
Faster Homomorphic Evaluation of Discrete
Fourier Transforms

Anamaria Costache, Nigel P. Smart, and Srinivas Vivek

University of Bristol, Bristol, UK

Abstract. We present a methodology to evaluate a Discrete Fourier
Transform (DFT) on data which has been encrypted using a Somewhat
Homomorphic Encryption (SHE) scheme, which is over 200 times faster
than other methods. The technique utilizes the fact that the entire DFT
algorithm is an algebraic operation over the underlying ring of the SHE
scheme (for a suitably chosen ring). We then go on to show that the same
technique can be used to perform homomorphic operations on encryp-
tions of approximations to arbitrary complex numbers, which dramati-
cally simplifies earlier methodologies.

1 Introduction

Since its introduction by Gentry in 2009 [7] most work on Fully Homomorphic
(resp. Somewhat Homomorphic) Encryption (FHE/SHE) has focused on eval-
uating binary or arithmetic circuits. However, for many applications one needs
to evaluate functions over more complex data types. In many areas of scientific
processing one requires operations on real or complex numbers, and many appli-
cations consist of evaluation of functions of relatively low multiplicative depth.
For example basic statistical calculations are often linear (such as means), or
quadratic (such as standard deviations).

This need to process real and complex arithmetic homomorphically has led
some authors to propose encoding methods for such numbers [4, 5] in the context
of encryption schemes based on Ring-LWE. Such schemes are typified by the
BGV scheme [3]. The BGV scheme and its extensions [6], is based on a ring

R = Z[X]/ΦM (X),

where ΦM (X) is some cyclotomic polynomial. The ring is considered with respect
to two moduli, the plaintext modulus p and the ciphertext modulus q. Writing
Rp and Rq for the ring reduced modulo p and q respectively, we have that Rp

represents the space of all possible plaintexts and R2
q is the ciphertext space.

Prior work [4, 5] in encoding real numbers (and hence complex numbers)
has used a fixed point representation based on the polynomial expansion of the
real number with respect to some “base”. This polynomial is then embedded
into the plaintext space, and homomorphic operations on the polynomials map
into homomorphic operations on the underlying fixed point number. During a
homomorphic operation the degree of the representing polynomial increases, as

does the size of the coefficients. These two increases imply lower bounds on the
degree of the ring R and on the plaintext modulus p. It should be noted that
we therefore need to track both noise growth (as in all SHE operations) as well
as plaintext growth in such an encoding. See [4] where this growth in coefficient
sizes of the representing polynomials is considered in depth.

In [4] this ability to homomorphically evaluate on real and complex num-
bers is demonstrated via a toy example of evaluating a simple image processing
pipeline consisting of a DFT, followed by the multiplication of a secret Hadamard
transform, followed by an inverse DFT. In this paper we take this motivating
algorithm and show that one can evaluate it over two orders of magnitude faster
by utilizing a completely different representation of the complex numbers. Our
method is particularly tailored for DFT operations, however we also show that
it can be applied to other more general operations on complex numbers.

Our techniques make use of the special cyclotomic ring

R = Z[X]/(XM + 1)

where M = 2m is a power of two. We note that in the ring R the value X
corresponds to a formal primitive 2 ·M -th root of unity. Thus by selecting a
mapping X 7→ ζ2·M we can interpret a polynomial in R as being an integer
linear combination of the powers of the complex number ζ = ζ2·M .

This leads to our immediate improvement on the method to homomorphically
evaluate the DFT given in [4]. If N is a power of two which divides M then

Y = X2·M/N (resp. ζN = ζ
2·M/N
2·M) (1)

is a primitive N -root of unity lying in R (resp. C). Recall that the DFT operation
takes an input vector and applies a linear operation (defined over R) to the input
vector. Thus, as long as we encode our input in R, we can perform the DFT using
only algebraic operations in R. Thus we can homomorphically evaluate the DFT,
as long as the coefficient growth of the underlying polynomials can be supported
by our plaintext modulus p. When applying DFT in many applications the input
can be scaled to be an integer (e.g. in image processing), thus the input can easily
be encoded as required.

This methodology enables us to achieve a considerable improvement in the
ability to homomorphically evaluate a DFT. Notice that despite the DFT being
linear, the large number of additions and scalar multiplications means that the
often heard mantra of “only multiplications matter” does not apply. We need to
be careful not only of the growth of the coefficients of the ring elements which
encode our values, but also of the homomorphic noise.

A key improvement in our method is that we evaluate directly on encodings
of complex numbers, thus a homomorphic multiplication requires only one ci-
phertext multiplication, as opposed to four when one encodes via encodings of
fixed point values. This immediately leads one to consider if the same method-
ology can be applied to perform homomorphic operations on arbitrary complex
numbers. With the DFT algorithm we perform an exact computation homomor-
phically, since the DFT is defined as an algebraic function over R. Clearly, not

2

all complex-arithmetic algorithms can be evaluated exactly. However, if we are
prepared to give up exact computation, we can utilize the same trick.

For example, take a complex number α and then approximate it via the sum

α ≈
N−1∑
i=0

ai · ζi·2·M/N .

Then we can use this polynomial to encode the complex number. If the coef-
ficients ai are selected to be relatively small then the methodology in [4] can
be applied to estimate the associated coefficient growth of the encoding poly-
nomials as homomorphic operations are performed. Finding suitably small ai
values can be obtained for an arbitrary complex number via the use of the LLL
algorithm [10], in a relatively standard way. See Section 4 for more details on
this methodology.

2 New Homomorphic DFT Method

Suppose we want to evaluate DFT on an input vector

v = (v0, ...vN−1) (2)

of N integers in the range (−B, . . . , B). For most of this section, we will restrict
ourselves to the integer input case because it suffices for our application to
homomorphic image processing that we consider in Section 3. However, later in
this section, we deal with the case when the DFT inputs are integer polynomials
representing elements of the power-of-two cyclotomic rings. In Section 4, we
provide a new method to encode general complex numbers in the power-of-two
cyclotomic rings.

For simplicity, let us assume that N = 2n for some n ≥ 0. Recall that the
ith element (0 ≤ i < N) of the DFT output vector is computed as

DFT(v)[i] =

N−1∑
j=0

vj · ζijN , (3)

where ζN is a primitive complex Nth root of unity. We require that ζN can be
represented by an element in R, and so we must have N dividing 2 ·M .

2.1 Bounding Coefficients

To simulate complex arithmetic in R, the plaintext modulus p must be chosen
to be greater than the largest occurring intermediate coefficient in the DFT
computation. Hence it is necessary to choose p such that the magnitude of the
largest coefficient is less than p/2, when we represent the modulo p integers in
the interval (−p/2, . . . , p/2). If this is not done then decrypting the result of
a homomorphic operation will not result in the correct value; regardless as to
whether the homomorphic noise has swamped the computation.

3

Substituting ζN in (3) by Y from (1), we obtain a vector of polynomials in
the indeterminate X,

(D0(X), . . . , DN−1(X)),

where

Di(X) =

N−1∑
j=0

vi · Y ij , (4)

for 0 ≤ i < N . This corresponds to the set of polynomials that encodes DFT(v)
using our encoding scheme. It is this set of polynomials that we wish to homo-
morphically compute.

For a polynomial U(X) =
d∑

k=0

uk ·Xk ∈ Z[X] define

‖U(X)‖∞ := max
k
{|uk|}, and ‖U(X)‖1 :=

d∑
k=0

|uk|.

Recall that ∥∥a ·Xk
∥∥
∞ = ‖a‖∞ , (5)

‖a+ b‖∞ ≤ ‖a‖∞ + ‖b‖∞ , (6)

where a, b, k ∈ Z and k ≥ 0. The first of the above two properties is crucial
to ensure that our encoding scheme leads to much slower growth of coefficients
than previous analysis in [4].

From (4), we obtain, using the above properties, that

‖Di(X)‖∞ ≤
N−1∑
j=0

|vi| =
N−1∑
j=0

‖vi‖∞ < N ·B. (7)

Invariance. While (7) bounds only the size of the coefficients in the final output,
we need to bound the intermediate values as well. But this depends on the
method used to compute DFT. In the following, we argue that the bound in
(7) also holds for intermediate variables in most of the well-known methods to
compute DFT.

Two popular methods to compute DFT are

1. Naive Fourier Transform (NFT): the encoded input vector v is multiplied
with a matrix A of encoded powers of the primitive Nth root of unity Y ,
where A[i, j] = Y ij (mod p,XM + 1). This matrix-vector multiplication is
usually carried out for small dimensions using either the row approach (scalar
product of a column vector and v) or the column approach (as a span of
column vectors).

2. Fast Fourier Transform (FFT): this is a recursive divide-and-conquer pro-
cedure, where the ith element DFT(v)[i] (0 ≤ i < N) is computed as

DFT(v)[i] = DFT(v[0, . . . , N/2− 1])[i] + Y i ·DFT(v[N/2, . . . , N − 1])[i]).

4

A hybrid of NFT and FFT is particularly interesting in the context of homo-
morphic evaluation as it provides a trade-off between the number of scalar mul-
tiplications and the depth of the circuit. The resulting so called Mixed Fourier
Transform (MFT) has been investigated in this context [4]. The divide-and-
conquer procedure is applied for instances of size greater than, say, B, and for
instances of size lesser than or equal to B, the naive matrix-vector multiplication
method is applied.

In all the above methods, any intermediate intermediate polynomial U(X)
is of the form

U(X) =

N−1∑
i=0

ui · vi ·Xti (mod p,XM + 1),

where ui = 0 or ui = 1 depending upon whether the corresponding summand
should be present or not. Assuming no wrap around the modulus p (ensuring
which is the whole point of this analysis), then using properties (5) and (6), we
obtain the same bound as in (7). That is,

‖U(X)‖∞ < N ·B. (8)

Note, while our bounds are invariant of the method used to compute the DFT,
this is not the case with the previous method found in [4].

2.2 Extending the Analysis to the Ring of Algebraic Integers

Now suppose that the DFT input vector v (cf. (2)) now contains integer polyno-
mials representing elements of R, instead of just elements from Z. Following an
analysis similar to that in Section 2.1, we obtain that any intermediate variable
U(X) in the DFT computation satisfies

‖U(X)‖∞ ≤
N−1∑
i=0

‖vi(X)‖∞ ≤ N ·max
i
‖vi(X)‖∞ . (9)

Note that the above bound is independent of the number of non-zero terms in
the input polynomials.

3 Homomorphic Image Processing

In this section, we apply the bounds obtained in Section 2 to the case of homo-
morphic image processing. Previously, homomorphic image processing has been
investigated in the works of [1, 2, 4]. The works [1, 2] investigate the problem of
performing radix-2 DFT in the encrypted domain using additively homomorphic
encryption schemes. Because DFT is a linear operation, the authors manage to
perform this homomorphically using Paillier encryption scheme [11]. In [4], the
authors homomorphically implement a standard image processing pipeline of

5

DFT, followed by Hadamard component-wise multiplication by a fixed but en-
crypted matrix/vector, and finally inverse DFT to move back from the Fourier
domain. The fact that the Hadamard vector is encrypted makes the whole opera-
tion non-linear and hence prevents the use of additively homomorphic encryption
schemes for this purpose. Yet, much smaller parameters size is achieved in [4]
compared to [1, 2] even for the operation of homomorphically performing a single
DFT only. See [4, Section A.2] for a detailed comparison of their work with that
of [1, 2].

3.1 DFT-Hadamard-iDFT Pipeline

Inputs to the (homomorphic evaluation of) a DFT-Hadamard-iDFT pipeline
are usually (encrypted) integers in some interval [0, . . . , B := 2b1) representing,
for instance, the colour encoding of a pixel. Assume that there are N = 2n

integer DFT inputs and as many in the Hadamard vector for component-wise
multiplication. Using our encoding scheme from Section 2, we encode the input
integers as themselves in the ring R = Z[X]/(p,XM + 1), where as Y = X2M/N

encodes a complex primitive Nth root of unity. Because the powers of a primitive
root of unity are encoded as monic monomials in R, we do not need to bother
to specify the precision for the roots of unity.

From (8), we obtain that during the computation of DFT, the largest oc-
curing intermediate coefficient is bounded above by N ·B. After the Hadamard
component-wise multiplication by a vector of (encrypted) integer entries, the
new upper bound is N · B2. Finally, using (9), we obtain the following bound
for any intermediate polynomial U(x)

‖U(X)‖∞ < N2 ·B2.

Hence we need to choose a plaintext modulus p of the ring R such that

p ≥ 2 ·N2 ·B2.

3.2 Comparison of Concrete Parameters

In [4, Section A.3], the authors use a computational procedure to compute con-
crete lower bounds for the sizes of p and deg(R) chosen to homomorphically
evaluate the above DFT-Hadamard-iDFT pipeline, where, as previously men-
tioned, the Hadamard vector is also encrypted. This computational approach
was followed because obtaining sharp closed form bounds seems to be out of
reach for their encoding technique. Our technique by contrast enables us to
obtain tight bounds on the resulting coefficients relatively easily.

Table 1 compares concrete lower bounds for our method and those from [4].
As in [4], we chose b1 = 8 bits of precision for the magnitude of each input, in-
cluding the entries of the Hadamard vector. Unlike our case, in [4], the precision
b2 of the roots of unity had to be adjusted so that the result has a precision
of 32 bits. In [4], all the inputs and the roots of unity were encoded as pairs of

6

polynomials encoding the real and imaginary parts. These encoding polynomial
pairs correspond to encodings of integers with respect to a balanced base-3 rep-
resentation, and each having degree d1 and d2 for the inputs and the roots of
unity, respectively.

Note that, as remarked before, the lower bounds on p are independent of the
method used to compute DFT. The parameter B corresponds to the depth of
the MFT method used (cf. Section 2.1). We remark that the size of the plaintext
modulus in our method is close to that required in the case of NFT for [4]. Recall,
we also need to lower bound the degree of R by deg(R) = M ≥ N/2, which is a
much higher bound than that required in [4] for large values of N . However, in
practice the degree will need to be much larger than this lower bound to ensure
security of the underlying homomorphic encryption scheme. So this increase in
the lower bound on the degree is unlikely to be a problem in practice.

FFT B = 1 B =
√
n NFT B = n

log2 p deg(R) log2 p deg(R) log2 p deg(R)
Method n b2 d1 d2 ≥ ≥ ≥ ≥ ≥ ≥

[4] 16 29 5 18 54 190 37 118 25 46

This paper 16 - - - 26 8 26 8 26 8

[4] 64 27 5 17 74 248 49 146 29 44

This paper 64 - - - 30 32 30 32 30 32

[4] 256 25 5 16 93 298 61 170 33 42

This paper 256 - - - 34 128 34 128 34 128

[4] 1024 23 5 15 112 340 72 190 37 40

This paper 1024 - - - 38 512 38 512 38 512

Table 1. Comparison of the parameters for the DFT-Hadamard-iDFT pipeline.

3.3 Comparison of Implementation Timings

Like [4], we implemented the full pipeline using the HElib library [9] that im-
plements the BGV Somewhat Homomorphic Encryption scheme [3, 8]. Table 2
compares the performance of our method with that of [4]. The experiments were
run on a machine with six Intel Xeon E5 2.7GHz processors with 64 GB RAM.
The time, measured in seconds, is that required to evaluate the DFT-Hadamard-
iDFT pipeline in the encrypted domain. The parameter log2(q) corresponds to
the size of the fresh ciphertexts, and “HElib Levels” report the actual number
of levels consumed by HElib due to its internal choice of ciphertext moduli.
In particular, HElib was allowed to choose by default half-sized primes for the
ciphertext modulus chain. Unlike [4] we are unable to obtain any form of amor-
tization via SIMD packing.

The parameter instances for which the above results are reported were chosen
to be the same as reported in [4]. Since HElib has a restriction of at most 60

7

HElib CPU
Method N B deg(R) log2(q) Levels Time

[4] 16 1 32768 710 33 188

This paper 16 1 16384 363 15 2.1

[4] 16 4 32768 451 19 147

This paper 16 4 16384 319 12 1.95

[4] 16 16 16384 192 9 106

This paper 16 16 16384 192 7 2.63

[4] 64 8 32768 622 30 1500

This paper 64 8 32768 407 17 32.5

[4] 64 64 16384 192 10 1582

This paper 64 64 16384 192 8 30.37

[4] 256 256 16384 278 11 34876

This paper 256 256 16384 235 10 449.32

Table 2. Comparison of timing results for homomorphically evaluating a full image
processing pipeline.

bits for the plaintext modulus p, not all instances of the MFT could be run with
the method from [4] for comparison. Note that this restriction of HElib does not
affect our method at all. We are thus able to cope with a much larger range of
parameter choices, as described in Table 3. In this table we report the timing
results for our method for all possible instances of the MFT for the chosen values
of N . We mark in bold the value of B which produced the fastest runtime for a
given value of N . We could, however, only perform experiments until N = 512
due to insufficient RAM memory, which is still twice the size possible with the
previous method.

4 Encoding Arbitrary Complex Numbers

The method of the previous section for implementing algorithms in

R = Z[X]/(X2m + 1)

can also be applied to implement (approximate) homomorphic arithmetic for
arbitrary complex numbers. The standard method to encode complex numbers
is to use a pair of real numbers, and using previous schemes, one would therefore
hold the encrypted complex number as the encryption of two real numbers. The
real numbers would then be encrypted using the methods suggested in [4, 5]
to encode fixed-point numbers. A major downside of this methodology is that
to add two encrypted complex numbers requires two homomorphic additions,
and to multiply two encrypted complex numbers requires four homomorphic
multiplications.

In this section we present the folklore method of approximating an arbitrary
complex number by an element in R. We then can encode the complex number

8

HElib CPU
N B dlog2 pe deg(R) dlog2 qe Levels Time

16 1 26 16384 363 15 2.1
16 2 26 16384 363 15 2.16
16 4 26 16384 319 12 1.95
16 8 26 16384 235 11 1.86
16 16 26 16384 192 7 2.63

64 1 30 32768 537 24 31.7
64 2 30 32768 537 24 29.09
64 4 30 32768 494 22 29.3
64 8 30 32768 407 17 32.5
64 16 30 16384 363 15 16.62
64 32 30 16384 278 11 23.21
64 64 30 16384 192 8 30.37

256 1 34 32768 753 34 152.36
256 2 34 32768 753 34 154.94
256 4 34 32768 710 31 156.08
256 8 34 32768 622 28 170.92
256 16 34 32768 537 23 199.52
256 32 34 32768 451 20 275.99
256 64 34 32768 363 17 395.93
256 128 34 16384 278 13 305.67
256 256 34 16384 235 10 449.32

512 1 36 65536 884 41 905.58
512 2 36 65536 884 41 906.2
512 4 36 65536 797 36 881.36
512 8 36 32768 710 33 395.79
512 16 36 32768 666 28 530.36
512 32 36 32768 537 25 627.18
512 64 36 32768 451 21 973.67
512 128 36 32768 407 17 1651.82
512 256 36 16384 319 13 1253.21
512 512 36 16384 235 10 1198.48

Table 3. Timing results for all instances of MFT for homomorphically evaluating a
full image processing pipeline.

by the associated element in R. As long as we can bound the coefficients of
the associated element (in terms of the power basis of R), we can then use the
method in [4] to bound the growth of the plaintext coefficients as we perform
homomorphic operations. Thus we use the method in [4] to bound coefficients
of polynomials representing complex numbers, as opposed to polynomials rep-
resenting fixed-point numbers. The only difference being how we interpret the
underlying polynomial/element of R.

We pick a value n such that n divides M = 2m, this is purely to reduce
the size of the associated lattice below from M to the smaller value n, to make
lattice reduction more manageable. However, a larger value of n will result in an

9

approximation polynomial with smaller coefficients (heuristically, although not
provably). We let ζ denote a primitive n-th root of unity, so ζ is a fixed primitive
root of the polynomial Zn − 1, where Z = XM/n. Our basic idea for encoding
(an approximation to) the complex number α is to write

α ≈ α =

n−1∑
i=0

zi · ζi

for some “small” integer values zi, thus we can approximate α by α ∈ R.

We first fix a “large” integer C, say C = 1010, which encodes how close we
want the approximation to be. We then set, for i = 0, . . . , n− 1,

ai = dRe(C · ζi)c and bi = dIm(C · ζi)c,

and

a = dRe(C · α)c and b = dIm(C · α)c.

We form the rank n+1 lattice L in Rn+3 generated by the columns of the matrix

A =

1
. . .

1
T

a0 . . . an−1 − a
b0 . . . bn−1 − b

,

for some non-zero constant T . The determinant of this lattice ∆(L) is given by√
det(AT ·A) ≈ n · T · C2/2, assuming |a|, |b| < T · C. We then apply the LLL

[10] algorithm to the lattice generated by the columns of A. We let j denote the
index of the shortest LLL basis vector which is non-zero in the n-th position
(when the basis is ordered in increasing order of size). We expect, for a suitably
large (but not too large) choice of T that the j-th basis vector will have ±T in
its n+ 1-st position, and hence will be of the form

y =

(
z0, . . . , zn−1, ± T,

n−1∑
i=0

zi · ai ∓ a,
n−1∑
i=0

zi · bi ∓ b

)
.

We then have, by the usual bounds on LLL basis vectors, that the zi values, for
i = 0, . . . , n− 1, to be of size bounded by

(
2n·(n+1)/4−1 · n · T · C2

)1/(n+2−j)
,

10

and resulting in an approximation α such that

C ·
∣∣∣α− α∣∣∣ ≤ ∣∣∣Re(C · α)−

n−1∑
i=0

Re(C · zi · ζi)
∣∣∣+
∣∣∣Im(C · α)−

n−1∑
i=0

Im(C · zi · ζi)
∣∣∣

≈
∣∣∣ n−1∑
i=0

zi · ai − a
∣∣∣+
∣∣∣ n−1∑
i=0

zi · bi − b
∣∣∣

/ 2 ·
(

2n·(n+1)/4−1 · n · T · C2
)1/(n+2−j)

.

In other words we get, for large enough C, a good approximation α of α. In
addition, since LLL usually behaves much better than the theoretical bounds
predict, we expect the actual bound on the approximation and the zi values to
grow roughly as C2/n. Thus for fixed C increasing the rank of the lattice, i.e.
increasing n, will result in an approximately linear decrease in the coefficient
sizes.

Our estimates of the accuracy of the method above depended on the fact that
a and b are not too big. In particular we assumed that |a|, |b| < T · C, so that
they produce a negligible effect on the determinant of the lattice we are reducing.
Thus in practice it helps to scale α down so that |α| is close to one, assuming this
is enabled by the application in hand. This may require the appropriate scaling
to be tracked through the homomorphic operation; much like was proposed in
the method from [4].

4.1 Numerical Example

Suppose we are given the complex number

α = 0.655981733221013 + 0.923883055400882 ·
√
−1 = a+ b ·

√
−1,

and we want to produce an approximation which is correct up to ten decimal
digits of accuracy using a lattice of dimension n = 16. We apply the above
method with C = 1010 and T = 10, and find that the LLL reduced basis of the
above rank n+ 1 lattice in Rn+3 has its first basis vector given by

(0,−5, 0, 1,−4, 12, 8,−6,−1,−2,−1,−8,−2, 8, 0, 1, 10,−5,−1).

Thus if we form the polynomial

P (Z) = Z15 + 8 · Z13 − 2 · Z12 − 8 · Z11 − Z10 − 2 · Z9 − Z8

− 6 · Z7 + 8 · Z6 + 12 · Z5 − 4 · Z4 + Z3 − 5 · Z,

then

α = P
(

exp(π ·
√
−1/16)

)
≈ 0.65598173270304 + 0.923883055555970 ·

√
−1.

11

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC IMPaCT
and by the European Union’s H2020 Programme under grant agreement number
ICT-644209 (HEAT).

References

1. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. Comparison of different FFT
implementations in the encrypted domain. In 2008 16th European Signal Processing
Conference, EUSIPCO 2008, Lausanne, Switzerland, August 25-29, 2008, pages 1–
5. IEEE, 2008.

2. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. On the implementation of
the discrete fourier transform in the encrypted domain. IEEE Transactions on
Information Forensics and Security, 4(1):86–97, 2009.

3. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS,
pages 309–325. ACM, 2012.

4. Anamaria Costache, Nigel P. Smart, Srinivas Vivek, and Adrian Waller. Fixed-
point arithmetic in SHE scheme. In Selected Areas in Cryptography - SAC, 2016.
Full version available at http://eprint.iacr.org/2016/250.

5. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Manual for using homomorphic encryption for bioinformatics,
2015. Available at http://www.microsoft.com/en-us/research/publication/

manual-for-using-homomorphic-encryption-for-bioinformatics.
6. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic

encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.
7. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009. http://crypto.stanford.edu/craig.
8. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the

AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 850–867. Springer, 2012.

9. Shai Halevi and Victor Shoup. Design and implementation of a homomorphic-
encryption library. Manuscript available at http://people.csail.mit.edu/

shaih/pubs/he-library.pdf.
10. Arjen K. Lenstra, Hendrik W. Lenstra, and Laszlo Lovasz. Factoring polynomials

with rational coefficients. Math. Annalen., 261:515–534, 1982.
11. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Proc. of EUROCRYPT’99, pages 223–238, 1999.

12

