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Abstract

In 2010, Resch and Plank proposed a computationally secure secret sharing scheme,
called the AONT-RS scheme. We present a generalisation of their scheme and discuss
two ways in which information is leaked if the scheme is used to distribute small ci-
phertexts. We then discuss how to prevent such leakage and provide a proof of compu-
tational privacy in the random oracle model. Next, we extend the scheme to be robust,
ensuring the distributed data is recoverable even if a bounded number of players submit
incorrect shares. We prove the robust AONT-RS scheme achieves computational pri-
vacy and recoverability in the random oracle model. Finally, we compare the security,
share size and complexity of the robust AONT-RS scheme with a refined version of
Krawczyk’s robust scheme by Bellare and Rogaway.

1 Introduction

A threshold secret sharing scheme describes how to distribute data amongst multiple servers
such that a threshold number can collaborate in order to uniquely reconstruct the data. The
data maintains confidentiality if an insufficient number of servers collaborate.

Secret sharing is particularly useful in distributed storage systems where data is stored
across multiple servers. Ideally, the data stored by each server, called their share, is smaller
than the original data. A user wishing to access the data must access a threshold number
of servers and then combine the retrieved shares.

A distributed storage system such as this enables greater availability, as there is no single
point of failure, and adds redundancy to the system, thereby improving reliability in case
of failures. Furthermore, the servers can be physically distributed, allowing for proximity
to distributed clients, thereby improving both scalability and performance. Secret sharing
also offers security without the reliance on cryptographic keys. In a threshold secret sharing
scheme, an attacker must corrupt at least a threshold number of servers; this is in contrast to
other encryption strategies, where the adversary need only corrupt the one location storing
the cryptographic keys in order to gain access.

In 2010, Resch and Plank proposed a technique for a dispersed storage system, called
AONT-RS [22], which blends an all-or-nothing transform (AONT) [23] with Reed-Solomon
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(RS) coding [21]. The result is a computationally secure (t, n)−threshold secret sharing
scheme in which data is distributed across n servers such that any t servers are able to recover
the data and any set of t − 1 servers reveals only a negligible amount of information. The
AONT-RS scheme is a feature in the object storage system sold by Cleversafe, a company
recently acquired by IBM [10], who renamed the product to IBM Cloud Object Storage.
In 2010 there were over twenty AONT-RS dispersed storage installations around the world
[22]. Since then, the system was rated the overall leader in the Gartner Critical Capabilities
for Object Storage Report in 2016 [7] and its use is expected to grow. The scheme was
developed to address the corruption, theft or loss of devices; it succeeds to the extent that
if up to t− 1 devices are lost the data will maintain confidentiality. However, if any of the
n servers are corrupted and submit incorrect shares, the data is unrecoverable.

In this paper, we present a generalised version of the AONT-RS. In the original scheme,
the block cipher mode of operation, the information dispersal algorithm (IDA) and a method
of ensuring the integrity of the scheme were all specified and embedded in the AONT-RS
definition. We generalise the scheme for any block cipher mode of operation and any IDA
satisfying previously undefined security properties. This gives users flexibility to utilise IDAs
already implemented in their systems. We also define the (previously undefined) security
properties required by the internal encryption system.

We then discuss how the AONT-RS scheme leaks information if it is used to distribute
a small (relative to the security parameter and threshold value) ciphertext. We illustrate
two ways this can happen and discuss what size the data must be in order to avoid this.

Resch and Plank claim their scheme has integrity due to the use of a canary, which
enables an authorised user to confirm whether or not the correct data has been recovered.
However, if the incorrect data was recovered due to an incorrect share being submitted, the
user cannot recover the correct data. To address this issue, we extend the AONT-RS scheme
to be robust by using commitment schemes, as in [24]. The robust scheme ensures that,
even if a bounded number of false shares are submitted, the original data will be recovered.

Resch and Plank also claim their scheme achieves computational security but no thorough
security analysis is provided. We prove that both the robust and non-robust AONT-RS
schemes achieve computational privacy in the random oracle (RO) model. We then prove
the robust AONT-RS achieves computational recoverability, also in the RO model.

Resch and Plank compare the performance of their scheme to Shamir’s perfect secret
sharing scheme [25] and Rabin’s IDA [20]. However, both these schemes have different
security properties to the AONT-RS, with Shamir’s scheme achieving perfect security and
Rabin’s IDA achieving incremental security, where each share reveals a measured amount of
information about the data. Shamir’s scheme achieves stronger security than the AONT-RS,
which in turn achieves stronger security than Rabin’s IDA. Here, we compare the AONT-
RS scheme to Krawczky’s secret sharing made short (SSMS) scheme [13] and the robust
AONT-RS to a robust extension of SSMS by Bellare and Roagway, called HK2 [24]. We
choose these schemes because they provide computational security. The SSMS scheme was
the first computationally secure threshold secret sharing scheme to be proposed and is the
most well-known and used scheme. Resch and Plank mention the SSMS scheme, but only
briefly in an example comparing the share size and security. No further comparison (such
as performance) is conducted.

We compare the security and share size of our robust AONT-RS scheme and HK2.
We then compare the number of bitwise XORs required to distribute and recover data via
both schemes. During the comparison, we do not note the contribution of the commitment
schemes to the share size or complexity, as this contribution would be identical for each
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scheme. As a result, the comparison is also applicable to the non-robust AONT-RS and
SSMS [13].

Our comparison shows the AONT-RS scheme achieves weaker security than the SSMS
scheme; similarly, the robust AONT-RS achieves weaker security than HK2. This is because,
when proving the robust and non-robust AONT-RS, we are forced to use the RO model due
to the use of a hash function. In contrast, SSMS and HK2 are provably secure under
standard assumptions. However, in reducing the security achieved, the (robust) AONT-RS
scheme achieves smaller share sizes, especially when either the security parameter or the
threshold value is large, and can be implemented using fewer bit-wise XORs, but requires a
call to a hash function, which the HK2 scheme does not.

1.1 Related Work

Shamir and Blakely independently introduced secret sharing schemes in 1979 [25, 4]. Shamir’s
was a threshold scheme that achieved information security and minimum share sizes.

In 1994, Krawczyk published a paper proposing a computationally secure secret sharing
scheme (CSS) in the non-robust setting, which the SSMS scheme [13]. Also in this pa-
per, Krawczky proposed goals for a robust CSS scheme, along with a candidate solution.
Previously, the CSS goal had been mentioned by Karnin et al. [11], along with a variant
considering the detection, but not correction, of cheating. Prior to Krawczyk’s work, ro-
bustness had only be studied in the information-theoretic setting by McEliece and Sarwate
[19] and Tompa and Woll [28].

The motivation to Krawczyk’s work was to achieve shares smaller than were possible
in information theoretically secure secret sharing schemes [11]. Krawczyk utilised an IDA
proposed by Rabin [20] in order to achieve smaller share sizes, then added on robustness by
utilising a hash function technique proposed previously [14].

Much of the follow-on work to Krawczyk’s paper focused on achieving CSS for generalised
access structures (rather than for threshold schemes), such as in [1, 6, 18, 29]. Krawczyk’s
work was revisited in 2007 by Bellare and Rogaway [24], in which they revisited the basics
of the robust CSS, proposed formal definitions and proved Krawczyk’s robust scheme to be
secure in the RO model. They then proposed a refined version of Krawczyk’s scheme (called
HK2) that achieves the robust CSS goals under standard assumptions.

Since Bellare and Rogaway’s work, based on our best knowledge, there have been no
new solutions for robust CSS schemes until Resch and Plank’s AONT-RS scheme in 2011
[22], which is studied in detail here and utilises all or nothing transforms and IDAs.

1.2 Contributions

Our contribution can be summarised as follows:
• We present a generalised version of the AONT-RS and highlight the (previously un-

defined) security properties each element of the scheme must have.
• We discuss and illustrate two examples of information leakage in the AONT-RS scheme

that occur if the data being dispersed is small in relation to the security parameter
and threshold value. We discuss what size the data must be to prevent this leakage.

• We prove the AONT-RS scheme achieves computational privacy in the RO model.
• We extend the AONT-RS scheme to be robust using commitment schemes and proof

the robust AONT-RS scheme achieves computational privacy and recoverability in the
RO model.
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• Finally, we conduct a comparison of the robust AONT-RS scheme with the HK2
scheme. We compare the security, storage required and the difference in the bitwise
XOR complexities for both distribution and recovery of the secret. We do not include
the contribution to the share size from the commitment scheme and the contribution
to the complexity from both the commitment scheme and the encryption scheme. This
is because the contribution to both the robust AONT-RS and HK2 would be identical.
Therefore, our comparison is also applicable to the generalised, non-robust AONT-RS
scheme and Krawczyk’s SSMS.

1.3 Organisation

This paper is organised as follows. In Section 2 we present notation and provide definitions.
In Section 3 we present a generalised version of the AONT-RS scheme and discuss informa-
tion leakage when the ciphertext is small, relative to the security parameter and threshold
value. We then prove the AONT-RS scheme achieves computational privacy in the RO
model. In Section 4 we extend the AONT-RS scheme to be robust and prove our extended
scheme achieves both computational privacy and recoverability also in the RO model. In
Section 5 we introduce the HK2 scheme and compare it with the robust AONT-RS scheme.
Our comparison considers the security and share size of the schemes, as well as the number
of bitwise XORs required to distribute and recover data. We conclude in Section 6.

2 Preliminaries

In this section we introduce the definitions and notation used throughout.

2.1 Secret Sharing Schemes

Definition 1 Let n, t ∈ N with 2 ≤ t ≤ n and let P = {P1, . . . , Pn} be a set of n players. A
(t, n)−secret sharing scheme Π consists of two algorithms: Π = {Share,Recover}. Share
is a probabilistic algorithm that takes as input a secret s chosen from secret space S and
outputs an n−vector S. Each player Pi receives a share S[i] for 1 ≤ i ≤ n. Recover is a
deterministic algorithm that takes as input shares from players in P and outputs some value
s′ ∈ {S ∪ ⊥}. The secret should be recoverable by any set of at least t players who submit
their shares to Recover, and private, so any set of fewer than t players (called unauthorised
sets) are unable to recover s (meaning that s′ 6= s).

A (t, n)−secret sharing scheme can either have perfect or computational security. A
perfectly secure scheme requires unauthorised sets to learn no information about s, whereas
in a computationally secure scheme a negligible amount of information about s can be learnt.

Both perfectly and computationally secure schemes can be defined by security games
between an adversary and a challenger: one game defines the privacy of the scheme and the
other the recoverability. Both games are attributed to Bellare and Rogaway [24]. Note that
if an algorithm A is deterministic, we write x ← A(·). If the algorithm is probabilistic,

then x
$←− A(·) means to choose x according to the distribution induced by A.

The privacy game Priv is described in Figure 1. Given the parameters t and n, the
challenger chooses a bit b at random. The adversary then chooses two secrets s0, s1 ∈ S
and sends these to the challenger. The challenger checks that s0, s1 ∈ S; if they are not,
the challenger halts and returns ⊥ to the adversary. Otherwise, the challenger inputs sb to
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Game Priv
• Procedure Initialise(t, n)

b
$←− {0, 1}; j = 1

• Procedure Deal(s0, s1)
If s0, s1 /∈ S

Return ⊥
Else S

$←− Share(sb)
• Procedure Corrupt(i)

If j ≤ t− 1
Return S[i]; j = j + 1

Else halt.
• Procedure Finalise(b′)

Return b′ = b

Game Rec
• Procedure Initialise(t, n)
T ← ∅; j = 1
• Procedure Deal(s)

If s /∈ S
Return ⊥

Else S
$←− Share(s)

• Procedure Corrupt(i)
If j ≤ (n− t)

Return S[i]
j = j + 1; T ← T ∪ {i}

Else halt.
• Procedure Finalise(ST )

Return s 6= s′ ← Recover(ST ∪ ST )

Figure 1: Games used to define privacy and recoverability of a (t, n)−secret sharing scheme

the Share algorithm, which outputs the n−vector S. Nothing is returned to the adversary
at this stage. The adversary can then make up to t− 1 queries of the form Corrupt(i) for
1 ≤ i ≤ n and receives the corresponding share S[i] in return. After the corrupt stage, the
adversary must output a guess b′ for b. The adversary wins if b′ = b.

Let A be an adversary playing the Priv game against a secret sharing scheme Π. Call
A a privacy adversary. Let Pr[PrivA] denote the probability A outputs the correct guess
b′ = b during the finalise procedure. Define the advantage of A as

AdvPrivΠ (A) = 2 · Pr[PrivA]− 1. (1)

The recoverability game Rec for a (t, n)−secret sharing scheme is also defined in Figure 1.
Intuitively, the game models an adversary’s ability to prevent the recovery of s by either
deleting shares or submitting false shares to the Recover algorithm. The game is initialised
by letting the set T , which will denote the players the adversary corrupts, be the empty set.
The adversary then chooses a secret s and submits this to the challenger, who inputs it to
the Share algorithm. As before, nothing is returned to the adversary at this stage. The
adversary can then make up to n−t queries of the form Corrupt(i) for 1 ≤ i ≤ n and receives
the corresponding share S[i] in return. Each party corrupted by the adversary is noted in the
set T . During the finalise procedure, the adversary outputs a partially complete n−vector
ST , consisting of the altered (or deleted) shares queried during the corrupt procedure. This
vector is then completed by the challenger by filling the remaining elements with valid shares
from uncorrupted players; these shares are noted in the vector ST . The complete vector
ST ∪ ST is then submitted to the Recover algorithm. The adversary wins if the recovered
secret s′ is not equal to s.

The recoverability game allows the adversary to call up to n−t shares during the Corrupt
procedure. However, of these n− t shares, the adversary is allowed to to replace at most t
with strings; the rest must be replaced by an empty string [24].

Let A be an adversary playing the recoverability game Rec against Π. Call A a recover-
ability adversary. Let Pr[RecA] denote the probability s is not recovered by the deterministic
algorithm Recover(ST ∪ ST ). Define the advantage of A as

AdvRecΠ (A) = Pr[RecA]. (2)
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The games Priv and Rec in Figure 1 can be used to define perfectly secure and compu-
tationally secure (t, n)−secret sharing schemes.

Definition 2 A perfectly secure (t, n)−secret sharing scheme (PSS) is a (t, n)−secret shar-
ing scheme in which a privacy adversary has an advantage of 0 and a recoverability adversary
who is restricted to only deleting (and not corrupting) shares has an advantage of 0.

Let SharePSS and RecoverPSS denote the distribution and recovery algorithms of a PSS.
Intuitively, in a PSS, a privacy adversary has no advantage over guessing when outputting a
guess b′. In a PSS, the size of the share S[i] given to each player Pi must be at least the size
of the secret s [2]; schemes in which this bound are met are called ideal. This bound can,
however, be problematic. In settings where the secret is large or the storage available to
each player is small, it may be preferable to use a scheme achieving computational, rather
than perfect, security as this allows for smaller share sizes.

Definition 3 A computationally secure (t, n)−secret sharing scheme (CSS) is a (t, n)−secret
sharing scheme in which a privacy adversary has a negligible advantage and a recoverability
adversary restricted to only deleting (and not corrupting) shares has an advantage of 0.

In a CSS, the advantage of the privacy adversary is negligible, but greater than zero.
Computationally secure schemes are less secure than perfectly secure schemes but are able
to achieve smaller share sizes. In general, computationally secure schemes are sufficient for
most applications [13].

In both PSS and CSS schemes, the recoverability adversary is limited to deleting, and not
altering, shares. It is guaranteed that, as long as t shares are submitted, s will be recovered.
A robust scheme ensures the recovery of the secret in the setting where the recoverability
adversary is allowed to both corrupt and delete a (bounded) number of shares.

Definition 4 A robust, computationally secure (t, n)−secret sharing scheme is a (t, n)−secret
sharing scheme in which a privacy adversary and a recoverability adversary both have a neg-
ligible advantage at winning their respective games.

Another way of constructing schemes with share sizes smaller than a PSS is by further
relaxing the security requirement so sets of fewer than t players learn a measured amount
of information about the secret. Ramp schemes achieve this and can be defined using
information theoretic notation [2]. Let S denote the discrete random variable corresponding
to the choice of secret and let A denote the discrete random variable corresponding to the
set of shares given to the players in the set A ⊆ P.

Definition 5 A (t0, t1;n)−ramp scheme is a method of distributing a secret k such that
any set of at least t1 players can pool their shares to uniquely recover the secret and a set
of t0 or fewer players reveals no information about the secret. A (t0, t1;n)−ramp scheme is
said to be linear if, for any set of players A ⊆ P such that |A| = r, where t0 ≤ r ≤ t1,

H(S|A) =
t1 − r
t1 − t0

H(S). (3)

Note that in a (t0, t1;n)−linear ramp scheme, any set of at least t1 players can pool their
shares to uniquely recover the secret. A set of t0 or fewer players reveals no information
about the secret. For every player after the initial t0 players have contributed shares, a fixed
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amount of information is learnt about s. This continues in a linear fashion until t1 players
have contributed and s is learnt completely. In fact, after t0 shares are pooled, every further
share reveals 1

t1−t0 bits of information about s.
Observe that a (t, n)−PSS is a (t− 1, t;n)−ramp scheme.

2.2 Symmetric Key Encryption

We now consider the definition and security of a symmetric key encryption scheme [12].

Definition 6 A symmetric key encryption scheme E consists of a message space M, a
keyspace K ⊆ {0, 1}λ with security parameter λ, a ciphertext space C, and three algorithms:
• The key-generation algorithm KeyGen is a probabilistic algorithm that outputs a key
k chosen uniformly at random from K.

• The encryption algorithm Enc takes as input a key k ∈ K and a plaintext message
M ∈ M and outputs a ciphertext C ∈ C. Denote Enck(M) as the encryption of the
message M under the key k.

• The decryption algorithm Dec takes as input a key k ∈ K and a ciphertext C ∈ C and
outputs a plaintext M ∈ M. Denote Deck(C) as the decryption of the ciphertext C
under the key k.

A symmetric key encryption scheme E = (M,K, C,KenGen,Enc,Dec) must satisfy the
correctness requirement : for every key k ∈ K and M ∈M,

Deck(Enck(M)) = M. (4)

That is, encrypting a plaintext message M under k and then decrypting the resulting ci-
phertext C under the same key k must result in the return of the original plaintext M .

Block ciphers (such as AES [9]) are symmetric encryption schemes that operate on
blocks of plaintext, rather than individual bits, and may use different modes of operation
[27]. These modes enable randomisation of the plaintext, normally by using an initiali-
sation vector, to give probabilistic encryption. To denote an encryption algorithm using

randomisation, we use the notation C
$←− Enck(M).

We now define the notion of indistinguishability in an encryption scheme E in Figure 2.
Intuitively, the challenger randomly chooses a bit b and generates an encryption key k ∈ K.
The adversary submits two distinct messages M0,M1 ∈M of equal length. The challenger
encrypts Mb and returns the ciphertext C to the adversary. The adversary may repeat this
procedure multiple times. The adversary then outputs a guess b′ for b and wins if b′ = b.

Let A be an adversary playing the indistinguishability game Ind, as in Figure 2, against
E . Call A an indistinguishability adversary. Let Pr[IndA] denote the probability A outputs
the correct guess b′ for b during the finalise procedure. Define the advantage of A as

AdvIndE (A) = 2 · Pr[IndA]− 1. (5)

We say the encryption scheme E has the property of indistinguishability if the advantage
of A is negligible.

In Game Ind, the adversary is allowed to repeat the deal procedure multiple times. We
can, however, weaken the adversary and limit them to only calling the deal procedure once.
We call an adversary bounded in this way an ind-1 adversary. The advantage of an ind-1
adversary is computed in the same way as an indistinguishability adversary, as in (5). Any
scheme that achieves indistinguishability also achieves ind-1 security, as an ind-1 adversary
is weaker than a general indistinguishability adversary.
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Game Ind
• Procedure Initialise
k

$←− KeyGen{0, 1}λ; b
$←− {0, 1}

• Procedure Deal(M0,M1)
If M0 = M1, or |M0| 6= |M1|, or M0,M1 /∈M

Return ⊥
Else, C

$←− Enck(Mb)
Return C

• Procedure Finalise(b′)
Return b′ = b

Figure 2: Game defining indistinguishability of a symmetric key encryption scheme E

2.3 Commitment Schemes

A commitment scheme CS is a triple of algorithms (ParGen,Ct, V f) run between a sender
and a receiver. The sender wishes to commit to a message M chosen from some message
space M. The message will be revealed to the receiver in the future but, until then, the
sender wishes to keep M private. In the meantime, the sender wishes to provide the receiver
with some form of guarantee that the M to be revealed is the same M the sender initially
chose. This is achieved as follows.

The parameter generation algorithm ParGen generates the public parameters π. The
sender then runs the probabilistic commitment generation algorithm Ct using the public
parameters π and the message M they wish to commit to as input. A committal H and
decommittal R are then output. The sender sends the committal H to the receiver and
keeps R and M private. When the sender wishes to reveal M , they must send M and R
to the receiver, who will input all three values H,M and R to the deterministic verification
algorithm V f . A bit is then output: ‘1’ if the verification was a success and the committal
and decommittal were generated from M , or a ‘0’ otherwise.

A commitment scheme should satisfy two security properties:
1. Hiding. The receiver should learn nothing about M from the commitment H.
2. Binding. It should be difficult to find H,M0,M1, R0, R1 such that M0 6= M1, but
V f(π,H,M0, R0) = V f(π,H,M1, R1) = 1.

The hiding property ensures the receiver has no advantage in guessing M given H,
thereby ensuring the privacy of M for the sender. The binding property ensures the sender
cannot cheat and send a decommittal R1 6= R0 verifying a different message M1 6= M0. The
hiding and binding properties of a commitment scheme can be described using adversarial
games, as in Figure 3.

Intuitively, the game Hide is as follows. The challenger generates public parameters π
and randomly chooses a bit b. In the deal procedure, the adversary chooses two messages
M0,M1 ∈ M and sends these to the challenger. The challenger computes the committal
H and decommittal R on the message Mb and parameters π. The challenger sends the
committal H to the adversary. The adversary is allowed to repeat the deal procedure
multiple times, but must finally submit a guess b′ for b to the challenger and wins if b′ = b.

Let A be an adversary playing the hiding game Hide, as in Figure 3, against CS. Call A
a hiding adversary and let Pr[HideA] be the probability A correctly guesses b′ = b. Define
the advantage of A against CS to be

AdvHideCS (A) = 2 · Pr[HideA]− 1. (6)
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Game Hide
• Procedure Initialise
π

$←− ParGen; b
$←− {0, 1}

• Procedure Deal(M0,M1)
If M0,M1 /∈M

Return ⊥
Else (H,R)

$←− Ct(π,Mb)
Return H
• Procedure Finalise(b′)

Return b′ = b

Game Bind
• Procedure Initialise
π

$←− ParGen
• Procedure Commit(M0)

If M0 /∈M
Return ⊥.

Else (H,R0)
$←− Ct(π,M0)

Return (H,R0)
• Procedure Finalise(M1, R1)

If M1 /∈M, return ⊥.
Return M0 6= M1 and
V f(H,M0, R0) = V f(H,M1, R1) = 1

Figure 3: Games used to define the hiding and binding security properties of a commitment
scheme CS.

Say the commitment scheme CS is ε(·)−hiding if AdvHideCS (A) ≤ ε(q) for any adversary
that makes at most q queries during the deal procedure.

The binding property of CS is defined in Figure 3. Intuitively, an adversary A wins if they
are able to submit a message M1 and corresponding decommittal R1 that passes the verifica-
tion algorithm for a committal token H, generated from a different message M0 6= M1. The
game begins with the adversary submitting a message M0 to the challenger. If M0 ∈ M,
the adversary will compute the committal H and decommittal R0, and return these to the
adversary. The adversary must then submit a message M1 6= M0 and decommittal R1, such
that V f(H,M1, R1) = 1.

Let A be a binding adversary playing the Bind game against CS. Let Pr[BindA] be the
probability A outputs a successful (M1, R1). The advantage of A is

AdvbindCS (A) = Pr[BindA]. (7)

2.4 Error Correcting Codes

An error correcting code (ECC) is a method of encoding data with some redundant infor-
mation to ensure the original data can be recovered, even if a number of errors occur during
either data transmission or storage [17].

Definition 7 An error correcting code (ECC) E of length n over a finite alphabet F is
a subset of Fn. The elements of E are called codewords. The size of E is |E| = m.
The minimum distance of E is the minimum Hamming distance between any two distinct
codewords and is denoted by d.

Let E be a code of length n. We say E is linear if for all u,w ∈ E, we have u+ w ∈ E,
where addition is modulo q with |F | = q. Intuitively, a code is linear if all linear combinations
of the codewords are also codewords. If u1, . . . , ut is a basis for a linear code E, then say
E has dimension t. There are qt possible codewords. Let d be the minimum distance of E.
We say that E is an [n, t, d]−code.

One important ECC is a maximum distance separable (MDS) code [17], which is a linear
code that meets the Singleton bound: d = n − t + 1 [26]. For any MDS code, recovery of
a codeword is possible from any t of the n symbols. Denote such a code as (t, n)−ECC. A
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Reed Solomon (RS) code [21] is an MDS code. A code where message string appears in the
codeword is called systematic.

Let U
$←− ShareECC(u) denote the distribution of a word u to a codeword n−vector

U via a (t, n)−ECC. The word u is recoverable from any t of the n elements in U via the
deterministic algorithm u← RecoverECC(U).

2.5 Information Dispersal Algorithms

Information dispersal was first introduced by Rabin [20].

Definition 8 Let t, n ∈ N, t ≤ n. A (t, n)−information dispersal algorithm (denoted IDA)
with message space M consists of two algorithms ShareIDA and RecoverIDA. ShareIDA

takes as input a message M ∈ M and outputs an n−vector S. RecoverIDA takes as input
elements of the vector S. If at least t elements are submitted correctly to RecoverIDA, the
algorithm will output the original message M .

Intuitively, a (t, n)−IDA shares data between n players such that any set of at least t play-
ers can recover the data. This is equivalent to the recoverability property of a (t, n)−secret
sharing scheme in which a recoverability adversary has an advantage of 0 in winning the
Rec game. There are, however, no privacy requirements on an IDA. Therefore a trivial
example of an IDA is replication: each player could be given a copy of M . This satisfies
the requirement that any t of the n players could recover M but there is no privacy of M
as any player could individually recover M .

Any (t, n)−secret sharing scheme also satisfies the conditions of an IDA as the secret
is recoverable by t players. A (t, n)−secret sharing scheme has the additional property of
privacy. However, it is possible to achieve smaller share sizes than in a (t, n)−secret sharing
scheme by taking advantage of the lack of security requirements.

2.5.1 Resch and Plank’s IDA.

In the AONT-RS scheme, Resch and Plank specify a systematic IDA to be used which is a
variant of an RS code [22]. This IDA is of particular interest to us and we will henceforth
refer to their IDA as the systematic RS-IDA.

A brief overview of the two algorithms ShareRS−IDA and RecoverRS−IDA constituting
the systematic RS-IDA is given here.

ShareRS−IDA is a probabilistic algorithm that takes as input a message M to be dis-
tributed between n players. Let F = GF (2ω) be a Galois field of characteristic 2. The
message M is parsed into t words and treated as a t−vector, M ∈ F t. This vector is
then multiplied on the left by an n × t binary matrix G, where multiplication of elements
b ∈ {0, 1} and d ∈ F is defined as follows: {0, 1} × F → F , where 0 × d = 0 ∈ F and
1× d = d ∈ F . G is constructed such that the first t rows form the t× t identity matrix and
any t of the n rows are linearly independent. The resulting n vector is the codeword vector
G ·M = V ∈ Fn. Each player receives the share V [i].

In order to recover M , t shares are submitted to RecoverRS−IDA and a new t−vector
V ′ is created from these shares. A t× t matrix G′ is then formed, consisting of the t rows of
G corresponding to the shares pooled. This matrix is inverted and multiplied by the vector
V ′ to return (G′)−1 · V ′ = M , from which M can be recovered.

In general, the n× t matrix G can be any binary matrix such that any t of the n rows are
linearly independent. Resch and Plank chose to let the first t rows form the t × t identity
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matrix to make the IDA systematic and thus more efficient as only the final n− t elements
of V need be encoded. The first t elements can be directly copied from the vector M .

It is known that an RS code, which is a [n, t, n − t + 1]−code, is equivalent to a
(0, t;n)−linear ramp scheme [8]. Thus the systematic RS-IDA used by Resch and Plank
is equivalent to a (0, t;n)−linear ramp scheme, as in Definition 5. Every share pooled
reveals 2ω bits of information about the message M .

3 The AONT-RS

In this section, we consider the AONT-RS scheme proposed by Resch and Plank [22]. We
present a generalised version of the scheme, and then discuss how the scheme leaks informa-
tion when used to distribute ciphertexts that are small (relative to the security parameter
and threshold value) and show how this can be prevented. Finally, we present a proof that
the AONT-RS scheme achieves computational privacy in the RO model.

3.1 Generalising the AONT-RS

Resch and Plank propose a new CSS in [22], which they call the AONT-RS scheme; it is
called this because it combines an All or Nothing Transform (AONT) with an RS code. An
AONT is an encryption mode that allows the data to be learnt only if all of it is known [5].

Resch and Plank assume the existence of a symmetric key encryption scheme E operating
on blocks of plaintext, a cryptographic hash function H and the systematic RS-IDA, as in
Section 2.5.1. They also assume the digest h of the chosen cryptographic hash function H
is of equal length to the key k generated by KeyGen from E . They do not define what
security properties the encryption scheme E must have.

For our generalised version, we also assume the existence of E , which we observe requires
ind-1 security, and H, but specify the use of any IDA with algorithms ShareIDA and
RecoverIDA, such that the IDA is equivalent to a (0, t;n)−linear ramp scheme (which the
specified systematic RS-IDA is). We present our generalised version of the scheme, then
discuss the generalisations made. For now on, let Π denote our generalised version of the
AONT-RS scheme which consists of two algorithms, Π = {ShareAONT , RecoverAONT }.
These algorithms have been summarised in Figure 4.

Procedure ShareAONT (M)

1. k
$←− KeyGen({0, 1}λ); C

$←−
Enck(M)

2. h = H(C); cd = h⊕ k
3. V ← ShareIDA(C||cd)
4. Return V

Procedure RecoverAONT (M)
1. V ← RecoverIDA(V [0], . . . ,V [n− 1])
2. C||cd ← V
3. h = H(C); k = h⊕ cd
4. M ← Deck(C)
5. Return M

Figure 4: The dispersal and recovery algorithms defining the AONT-RS scheme.

On input M ∈ M, the ShareAONT algorithm generates a key k of length λ, encrypts
M under k, then computes the hash of the ciphertext h = H(C). The digest of the hash
function h is then XORed with the encryption key k to give a value cd, which we will call the
difference value. The ciphertext and difference value are then concatenated and dispersed
via an IDA amongst the n players.

11



In order to fully recover the message M , at least t players must pool their shares into
a vector V . Using the algorithm RecoverIDA, C and cd can be recovered. The digest
h = H(C) can then be calculated and XORed with cd to recover k. The ciphertext C is
then decrypted using k and M is recovered.

In the original proposition of the scheme, Resch and Plank specified that the encryption
scheme be used in CBC mode [27] (but do not specify what security E requires), that the
IDA used be the systematic RS-IDA, as in Section 2.5.1, and defined the use of a canary to
provide integrity.

We have generalised the use of the encryption scheme E by not specifying the mode of
operation to be used, but rather specifying the scheme E be probabilistic. If E were not
probabilistic, an adversary may recognise shares of known ciphertexts and be able to predict
C which, if cd is known, could leak information about k. We have also identified that the
scheme needs to have ind-1 security. This is because each time a new message M is shared,
a new encryption key k is generated. So each key is only used to encrypt one message.

We generalised the IDA by allowing the use of any IDA equivalent to a (0, t;n)−linear
ramp scheme. If the IDA is not equivalent to a (0, t;n)−linear ramp scheme and is, instead,
any IDA, there are no privacy guarantees. For example, in Section 2.5, we discussed how
replication satisfies the requirements of an IDA. However, using replication in the AONT-
RS scheme would be disastrous as any player would know all of C and cd and so would
be able to compute k and recover M . A (0, t;n)−linear ramp scheme ensures players learn
information about only the share they are given or those contributed to Recover.

Finally, Resch and Plank use a canary to provide integrity. The canary is a known,
fixed value that is concatenated with the plaintext M . The idea is that when a sufficient
number of players have pooled their shares, they can run the RecoverAONT algorithm to
recover some data M ′. As the canary is a known value, they can check whether the canary
is present in M ′; if it is, then M ′ is verified and accepted as the original data M = M ′. If
not, it is concluded that one of the shares submitted to RecoverAONT was incorrect.

In our generalisation of the AONT-RS scheme we have removed the concept of the canary.
This is because, although the canary is able to detect whether or not the correct M has
been recovered, if there has been a corruption there is no way for the scheme to correctly
recover M . Our extension of the scheme to be robust in Section 4 is an improvement on
the canary because it is able to correctly recover M , even if a number of players submit
incorrect shares, as long as at least t shares are submitted correctly.

For now, we will focus on the non-robust version of the scheme and discuss how it can
leak information when a small ciphertext, relative to the security parameter λ and the
threshold value t, is distributed. This leakage, along with how to avoid it is discussed next.

3.2 Information Leakage

Resch and Plank claim their system is secure because, if only t−1 players pool their shares,
the entirety of V will not be recoverable, due to the security properties of the systematic
RS-IDA (which is equivalent to a (0, t;n)−ramp scheme). Without recovering the entirety
of V , the t− 1 players are unable to learn both C (which is needed to compute h = H(C))
and cd. Resch and Plank assume that, at most, the adversary will be able to learn either
• some or all of cd and some of (but not all of) C, or
• none of cd and all of C.

Note that C is encrypted, so it does not affect the security of the system if the adversary
learns some of (or all of) C. The security of the scheme is affected however, if the adversary
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is able to learn all of C and some of cd, or all of cd and a sufficient amount of C, which may
then enable them to learn information about the plaintext.

We will show that, in the case when C is a short ciphertext (in relation to the security
parameter λ and the threshold value t), the adversary may learn all of C and some of cd,
resulting in learning partial information about the key k and thereby reducing the security
of the system. Then, we will show a situation in which the adversary learns all of cd and
only partial information about C, but may be able to recover the key k.

3.2.1 Learning C completely and partial information about cd.

To illustrate the leakage of information for a small ciphertext C, consider the following
example. Let C and k both be strings of 128 bits. So C||cd totals 256 bits. Assume the IDA
used in the systematic RS-IDA as in Section 2.5.1, which is equivalent to a (0, t;n)−linear
ramp scheme. Let M denote the t−vector to be distributed via the IDA, which is formed
from C||cd. Let there be n = 5 players P = {P1, . . . , P5} and let the threshold t = 4. The
string C||cd would be split into four words to make up the t−vector M , where each fragment
is 64 bits. Let c0 and c1 be the two elements that comprise C and let cd,0 and cd,1 be the
two halves of cd, so C0, C1, c0,d, c1,d ∈ {0, 1}64. This 4−vector would then be multiplied on
the left by the generator matrix G ∈ {0, 1}(5×4), which would give

G ·M ==


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

G4,0 G4,1 G4,2 G4,3



C0

C1

cd,0
cd,1

 =


C0

C1

cd,0
cd,1
x

,

where Gi,0
$←− {0, 1}, for i = {0, . . . , 3} are chosen such that any 4 rows of G are linearly

independent and x = G4,0 · C0 +G4,1 · C1 +G4,2 · cd,0 +G4,3 · cd,1.
Players P1, P2 and P3 are an unauthorised set of players, yet they would be able to

combine their shares to learn all of C and half of cd. They could then correctly compute
H(C) = h and XOR the first half of h with the known first half of cd to find the first half
of the key k. This would reduce the security of the system from 128 bits to 64 bits.

This attack can be prevented if cd is contained entirely in one element of M . This
ensures that a share cannot leak partial information of cd and, instead, is learnt entirely in
one share. So if cd ∈ {0, 1}λ, then C should be such that C ∈ {0, 1}ω, where ω ≥ (t− 1)λ.

3.2.2 Learning partial information about C and cd completely.

An alternative version of this attack can be conducted when cd is known completely and only
partial information of C is known. Resch and Plank claim that, due to the hash function
H, all of C must be learnt in order to calculate h. However, this is not necessarily true as,
even in the random oracle model (RO) [3] where each call to the hash function H is treated
as a call to a random oracle, the hash function is deterministic.

Consider the following example. Assume an attacker is able to learn all of cd but only
partial information of C. If an adversary knows all but (for example) one bit of C, they can
construct the two possibilities for C (one where the unknown bit is a ‘0’, label this possibility
C0 and the other when it is a ‘1’, label as C1) and compute the two corresponding hashes,
h0 = H(C0) and h1 = H(C1) respectively. The adversary can then compute two key
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Procedure Initialise G0

k
$←− {0, 1}λ; b

$←− {0, 1}; k′ = k

Procedure Deal(x0, x1) G0, G5

C ← Enck(xb); H(C) = h; h⊕k′ = cd;
V ← ShareIDA(C||cd)
For i← 1 to n do

(H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

Procedure Initialise G5

k, k′
$←− {0, 1}λ; b

$←− {0, 1}

Procedure Corrupt(i) G0, G5

X[i]← R[i]V [i]S1[i]...Sn[i]
Return X[i]

Procedure Finalise(b′) G0, G5

Return (b′ = b)

Figure 5: Games for proving Theorem 1, the privacy of the AONT-RS scheme.

candidates k0 = cd ⊕ h0 and k1 = cd ⊕ h1 and decrypt the two ciphertexts C0 and C1 with
the corresponding candidate keys and reveal two plaintext messages M0 and M1. From
these, the adversary can guess which plaintext message is likely to be the true plaintext
message and has thus learnt k.

In general, if the adversary knows cd and all but i bits of C, the adversary can conduct
this attack. If i < λ, where k ∈ {0, 1}λ, this attack is quicker than a brute force attack.
Therefore, every adversary must be unable to learn at least λ bits of C if cd is known. In
order to ensure this, each element in M must be at least the size of the key. This is true if
C ∈ {0, 1}ω, where ω ≥ (t− 1)λ.

In general, both attacks can be prevented if k ∈ {0, 1}λ and C ∈ {0, 1}ω, where ω ≥
(t−1)λ. This forces cd to be contained entirely in one share meaning that any unauthorised
set of players will learn either no information about cd, or be missing at least λ bits of
information about C. If C is too small, C should be padded with some random string. This
condition on the size of C is a necessary, but not sufficient, condition for the AONT-RS
scheme to be secure. To guarantee the security of the AONT-RS, we must make additional
assumptions on the security of the cryptographic hash function and the encryption system,
as discussed in the next section.

3.3 Proving the Privacy of AONT-RS

In this section, we prove the AONT-RS achieves computational privacy in the RO model.

Theorem 1 (Privacy of the non-robust AONT-RS) Let A be a privacy adversary against
the AONT-RS scheme Π and let the internal hash function H be a random oracle. Then
there is an ind-1 adversary B attacking the indistinguishability of E such that

AdvPrivΠ (A) ≤ AdvIndE (B), (8)

where B makes only one query during the deal procedure of Game Ind (as in Figure 2)
and the running time of B is that of A plus overhead consisting of one execution of the
ShareAONT algorithm of Π.

The proof relies on games G0 and G5, as defined in Figure 5. The advantage of the
AONT-RS privacy adversary A can be defined as

AdvPrivΠ (A) = 2 · Pr[GA0 ]− 1. (9)
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Game G5 differs from G0 only because the key k used to encrypt the message M is
different to the value k′ used to compute cd = h⊕ k′. We claim that

Pr[GA0 ] = Pr[GA5 ], (10)

by utilising the assumption that the hash function H behaves as a random oracle. Be-
cause of the IDA used to distribute (C||cd) and the restriction that C = {0, 1}ω, where
ω ≥ λ(t− 1), the adversary is always missing at least λ bits of C or all of cd. Thus the ad-
versary cannot learn either h or cd, but can learn the other. If A knows h, then h = c′d⊕ k′.
If A knows cd, then cd = h′ ⊕ k′, for some c′d 6= cd and h′ 6= h. Thus (10) holds true.

We construct an adversary B attacking the privacy of E such that

2 · Pr[GA5 ]− 1 ≤ AdvIndE (B). (11)

Adversary B picks k′
$←− {0, 1}λ at random and runs A. Adversary A submits Deal(x0, x1),

B then queries x0, x1 to its challenger and receives C
$←− Enck(xb), where k is the key

generated by the challenger. Now B executes the rest of the Deal procedure of game G5

by using k′; so B computes H(C) = h, h ⊕ k′ = cd and V ← ShareIDA(C||cd). When A
submits a Corrupt(i) query, B can respond with the value V [i]. When A halts and outputs
a bit b′, adversary B passes this onto their challenger as their guess. The advantage of B is
2 · Pr[b′ = b]− 1.

By combining (9), (10) and (11), we see that

AdvPrivΠ (A) ≤ AdvIndE (B), (12)

as required.
�

4 Extending AONT-RS to be Robust

In [24], Bellare and Rogaway extend Krawczyk’s SSMS [13] to be robust by using commit-
ment schemes. This technique can be applied make the AONT-RS robust.

Let E be an encryption scheme with ind-1 security and assume the existence of a
(t, n)−ECC with distribution and recovery algorithms ShareECC and RecoverECC and
an IDA equivalent to a (0, t;n)−linear ramp scheme. Let Ct and V f be algorithms in a
commitment scheme CS that achieve the hiding and binding property. Let H be a hash
function.

Let ΠR = {ShareRAONT , RecoverRAONT } denote the robust AONT-RS scheme, where
ShareRAONT and RecoverRAONT are defined as in Figure 6. Intuitively, the scheme is the
same as the AONT-RS scheme defined in Figure 4. However, in addition to being given the
share V [i], each player is also given a decommittal R[i] computed on V [i] and fragments of
committals H[i] computed on all shares V [i] distributed via a (t, n)−ECC. Let the n-vector
Si be the output of the committal H[i] dispersed via a (t, n)−ECC . Let Si[j] be the jth

element of Si.
Let ♦ denote an empty share (one that has not be submitted). As long as t players

submit uncorrupted shares, RecoverRAONT will recover the committal values H[i], which
can then verify each player’s share and highlight any corrupted shares.

This technique is an improvement on the use of a canary, suggested in the original
AONT-RS scheme [22]. Unlike a canary, the use of a commitment scheme means that, even
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Procedure ShareRAONT(M)

1. k
$←− {0, 1}λ; C

$←− Enck(M)
2. h = H(C); cd = h⊕ k
3. V ← ShareIDA(C||cd)
4. For i← 1 to n do

(H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

5. For i← 1 to n do
X[i]← R[i]V [i]S1[i] . . .Sn[i]

6. Return X

Procedure RecoverRAONT(V )
1. For i← 0 to n− 1 do

R[i]V [i]S1[i] . . .Sn[i]←X[i]
2. For i← 0 to n− 1 do

H[i]← RecoverECC(Si, j)
3. For i← 0 to n− 1 do

If X[i] 6= ♦ and
V f(H[i].V [i],R[i]) = 0
then V [i]← ♦

4. C||cd ← RecoverIDA(V )
5. h = H(C); k = h⊕ k
6. M ← Deck(C)
7. Return M

Figure 6: The dispersal and recovery algorithms defining the robust AONT-RS (RAONT-
RS) scheme.

Procedure Initialise G0 −G2

k
$←− {0, 1}λ; b

$←− {0, 1}; k′ = k

Procedure Deal(x0, x1) G0, G1, G4, G5

C ← Enck(xb); H(C) = h; h⊕k′ = cd;
V ← ShareIDA(C||cd)
For i← 1 to n do

(H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

Procedure Corrupt(i) G0, G5

X[i]← R[i]V [i]S1[i]...Sn[i]
Return X[i]

Procedure Finalise(b′) G0 −G5

Return (b′ = b)

Procedure Initialise G3 −G5

k, k′
$←− {0, 1}λ; b

$←− {0, 1}

Procedure Deal(x0, x1) G2, G3

C ← Enck(xb); C ← ShareIDA(C||0)
For i← 1 to n do

(H[i],R[i])
$←− Ct(C[i])

S[i]← ShareECC(H[i])
H(C) = h; h⊕ k′ = cd
V ← ShareIDA(C||cd)

Procedure Corrupt(i) G1 −G4

R[i]
$←− DCt(H[i],V [i])

X[i]← R[i]V [i]S1[i]...Sn[i]
Return X[i]

Figure 7: Games for proving Theorem 2, the privacy of the RAONT-RS scheme.

if false shares are submitted, the correct secret can be recovered as long as t correct shares
are submitted to RecoverRAONT . Furthermore, the commitment scheme enables us to learn
which servers have been corrupted and thus take any necessary action. However, it is noted
that the commitment scheme requires more computation than the use of a canary.

4.1 Proof of Privacy

The RAONT-RS scheme ΠR can be proven to achieve computational privacy by adapting
the proof of privacy for the HK2 scheme by Bellare and Rogaway [24]. Note that the proof
of HK2 is not in the RO model; when proving the security of RAONT-RS, we are forced to
prove it in the RO model because the use of the hash function H.
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Theorem 2 (Privacy of RAONT-RS) Let A be an privacy adversary against the RAONT-
RS scheme ΠR and let the internal hash function H be a random oracle. Then there is an
ind-1 adversary B attacking the indistinguishability of E such that

AdvPrivΠR (A) ≤ AdvIndE (B) · 4ε(n), (13)

where B makes only one query during the deal procedure of Game Ind (as in Figure 2)
and the running time of B is that of A plus overhead consisting of one execution of the
ShareRAONT algorithm of ΠR.

The proof relies on games G0 −G5, defined in Figure 7. Note that Adversaries G0 and
G5 are equivalent to those defined in Figure 5 for Theorem 1, the privacy of the AONT-RS
scheme. The procedure Corrupt of games G1 −G4 refers to a probabilistic algorithm DCt
that works as follows. On input message M and committal H, it lets Ω(M,H) denote the
set of all coins ω such that Ct, on input M and coins ω, returns a pair whose first component
is H. If Ω(M,H) = ∅, then DCT returns ⊥. Else it picks ω at random from Ω(M,H), runs
Ct on input M and coins ω to get a pair (H,R) and returns R. Note this algorithm is not
necessarily efficiently implementable.

Note that the advantage of the RAONT-RS privacy adversary A can be defined as

AdvPrivΠR (A) = 2 · Pr[GA0 ]− 1. (14)

Game G1 differs from G0 only in the Corrupt procedure, which resamples R[i] using
DCt. Clearly,

Pr[GA0 ] = Pr[GA1 ] = Pr[GA2 ] + (Pr[GA1 ]− Pr[GA2 ]). (15)

We will construct an adversary D1 attacking the hiding property of the commitment
scheme CS such that

Pr[GA1 ]− Pr[GA2 ] = AdvHideCS (D1). (16)

Adversary D1 acts as the challenger to A and wishes to use A’s advantage to gain an
advantage against the hiding property of the commitment scheme. Adversary D1 picks

b
$←− {0, 1} and runs A. When A submits x0, x1 to D1, D1 generates k

$←− {0, 1}λ and

calculates C
$←− Enck(xb). Adversary D1 then computes H(C) = h and h ⊕ k = cd, then

calculates both V ← ShareIDA(C||cd) and C ← ShareIDA(C||0).
For i, 1 ≤ i ≤ n, D1 queries C[i],V [i] (for V [i] 6= C[i]) to its challenger. Let H[i]

denote the commitment value returned. Let Si ← ShareECC(H[i]).
When A makes a Corrupt(i) query to D1, D1 computes its reply according to the case

of the Corrupt procedure of games G1, G2; that is, D1 generates a decommittal value R[i]
for V [i] and the given H[i] and passes X[i] ← R[i]V [i]S1[i] . . .Sn[i] to A. This step
is not necessarily efficient due to the algorithm DCt. However, D1 does not have to be
computationally bounded.

When A halts the corruption procedure and finalises with output b′, if b′ = b, adversary
D1 passes 1 to its challenger, guessing the commitment value H[i] was computed on V [i],
rather than C[i]. Otherwise, if b′ 6= b, D1 submits 0.

Next, we have that

Pr[GA2 ] = Pr[GA3 ] +
(
Pr[GA2 ]− Pr[GA3 ]

)
, (17)
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where G3 differs from G2 only in the initialise procedure which XORs the digest h not with
the encryption key k, but with an alternatively generated string k′. We claim that

Pr[GA2 ] = Pr[GA3 ]. (18)

This is justified as the hash function acts as a random oracle. After A has corrupted at
most t shares, they learn at most
• either no information about cd and all of C, and so can learn h = H(C). In which

case h = k ⊕ cd = k′ ⊕ c′d, where c′d 6= cd is some unknown string. Or
• all of cd, but is missing at least λ bits of information about C. Then cd = k′ ⊕ h′

where h′ 6= h is some string unknown to A.
In either case, the adversary learns one of either h or cd, and learns no information about

the other and k. Thus the known value is the XOR of two unknown strings: changing one
of these strings does not affect the chances of A winning, thus Pr[GA2 ] = Pr[GA3 ].

Next, we have
Pr[GA3 ] = Pr[GA4 ] +

(
Pr[GA3 ]− Pr[GA4 ]

)
. (19)

We now construct an adversaryD2, also attacking the hiding property of the commitment
scheme, such that

Pr[GA3 ]− Pr[GA4 ] = AdvHideCS (D2). (20)

The construction of D2 is similar to that of D1. Adversary D2 acts as the challenger
to A and wishes to use A’s advantage to gain an advantage against the hiding property of

the commitment scheme CS. Adversary D2 picks b
$←− {0, 1} and runs A. When A submits

x0, x1 to D2 during the Deal procedure, adversary D2 generates two values k, k′
$←− {0, 1}λ

and calculates C
$←− Enck(xb). Adversary D2 then computes H(C) = h and h⊕k′ = cd and

calculates both V ← ShareIDA(C||cd) and C ← ShareIDA(C||0).
For i, 1 ≤ i ≤ n, D2 queries C[i],V [i] (for V [i] 6= C[i]) to its challenger. Let H[i]

denote the commitment value returned. Let Si ← ShareECC(H[i]).
When Amakes a Corrupt(i) query, adversaryD2 computes its reply according to the case

of the Corrupt procedure of games G3, G4; that is, adversary D2 generates a decommittal
value R[i] for V [i] and the given H[i], then passes X[i] ← R[i]V [i]S1[i] . . .Sn[i] to A.
Again, this step is not necessarily efficiently implementable. When A halts without output
b′, if b′ = b, D2 submits 1 to its challenger, guessing the commitment value H[i] was
computed on V [i], rather than C[i]. Otherwise, if A halts with output b′ 6= b, D2 submits
0, guessing the commitment value H[i] was computed on C[i] rather than V [i].

Game G5 differs from G4 only in its Corrupt procedure. Clearly

Pr[GA4 ] = Pr[GA5 ]. (21)

Let B be an ind-1 adversary attacking E , as in the proof of Theorem 1. The advantage of
B is as described in (11).

Now, let D be the hiding-adversary that flips a fair coin and, if it lands head, runs D1,
otherwise D2. Clearly,

AdvHideCS (D) =
1

2

(
AdvHideCS (D1) + AdvHideCS (D2)

)
. (22)

Since Ct is assumed to be ε(·)−hiding and D makes at most n queries during the deal
procedure, we have

AdvHideCS (D) ≤ ε(n). (23)
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Procedure Deal(x)

`
$←− [1, n]; k

$←− {0, 1}λ; C
$←− Enck(x)

H(c) = h; h⊕k = cd; V ← ShareIDA(C||cd)
For i← 1 to n do

If i = `, then (H[`],R[`])
$←− Commit(V [i])

Else (H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

For i← 1 to n do
X[i]← R[i]V [i]Si[i] . . .Sn[i]

Procedure Corrupt(i)
Return X[i]

Procedure Finalise(x′, j)
For i← 1 to n do

R′[i]V ′[i]S′1[i] . . .S′n[i]←X ′[i]
Return (V ′[`],R′[`])

Figure 8: Procedures used by adversary B to respond to queries from A in Theorem 3.

Combining (16), (20), (22) and (23) gives us

AdvHideCS (D) ≤ ε(n),

1

2
·AdvHideCS (D1) +

1

2
·AdvHideCS (D2) ≤ ε(n),(

Pr[GA1 ]− Pr[GA2 ]
)

+
(
Pr[GA3 ]− Pr[GA4 ]

)
≤ 2ε(n).

By using Pr[GA2 ] = Pr[GA3 ] and Pr[GA4 ] = Pr[GA5 ], (as in (18) and (21)) we simplify and
rearrange to give us

Pr[GA1 ]− Pr[GA5 ] ≤ 2ε(n)

2 Pr[GA1 ]− 2 Pr[GA5 ] + 1− 1 ≤ 4ε(n).

Then, we can further rearrange and substitute in the advantage of adversaries A and B, as
in (14) and (11), to give

2 Pr[GA1 ]− 1 ≤
(
2 Pr[GA5 ]− 1

)
· 4ε(n)

= AdvIndE (B) · 4ε(n)

AdvPrivΠR (A) ≤ AdvIndE (B) · 4ε(n),

thus completing the proof.
�

4.2 Proof of Robustness

The RAONT-RS scheme can be proven to be recoverable by again adapting the proof by
Bellare and Rogaway [22].

Theorem 3 (Robustness of RAONT-RS) Let A be a recoverability adversary against
the RAONT-RS scheme ΠR. Then there is an adversary B attacking the binding property
of the commitment scheme CS such that

AdvRecΠR (A) ≤ n ·AdvBindCS (B), (24)

where the running time of B is that of A plus overhead consisting of an execution of the
ShareRAONT and RecoverRAONT algorithms of ΠR.
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Let A be a recoverability adversary against the RAONT-RS scheme ΠR. During Deal,
A submits x to B. Let k,C, h, cd,V ,H,S1, . . . ,Sn,X denote the quantities chosen by the
RAONT-RS ShareRAONT algorithm after x has been submitted. Let A corrupt at most
t − 1 shares. Let (XT ) denote the output of A. Let k′, C ′, h′, c′d,V

′,H ′,S′1, . . . ,S
′
n,X

′

denote the quantities recovered from RecoverRAONT with input X ′T ∪X ′
T

. Consider the
following events:

E1: ∃` ∈ [n] such that H[`] 6= H ′[`]
E2: ∃` ∈ T such that V [i] ∈ {♦,V [i]}
E3: cd 6= c′d
E4: C 6= C ′

If C ′ = C and c′d = cd, then the recovered secret x′ equals x. This is because h′ =
H(C ′) = H(C) = h and so c′d ⊕ h′ = cd ⊕ h = k. Therefore

AdvRecΠR (A) ≤ Pr[E3 ∪ E4] (25)

≤ Pr[E1 ∪ E2 ∪ E3 ∪ E4] (26)

= Pr[E1] + Pr[E1 ∩ E2] + Pr[E1 ∩ E2 ∩ E3]

+ Pr[E1 + E2 ∩ E3 ∩ E4]

= Pr[E1] + Pr[E1 ∩ E2] + Pr[E2 ∩ E3] + Pr[E2 ∩ E4]. (27)

We bound each addend in turn. Let E1,` be the event that H ′[`] = H[`]. Let T be the
set of indexes of the shares corrupted by A. If i /∈ T , then the submission of X ′[i] and the
other uncorrupted shares returns X[i]. Hence S′`[i] = S`[i]. Note that S` is an output of
ShareECC(H[`]). Lemma 10 in [24] discusses perfect recoverability and, when applied to
ECCs, RecoverECC(S`) = H[`], meaning that H ′[`] = H[`]. So Pr[E1,`] = 0.

By the union bound

Pr[E1] ≤
n∑
t=1

Pr[E1,`] = 0. (28)

Now we construct adversary B such that

Pr[E1 ∪ E2] ≤ n ·AdvBindCS (B). (29)

Adversary B runs A, responding to itsDeal and Corrupt calls via the procedures in Figure 8,
where Ct is the committal algorithm of CS run by B and Commit is a procedure of the
Bind game that B plays with its challenger. When A halts with output (X), B runs the
finalise procedure.

Next, we claim both

Pr[E2 ∩ E3] = 0, (30)

Pr[E2 ∩ E4] = 0. (31)

We justify this as follows. If V ′[i] = V [i] for all i, then C = C ′ and c′d = cd. Therefore (30)
holds and so

AdvRecΠR (A) = Pr[E1] + Pr[E1 ∩ E2]

+ Pr[E2 ∩ E3] + Pr[E2 ∩ E4] (32)

≤ n ·AdvBindCS (B), (33)

thus completing the proof.
�
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5 Comparing RAONT-RS and HK2

In this section, we briefly introduce the HK2 protocol, a robust extension of Krawczyk’s
SSMS [13] by Bellare and Rogaway [24]. We will then compare HK2 and RAONT-RS.

5.1 The HK2 Scheme

The two algorithms constituting the HK2 protocol, ShareHK2 and RecoverHK2 are shown
in Figure 9.

Procedure ShareHK2(M)

1. k
$←− {0, 1}λ

2. C
$←− Enck(M)

3. K
$←− SharePSS(k)

4. C
$←− ShareIDA(C)

5. For i← 0 to n− 1 do

(H[i],R[i])
$←− Ct(K[i]C[i])

Si
$←− ShareECC(H[i])

6. For i← 0 to n− 1 do
X[i]← R[i]K[i]C[i]S1[i] . . .Sn[i]

7. Return X

Procedure RecoverHK2(X)
1. For i← 0 to n− 1 do

R[i]K[i]C[i]S1[i] . . .Sn[i]←X[i]
2. For i← 0 to n− 1 do

H[i]← RecoverECC(Si, j)
3. For i← 0 to n− 1 do

If X[i] 6= ♦ and
V f(H[i],K[i]C[i],R[i])) = 0 then
K[i]← ♦;C[i]← ♦

4. k ← RecoverPSS(K)
5. C ← RecoverIDA(C)
6. M ← Deck(C)
7. Return M

Figure 9: The dispersal and recovery algorithm defining the HK2 scheme.

The HK2 protocol assumes the existence of an encryption system E with ind-1 security,
and an IDA. The IDA used in the HK2 protocol does not have any security requirements-
replication could be used and the scheme would remain secure. HK2 also requires a
(t, n)−PSS and a (t, n)−ECC. In order for the scheme to be extended to be robust, a
commitment scheme CS is also used.

Intuitively, the HK2 protocol works as follows. The ShareHK2 protocol takes as input a
message M ∈M. A λ bit key k is randomly generated in Step 1. The plaintext message M
is encrypted in Step 2 to give the ciphertext C. The encryption key k is then dispersed via
a (t, n)−PSS in Step 3 to give an n−vector of key shares K. The ciphertext C is shared via
the (t, n)−IDA to return the n−vector of ciphertext shares C. In Step 4, for each (K[i]C[i]),
a committal H[i] and decommittal R[i] is calculated and each committal H[i] is shared via
a (t, n)−ECC. In Step 7, a new vector X is constructed, where each element X[i] consists
of the decommittal value R[i], the key share K[i], the ciphertext share C[i] and one share
from each of the shared committal values: S1[i],S2[i], . . . ,Sn[i]. The algorithm returns the
vector X, where each element X[i] is a share given to player Pi.

The RecoverHK2 protocol takes as input shares of the vector X, where ♦ denotes no
share submitted. The algorithm then parses each share X[i] into elements R[i], K[i], C[i],
S1[i], S2[i], . . . , Sn[i] in Step 1. For each i, H[i] is recovered in Step 2. In Step 3, the
submitted ciphertext and key shares are verified by the commitment scheme. If the values
are successfully verified, the shares of K and C are used to recover k and C in Steps 4 and
5 respectively. Any shares that were not successfully verified are removed from K and C
are marked as empty with ♦. Finally, the algorithm decrypts C in Step 6 and returns the
plaintext message M in Step 7.
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Note that if the commitment scheme is removed from the protocol, so each player receives
just a key share K[i] and a ciphertext share C[i], the scheme is Krawczyks computationally
secure scheme, SSMS, as in [13].

Note that any PSS and IDA can be used in HK2 and Krawczyk’s SSMS. When Resch
and Plank compared the AONT-RS to the SSMS scheme, they decided to use Shamir’s
PSS and Rabin’s IDA as the internal components. There are, however, potentially more
efficient internal components that could be used. For example, rather than Shamir’s PSS
scheme, either Kurihara et al.’s [15] or Chen et al.’s PSS could be used [16]. Rather than
Rabin’s IDA, the systematic RS-IDA defined by Resch and Plank themselves (described in
Section 2.5.1) could be used.

5.2 Comparison

In [22], Resch and Plank briefly compare their AONT-RS scheme to Krawczyk’s SSMS
scheme [13], and then conduct a thorough performance comparison of the AONT-RS with
Rabin’s IDA [20] and Shamir’s PSS [25].

Rabin’s IDA is an IDA as defined in Definition 8, and not a (t, n)−secret sharing scheme
and thus has no security requirements. As such, Rabin’s scheme would not be used to
distribute data if there was any requirement for the data to be private. Shamir’s PSS is a
PSS as defined in Definition 2 and achieves perfect, rather than computational security. In
schemes with perfect security, the size of the share given to each player is at least the size of
the secret. Shamir’s scheme meets this bound and is ideal, but, because of the large share
size, would not generally be used to distribute large blocks of data due to this bound.

Krawczyk’s SSMS achieves computational security; which is what the AONT-RS scheme
aims to achieve. Because of the similar security goals, comparing the SSMS scheme with
the AONT-RS appears to be a beneficial comparison. Similarly, comparing the robust
AONT-RS with the robust extension of SSMS, which is HK2, appears to be beneficial.

In this section, we will compare the security, share size and efficiency of the RAONT-RS
scheme and the HK2 scheme. Note that we do not include the contribution to the share
size or complexity made by the commitment scheme CS, or the contribution made to the
complexity due to the encryption scheme E . This is because the contribution of both CS and
E to the RAONT-RS and HK2 are equal. Because of this, we can consider the comparison in
this section to also be a comparison of AONT-RS, as defined in Section 3.1 and Krawczyk’s
SSMS scheme, as in [13].

In order to analyse the schemes better, we assume both schemes use the systematic
RS-IDA as in Section 2.5.1 and that HK2 uses an ideal PSS. One suggestion is a PSS by
Kurihara et al. [15].

5.2.1 Security.

Both the RAONT-RS and HK2 are proven to be computationally secure secret sharing
schemes, but the RAONT-RS is secure in the RO model and the HK2 scheme secure under
standard assumptions.

RAONT-RS: We have proven the RAONT-RS to achieve privacy and recoverability,
assuming the internal probabilistic encryption scheme E has ind-1 security, that the hash
function H behaves as a RO; that the commitment scheme CS achieves both the hiding and
binding properties and the IDA is equivalent to a (0, t;n)−linear ramp scheme. We also
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discussed how, if k, cd ∈ {0, 1}λ, the ciphertext C should be such that C ∈ {0, 1}ω, where
ω ≥ (t− 1)λ.

HK2: The HK2 protocol achieves privacy and recoverability, as proven in [24]. The
proof of security is under the assumption that the internal probabilistic encryption scheme
E achieves ind-1 security and that the commitment scheme CS achieves both the hiding
and binding property. One additional assumption is that the (t, n)−secret sharing scheme
achieves perfect security, as described in Definition 2. The proof for the HK2 protocol is,
however, not in the RO model and there are not restrictions on the size of the ciphertext C.

Discussion: Both the RAONT-RS and HK2 achieve computational privacy and recov-
erability. However, significantly, the security of the RAONT-RS scheme is in the RO model,
whereas HK2 is provable in the standard model.

5.2.2 Share Size.

We now compare the size of the shares given to each player in both schemes. Note that
we will only consider the share of the data given to each player and not the additional
information dealt due to the commitment schemes (the decommittal R[i] and the shares
of the committal keys S1[i], . . . ,Sn[i]). This is because the commitment scheme adds the
same amount of data to both; the sizes of the shares vary because of the data share and
not the additional information making the scheme robust. Therefore this comparison is also
applicable to AONT-RS and SSMS.

Assume M ∈ {0, 1}ω and the encryption scheme E is length preserving. Encrypt M
under some key k ∈ {0, 1}λ to calculate the ciphertext C ∈ {0, 1}ω. Assume also that
ω ≥ λ(t− 1) (to prevent attacks against the AONT-RS, as described in Section 3.2).

RAONT-RS: If C and k were distributed via the AONT-RS, the share given to each
player would consist of ⌈

ω + λ

t

⌉
(34)

bits. This is because (C||cd), a total of ω+λ bits, would be input to the IDA. The IDA would
parse (C||cd) into t elements, each element consisting of dω+λ

t e bits. These t words would
then create a t−vector and be multiplied on the left by the n × t matrix G. Each player
would then receive a share from the resulting n−vector, which would also have elements of
dω+λ

t e bits.
HK2: If the HK2 scheme were used to distribute C, each share would consist of⌈ω

t

⌉
+ λ (35)

bits. This is because each player’s share consists of a ciphertext share C[i] and a key share
output from the PSS, K[i]. The ciphertext share is an output from the IDA, and so would
consist of dωt e bits. The key share is output from a PSS which, assuming the PSS is ideal,
would consist of λ bits. Thus the total size of the share is the sum of the two parts.

Discussion: We can see that,⌈
ω + λ

t

⌉
≤
⌈ω
t

⌉
+

⌈
λ

t

⌉
≤
⌈ω
t

⌉
+ λ, (36)

for all t ≥ 1. Therefore, the RAONT-RS scheme achieves smaller share sizes than HK2.
The share sizes in RAONT-RS are strictly smaller than in HK2 when t ≥ 2 (which will be
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true in general). As t increases, the ratio of the share sizes between RAONT-RS and HK2
will also increase. This is because λ

t decreases as t increases, whilst λ is a constant.
Note the majority of each share comes from the size of the ciphertext C, meaning that,

although RAONT-RS achieves smaller share sizes, the differences will be minimal if ω is
large. If ω is small, however, and λ is comparatively large, RAONT-RS may achieve signif-
icantly smaller shares than HK2. This is especially true if t is large.

5.2.3 Efficiency of Share.

The number of bitwise XORs required for ShareRAONT and ShareHK2 will now be com-
pared. Note that we have omitted the analysis of both the encryption scheme E and the
commitment scheme CS This is because the number of XORs required for both E and CS
will be common to both schemes. Therefore this comparison is also applicable to AONT-RS
and SSMS. We will assume the internal IDA used in both schemes is the systematic RS-IDA,
as defined in Section 2.5.1.

Assume we wish to distribute some M ∈ {0, 1}ω, where k
$←− {0, 1}λ. Assume that E is

a length preserving function, so C
$←− Enck(M), C ∈ {0, 1}ω with ω ≥ λ(t− 1).

RAONT-RS: After encrypting M , the ShareRAONT algorithm requires one hash func-
tion computation and one XOR of λ bits (the values h and k to calculate cd). Then, (C||cd)
is distributed via the IDA. As multiplication can be implemented via a lookup table, each

element of the output n−vector require t−1 XORs of elements in GF (2d
ω+λ
t e). This is true

for each of the n elements in the vector, thus the IDA requires

n(t− 1)

⌈
ω + λ

t

⌉
= O(n(ω + λ)) (37)

bitwise XORs. Therefore, the total cost of ShareRAONT is one hash function computation
and

λ+ n(t− 1)

⌈
ω + λ

t

⌉
= O(λ(n+ 1) + nω) (38)

bitwise XORs. Note that computing one hash is generally very efficient.
HK2: The HK2 protocol, after encrypting M , requires the distribution of the secret k

via a PSS. One example of an efficient PSS is a scheme by Kurihara et al.’s scheme. Using
Kurihara et al.’s scheme would require O(tnλ) bitwise XORs. After the key is distributed,
the ciphertext is distributed via the IDA. As multiplication can be implemented via a lookup
table, each element in the output n−vector requires t − 1 XOR of elements, this time, in

GF (2d
ω
t e). Therefore, the IDA when used in the HK2 scheme requires

n(t− 1)
⌈ω
t

⌉
= O(nω) (39)

bitwise XORs. Thus, in total, the HK2 protocol requires

O(λ(tn) + nω) (40)

bitwise XORs.
Discussion: The AONT-RS scheme requires fewer bitwise XORs for distribution; this

is because 1 + n < tn for all t ≥ 2. Notably, as t increases, the HK2 protocol requires
more XORs, whereas the number of XORs for the RAONT scheme is independent of t.
This means that, as t increases, the AONT-RS scheme will require fewer bitwise XORs
when compared to the HK2 protocol. The RAONT-RS scheme does, however, require the
computation of a hash function.
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5.2.4 Efficiency of Recover.

As before, we discuss only the complexity of the scheme excluding the commitment scheme
and decryption. Again, this comparison is also applicable to AONT-RS and SSMS. Assume
t players pool their shares in order to recover the data M .

RAONT-RS: In the RecoverRAONT algorithm, the players all have shares of size
⌈
ω+λ
t

⌉
.

When t players submit their shares, they would first be input to the RecoverIDA algorithm.
A t−vector of the shares would be constructed and multiplied by the inverted t× t matrix
constructed from G. As in the share procedure, this would require t − 1 XORs for each
element of the output vector. The output vector only has t elements, thus

t(t− 1)

⌈
ω + λ

t

⌉
= O(n(ω + λ)) (41)

bitwise XORs and would recover the ciphertext C and cd. One hash computation H(C) = h
would then be required, followed by one XOR of λ bits, to calculate k = h⊕cd. The message
C would then be decrypted under k. Thus the RecoverRAONT algorithm requires one hash
function computation and

O(t(ω + λ) + λ) (42)

bitwise XORs.
HK2: In the RecoverHK2 algorithm, the players all have shares of size

⌈
ω
t

⌉
+ λ. After t

players submit their shares, the ciphertext share would be separated from the key share. The
IDA is used to recover the ciphertext from the ciphertext shares. As before, this requires

t(t− 1)
⌈ω
t

⌉
(43)

bitwise XORs. The encryption key k would then be recovered via the PSS, which (again,
if Kurihara et al.’s PSS is used) would require O(tnλ) bitwise XORs. Thus, the number of
bitwise XORs for the HK2 scheme is

O(tω + ntλ). (44)

Discussion: The Recover algorithm for the RAONT-RS requires fewer bitwise XOR
operations. However, the number of bitwise XORs in the RecoverRAONT algorithm is
dependent on t, but not on n. The HK2 algorithm is dependent on both t and n.

Again, the RAONT-RS scheme requires one extra operation, the computation of one
hash function.

6 Conclusion

In this paper we have generalised the AONT-RS scheme and shown how information is leaked
when it is used to distribute ciphertexts shorter than λ(t − 1), where t is the threshold of
the scheme and λ is the security parameter of the encryption scheme. We then proved the
AONT-RS scheme achieves computational privacy in the RO model. Next, we extended
the scheme to be robust and proved the robust scheme achieves both computational privacy
and recoverability in the RO model. Finally, we compared the robust AONT-RS with the
HK2 scheme, which is a comparison applicable to the general AONT-RS and Krawczyk’s
SSMS scheme. We showed the robust AONT-RS scheme achieves weaker security than the
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HK2 scheme because its proof is in the RO model, whereas the HK2 scheme is provable
under standard assumptions. However, by compromising on security, the AONT-RS scheme
achieves smaller share sizes and more efficient dispersal and recovery of data than HK2.
This is particularly true when the threshold value t is large.

Further research includes implementing both techniques with a number of different pa-
rameters to allow for a more thorough comparison of the performance of the schemes.
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