutation matrix that maps the k-th column of AK B to the dz(i—1) + j-th column
where i = k mod dj and j = &% 4 1. O
2

d

2.3 Column Space of a Matrix

Our attacks will require certain properties on the column space of certain matrices which we
elaborate on below.

Definition 2.8 (Column Space of a matrix). Let A be a matriz of dimension dy x dy. Then the
column space of A is defines as the vector space generated by linear combinations of its columns,
formally the column space contains all vectors generated as Z?il ciA[x, ] for all choices of ¢; € R.
We denote the column-space of A by colsp (A).

Definition 2.9 (Null-space of a matrix). '* Let A be a matriz of dimension dy x da. Then the
Null-space of A consists of all vectors v of dimensions 1 x dy for which v- A = 0. We denote the
null-space of A by nullsp(A).

We state some basic property of the above vector spaces.

“Traditionally such space is called left-null space or co-kernel.



Property 2.10 ([Ogul6]). Let A and B be two matrices of dimensions di X dy. Then the following
statements are equivalent:

e colsp (A) = colsp (B).
e nullsp(A) = nullsp(B).
e There exists an invertible square matriz C' such that A-C = B.

Corollary 2.11. Since A ' Bisa special case of the item-3 in the above property, we have that
A= B — colsp (A) = colsp (B).

Combining above corollary along with Property 2.7 we can get the following corollary.

Corollary 2.12. For any two matrices A and B of dimensions di X dy and di X do respectively we
have that
colsp (AKX B) = colsp (BX A)

Next we prove the following lemma that will be useful later in Sec. 7.

Lemma 2.13. Let A and B be two boolean matrices of dimensions di X do such that both A and
B have equal number of 1’s in each of its rows (say the number is ¢). Then we have:

colsp (A) C colsp (AX B) and colsp (B) C colsp (AKX B)

Proof. For each column A[x,j] of A, we define the matrix W; € {0,1}91%% as a row-wise tensor
product between Alx, j] and B:
W, = Alx, j] X B.

Summing up the columns of W; we get:

A[L]] Zj’ B[l)j/]
> Wik i = : = c(Alx, j]).
7 Aldy, j152; Blda, j']

Moreover we can write A X B as:
AR B = [Wy | Wal...| Wa,].

Hence there is a linear combination of columns of A X B that generates the j-th column of A for
any j € [da]. This allows us to conclude that colsp (4) C colsp (A X B). Now similar to the proof
of the statement colsp (4) C colsp (A X B) we can prove that:

colsp (B) C colsp(BX A).

From Corollary 2.12 we get that colsp (AKX B) = colsp (B X A). This allows us to conclude that
colsp (B) C colsp (A X B). O
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2.4 Branching Programs
In this subsection, we recall definitions on branching programs.

Definition 2.14 (w-ary Input-Oblivious Matrix Branching Program [BGK™'14]). A w-ary input
oblivious matriz branching program of dimension d, length £ over n-bit inputs is given by a sequence,

A = (inp, Ao, {Aipbicin pefo,1yws Aet1)

where inp(+) : [¢] — [n]* is a function such that inp(i) is the set of w bit locations of the input
examined in step i; A; are permutation matrices over {0,1}9%¢ and Ay € {0, 1314\ (01T, Ayyq €
{0,131\ 07 are fized bookend vectors such that:

1 if and only if A = Ijxq
0 otherwise.

AO‘A'AEJrl:{ (1)

The output of the matriz branching program on an input x € {0,1}" is given by:

L if Ao (ILiejqAiclinp(iy ) A1 =1

A(z) = , ,
0 if Ao (ILicigAiafinp(iy) ) Ae+1 =0

where inp(i) denotes the set of locations that are inspected at step i of A and x[inp(i)] denotes the
bits of x at locations inp(i). A w-ary branching program is said to be input-oblivious if the function
inp is fized and independent of the program being computed by A.

A l-ary branching program is also called a single-input branching program. Unless otherwise
stated we will always assume that the branching program is input-oblivious.

Barrington [Bar86] showed that all circuits in NC! can be equivalently represented by a branch-
ing program of polynomial length. We provide the theorem statement below for completeness.

Theorem 2.15 (Barrington’s Theorem[Bar86]). For any depth-D, fan-in-2 boolean circuit C, there
exists an oblivious branching program of matriz-dimension 5 and length at most 4P that computes
the same function as the circuit C.

Given a circuit C' of depth D, Barrington’s Theorem provides an input-oblivious branching
program of matrix dimension 5 implementing circuit C. We stress that the specific implementation
obtained by use of Barrigton’s depends on the specific choices made in its implementation and
therefore the obtained implementation is mot unique. We choose a specific one for our Sage-
implementation. The details are provided in Appendix. A.

2.5 Indistinguishability Obfuscation
Below, we recall the notion of indistinguishability obfuscation (:O).

Definition 2.16 (Indistinguishability Obfuscator (:O)[GGH"13b]). A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cy} if the following conditions are
satisfied:

o For all security parameters A € N, for all C € Cy, for all inputs x, we have that

Pr[C’ (z) = C(z) : O « iO(\,C)] = 1

11



e [For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function o
such that the following holds: For all security parameters A € N, for all pairs of circuits
Co, Cy € Cy, we have that if Co(x) = C1(z) for all inputs x, then

‘Pr [D(iO(X, Cp)) = 1] — Pr [D(iO(X, C1)) = 1]‘ < a())

3 Attack Model for Investigating Annihilation Attacks

Miles, Sahai, and Zhandry [MSZ16] describe an abstract obfuscation scheme, designed to encom-
pass the main ideas of [BGK ™14, BR14, AGIS14, PST14, MSW14, BMSZ16a] for the purposes of
investigating annihilation attacks. We use the same abstract attack model as the starting point for
our new attacks. Below, we first describe the model, obfuscation in this model and what violating
indistinguishability obfuscation security means.

3.1 Annihilation Attack Model

We describe the abstract annihilation attack model. An abstract model is parameterized with n
arbitrary secret variables Xy, ..., X,,, m random secret variables Z1, ..., Z,,, a special secret variable
g- Then the public variables Y1, ..., Y}, are such that Y; := ¢;({ X} } je[n)) +9Z; for some polynomials
¢. The polynomials are defined over a field F.'> An abstract model attacker A may adaptively
make two types of queries:

e Type 1: Pre-Zeroizing Computation. In a Type 1 query, the adversary A submits
a “valid” polynomial p; on the public Y;. Here, valid polynomials are those polynomials as
enforced by the graded encodings.'®

Then, we expand the representation of the (public) polynomial on Y; in order to express py as
a polynomial of the (private) formal variables X, Z;, g stratified in the powers of g as follows:

pr=p"+g- "+ P+

If py, is identically 0 or if p,(go) is not identically 0, then the adversary A receives L in return.
Otherwise, the adversary A receives a new handle to a new variable Wy, which is set to be

Wi=pi/g=p) + -0 + g% p0 + ...

e Type 2: Post-Zeroizing Computation. In a Type 2 query, the adversary A is allowed
to submit arbitrary polynomials r of polynomial degree, on the Wy that it has seen so far.
We again view r({W}}) as a polynomial of the (secret) formal variables X, Z;, g, and write
it as:

r=r04g. 7MW 4 g2 @4

15T00king ahead, the arbitrary variables represent the plain-texts (the branching program or circuit to be obfus-
cated) of encoding, the random variables represent the randomness of encodings generated by the obfuscator, the
variable g represents the “short” generator g of the ideal lattice and the public variables represent the encodings
available to the attacker.

6For example, for a branching program obfuscation it must be a correct (and complete) evaluation of a branching
program on some specific input as directed by the inp function of the program.
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If 7(9) is identically 0, then the adversary A receives 0 in return. Otherwise, the adversary A
receives 1 in return.

Comparing the Abstract Model to other Idealized Models. We briefly compare the Ab-
stract Model described above to the ideal graded encoding model that has traditionally been used
to argue about obfuscation security in prior works, e.g. as in the [BR14, BGK™14]. All adversarial
behavior allowed within the Ideal Graded Encoding model is captured by Type 1 queries in the
Abstract Model and the Type 2 queries are not considered. The works of [GMM 16, DGG'16]
argue security in this new model also referred to as the Weak Multilinear Map Model.

3.2 Obfuscation in the Annihilation Attack Model

The abstract obfuscator O takes as input a branching program A of length ¢, input length n, and
arity w. We describe our obfuscation using notation slightly different from Miles et al. [MSZ16] as
it suits our setting better and is closer to notation of branching programs (Def. 2.4). The branching
program has an associated input-indexing function inp : [(] — [n]”. The branching program has
2 - £+ 2 matrices Ao, {Aip}icgpefow), Arr1- In most generality, in order to evaluate a branching
program on input x, we compute the matrix product

¢
AT) = Ao - [ [ Aiatinpti) - Ars,
1=1

where x[inp(i)] denotes the bits of = at locations described by the set inp(i). Finally the program
outputs 0 if and only if A(T) = 0. (Note that w = 1 corresponds to the case of single-input
obfuscation, and w = 2 corresponds to dual-input obfuscation, in the sense of [BGK14].)

The abstract obfuscator randomizes its input branching program by sampling random matrices
{Ri}ice41) (Killian randomizers) and random scalars {a;p }ic[g pefo,13»» then setting

Ag = Ag - RV, Ay i=oip(Ri- Agy - Rffl), Zz\; = Rop1 - At

that are the abstract model’s arbitrary secret variables. Here R¥ denotes the adjugate matrix of
R that satisfies R*Y - R = det(R) - I. Then the obfuscator defines the public variables to be

Yo:=Ao+920; Yip:=Aip+9Zip; Yigr:= Ay + 92041,

where g is the special secret variable and Z;s are the random variables. This defines the abstract
obfuscated program O(A) = {Y;};. The set of valid Type 1 polynomials consists of all the honest
evaluations of the branching program. This is, the allowed polynomials are

V4
pe = Yo [ [ Yiafinp(i) - Yer1,

i=1

for all z € {0,1}".17

"Looking ahead, the Z;s are random noise component sampled in the encoding procedure of GGH13 maps and ¢
is a “short” generator of the ideal lattice. The abstract model is agnostic to the exact choice of those variables, but
only depends on the structure of the variables.

13



3.3 Abstract Indistinguishability Obfuscation Security

We define security of iO in the abstract model. Formally consider the following indistinguishability
game consisting of three phases.

Set Up. The adversary A comes up with a pair of matrix branching programs (Ao, A1) that are
(i) functionally equivalent, (ii) of same length and (iii) input oblivious and some auxiliary
information aux. A outputs the pair (Ag, A1) to the challenger.

Challenge. The challenger applies the abstract obfuscator O to a branching program, uniformly
chosen as Ay < {Ap, A1} and returns the public variables {Yy,{Y;}, Yo11}, generated by
applying O to Ay, to the adversary.

Pre-zeroing (Type-1) Queries. In this phase the adversary makes several type-1 valid queries
pr and gets back handles {W7y, W, .. .}.

Post-zeroing (Type-2) Query. In this phase the adversary makes one type-2 query r with some
degree poly(\) polynomial @) over the formal variables corresponding to handles {W7, Wa, ...}
and receives a bit as a response from the challenger. Finally A outputs its guess ' € {0,1}.

Definition 3.1 (Abstract iO Security). An abstract obfuscation candidate O is called an indistin-
guishability obfuscator if for any probabilistic polynomial time adversary A the probability that A
guesses the choice of Ay correctly is negligibly close to 1/2. Formally, in the above game

| Pr[b = b'] — 1/2] < negl(N)

for any security parameter X\ € N, where the probability is over the randomness of A and the
challenger.

4 Partially Inequivalent Branching Programs

In this section, we provide a formal condition on two branching programs, namely partial inequiv-
alence, that is sufficient for launching a distinguishing attack in the abstract model. In Section 5
we prove that this condition is sufficient for the attack.'®

Definition 4.1 (Partial Products). Let A = (inp, Ao, {Aip}ic[gpefo,13»s Aer1) be a branching pro-
gram of matriz-dimension d and length £ over n-bit input and arity-w.

1. For any input x € {0,1}" and any indexi € [{+1]U{0} we define the vectors (;SX)I as follows:

i—1 7 T 1xd? o
(Ao 15 Aj,x[inp(j)]) ® <Hj:i+1 Aj 2linp ()] 'Az+1> € {0,1} if 1€ ]
() det T
¢A,x - <H§:1 AJ,Z[mp(])] . Ag+1) c {O, 1}1><d Zf 1 =0 >

Ao - TTj2y Ajafinp(iy) € 10,1314 ifi=l+1

18We note that this condition is not necessary. Looking ahead, we only consider first order partially inequivalent
programs in paper and remark that higher order partially inequivalent programs could also be distinguished using
our techniques.
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Additionally, define q§f;)x for single-input branching programs as:

Wx)’x | 0] if ie[f] and z[inp(i)] = 0
One = {07 | 6R,] i i€l andafinp()] =1
¢X>x if i=0orl+1

)

where inp is a function from [{] — [n] and that x[inp(z)] denotes the bits of x corresponding to

location described by inp(x). More generally, for multi-input branching programs define 55()95
as:

a(l) déf [Ow[lnp(l)}dQ ‘ gbggx ‘ O(Qw*x[inp(i)}fl)dQ] if ic [g]
. d)x),x if i=0o0rl+1’

where inp is a function from [£] — [n]* and that x[inp(z)] denotes the bits of x corresponding
to locations described by set inp(z).

2. Then the linear partial product vector ¢, , and the quadratic partial product vector
YA of A with respect to x are defined as:

def (0 T(+1 w p g2
dasE OR | o | ORI € {0, 13 Cnen,
VA o DaL @ baz €10, 1324274,
where * = x ¢ 1".
3. For a set of inputs X = {x1,x2,...,2m} the the linear partial product matriz ®a x and
the quadratic partial product matriz VA x of A with respect to X :
¢A,x1
D x def ¢§~’f2 e {0, 1}m><(2d+2“’£d2)
¢A7xm
¢A,1‘1 + wA,fl
YAz, t¥az w
Uax Wop (RO, v+ 8, cRDpx = | 52 07| g0, 1ymxdt2eid)?
wA,:pm + /‘/JA,Em

where X {Z1,T2, ...}

19

9Note that in the above definition we sum the row-wise tensors. Looking ahead, this is done to capture the

commutativity in the polynomial multiplications. Namely since for any two ring elements z1, z2 we have z122 = 2221,
their coefficients add up. Also note that the sum in the above expression equivalently double the coefficients of the

quadratic terms 27, z2. But, due to our choices of inputs z,Z we would only have such terms for the bookends which
are nonetheless always stays the same (in fact they are independent of the actual program) and does not affect the

column-space.
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Definition 4.2 (Partially Inequivalent). Let Ay and A be two matriz branching programs of
matriz-dimension d and length £ over n-bit input and arity-w. Then they are called partially
inequivalent if there exists a polynomial in security parameter sized set X of inputs such that:

e For every x € X, we have that Ag(x) = A1(z) =0 and Ao(Z) = A1(T) = 0.

o colsp (Ua, x) # colsp (U a, x).

Lemma 4.3. For any matriz branching program A we have that for any two inputs x,x’ the linear
partial product vectors ¢p , and @ . contain the same number of 1’s.

Proof. Note that for any input = and index ¢, via definition of quX) »» we have:

¢X),x = (Ao Pot ® Ay - Pa)

for some x dependent permutations P,; and P,2. Note that Ap is a row vector and therefore
Ag- Py 1 is also a row vector. Since P, ; therefore we conclude that Ham(Ag- P, 1) = Ham(Ag) where
Ham(Ap) is the hamming weight of the vector Ay (specifically, the number of locations at which
it is 1). Similarly, Ham(Py 2 - A¢11) = Ham(Agy1). Hence, the Ham(¢, ) = Ham(Ag)Ham(Az11)
which is independent of z. Consequently, Ham(¢, ,,) = (£ + 2)Ham(Ag)Ham(A,y1) which is also
independent of x. This concludes the proof. O

5 Annihilation Attack for Partially Inequivalent Programs

In this section, we describe an abstract annihilation attack against any two branching programs
that are partially inequivalent. In this section, we show an attack only in the abstract model and
provide details on how it can be extended to the real GGH13 setting in Section 6. Formally we
prove the following theorem.

Theorem 5.1. Let O be the generic obfuscator described in Sec. 3.2. Then for any two functionally
equivalent same length branching programs Ag, A1 that are partially inequivalent there exists a
probabilistic polynomial time attacker that distinguishes between between O(Ag) and O(A1) with
noticeable probability in the abstract attack model (violating Definition 3.1).

Proof of Theorem 5.1. Below we provide the proof.

Setup for the attack. The provided branching programs Ay and A; are provided to be func-
tionally equivalent and partially inequivalent. Therefore there exists a set X such that: (1) for
all z € X, Ag(z) = Ag(ZT) = Ai(z) = A1(T) = 0, and (2) colsp (¥ a, x) # colsp (Va, x). We will
assume that the adversary has access to X as auxiliary information.

Challenge. A receives as a challenge the obfuscation of the branching program: A € {Ag, A}
by the challenger. Recall from the description of the abstract obfuscator that, the obfuscation of
program A = (inp, Ao, {Aip}ic[gpefo,1}ws Aer1), denoted by O(A) consists of the following public
variables:

Yo := Ao - R'lldj +920, Yip =i pRi-Aip- R?ijl +9Zip, Yo:= Rey1 - A1 + 9Zo,

where the arbitrary secret variables are:

~ def adi ~  def adj - def
Ao = Ao RYY, Aip = aip(Rip - Aip - BYY), Avyr = Regr - Ay
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for random variables (i.e. Killian randomizers) Ry, {R;}, R¢+1 and the random secret variables are
denoted by Zg, {Ziyb}ie[g],be{()’l}w, Zy41 and the special secret variable is g. Via change of variables
we can equivalently write:

Yo := (Ao +9Z0) - RYY; Yip = cipRi- (Aip+9Zip) - Rﬁjl; Yey1 = R - (Aeyr + 9Zes1).

Pre-Zeroizing Computation (Type-1 queries). On receiving the obfuscation of A € {Ag, A1},
O(A) = {Y0,{Yis}, Yot1} the attacker, in the pre-zeroizing step, performs a “valid” Type-1 queries
on all the inputs X, X where X = {z1,...,7n}, X = {F1,...,Tm}. That is, for any = € {0,1}",
and the abstract obfuscation O(A), the attacker queries the polynomial:

14

PA,x =Yy - Hn,x[inp(i)] ) n+1-
=1

Then, expressing Py , stratified as powers of g we obtain:
0 1 e 2)
Pas=PoL({Yih) +9- PALUY) +.+ g™ PUED (1)
for some polynomials Pg)x({YZ}z) (7 €{0,....,0 +1}). However, by Lemma 5.2 we have that:
0 ~
PI(&)QC = payA(x)
def Y

for p = T, det(R:) (or pI =[], BiVR;) and &, = I, i,

(0)
A(z) = 0, the polynomial P, Az is identically 0. Consequently, for each such Type 1 query the
attacker receives a new handle to a variable Wa . that can be expressed as follows:

(i) Since for x € X we have that

Waw = Pas/g= PR, +g- PR+ .+ g™ PP,
Analogously, the attacker obtains handles Wa z. After obtaining handles
{(WA,M ) WA,@)? "‘(WAwm? WA@m)}

the attacker starts the post-zeroizing phase.

Post-Zeroizing Computation. The goal of post-zeroizing computation is to find a polynomial
@™ of degree poly(\) such that following holds for some b € {0, 1}:

nn/ p(1) (1) (1 1) —
0 ey, . PY L PO PY =

nn 1 1 1
( ) Qa ( Aq_ bxl’ngl)_b,fl : Agl) bsTm’ Agl) bmm) ¢ 0.

Clearly, this leads to an attack on the obfuscation security(c.f. Definition 3.1) as A would receive
0 from the challenger if and only if Q*""(P, Al Ll,Pg)ﬁ..., Pj(;;m, Pz(kl,)fm) is identically zero, hence it
would receive 0 if and only if Ay is chosen by the challenger in the challenge phase. To find such
Q2" the attacker continues as follows. Observe that by Lemma 5.2, for every x € X we have that:

P = paa(¢a, - 27) (2)
PY) = pas(dpz- 27 (3)
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Next, multiplying the polynomials P f“) and P( ) ~ (Eq. 2 and Eq. 3) we get:

AL PP

»L

P ((Q—"A 2 2 ® (¢A,E -z") (4)
= p2A(1rbA T 2 ® z )

(1)
Pp %

~def ~ ~ . . . ..
where & = a0z is now independent of input x. Similarly we can also have:

Py € PUPY = 026 (faz- 2T) @ (da. - 27))
= p’a ((¢AE @ Pa ) (T ® ZT))

Py 4+ P = 2P1§17)30Pfj’)5 - 2&(1/;“ 2T 02" + pPa(as - 2T @ 2T)
(¢Az+¢Az) ( T®zT)

Using the given conditions that Wa, x and Wa, x have distinct column spaces (and hence
distinct left-kernel) the attacker can efficiently compute (e.g. via Gaussian Elimination) a vector
Vann € {0,1}1%™ that belongs to it left-kernel, call it the annihilating vector, such that for some
b€ {0,1} we have:

Q)

Vann - YA, x =0 but Vann - VA, _,.x #0.

The corresponding annihilation polynomial *"" can be written as:

WA o, WAz,
a0 (s o Waz,se s Wam, Waz,) = Vann - :
( Az ATy A,z Az, — Vann

Vann

WA,acm WA,Em

Observe that the coefficient of ¢° in the expression Q2™ Waz, Waz,-- s Waz, Waz,,) from

Vann

above is equal to Q3" (ng m’Pf\lb) Zp Pjglb) . Pz(&lb)fm)' Moreover this value for A = Ay is:

1 1 1 1 \IIA X —
iz:n (Péb),xl7plgb)7fl‘“7 PI(Xb),:r:m’ Pgb)yf'm) = Vann * 2b . (z ® Z)T — 0

but for Aq_p:

v
1 1 1 1 Ay, X
Van (Pél)fb@l’PAgl)szfl'“’ Pél)—b,mm,’ Plgq)fb,fm) = Vamn - 1Tb ' ( © z)T #0.

Vann

Hence, the response to Type 2 query is sufficient to distinguish between obfuscation of A; and
A;_; in the abstract model. This concludes the proof.

Evaluations of Pg))w and P,«(;l)z- Below we provide a lemma that described what the terms Pg)zc
and Pz(;l)m look like.
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Lemma 5.2. For every x € {0,1}", we have that:

P_/(&O,)z = paz A(x)

PY) = pau(da. - 2")

)

~ def . .,
where p H det(R;) and a, = Hle i @) and z is a vector consisting of the random terms
20, Zip, and Zyqq used to generate the obfuscation terms Yy, Y;yp, and Yyy1 in an appropriate se-
quence.

Proof of Lemma 5.2. For each z € {0, 1}" note that:

¢
o~ _ _
P,(;;; =Ap- H A afinp(i)] * A1

=1

l
= Ao R{Y <[] (az',ocsz‘ + Ai afinp(i)] - R;'l-ijl) X Res1 - App
=1
= pazA(z)

for p & [1, det(R;) (or pI = [, R*YR;) and @, o 1, iy
Also, note that for any = € {0,1}" we can express PSZB as

(ON

¢
Py =Zy RV . HAj,m[inP(j)] “Ae

l i—1 4
adj e A
+2_ A H jlinp(7)] ° (Oéi,x[inpm]Ri *Zialinp(i)] Ri-i—jl) I Avatinpy) - A
i=1 j=1 j=i+1
~ 2 ~
+ Ao - H Aj 2linp()] * Be1 - Zia
j=1

y4
= pas | Zo- [ 1 Ajatiop() - At

j=1
l i—1
+ pam Z Ag - H A] z[inp(5)] Z; linp(?)] H A z[inp(j AZ—H
=1 j=1
l
+ paiz | Ao - H Aj 2linp()] * Le+1 (6)
j=1
Now, define:
def dx1 def dx1
zg = vec (Zy) € {0,1} , Zpy1 = vec (Zpyq) € {0,137,
and

Zip def Ve (Zip) €10, 1}d2X1
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Now, we set??

zZ; = [Z’L,Z:O | ZZZ:I | R | Z;Z:Qw_l] .

And finally set, as

def

w 2
2= [zo | 21| | 20 | zen) € {0, 1)@ D4

where z consists of all random secret variables involved in O(A). Next using the property of tensor

products (Property 2.3) we can rewrite Eq. 6 as:

l
Pg?ﬁ- = vec (PSL) = pazvec | Zy - H Aj 2linp()] - Aer
j=1
¢

+P%Zvec Ag - HAax[mpon Ziafinp()) - | [ Ajetinp()] - At

i=1 j=1 j=1

¢
+ pagvec | Ap - H Ajafinp(j)) - Ze+1

j=1
, T
H Aj 2linp(g)]) " Aer1 | - 2o
j=1
¢ i1 ¢
+ pa Z Ag - H Aj linp()] | © H Aj alinp(j)]
i=1 j=1 j=i+1
¢
+ pay | Ao - H Aj 2inp(G)] | - Ze+1
=1
’ ¢
= pax <¢52,)x "Zo + Z ¢X),x " Zi z[inp(i)] + ¢5£jg—cl) : Z€+1>
=1

= p, <¢M 20 +Z¢M zi+ 04 2 )

=1
= pax(ﬁﬁA@ ' ZT)

6 Extending the Abstract Attack to GGH13 Multilinear Maps

In this section, we show that an attack in abstract model described in Section 3.1 can be translated
to an attack in the GGH13 setting. This part of the attack is heuristic and analogous to some of

the previous attacks on GGH13 such as in [GGH13a, MSZ16, CHL"15].

6.1 The GGH13 Scheme: Background

In the GGH13 scheme [GGH13a], the plaintext space is a quotient ring R/gR, where R is the
ring of integers in a cyclotomic number field and g € R is a “small prime element.” The space of

290bserve that for the single input case z; = [ZEQ | ZE1]
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encodings is R, = R/qR for a large (exponential in the security parameter \) modulus g. We write
[-] to denote operations are done mod g.

A uniformly random secret z1...zp € Ry is chosen, and used to encode plaintext values as
follows: A plaintext element @ € R/gR is encoded at the level-1 as u = [¢/z],, where the numerator
cis a “small” element in the coset of a; i.e. ¢ = a+ gr for a small random term r € R, chosen from
an appropriate distribution. We describe the GGH13 and our attack assuming use of “symmetric”
multilinear maps just for simplicity of notation. Note that in our attacks we compute on provided
multilinear maps encodings in a prescribed manner. Furthermore, the z always vanish in our
attacks. Therefore, the attack immediately generalize to the “asymmetric GGH” setting, with
many distinct choices of z’s and we continue to use the “symmetric” notation for simplicity.

Addition and subtraction of encodings at the same level is performed by addition in R,, and
outputs an encoding of the sum of the encoded plaintext values at the same level. Multiplication of
encodings at levels t; and to yields a new level-t; + t5 encoding of the product of the corresponding
plaintexts.

The level-k encodings of the zero plaintest, 0 € R/gR, have the form u = [gr/z*],. Public
parameter of the GGH13 multilinear maps include a public zero-testing parameter p, = [hzk /9lq,
for a “somewhat small’ element h € R, which is roughly of size /q. The zero-test operation involves
multiplying p, by a level-k encoding u, and checking if the result [p, - u], is much smaller than the
modulus ¢. Note that if u is indeed an encoding of zero then we have that [p, - u], = [hr],. If b, 7,
are much smaller than ¢ then we have that this computed value will also be much smaller than q.
On the other hand if u = [¢/2¥], is not an encoding of zero, then we have that [p, - u], = [¢/g],
will be large.

6.2 Translating the Abstract Attack to GGH13

In this section, we assume that we are provided programs Ag and A1, set of inputs X and a vector
Vann such that vann-¥a, x- (z®2)T =0 and vann WA, x- (z®2)T # 0. Recall that van, is sufficient
to complete an attack in the abstract model. Given the above we describe an attack strategy of
distinguishing between obfuscations of Ag and A; generated using GGH13 multilinear maps. We
do this in two steps. In the first step, we will use the abstract attack to compute an element u
whose distribution depends on whether Ay was used or A; was used. We explain this step in this
subsection below. The second step that involves efficiently testing the distribution from which w is
sampled is described in the next subsection.

Our attack is provided an obfuscation of either A € {Ag, A1} and it proceeds as follows. It
mimics the abstract attack for the pre-zeroing computation queries by computing the values using
the provided encodings. Since only “valid” queries were made in the abstract model, therefore the
corresponding computation can be done locally. Specifically, for each x € X, we obtain

2k

Pa.] | PAL+aPL +6%(.)
zk q_

Since, Pjgol = 0, zero-testing on this value yields a value that is unreduced mod ¢. In particular,
zero-test reveals the value:

Wae=h (P}j}x +g(.. .)) .
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Using these values, we set u = vann - Wa x where

WA,xl WA,E1

. Note that if A = Ag then we have that u € (p>ah?g), where p def I, det(R;) and @ O §.ds

both of which are fixed terms. On the other hand, if A = A then we have that u ¢ (p?’ah’g)
with overwhelming probability by Schwartz-Zippel Lemma.

6.3 Completing the Attack for Large Enough Circuits

In order to complete the attack we need to check if u obtained in the previous step is in the
ideal (p*>ah?g) or not. Below we describe a method to compute several (heuristically) linearly
independent elements is in the ideal J = (p?a2h'g). Note that if u € (p’ah’g) then u? € J as
well. However, because g is prime, if u ¢ (p?>a¢h?g) then uw? will not be in J.

Let X1, Xo,... be disjoint sets of inputs such that for each i we have that X; N (X U X) = 0,
|X;| = (2d + 2*¢d?)? and that Vx € X; we have that A(z) = A(Z) = 0.2! Since, the number of
inputs is 2" for a large enough circuit we can define any polynomial number of such sets Xj.

Note that for each i, since the number of equations is larger than the number of variables,
therefore Ja;, b; such that a;- Wa, x, = 0 and b; - V4, x, = 0. Therefore, for A € {Ag, A1} we can

conclude that (a; - WAJQ)(bfi -Wax,) € J = (p*a®h*g) where

WA,xi,l WA,fi,l
WA,XZ‘ =
WAyxi,m WAyfi,m
and X; = {z;1,%i2,...,Tim}. Repeating this process for each choice of i we obtain several elements

in J. Note that these values are linearly independent except that some of these values (possibly
all of them) might actually be in J' = <p4d2h4g2>. However, this doesn’t affect our attack because
u? is in J' as well.

7 Example of Partially Inequivalent Circuits

In this section, we show examples of pairs of NC! circuits such that the corresponding Barrington-
implemented branching programs are partially inequivalent and therefore are subject to the abstract
annihilation attacks shown in Section 5. Note that here we extend the notion of partial inequiv-
alence from branching programs to circuits in a natural way. Unless otherwise mentioned, partial
inequivaelnce of circuits specifically imply that the corresponding branching programs generated
via applying Barrngton’s Theorem are partially inequivalent.

21Gince the programs are functionally equivalent we have this condition.
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7.1 Simple Pairs of Circuits that are Partially Inequivalent

Consider the following pair of circuits (Cp,C1) each of which implements a boolean function
{0,1}* — {0,1}:

Co(@)] = (1) A1) A\ (@[2] A 0) A(@[3] A1) A([4] A 0),
Cr(x) & (1] A 0) A(2[2] A 0) A (2[3] A 0) A\ (2[4] A 0).

Define the set X & {0,1}*. Now, we provide an implementation (see Appendix A for more details
on the implementation) in Sage[S*16] that evaluates the column spaces of matrices produced via
applying a Barrington-implementation to the above circuits. The outcome from the implementation
led us to conclude the following claim:

Claim 7.1. Let Ac,,Ac, be the Barrington-Implementation of the circuits Co,Cy respectively,
then we have that:

colsp (\I’ACWX) = colsp (\I/AC1 7X) .

Remark 7.2. We emphasize that we use branching programs generated with a particular Barrington-
implementation that makes a set of specific choices. We remark that Barrington’s construction can
be implemented in many different ways. However, since in this section we aim to find one concrete
example for which the condition of our abstract attack satisfies, we restrict ourselves to this specific
program. We refer the reader to Appendiz A for the details of our implementation. Throughout
this section we refer to this particular Barrington-implementation.

The circuits presented above are of constant size. Looking ahead, though, they are partially
inequivalent and hence (by Theorem 5.1) are susceptible to the abstract attack that does not
translate to a real-world attack in GGH13 setting immediately. For that we need to consider larger
(albeit NC') circuits which we construct next based on the above circuits.

7.2 Larger Pairs of Circuits that are Partially Inequivalent

We construct pairs of NC! circuits (in fact, exponentially many of them) that build on the constant-
size circuits described in Sec. 7.1.

Consider any pair of functionally equivalent NC! circuits (Do, D;) and an input z* € {0,1}"
such that Do(z*) = Dy(2*) = Do(2*) = D1(2*) = 0. Now define the circuits Ey, E; each of which
computes a boolean function {0,1}"™* — {0, 1} as follows:

Eo(y) © ~Co(x) A Do(a"),

ef
Bi(y) € =C1(x) A Di(&)
(=C is the circuit C' with output negated) such that for each y € {0,1}"** we have y = x 0 2’ (o

denotes concatenation) where = € {0,1}4 and 2’ € {0, 1}". Define the input-sequence Y’ & {zox*|
x € {0,1}*} (consisting of 16 inputs). Then we show the following statement.

Lemma 7.3. Let Ag,, A, be the Barrington-implementations of Ey, E1 respectively, then we have
that:

colsp (\IIAEO’Y) = colsp (‘I'AEI,Y) ,
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Proof. As a first step, similar to Claim 7.1 we also verify the following claims via our Sage-
implementations (c.f. Appendix A for more details on the implementation).

Claim 7.4. Let A_c,, A-c, be the Barrington-implementations of the circuits ~Cy,~C1 respec-
tively, then we have that:

colsp (‘I’Aﬁco,X) = colsp (‘I’Aﬁcl,x> .

Claim 7.5. Let A_cyr0, A-cyn0 be the Barrington-implementations of the circuits ~Co A0, ~C1 A0
respectively, then we have that:

colsp (‘I’Aﬂcvo,X) = colsp (\I’Aﬂcle,X>

Now, recall (Def. 2.4) that any branching program A has the following representation:
A = (inp, Ao, {Aip}icin pefo,1} Aet1)-

Let us call the “core” of A as: A’ % {A1p, ... ,Ag,b}be{071}.22 For any such A’ we define the inverse
as A/ {Azg, Az_jl,lﬂ . vAl_,tl;}be{O,l}' Furthermore, for any permutation matrix p € S5 (recall
that Barrington-implementation works with matrices in the symmetric group S;5). we define an
operation on A’:

p(Al)pil = {(p : Al,b)7 {Ai,b}i€[€}7 (pil . Af,b)}b€{071}

Now recall that using the construction from Barrington’s Theorem with the above notations we
can write for any choice of £ € (Ey, E1) (where E = C A D)

A'_crp = (p(A'-c)p ) o (Q(A/B)Q_l) o(p(A'-c) 'p o (e(A'p) o) 9)
(I)AﬁC/\DvY Mo My Mo Ms

where p, o € S5 are specific to the Barrington-implementation (see Appendix A for the exact values
we used). Now we can split the linear partial matrix of A_cap into four parts:

def
DA _eppy = [Mo| My | My | Ms]

where each M; is corresponding to a part of the core A’cap as shown in Eq. 9. However, since we
have D,+ =0 for all y = x o 2* in Y clearly when ¢ is in the range of M or Ms for any y1,y2 € Y
we get that:
() _ (@)
¢AﬁCADayl - ¢AﬁC/\D7y2'

which implies that My, M3 € T where T is a family of all “trivial matrices” with columns which
are either all 0 or all 1:

1--- 0
1--- 0
1--- 0

22The order of the matrices are taken into account here and the evaluation of branching program depends on that.
So, essentially we abuse notations of sets to denote an ordered tuple here. Unless otherwise mentions we assume that
the set {Ai’b}ig[[]’be{o’l} is ordered as {Al,by ceey Ag,b}b€{071}
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Again, using Barrington’s Theorem for the circuit =C' A 0 we have that:

A'_cno = (p(A'c)p o (e(ID)e ) o(p(Al-c)tpt)o (Q(ID)V‘IQ‘I) (10)
‘I:'Aﬁc/\O,X No Ny No N3

for X = {0,1}* where we again have N1, N3 € T. Moreover, using again the fact that for any
y=xox* in Y we have that D(z*) = 0, the core of D would always evaluates to I.D on any choice

of y € Y. Hence when i lies in the range of My, My the partial vectors ¢X)ﬂcw,Y are independent
of the part of the program corresponding to the ranges of M7, M3. Therefore, we can conclude that
the i-th partial vectors corresponding to ranges My, My would be equal to the i-th corresponding
to ranges Ny, No. Hence,

MO = Ng and M2 = N2

On the other hand, via exactly the same analysis for the inputs Y = {7 | T o0 2*},¢(9,134 we have
that:

®p v = [Mo| My | Ms|Ms]
Pp ox = [Nol Ni| Nao| N3

where My, M3, N1, N3 € T and
MQ = N(] and MQ = WQ.

Hence we conclude:

colsp (A ¢ p,v) = colsp ([Ii;[M; R M;]] + [; ;[M; B M;]]) (11)

= colsp ([7 | ; jeqo,2 [M; B M;]| + [7'| O; jego,03[M; B Mj]]) (12)

for some 7,7/ € T. Note that, in the above equations the first step follows from Fact 2.5. In the
second step we first observe that for 7,7 € T and any matrix M;, M; we have that colsp (7 X M;) =
colsp (M;) (colsp (TR M;) = colsp (M;)). Also it is straightforward to verify that each of the

matrices {M;, M }ie3ju0} has the same number of 1’s in each row. Hence we use Lemma 2.13 to
obtain the final expression. Similarly we get:

colsp (Wa_q,0,x) = colsp ([;;[N; B N;] + [[;;[N; K N;]]) (13)

= CO|Sp ([O’ | Hi,jE{O,Q} [Nz D N]]] + |:O', | [Ii,jG{O,Q} [NZ X N]]]) (14)

for some 0,0’ € T. -
Using the facts, My = Ny and My = Ny, for k € {0,2} from Eq. 12 and Eq. 14 we get:

COlSp (\I]A_.c/\D,Y) - COISp (lI/A—‘C/\va) :

Now combining this equation with Claim 7.5 the lemma follows.
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7.3 Universal Circuit Leading to Partially Inequivalent Branching Programs

In this section we present constructions of (NCI) universal circuits that, when compiled with two
arbitrary distinct (NCl) but functionally equivalent circuits as inputs, then the obfuscations of the
Barrington-implementation of the compiled circuits are distinguishable by the abstract attack.

For any circuit C, its description is denoted by a bit-string, abusing notation slightly we use
the same symbol C' to represent the description of C.

Definition 7.6 (Universal Circuits). An wuniversal circuit U is a boolean circuit that computes
a function {0,131 x {0,1}" — {0,1} which takes two inputs, a A-bit circuit-description of some
boolean circuit C : {0,1}"™ — {0,1} and a n-bit input x to output C(z). We denote U(C, x) o C(z).

We also denote the compiled universal circuit with the description of C hard-coded into it by U[C].

Theorem 7.7. There exists a family of NC' universal circuits U = {U1,Us,..., Uy} of size v =
O(poly(N)) such that: given two arbitrary functionally equivalent NC' circuits Gy, Gy that computes
arbitrary boolean function {0,1}™ — {0,1} satisfying (i) |Go| = |G1| = v and (ii) there exists an
input x* such that Go(x*) = Gi(x*) = Go(z*) = Gi1(x*) = 0; then for at least one i € [v] the
Barrington-implementations of the circuits U;|Go| and U;[G1] are partially inequivalent.

Proof. Our construction of the family U is similar to the construction of circuits Ey, E1 constructed
in Section 7.1

Construction of the family /. Given a universal circuit U’ we construct a family of NC* universal
circuits U = {Uy, ..., U,} where each Uj; is described as follows for any circuit G : {0,1}" — {0,1}
we define U;[G]

UilG)(y,x) = Cly) AU{(G,z) where C = (y[1] AG[]) \(w[2] A 0) A\WIB] A GLT) /\ (4] A 0),

as the circuit from {0,1}"** — {0,1}. Since the given circuits must have different descriptions,
they differ by at least one bit location, say i*" location. Clearly, assuming that Go[i] = 1 and
G1]i] = 0 the circuit U;[Gp] is the same as the circuit Ej as described in Sec. 7.2. Hence applying
Lemma 7.3 we conclude that, if Go[i] = 1 and G1[i] = 0 then,

colsp (\I]AUi[GQ]vx) # colsp (\IJAUi[Gl]’X) )

where X = {zoa* |z € {0,1}*}.
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A Some details on our implementation

In this section we provide details on our Barrington-implementation and discuss some optimizations
in the Sage-code.

Overview of Barrington’s Programs [Bar89]. Barrington’s construction works over permu-
tations in the symmetric group S;. We assume that permutations are represented as matrices for
all practical purpose. A Barrington-implementation specifies permutations «, 3,~, p, 0 € S5 such
that the following holds:

e o, 3 are 5-cycles.

e v=0aBa B! and one can verify that ~ is also a cycle.

epv-pl=a

s0- v 0 =0
We define some syntaxes for branching programs. Some of them are redefinitions from Sec. 7.2
(provided in the proof of Lemma 7.3 as it uses some details on Barrington-implementations).

Core of a Branching Program. Recall (Def. 2.4) that any branching program A has the
following representation:

A = (inp, Ao, {Ai,b}ie[ﬁ],be{o,l}v Agg1)-

Let us call the “core” of A as: A/ < {A1p, . Ay toeqoay->> For any such A’ we define the

. —1 def — _ _ . .
inverse as A’ = {AU}, Aé—ll,b7 e 7A1,;}be{0,1}- Furthermore, for any permutation matrix p € Ss
we define an operation on A’:

— def —
p(A,)p == {(p : Al,b)? {Ai,b}i€[€]7 (Aﬁ,b P 1)}176{0,1}

v-computation. Any branching program Ac = (inp, Ao, {Aip}icipefo,1}, Aey1) is said to be
~-computes a boolean circuit C' if the following holds:

ﬁA- | v when C(z)=1
1 seline@] = 1 1D5*5  when C(z) =0

If Ac,, Ac, v-computes Cp, C; then one can construct Ag,ac, that v-computes C = Cy A C as
follows:

A'cones = (p(Alcy)p ) o (e(Alc)e ) o (p(Alcy) 'p ) o (e(Aley) Te™)

23The order of the matrices are taken into account here and the evaluation of branching program depends on that.
So, essentially we abuse notations of sets to denote an ordered tuple here. Unless otherwise mentioned we assume
that the set {Ai,b}ie[é],be{o,l} is ordered as {Al,bv .. 7Ai,b}be{0,1}
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and with the same bookends.?*

Let us also define the operation (A’) -~ as (A') -~ def {A1ps -5 Ag, - Y}peqo) that has the
final pairs right-multiplied with . Then one can construct another branching program A_o that
~-computes the circuit ~C' as follows:

Ao = (A

Since any boolean circuit can be converted to a circuit containing only NOT (=) and AND (A)
gates Barrington’s theorem [Bar86] follows.

Our Barrington-implementation. We choose the following permutations for our implementa-

tion:
0 1 0 0 0]
» 00100
a=(1-2-3-4-5=1|000 10
00001
100 0 0
0 0 1 0 0]
10000
B 1535554 2)=10 00 0 1
01000
000 1 0
0 0 1 0 0]
0000 1
v 153525554 =]0 10 0 0
1000 0
000 1 0
10 0 0 0]
00100
pa—y)=(1-12-33-324-55-4)=0100 0
0000 1
000 1 0
10 0 0 0]
000710
0¥ (B =(1-1,3-35-24-52-4)=1[00 1 0 0
0000 1
010 0 0

240ur input function is a fixed one and designed as suggested by Barrington’s Theorem. Namely to compute a
program of size 4 on 2-bit input, aBa " *B3~! we use input function inp = (1 — 1,1 — 2,3 — 1,4 — 2), that is the
first position of the program reads the first bit, the fourth position the second and so on. Similarly for AND operation
the input-functions can be extended with adjusted indexes. For more details we refer to Barrington’s result [Bar86].
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We fix the bookends to:

A% 00 0 0] and 4 Y

== == O

Source Code and Experimental Set-Up. We provide an implementation in Sage [ST16].
The sage-executable file named implementations.sagews and a corresponding pdf file (implementa-
tions.pdf) of our source-code can be found at https://people.eecs.berkeley.edu/~pratyay85/
Implementations.zip. The code can be run on the SageMath cloud server ( https://sagemath.
cloud/) The approximate performance for the 3 circuits on the SageMath cloud are given below:

Circuit Approx time Approx memory
C 3100 sec (~ 55 minutes) 4 GB
-C 3100 sec (~ 55 minutes) 4 GB
-C'AO 33400 sec (~ 10 hours) 9 GB

Optimizations. Our source-code is not low-level optimized. However, to run the quadratic attack
in practical time we required some algorithmic optimization in order to get the program terminated
in reasonable time. In particular, since the number of columns for the quadratic partial matrix,
VA, x becomes squared compared to number of columns in the linear matrices ®a x, ® AX €even
for the case of the simplest circuits (Ac or A-¢) the estimated time to compute directly Wa x
as (Pa x X q)A,Y + (I)A,Y X ®A x) becomes huge. Instead, we first remove the columns that are
all-zero in both ®4 x,®, « since the corresponding random variables z;; appear in neither of the
linear partial matrices. Then we observe that, even after performing that removal, there are many
columns that are all-zero in exactly one of ®p x,® AX Hence we first collect those that appear
in both and then those appear in one of them. Let us call these three parts My, M+ and M .
Then we have: 7

Z,X = [MX ‘ MX,Y] ‘I’Ly = [MY| MX,Y]

where 7  (resp. @Z,Y) is the same as ®a x (resp. ®, %) but without some all 0 columns (those

appear in none).
Then we compute

N=MxR®, g+ MgRPsx+PaxHP, x+Pax NP, ¢ '= Tax

by combining Fact 2.5 with the above observation. This reduced the number of row-wise tensor
product by at least 2 (even after removing the all-zero columns) as we are not computing tensor
products from both directions for the matrices containing columns that appear only once.

32


https://people.eecs.berkeley.edu/~pratyay85/Implementations.zip
https://people.eecs.berkeley.edu/~pratyay85/Implementations.zip
https://sagemath.cloud/
https://sagemath.cloud/

	Introduction
	Our Contributions
	Partial Inequivalence and Using it for Annihilation Attacks
	What Programs are Partially Inequivalent? Attack on NC1 circuits. 
	Roadmap

	Notations and Preliminaries
	Notation
	Matrix Products
	Column Space of a Matrix
	Branching Programs
	Indistinguishability Obfuscation

	Attack Model for Investigating Annihilation Attacks
	Annihilation Attack Model
	Obfuscation in the Annihilation Attack Model
	Abstract Indistinguishability Obfuscation Security

	Partially Inequivalent Branching Programs
	Annihilation Attack for Partially Inequivalent Programs
	Extending the Abstract Attack to GGH13 Multilinear Maps
	The GGH13 Scheme: Background
	Translating the Abstract Attack to GGH13
	Completing the Attack for Large Enough Circuits

	Example of Partially Inequivalent Circuits
	Simple Pairs of Circuits that are Partially Inequivalent
	Larger Pairs of Circuits that are Partially Inequivalent
	Universal Circuit Leading to Partially Inequivalent Branching Programs

	Some details on our implementation

