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Abstract
A covering system of congruences can be defined as a set of congruence relations of

the form: {r1 (mod m1), r2 (mod m2), . . . , rt (mod mt)} for m1, . . . , mt ∈ N satisfying the
property that for every integer k in Z, there exists at least an index i ∈ {1, . . . , t} such
that k ≡ ri (mod mi). First, we show that most existing scalar multiplication algorithms
can be formulated in terms of covering systems of congruences. Then, using a special
form of covering systems called exact n-covers, we present a novel uniformly randomized
scalar multiplication algorithm with built-in protections against various types of side-channel
attacks. This algorithm can be an alternative to Coron’s scalar blinding technique for elliptic
curves, in particular when the choice of a particular finite field tailored for speed compels
to use a large random factor.

1 Introduction
Exponentiation in multiplicative subgroups of finite fields and jacobians of low genus hyperel-
liptic curves is a crucial operation for many public key cryptosystems. For instance, it is used
extensively in the generation/verification of electronic signatures (e.g. using DSA/ECDSA) and
in the encryption/decryption phases of RSA or DL-based algorithms. In general, data manip-
ulated during these computations should absolutely be kept secret as even a small amount of
information may be maliciously exploited by an attacker, e.g. for forging one’s signature or for
acquiring some confidential information. This constraint appears to be much harder to satisfy
than one might expect. For the past twenty years, following the pioneer work of Kocher [1] on
Side-Channel Attacks (SCA), it has been a designer’s nightmare and an extraordinary playground
for researchers.

Side-channel attacks come in many different flavours and constitute nowadays a vast arsenal
for the attackers. At the higher level, one usually considers distinctly active attacks and passive
attacks. Those of the first kind are usually invasive and require physical access to the crypto-
graphic device. They try to modify the behaviour of a cryptographic algorithm using various
sources of perturbation such as laser beams, clock jitters or disturbance voltage. The usual
countermeasures consist in checking the cryptographic protocols for faults [2]. The second kind
of attacks may or may not require physical access to the device. They aim at measuring some
well-chosen physical information (power consumption, electromagnetic emanations, computation
time, etc.) that leak from the device during sensitive computations in the hope that these obser-
vations will reveal (part of) some secret data. In turn, this large family of passive attacks splits
into: simple attacks which only require one or a small number of executions in order to recover
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the secret (e.g. Simple Power Analysis [1]), and advanced attacks which need a very large number
of observations and the use of statistical tools (e.g. Timing attacks [1], Differential Power Analy-
sis [3], template attacks [4]). Simple attacks are usually defeated using highly regular algorithms,
whereas advanced attacks may be thwarted using various randomization techniques. Advanced
statistics are also at the core of Horizontal attacks [5, 6] but unlike the above-mentioned advanced
attacks, they only require a unique trace, making classical randomization techniques ineffective.

In parallel to the discovery of these attacks, a lot of research has been conducted towards
designing clever and efficient countermeasures at various levels. As a result, most of today’s
publicly known SCA can be counteracted, at least when considered individually. However, in
order to safeguard implementations against all known attacks, several countermeasures must
be carefully stacked together, while ensuring that this combination of independent, yet good
countermeasures does not weaken the overall implementation. Inevitably, each of these protection
layers implies some overhead, e.g. computation time, circuit area, etc. Hence, low-cost solutions
and protections which impede several attacks at once should be considered with great interest.
The ultimate, all-in-one, protection is yet to be discovered!

The main contribution of this work is a novel elliptic curve scalar multiplication algorithm
with built-in protections against differential and correlation attacks, HMM attacks, timing at-
tacks, SPA-type attacks and horizontal collision correlation attacks. It offers, by design, a high
level of randomization thanks to the proper use of exact covering systems of congruences. As
a side contribution, we show that many algorithms from the literature can be expressed in the
same framework. We assess the robustness of our solution by showing that all known relevant
attacks remain unsuccessful.

1.1 Randomization as a countermeasure
As stated above, the vast majority of advanced attacks require multiple executions of the al-
gorithm. They can be circumvented using various randomization techniques. In the context
of elliptic curves for example, several randomization options (scalar randomization, base point
blinding, random projective coordinates) were proposed by Coron in [7]. These techniques are
commonly used to counteract differential power/EM analysis, refined power analysis, zero-value
analysis and other types of advanced attacks. For a good survey on securing ECC implementa-
tions, see [8, 9].

A less frequent alternative to Coron’s countermeasures is the randomization of the scalar
multiplication algorithm itself. This can be achieved by taking random decisions in the course
of the algorithm. This approach is not new ; the MIST algorithm by Walter [10] or the Leak
Resistant Arithmetic (LRA) concept by Bajard et al. [11] are two examples of such randomized
algorithms proposed in the RSA context. In the elliptic curve setting, Oswald and Aigner
proposed the use of randomized addition-subtraction chains [12]. Their solution was broken
using the so-called hidden Markov Model (HMM) cryptanalysis by Karlof and Wagner [13].
Another randomization approach of the same kind was proposed by Ha and Moon [14]. Their
solution based on Binary Signed Digit (BSD) recodings [15] was broken in [16]. More recently,
Méloni and Hasan generalized the fractional w-NAF method by allowing random choices for the
expansion digits [17].

Most of these randomization strategies were rather elementary and have logically been broken.
Nevertheless, we believe that there are still good reasons to pursue investigations on robust
randomized algorithms. Quite surprisingly, a first motivation concerns practical efficiency. In
the most prominent randomization technique proposed by Coron, the private scalar k is masked
by adding a random multiple of the group order. Thus, instead of computing [k]P for a point P
on the elliptic curve E, one evaluates [k+ rN ]P , where r is a random integer and N is the order
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of E. The bits of k are thus masked using a different random value at each execution. In [7],
Coron suggested a nowadays far too small 20-bit random value. The question regarding the
“good” size for r is crucial and deserves some thought. For the sake of efficiency, many elliptic
curves are defined over special finite fields, for example modulo primes that are very close to a
power of two. In this case, due to the Hasse bound, the order N of the curve is also close to
that same power of two. Thus, in order to blind all the bits of k, the size of r should not be too
small.

As an example, consider curve25519, a record-breaking elliptic curve in Montgomery form
proposed by Bernstein in [18]. It is defined by the equation y2 = x3 + 486662x2 + x, over the
255-bit prime field with 2255 − 19 elements. The binary expansion of the order N of curve25519
reveals a one followed by a sequence of 127 consecutive zeros:

N = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed.

Let r = 0xa3787bb9c16b2b7d, be a 64-bit random integer. The binary expansion of rN also
contains a long sequence of zeros:
rN = 0xa3787bb9c16b2b7d0000000000000000d53cbb429156e3da99b82c008afa3bcec4b . . .

Thus, when a secret scalar, say
k = 0x9db98047d18f8e8505b55abad0ea873a1080c69a3ab0755b2e8dfb1e939b3fd

is added to rN , the binary expansion of the result discloses both the bits of r and the most
significant bits of k:

k + rN = 0xa3787bb9c16b2b7d|9db98047d18f8e85|daf215fd62416b14aa38f29ac5a . . . .
Observe that even if r was chosen twice as large, although rN would not contain a sequence

of consecutive zeros, the binary expansion of r could entirely be revealed by a simple analysis,
rendering the randomization ineffective.

For that reason, Bernstein recommends a 256-bit random value, for curve25519. The same
guidance holds for many other elliptic curves, in particular most of the curves meeting all Safe-
Curves requirements [19]: M-221, E-222, curve1174, E-382, M-383, curve383187, curve41417, M-
511, E-521 . It also applies to the elliptic curves in the Weierstrass and Edwards models recently
introduced by Bos, Costello, Longa and Naehrig in [20]. Both those defined modulo pseudo-
Mersenne primes, called w-xxx-mers and ed-xxx-mers for xxx ∈ {255, 256, 383, 384, 511, 512}
and those defined modulo primes of the form 2α(2β−γ)−1 denoted w-xxx-mont and ed-xxx-mont
for xxx ∈ {254, 256, 382, 384, 510, 512} are concerned.

For all those curves, choosing a random value r of size the size of p yields a 100% overhead for
the scalar multiplication! With this in mind, sturdy solutions based on randomizing the addition
chain may provide efficient, acceptable alternatives.

A second good reason to investigate novel alternative solutions is dictated by the history of
cryptography. How many algorithms have eventually been broken after being advocated as per-
fectly secure? In the recent years, quite a few very powerful attacks were introduced which broke
implementations that were thought unscathed thanks to widely acknowledged countermeasures.
In [6] for example, Bauer et al. introduced the so-called horizontal collision correlation analysis
and defeated ECC implementations that were considered secure until then. In particular, their
attack is effective against various atomic schemes [21, 22, 23] and unified formulae [24, 25], two
well established countermeasures against SPA. What is worth noticing about this attack, is that
it refutes one of the most established claim that both atomicity and unified formula do prevent
from differentiating a point addition from a point doubling. Even more recently, Nascimento et
al. [26] presented a powerful attack against a constant-time Montgomery ladder implementation
with projective point randomization. Their attack directly targets the cmov (conditional move)
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operation and only requires a single trace. Once again, a well-known assumption has been turned
down.

2 A new randomized scalar multiplication
In this section, we present a novel randomized mixed-radix scalar multiplication algorithm. It is
based on some nice properties of so-called covering systems of congruences.

2.1 Covering systems of congruences
A covering system of congruences (CSC) is a finite set {r1 (modm1),. . . , rt (modmt)} such that
every integer satisfies at least one of its congruence relations. In general, such covering sets are
not difficult to construct. A simple, non-trivial example of a distinct (all moduli are different)
covering system is given by the set:

{0 (mod 2); 0 (mod 3); 1 (mod 4); 1 (mod 6); 11 (mod 12)}

A covering system is called an n-cover if each integer is covered at least n times ; it is called
an exact n-cover if each integer is covered exactly n times. For example, the set:

{1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8)} (1)

—where a, b (mod m) is used as a shorthand for the two congruence classes a (mod m) and
b (modm)—form an exact 2-cover. It is illustrated in Figure 1.

The covering property is guaranteed as soon as all the integers modulo ` = lcm(m1, . . . ,mt)
are covered. In the example given in (1), ` = lcm(2, 4, 6, 8) = 24.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 (mod 2)
2 (mod 4)
3 (mod 4)
0 (mod 6)
2 (mod 6)
4 (mod 6)
0 (mod 8)
1 (mod 8)
4 (mod 8)
5 (mod 8)

Figure 1: The set {1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8)} is an exact 2-cover.
Each row corresponds to a congruence class ; the dots indicate which integers are covered by each
class. The number of dots in each column indicates the number of congruence classes covering
the corresponding integer. One may observe that there are exactly 2 dots per column.

Problems concerning covering systems of congruences were among Erdős’ favorites. One of
his conjectures, the minimum modulus problem, was only solved negatively by Hough in 2013
using the Lovász local lemma [27]. The non-existence of a distinct covering system whose moduli
are all odd is still an open problem.
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2.2 CSC-based scalar multiplication
The link between covering systems and scalar multiplication algorithms is immediate. Let P ∈ E
and k ∈ Z. Then it is clear that

k ≡ r (modm)⇒ [k]P = [r]P + [m]([h]P ), where h = (k − r)/m. (2)

For example, the right-to-left double-and-add algorithm follows directly from the exact 1-cover
given by the trivial covering set {0 (mod 2); 1 (mod 2)}:

[k]P =
{

[k/2]([2]P ) if k is even
[(k − 1)/2]([2]P ) + P if k is odd

In the world of (hyper)elliptic curves, many scalar multiplication algorithms have been pro-
posed (m-ary, NAF, window methods, multi-base, etc.). Interestingly, many of them can be
expressed using covering system of congruences. We list a few and the corresponding covering
systems of congruences in Table 1.

Table 1: Scalar multiplication algorithms and their corresponding covering system of congruences

Algorithm Covering System of Congruences
m-ary {0, . . . ,m− 1 (m)}
NAF {0 (2); 1,−1 (4)}
w-NAF [28] {0 (2); 1,−1 (2w); 3,−3 (2w); . . . ; 2w−1 − 1,−2w−1 + 1 (2w)}
frac. win. [29] {0 (2); 1,−1 (2w+1); 3,−3 (2w+1); . . . ; 2w + m; −2w −

m (2w+1)}
wmbNAF [30] {0 (a1); . . . ; 0 (ak); 1,−1 (aw1 ); 3,−3 (aw1 ); . . . , (a1 −

1)/2 (aw1 )}
w-HBTF [31] {0 (2); 0 (3); 1,−1 (w); . . . ; w/2− 1,−w/2 + 1 (w)}

2.2.1 A generic algorithm:

Let S be a covering system of congruences. For all k ∈ Z, we denote by S(k) the set of all the
congruence classes covering k, i.e. the set of all the congruences relations r (mod m) ∈ S such
that k ≡ r (mod m). A generic CSC-based scalar multiplication is given in Algorithm 1.

Algorithm 1 Generic CSC-based scalar multiplication
Input: S, k ∈ Z, P ∈ E
Output: [k]P ∈ E
1: if k = 0 then
2: return O
3: Let r (modm) ∈ S(k)
4: Compute Q := [(k − r)/m]P recursively
5: return [m]Q+ [r]P

The validity of Algorithm 1 is based on the fact that, for any covering system S, we have

[m]Q+ [r]P = [m(k − r)/m]P + [r]P = [k]P. (3)
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Table 2: The array representation of the covering system {1(mod2); 2, 3(mod4); 0, 2, 4(mod6);
0, 1, 4, 5 (mod 8)}.

i S[i][0] S[i][1] i S[i][0] S[i][1]
0 0 (mod 8) 0 (mod 6) 12 4 (mod 8) 0 (mod 6)
1 1 (mod 8) 1 (mod 2) 13 5 (mod 8) 1 (mod 2)
2 2 (mod 4) 2 (mod 6) 14 2 (mod 4) 2 (mod 6)
3 1 (mod 2) 3 (mod 4) 15 1 (mod 2) 3 (mod 4)
4 4 (mod 8) 4 (mod 6) 16 0 (mod 8) 4 (mod 6)
5 5 (mod 8) 1 (mod 2) 17 1 (mod 8) 1 (mod 2)
6 2 (mod 4) 0 (mod 6) 18 2 (mod 4) 0 (mod 6)
7 1 (mod 2) 3 (mod 4) 19 1 (mod 2) 3 (mod 4)
8 0 (mod 8) 2 (mod 6) 20 4 (mod 8) 2 (mod 6)
9 1 (mod 8) 1 (mod 2) 21 5 (mod 8) 1 (mod 2)

10 2 (mod 4) 4 (mod 6) 22 2 (mod 4) 4 (mod 6)
11 1 (mod 2) 3 (mod 4) 23 1 (mod 2) 3 (mod 4)

2.2.2 A specialized version with built-in side-channel protections:

Clearly, equation (3) is true regardless of how the congruence class (r,m) ∈ S(k) is selected
in line 3. Note that when |S(k)| > 1, i.e. when integer k is covered by strictly more than
one congruence class, several algorithms can be deduced depending on which class is chosen.
Therefore, the generic algorithm presented in Alg. 1 may be specialized in various ways. The
main characteristics of our randomized version are twofold:

• First, we require that the covering system S is an exact n-cover (with n ≥ 2). By doing
so, we ensure that there are exactly n congruence classes r (modm) in S(k) for every k.

• Second, in line 3 of Alg. 1, we select the congruence class r (mod m) ∈ S(k) uniformly at
random among the n different options. In practice, these n congruence classes in S(k) are
easily determined by computing k mod `, where ` = lcm(m1, . . . ,m|S|). In Section 3.1 we
shall see that this leads to exponentially many ways to compute Q in line 4.

An exact covering system S may be represented using a convenient data structure very close
to the graphical representation shown in Figure 1. More precisely, if

S = {r1 (modm1); r2 (modm2); . . . ; rt (modmt)}

is an exact n-cover, it may be described as a two-dimensional array of size ` × n, where ` =
lcm(m1, . . . ,mt). For each i ∈ {1, . . . , `}, the entry S[i] is a one-dimensional array, of length
exactly n, whose elements are the congruence classes covering the subset i+ `Z. An example is
given in Table 2.

We use this data structure in the description of Algorithm 2.
For convenience, we presented a recursive version of Algorithm 2. However this tail-end-

recursion can easily be reformulated iteratively. It can thus be implemented on small embedded
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Algorithm 2 Exact n-cover scalar multiplication
Input: S as described above, ` = lcm(m1, . . . ,m|S|), k ∈ N, P ∈ E
Output: [k]P ∈ E
1: if k = 0 then
2: return O
3: else if k = 1 then
4: return P
5: i := k mod `
6: Select j uniformly at random in {0, . . . , n− 1}
7: (r,m) := S[i][j]
8: compute R := [r]P
9: compute Q := [(k − r)/m]P recursively
10: return [m]Q+R

devices which may not support recursion. To do so, first compute a sequence (mi, ri) for k using
the covering system of your choice such that

k = r0 +m0(r1 +m1(r2 + · · ·+ (rs−1 +ms−1rs) . . . )). (4)

The above representation of k is known as a mixed-radix representation. Once k is converted in
that form form, computing [k]P simply consists of traversing this sequence (ri,mi)i≥0 in reverse
order. Initialize Q := O, then for each pair (mi, ri), set Q := [mi]Q + [ri]P . Note that the
elements [ri]P may be precomputed. Generating the sequence (mi, ri)i≥0 from k only requires
integer arithmetic (see Section 2.4).

2.3 Complexity analysis
In this section, we analyze the asymptotic average complexity of Algorithm 2 using a first order
Markov chain. Let S = {s1, . . . , st} with si := ri (mod mi) and let ` = lcm(m1, . . . ,mt). We
define the transition graph of the Markov chain as follows:

• the set of vertices V = {v0, . . . , v`−1} is the set of congruence classes modulo `. By
convention, vi denotes the class of i (mod `).

• the edges (vri
, vrj

) ∈ V 2 are oriented and labeled with probabilities: for every k > 0, there
are exactly1 n congruence classes si := ri (modmi) in S(k) such that k ≡ ri (modmi). In
line 9 of Alg. 2 (or line 4 of Alg. 1), the algorithm is called recursively with k′ = (k−ri)/mi

as input. In turn, if k′ > 0, we select a congruence class sj := rj (modmj) ∈ S(k′). The edge
(vri

, vrj
) is labeled with the conditional probability P (k′ ≡ rj (modmj)|k ≡ ri (modmi)).

The following lemma will come handy in the following.

Lemma 1. The Markov chain associated to a covering set S is irreducible and aperiodic.

Proof. For every 0 ≤ k < `, our algorithm terminates. Thus, for each vi ∈ V , there is a path from
vi to v0. Let T denote the transformation T : k 7→ (k−r)/m for k ≡ r(modm). Let k ≡ 0(mod`).
After one step of the algorithm, i.e. after a division by m, we have P (T (k) ≡ 0 (mod `/m)) > 0.
Thus, after a finite number of steps, there exists j such that T (j)(k) ≡ 0 (mod m) for m ∈ S.
Hence, ∀i ∈ {0, . . . , ` − 1}, P (T (j+1)(k) ≡ i (mod `)) = 1/` > 0. The Markov chain is thus

1Note that when S is a covering set but not an exact n-cover, there still exists at least one such class.
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irreducible. For every k > 0, P (k′ ≡ 0 (mod `)|k ≡ 0 (mod `)) > 0. Therefore, the Markov
chain contains at least one cycle of length 1, given by the edge (v0, v0).

In the general case we need to compute the transition matrix, say A, associated to S, and
then evaluate its stationary probability, i.e. the vector π∞ such that π∞A = π∞. (Note that the
uniqueness of π∞ is a consequence of Lemma 1.) When S is an exact n-cover however, neither
A nor π∞ need be computed. (For completeness, we provide algorithms for computing both A
and π∞ in Appendix A.) The following theorem holds.

Theorem 1. The stationary probability obtained for an exact n-cover is uniform:

π∞ = (1/`, . . . , 1/`).

The proof, given for completeness below, is a direct consequence of the following Lemma.

Lemma 2. The transition matrix associated to an exact n-cover is doubly stochastic, i.e. each
row and column adds up to 1.

Lemma. Let S be an exact n-cover and A its transition matrix. We want to show that
∑
iAi,j = 1

for all j = 0, . . . , `− 1. We will do so by showing that for all j = 0, . . . , `− 1∑
i

Ai,j =
∑

(r,m)∈S

1
nm

= 1
n

∑
(r,m)∈S

1
m
. (5)

Indeed, since each integer is covered exactly n times and each covering class covers exactly `/m
integers, we get that

∑
(r,m)∈S

1
m = n.

Now, in order to prove (5), observe that for each congruence class (r,m) ∈ S, there are
exactly `/m integers i in {0, . . . , ` − 1} that are covered by (r,m). For each of those, there are
exactly m integers j in {0, . . . , `− 1} such that j ≡ (i− r)/m (mod `/m). Thus, each (r,m) ∈ S
contributes to exactly ` columns (not necessarily distinct) of A. To prove that there are no
zero-column, observe that for (r,m) ∈ S, letting i = (r + m(j mod `/m)) mod `, we get that
i ∈ (r,m), 0 ≤ i < ` and j ≡ (i− r)/m (mod `/m) for all j ∈ {0, . . . , `− 1}. This confirms that
each congruence class (r,m) ∈ S contributes to each column exactly once. Finally, since S is an
exact n-cover, |S(i)| = n for all i = 0, . . . , `− 1 so that each contribution amounts to 1/nm.

Theorem. Since A is doubly stochastic, 1A = 1. Thus, the uniform probability distribution
π = (1/`)1 satisfies πA = π.

Let us now explain how this uniform stationary probability can be turned into an average
operation count per bit. We shall first compute the average number of point doublings, triplings,
quintuplings, etc., as well as the average number of point additions per iteration ; then per bit.
We will then put together these numbers with the cost of each curve operation to get the average
number of field operations per bit.

Let σ = ((ri,mi))i=0...s, be a precomputed sequence for the given scalar k. The iterative
version of Algorithm 2 rewrites: set Q = O and repeat Q = [mi]Q + [ri]P , for i ranging from
s down to 0. For each iteration, we aim at computing the average number of point additions,
and for each m in S, the average number of scalar multiplications by m. More precisely, for the
later we seek the average number of multiplications by p for each prime factor p in the prime
decomposition of m.
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First, observe that at each step, i.e. for each (ri,mi) ∈ σ, a point addition is performed
exactly when ri 6= 0. For each congruence class (r,m) ∈ S, there are exactly `/m integers in
{0, . . . , `− 1} which belong to that class. Thus, the probability to perform a point addition is

P1 = 1/`n

 ∑
(r,m)∈S,r 6=0

`/m

 = 1/n

 ∑
(r,m)∈S,r 6=0

1/m

 .

For the scalar multiplication [mi]Q, several options are possible. Here, we consider the prime
decomposition of mi. For example, we compute [12]Q = [22 · 3]Q using two point doublings
and one point tripling. For each (r,m) ∈ S, let m =

∏
i p
αi
i be the prime decomposition of m.

We denote by Npi the average number of scalar multiplications by pi. Then, using the same
arguments as above we get

Npi
= 1/n

∑
(r,m)∈S

αi/m.

In order to convert these values to an average number of point operations per bit, one needs
to evaluate the average number of iterations. A slight difficulty here comes from the fact that the
scalar is not divided by the same integer at every step. If ` =

∏
i p
αi
i , the scalar is divided by the

average value β =
∏
i p
Npi
i so that the average number of iterations is obtained by multiplying

the bitlength of k by ρ = log 2/ log β. The above values P1, Npi
may be scaled accordingly to get

an average number of point operations (addition, doubling, tripling, etc.) per bit. Finally, by
plugging in the cost of each curve operation, we get an average number of field operations per
bit.

As an example, let us consider the following covering system, denoted u3c-48-24 for n = 3,
` = 48, |S| = 24. (We give more details on the terminology in Section 4).

S = {0 (mod 2);
−1, 0 (mod 4);
−1, 1, 3 (mod 6);

−2,−1, 0, 1 (mod 8);
−3,−2, 1, 2, 5, 6 (mod 12);

−6,−5,−4,−3, 2, 3, 4, 5 (mod 16)}

We have P1 = 17/24, N2 = 13/6, N3 = 1/3, and thus β = 213/6 × 31/3 ≈ 6.47548. According
to the explicit formula database [32], the smallest multiplication counts for a point addition, a
point doubling and a point tripling on a short Weierstrass curve (assuming a = −3, S = 0.8M)
are 10.2M (with Z2 = 1), 7M and 12.6M respectively. The average cost is thus (10.2P1 + 7N2 +
12.6N3)× logβ(2) ≈ 9.87M per bit. Note that u3c-48-24 only requires two precomputed points,
namely 3P and 5P . If these precomputed points are not converted to affine coordinates, the
point addition costs 15M and average cost increases to ≈ 11.13M per bit.

In Table 3, we give the average operation counts for short Weierstrass curves. In comparison,
the Montgomery ladder on Weierstrass curves, using the differential co-Z addition-and-doubling
algorithm reported in [33, Algo. 5] costs 10M + 5S ' 14M per bit; the NAF, 3-NAF and 4-NAF
algorithms: 10.4M , 9.55M and 9.04M per bit respectively. The number of precomputations
corresponds to the number of different group elements [r]P that may appear. In order to save
some precomputations, observe that when computing [m]Q+ [r]P , both m and r can be divided
by h = gcd(m, r); the computation thus becomes [h]([m/h]Q+[r/h]P ). As usual, only one of any
pair of opposite points is required. For u3c-48-24, the only points that needs to be precomputed
are thus 3P and 5P .
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Table 3: Average operation counts per bit and number of precomputed points for short Weier-
strass curves.

Covering system #mult./bit #Precomputations
u12c-2304-3315 8.84 355
u8c-432-600 9.33 66
cs3-48-48 9.84 8
u3c-48-24 9.87 2
cs3-48-38 9.95 7
cs6-72-103 9.95 12
u4c-48-60 9.96 7
u6c-120-168 10.48 19
cs3-54-47 10.61 8
cs4-24-37 10.64 4
cs3-24-23 10.93 2
u2c-24-10 11.23 1
cs5-60-73 11.5 8
cs2-30-19 11.8 4

2.4 Integer arithmetic
Our theoretical analysis does not take into account the cost of integer arithmetic. Other classical
algorithms like double-and-add, fixed- and sliding-window methods, the Montgomery ladder etc.
process the scalar bit-by-bit or in blocks of bits. Conversely, our algorithm needs integer division
with remainder where the divisor is not a power of two.

In Algorithm 2, two operations deserve some attention: the integer division with remainder
k mod ` in line 5 and the exact division by m in line 9. Although, it is possible to build a
covering system of congruences such that ` = lcm(m1, . . . ,m|S|) factors into many different
primes, it seems more advantageous—at least in the context of elliptic curve for which there
exists efficient explicit formula for point doubling and tripling—to consider moduli that only
contain powers of 2 and 3 (maybe 5). In that case, the operation k mod ` can be greatly sped
up. For example, by independently computing the remainders modulo the largest powers of 2 and
3 (possibly 5) in ` and by Chinese remaindering. We point the interested reader to the very fast
mod3 implementation based on historic Pascal’s tapes proposed in [34]. The exact division by m
in line 9 can also be implemented very efficiently, for example using Jebelean’s exact division2.

In total, the extra cost implied by the integer arithmetic remains negligible compared to the
overall scalar multiplication. As an example, converting k to a randomized mixed-radix form
with our proof-of-concept implementation represents less than 2% of the total time for a 256-bit
scalar.

2See for example GMP’s exact division by 3 in mpn_divexact_by3.
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Figure 2: The graph of internal states of the BSD randomized scalar multiplication for k = 10273.

3 Resistance to side-channel attacks
Assessing the level of resistance of an algorithmic countermeasure against the constantly growing
variety of side-channel attacks is a difficult task. In the next sections, we provide solid arguments
to support the robustness of our randomized algorithm against the most prominent attacks. We
assume that the goal of the attacker is to recover some fixed or ephemeral secret by observing
leakage during a scalar multiplication [k]P . Following Kerckhoffs’ principle, we consider that
the attacker knows precisely the instance of Algorithm 2 she is trying to break, in particular she
knows everything about S, the covering system of congruences.

As stated in Section 2, our algorithm processes the bits of k in an indirect manner. Instead,
it operates on a randomized mixed-radix representation of k:

k = r0 +
s∑
i=1

ri

i−1∏
j=0

mj

Therefore, unlike classical attacks which aim at recovering the bits (digits) of k assuming that
the base is known (2 or a small power of 2 in general), unveiling k in our case requires to uncover
both the digits r0, . . . , rs and the mixed bases m0, . . . ,ms.

3.1 Differential and correlation attacks
Algorithms based on randomizing the sequence of operations to compute [k]P are rather scarce.
In the context of elliptic curves, a first attempt was suggested by Oswald and Agnier in 2001.
In [12], they rediscovered Booth’s recoding techniques for integers [35], and proposed to random-
ize the addition-subtraction chain using an elementary randomization of the binary signed-digit
(BSD) expansion of k. Their approach was broken in 2003 using the hidden Markov model [13].
(We consider this very powerful attack in Section 3.2.) In 2002, Ha and Moon proposed an al-
most identical randomization strategy [14] which only differs from [12] in the way the signed-digit
representation of k is computed. Logically, the entropy produced by the randomization remains
unchanged and the security of the algorithm remains insufficient. A different attack by Fouque
et al. was presented in [16]. In that paper Fouque et al. presented a collision attack using the
fact that the probabilities of the j-th BSD digit (trit) when kj = kj+1 can be distinguished from
the probabilities of that same digit when kj 6= kj+1. Although a given scalar k may have many
different BSD representations, the authors of [16] proved that the number of internal states re-
main very small. At each step of computation, at most two intermediate values can be reached.
(This is illustrated in Fig. 2 for k = 10273.) As pointed out in their conclusion:
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Figure 3: The graph of internal states of an exact 3-cover for k = 10273.

“Any reasonable countermeasure based on randomizing the multiplication algorithm
should guarantee locally a large number of possible internal states and a large number
of possible transitions from each state”.

Our algorithm does satisfy both conditions. From each internal state, there exists exactly
n transitions3 given by the n congruence classes which cover that integer. By choosing one of
these n possible transitions uniformly at random, i.e. with probability 1/n, our algorithm is
locally robust. An execution trace of the algorithm corresponds to a path from k to 0 in a direct
acyclic (multi)graph. In Fig. 3, we give the transition graph for k = 10273 obtained with an
exact 3-cover. It should be compared to the graph in Fig. 2 obtained for the same scalar using
the BSD randomization.

The Markov analysis from Section 2.3 provides some insight into the global randomness
aspects of the algorithm.

In Lemma 1, we proved the ergodicity of the Markov chain. In this case, it is known that the
stationary distribution is unique and satisfies π∞ = limn→∞ πAn for any probability distribution
π. Notably, the stationary distribution is independent from the initial distribution. A corollary
of theorem 1 is that any random walk (of sufficiently many steps) across the transition graph
of the Markov chain ends on any congruence class modulo ` with equal probability 1/` and
independently from the starting value k.

The level of randomization of a given covering system can be evaluated by counting the
number of paths from k to 0 in the transition graph corresponding to k. It is equal to Bk,0,
where B = A+A2 + · · ·+Av, and where v is the length of the longest path in that direct acyclic
graph (easily obtained by topological ordering). Our numerical experiments suggest that this
number of paths grows exponentially in both k and the degree n of the covering system. For
example, an exact 4-cover produces roughly 244 paths for a 64-bit scalar and 289 paths for a
128-bit scalar, whereas an exact 8-cover leads to 249 and 2101 paths respectively for scalars of
the same sizes. Even for small values of n, the number of paths seems large enough to guarantee
a high level of randomization: an exact 2-cover produces 261 paths for a 128-bit scalar and 2121

paths for a 256-bit scalar.
The above analysis shows that the built-in randomization of our algorithm provides a solid

countermeasure against differential attacks. For curves defined over primes that are close to
3For small values, although an integer, say j, is still covered by exactly n congruence classes, there might be

fewer transitions (see Fig. 3 for the states 1, 2, 3, 5, 6, 10, 17). This is because when k is small, it happens that
k = r for some (m, r) ∈ S(j).
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powers of 2, it can be used in place of Coron’s costly scalar randomization technique.

3.2 HMM attacks
Finite state stochastic processes may be analyzed using Hidden Markov Models (HMMs) [36, 37].
An execution of an HMM consists of a sequence of hidden, unobserved states and a corresponding
sequence of related, observable outputs. HMM cryptanalysis [13, 38] aims at solving the so-called
inference problem, i.e. infering the sequence of hidden states given only the sequence of, possibly
noisy, observable outputs. This problem may be solved efficiently using the Viterbi algorithm [39].
Since our algorithm rewrites trivially as a finite state stochastic process, it seemed natural to
analyze its robustness regarding HMM attacks. To do so, we adapted and implemented the
attacks from [13] and [38].

As seen in Section 2.2, an execution of our algorithm consists of s computations of the form
Q := [mi]Q + [ri]P , where the loop-length s and the symbols (ri,mi) are given by a randomly
generated mixed-radix representation of k. Given such a representation of k, the execution of
the algorithm runs through a sequence (q0, q1, . . . , qs−1) of internal state. In the following, the
set of all internal states of the HMM is denoted by S.

On each state qi ∈ S, the algorithm performs a computation denoted C(qi) and outputs a
value O(qi), so that O(q0) = [m0]P∞ + [r0]P = [r0]P and O(qi) = [mi]O(qi−1) + [ri]P for i > 0.
Note that the transition from state qi−1 to state qi is uniquely determined by the pair (ri,mi).

A trace is a sequence of observations (y0, y1, . . . , ys−1), where each yi belongs to a finite set
O of so-called observables; a finite set of symbols that represent operations observable over the
side-channel. For example, for the right-to-left binary scalar multiplication considered in [13],
O = {D,AD}; each element of O is in one-to-one correspondence with the internal states of
the algorithm and with the bits of k. Improving upon the attack from [13], Green at al [38]
let O be a set of finite words over the alphabet {D,A, ∅,⊥}, where ∅ and ⊥ denote a zero-
length observable and an unknown respectively. This generalization allows the authors of [38] to
handle observables outputs that are not in one-to-one correspondence with the internal states ; in
particular, to deal with errors in the sequence of observations. In both [13] and [38], the elements
from O are probabilistically distinguishable from each other and each trace of the side-channel
can be uniquely written as (y0, y1, . . . , ys−1) with yi ∈ O for all i ∈ {0, . . . , s− 1}. We shall see
later that this represents a major difference with our algorithm.

We illustrate an implementation of an HMM attack on our algorithm through an example.
Let us consider the simple covering set u2c-24-10:

S = {1 (mod 2);−1, 2 (mod 4);−2, 0, 2 (mod 6);−3, 0, 1, 4 (mod 8)} (6)

For now, we assume that the set of internal states S is equal to the set of congruence classes
from S. In order to abbreviate notations, the elements of S are given by the pairs (r,m) in place
of the congruence classes r (modm) from S.

Our algorithm rewrites trivially into a probabilistic state machine. The vertices are the hidden
states q0, . . . , q|S|. The edges (qi, qj) are labeled with the transition probabilities pi,j and the
input terms of the form (r,m). As in [13], we converted this edge-annotated state machine into
a semantically equivalent state-annotated one. For each edge (qi, qj) labeled with pi,j : (r,m), a
new state qj,(r,m) is created so that the output are observed on the states instead of the edges.

The elements of O are easily deduced from the (low level) description of the algorithm.
For each internal state (r,m) ∈ S, the observed operations are derived from the computation
Q := h([m/h]Q + [r/h]P ) where h = gcd(r,m). We assume that [m/h]Q is evaluated using a
left-to-right binary addition chain and that [r/h]P is precomputed. For example, for the internal
state (1, 2), which corresponds to the congruence class 1 (mod2), the attacker should observe the
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trace leaked from the computation Q := 2Q+P , i.e. a doubling followed by an addition. Hence
O ⊃ {DA}. For the covering set u2c-24-10 given in (6), the resulting set of observable is given
by:

O = {DA,DDA,DAD,DAAD,DDD,DDDA,DADD}.

Let µ : S 7→ O the mapping from the set of internal states of the HMM to the set O, such
that µ(S) = O. Unlike the attacks from [13] and [38], a first obstruction for an attacker is that
µ is not injective in our case. Indeed, for u2c-24-10, we have µ((2, 4)) = µ((0, 6)) = DAD;
µ((−2, 6)) = µ((2, 6)) = DAAD ; µ((−3, 8)) = µ((1, 8)) = DDDA.

The inference problem may be solved rather efficiently using the Viterbi algorithm. For a
given trace (y0, . . . , ys−1), this algorithm outputs the most likely execution sequence (q0, . . . , qs−1)
together with the likelihood of the result, i.e. the probability of that particular sequence among
all possible execution sequences matching the observed trace (y0, . . . , ys−1).

We implemented this version of an HMM attack on various covering systems of congruences.
Not surprisingly, we were unable to recover the execution sequences correctly. The Viterbi
algorithm was able to guess correctly the internal states in one-to-one correspondence with the
elements of O but was unable to recover with better probability than a random draw those states
for which µ cannot be inverted uniquely. As a consequence, we observed very small likelihood
scores.

At this point, it is important to notice that the attack failed even though the setting was
extremely favorable to the attacker. Indeed, not only we considered that the trace was acquired
without any error, but also that the attacker was able to break it up properly. However, contrary
to the sets of observables from [13] and [38], a second major stumbling block is that a trace of
the side-channel cannot always be written uniquely as (y0, . . . , ys−1) with yi ∈ O. For example,
the sequence DADDDA can be observed from different execution sequences. It could come from
DA|DDDA obtained by (1, 2) followed by either (−3, 8) or (1, 8); fromDADD|DA corresponding
uniquely to the sequence of internal states ((4, 8), (1, 2)); or from DAD|DDA complying with
either (2, 4) or (0, 6) followed by (−1, 4).

In order to better reflect the conditions of a more realistic attack, we modified the previously
constructed state-annotated probabilistic state machine so that the observable output for each
internal state was either a doubling or an addition. Each state qj,(r,m) was split into exactly t
states qj0,(r,m),s0 , . . . , qjt,(r,m),st

, where s0s1 . . . st = µ((r,m)) and si ∈ {D,A}. We set to 1 the
transition probabilities between those newly created states and adjusted the input and output
ones with the initial probabilities. This transformation allowed us to run the Viterbi algorithm
on any observed sequence, without any knowledge on its decomposition into words from O. Here
again, we set the attacker in ideal conditions by assuming that the observed traces contain no
errors.

As an example of an HMM execution, we give the outputs of our Sage implementation of the
Viterbi algorithm for the covering set u3c-48-24 and a random 256-bit scalar.

sage: viterbi (256, ’../csc/u3c-48-24’)
Reading CSC... [Done]
Computing HMM matrices... [Done]
Generating the discrete HMM... [Done]
Collecting an execution trace for k [Done]
k = 113280982734524645135658082899406751332655632772245315887318249972569794866207
[’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’,
’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’,
’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’,
’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’,
’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’,
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’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’,
’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’,
’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’,
’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’,
’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’,
’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’,
’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’,
’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’,
’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’,
’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’,
’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’,
’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’D’, ’D’, ’D’, ’D’, ’A’]
Running Viterbi on HMM... [Done]
Real sequence:
[(-1, 4), (0, 4), (2, 16), (0, 2), (-2, 12), (2, 12), (-2, 8), (1, 12), (0, 2),
(-1, 6), (-6, 16), (-1, 4), (0, 2), (0, 2), (3, 16), (0, 2), (0, 2), (1, 8), (3,
6), (2, 12), (5, 12), (-2, 8), (0, 2), (2, 16), (-1, 4), (-1, 4), (3, 6), (0,
2), (0, 2), (0, 2), (-1, 4), (3, 6), (-3, 12), (0, 2), (-3, 12), (-4, 16), (-2,
12), (1, 8), (-1, 4), (-1, 8), (-1, 4), (-1, 6), (0, 2), (2, 16), (0, 2), (5,
12), (0, 2), (0, 8), (0, 4), (0, 2), (2, 12), (-1, 8), (-2, 12), (-1, 6), (-2,
8), (-3, 16), (0, 2), (0, 2), (0, 2), (6, 12), (0, 2), (-1, 6), (-1, 6), (-1,
8), (3, 6), (-3, 16), (-6, 16), (0, 2), (-3, 12), (5, 12), (6, 12), (0, 8), (-6,
16), (0, 4), (-1, 8), (1, 6), (-4, 16), (-1, 6), (4, 16), (-1, 6), (-2, 12), (0,
4), (1, 12), (0, 2), (3, 6), (0, 2), (1, 8), (1, 8), (-2, 12), (0, 4), (5, 16),
(-2, 8), (0, 2), (1, 6), (0, 2), (1, 6), (3, 6), (-2, 8), (-2, 12), (3, 16)]
length: 100
Most likely sequence:
[(4, 16), (2, 16), (-3, 12), (-3, 12), (2, 16), (1, 12), (-3, 12), (1, 8), (2,
16), (0, 4), (2, 16), (3, 16), (1, 6), (2, 12), (1, 12), (-2, 8), (3, 16), (1,
8), (-1, 4), (2, 12), (3, 16), (2, 12), (2, 12), (-3, 12), (4, 16), (2, 12), (1,
8), (4, 16), (1, 12), (1, 6), (3, 16), (1, 8), (4, 16), (0, 8), (0, 4), (2, 12),
(1, 8), (1, 6), (-3, 12), (4, 16), (2, 16), (0, 4), (2, 12), (-3, 12), (2, 12),
(-1, 4), (2, 12), (2, 16), (4, 16), (-3, 12), (1, 12), (2, 12), (0, 8), (2, 16),
(0, 8), (-1, 4), (1, 6), (-2, 8), (-3, 12), (4, 16), (1, 6), (1, 6), (3, 16),
(-2, 8), (2, 12), (2, 16), (-1, 4), (2, 12), (0, 8), (1, 8), (-2, 8), (-3, 12),
(-3, 12), (1, 6), (-2, 8), (2, 12), (3, 16)]
length: 77
Log likelyhood: -266.526042707
Levensthein dist: 81

In order to measure the difference between the real sequence and the most likely sequence
returned by the Viterbi algorithm, we considered the Levensthein distance (aka edit distance). In-
formally, the Levenshtein distance between two words is the minimum number of single-character
edits (i.e. insertions, deletions or substitutions) required to change one word into the other. In
the example above, the Levensthein distance between the two sequences is 81. It is thus im-
possible to recover the real sequence from the one returned by the Viterbi algorithm. The Log
likelihood value expresses the logarithm of the probability of that particular returned sequence
among all sequences compatible with the observed trace. In the example, it tells us that the
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probability of recovering k from the returned sequence is smaller than that of guessing k by
selecting each bit at random!

The results observed for the above example are not isolated. In Figure 4, we give the dis-
tribution of the Levensthein distance and the Log likelihood values obtained over 1000 HMM
simulations on u3c-48-24 for 256-bit random scalars.

(a) Levensthein dist. (b) Log. likelihood

Figure 4: Distribution of Levensthein distances (left) and log likelihood (right) over 1000 HMM
attacks on u3c-48-24 for 256-bit scalars.

3.3 Timing attacks
Timing attacks require multiple executions of the algorithm. They exploit dependencies between
the execution time of the algorithm and some secret data processed through its running. These
attacks may be prevented by ensuring that the computation time is independent from this secret
value; a property commonly guaranteed using constant time algorithms. Clearly, in the present
form, our algorithm does not run in constant time as the time for computing [k]P may vary
depending on the randomly selected mixed radix representation of k. Therefore, the fundamen-
tal question is: how much information can be deduced from the varying running time of our
algorithm?

To the best of our knowledge, the only publicly known timing attack on ECC is due to
Brumley and Tuveri [40]. In 2011, they presented a successful timing attack on an OpenSSL
implementation of the signature phase of ECDSA, in particular a scalar multiplication [k]P ,
where nonce k is selected uniformly at random. Their attack exploits the dependency between
the computation time and the bitlength of k. It is effective because of the loop optimization
strategy implemented (at the time) in OpenSSL. The attack operates in two phases: first, using
the time dependency, a certain amount of signatures coming from “short” scalars are collected.
Then, a lattice attack using the set of signatures filtered in the collection phase is mounted to
recover the secret key used to generate the ECDSA signatures. As pointed out by the authors,
the attack is successful when the first phase is effective, i.e. when the filtered signatures actually
correspond to scalars shorter than some fixed threshold with very high probability. Logically,
the attack success rate decreases dramatically with the increase of false positives.

The countermeasure proposed by Brumley and Tuvery consists in replacing k by an equivalent
value k̂ of fixed bitlength. This can be achieved by adding independently ord(P ) and 2ord(P ) to k
and choosing for k̂ that result of bitlength 1+size(ord(P )). Obviously, the same countermeasure
does apply to any scalar multiplication algorithm. Thus, the above question becomes: how much
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information can be deduced from the running time of our algorithm for scalars of the same size?
As seen in Section 3.1, for any given scalar k, the execution trace of the algorithm corresponds

to a path of maximal length from k to 0 in a direct acyclic graph. For any given covering system,
the DAG which represents all possible executions of the algorithm for all possible input values
of fixed bitlength is a multi-source DAG with single-sink 0. (In Fig 3, we presented a sub-graph
of that DAG whose single source is the node 10273.)

In order to simulate timing measurements, we considered weighted DAGs, where the weight
w(ri,mi) given to the edge (ri,mi) corresponds to the cost for computing [mi]Q + [ri]P . This
cost w(ri,mi) could be anything meaningful, e.g. a number of curve operations or a number
of field operations or even a number of clock cycles. For our experiments, we considered the
number of field multiplications. Observe that for a given covering set there are only finitely
many different weights that may appear in the associated DAG. For example, with u3c-48-24,
and assuming that the points [ri]P are precomputed, there are only 13 different sequences of
curve operations. These sequences are listed in Table 4 together with the corresponding number
of field multiplications. (We refer the reader back to Section 3.2 for details on how the sequences
of curve operations are obtained. For the “#mult” columns, we used the best operation counts
for short Weierstrass curves from Bernstein and Lange’s compilation of Explicit-Formulas [32]
assuming a4 = −3 and S = 0.8M ; that is A = 10.2, D = 7.)

Table 4: Sequences of curve operations and associated number of field multiplications (on short
Weierstrass curves with a4 = −3) for each congruence class of the exact 3-cover u3c-48-24.
Observe that the “#mult” column only contains 8 different values

r (mod m) Curve ops. #mult r (mod m) Curve ops. #mult

0 (mod 2) D 7.0 1 (mod 12) DADDA 41.4
−1 (mod 4) DDA 24.2 2 (mod 12) DADAD 41.4

0 (mod 4) DD 14.0 5 (mod 12) DADDA 41.4
−1 (mod 6) DADA 34.4 6 (mod 12) DADAD 41.4

1 (mod 6) DADA 34.4 −6 (mod 16) DDDAD 38.2
3 (mod 6) DADA 34.4 −5 (mod 16) DDDDA 38.2
−2 (mod 8) DDAD 31.2 −4 (mod 16) DDADD 38.2
−1 (mod 8) DDDA 31.2 −3 (mod 16) DDDDA 38.2

0 (mod 8) DDD 21.0 2 (mod 16) DDDAD 38.2
1 (mod 8) DDDA 31.2 3 (mod 16) DDDDA 38.2

−3 (mod 12) DDADA 41.4 4 (mod 16) DDADD 38.2
−2 (mod 12) DADAD 41.4 5 (mod 16) DDDDA 38.2

Let WS = {ws1 , . . . , wst} be the set of possible weights for the covering set S = {s1, . . . , st}.
Clearly, any possible running time wk→0 for computing [k]P is equal to the sum of the weights
along a randomly chosen path from k to 0. It can also be expressed as wk→0 =

∑|WS |
i=1 αiwi,

where each αi corresponds to the number of times an edge of weight wi was encountered. For a
given k, there are many possible values for wk→0. Counting the exact number of possible values
for wk→0 is a difficult combinatorial problem. And counting the cardinal of the set of all possible
wk→0 for all possible sources k of fixed bitlength is even harder.

Therefore, in order to asses the applicability of a potential timing attack on our randomized
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algorithm, we simulated the execution of our algorithm on 100000 different random 256-bit scalars
and bucket-sorted these scalars based on the (theoretical) running times (using the number of
field multiplications from Table 4). The results given in the next paragraphs have been obtained
with the exact 3-cover u3c-48-24. Our simulations resulted in 469 buckets, ranging from 2487
to 2915.6 multiplications.

3.3.1 Long sequences of 0 and 1 and common patterns:

Brumley and Tuveri’s attack [40] is successful when the filtered signatures correspond to short
scalars, i.e. scalars whose leading bits are all zeros. With the proposed countermeasure, all
nonce k used in the first phase of ECDSA have the same bitlength, namely k ∈ [2j−1, 2j − 1].
However, we believe that the lattice attack exploited by Brumley and Tuveri may still be effective
if the filtered signatures correspond to scalars with identified patterns, e.g. long sequences of
zeros (resp. ones). Hence, we checked whether any such pattern was leaking from the timing
variations of our algorithm. To do so, we drawn t scalars, one-by-one, from the smaller buckets,
i.e. those containing the scalars that had led to the smallest costs, and bitwise ORed them
together until reaching 2j −1. Indeed, if two scalars share a common zero-pattern such as a long
sequence of zeros, then this pattern/sequence will still appear after a bitwise OR operation.

In our experiment, the value 2256 − 1 was reached after only 9 scalars; the last one picked
in the bucket of cost 2497.8. We performed the same computations with scalars picked in the
larger buckets. The value 2256 − 1 was reached after only 8 scalars; the last one picked in the
bucket of cost 2881.8. For completeness, we ran several similar computations with scalars picked
randomly. On average, the value 2256 − 1 was reached with only 9 scalars.

Similarly, we checked the presence of common one-patterns (e.g. long sequences of ones) using
a bitwise AND strategy. The minimal value (2255) was reached after 9 scalars for the smallest
buckets, 8 scalars for the largest ones and for 8 scalars on average for scalars picked at random.

Therefore, we can safely conclude that the time variations of our algorithm do not provide
any information on potential patterns of identical bits. Therefore, the filtering phase does not
allow to reduce the size of the lattice used in the second phase of the attack. Hence, we claim
that the timing attack proposed in [40] does not not apply.

3.3.2 Hamming weight:

We also checked whether the Hamming weight of k was leaking from the time variations of
our algorithm. To do so, we collected the Hamming weights of t = 1000 scalars picked from
the smaller buckets and we compared them to the Hamming weights of 1000 scalars picked at
random. In Figure 5, we show the distributions of these Hamming weights in both cases.

Our conclusion is that, unlike the double-and-add or w-NAF algorithms, the time variations
do not reveal any information on the Hamming weight of the scalar k. Neither the span, nor the
distribution seem to provide any useful information to an attacker.

3.4 Horizontal and simple attacks
In the previous sections, we proved that advanced attacks which require several execution of the
algorithm are defeated by our randomization strategy. Let us now focus on horizontal and simple
attacks.

In order to protect an algorithm against SPA-type attacks, one needs to guarantee that the
observation of a single trace does not provide any hint to an attacker. For example, double-
and-add algorithms are vulnerable to SPA when the execution trace allows to distinguish point
doublings from general additions.
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(a) “faster” scalars (b) random scalars

Figure 5: Distribution of Hamming weights of 1000 scalars from the smaller buckets (left) and
randomly among all buckets (right)

Several implementation options have been proposed to thwart simple attacks. Until recently,
the atomicity principle [21, 23, 22], or the use of complete/unified group laws were both considered
efficient and robust against SPA since an attacker could not distinguish a point doubling from
a point addition. In [6], Bauer et al. presented a novel horizontal attack which defeats all
these celebrated countermeasures. Their attack exploits the fact that point additions and point
doublings may still be identified if the adversary can detect when two field multiplications have at
least one operand in common (Assumption 1 in [6]). They show that their attack indeed applies to
different atomic implementations and to the unified formula on Edward’s curves from [41]. They
evaluate the soundness of their attack and provide some experimental results showing convincing
success rates. As in [42], their distinguisher targets the operands of long integer multiplications.

The overall philosophy of their attack is based on the fact that, if the adversary can guess
the entire sequence of operations (Ci) without any error, then she can immediately read all the
bits of the secret scalar k from that sequence since the order of those operations in the sequence
is a one-to-one function of k.

With our randomized algorithm, even if the attacker was in this very favorable situation,
Bauer et al. horizontal attack does not apply because the order of the operations Ci is not in
one-to-one correspondence with the secret scalar k. Indeed, as stated in Section 2, a CSC-based
algorithm reduces to a sequence of operations of the form [mi]Q+[ri]P , where the set of possible
values (ri,mi) depends on the covering system. For example, with the exact 3-cover used to
produce Figure 3, a possible sequence for k = 10273 is:

(1 (mod 12), 0 (mod 4), 10 (mod 12), 5 (mod 12), 1 (mod 12)).

It correspond to the following path in the above mentioned DAG:

10273→ 856→ 214→ 17→ 1→ 0.

The tail-end-recursion can easily be rewritten as: 10273 = 1+12(0+4(10+12(5+12(1+12.0))))
so that:

[10273]P = P + [12]([4]([10]P + [12]([5]P + [12](P + [12]O)))) (7)
If one assumes that the points [ri]P are precomputed and if one uses a left-to-right double-and-
add algorithm to evaluate the terms [mi]P , the execution trace Tr(k) looks like:

Tr(10273) = D A D D A D A D D A D A D D A D D D A D D A. (8)
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Clearly, the mapping Tr from k to the pattern of the trace is not injective. For example, with
the same exact 3-cover, the above pattern could be attained starting from

43455 = 3 + 4(7 + 8(1 + 12(5 + 12(9 + 12.0)))),

or
14649 = 9 + 12(0 + 4(5 + 12(1 + 12(2 + 12.0)))),

and many other scalars. (Checking that the above expressions map to the trace given in (8) is
immediate.)

Our experiments showed that, in general, a given trace can be produced by very many different
scalars, which annihilates both simple attacks and Bauer et. al horizontal collision correlation
attack. Counting the exact number of those scalars represents another difficult, yet interesting
combinatorial question.

4 Covering systems generation
In order to run our numerical experiments, we had to generate exact n-covers. For that purpose
we chose to generate them randomly. Given a set of predefined moduli {m1, . . . ,mt} and a
covering degree n, the problem consists of assigning integer values to r1, . . . , rt such that:

i ) ri ∈ {0, . . . ,mi − 1} for all i ∈ {1, . . . , t};

ii ) mi = mj ⇒ ri 6= rj for all i, j ∈ {1, . . . , t}; and

iii ) for all k ∈ {0, . . . , `}, |S(k)| = n.

We used a very elementary greedy approach. Starting with the smallest moduli, we selected
values ri at random until a solution is found. When the value assigned to a residue produces
an integer in {0, . . . , `} that is covered by more than n congruence classes, we backtrack by
selecting another value for the most recently assigned residue. To speed up the process, we
use a restart heuristic after a small number of backtrack steps. The resulting covering systems
such as those listed in Table 3 are denoted csn-`-t, where n stands for the covering degree,
` = lcm(m1, . . . ,mt) and t = |S|.

In order to simplify the generation of exact n-covers, we may require that each modulo should
cover the same proportion of integers. We called the resulting covering systems “uniform” and
named them unc-`-t. In our experiments, all the uniform covering systems contain exactly 2n
moduli, all of which are even, so that each modulo covers exactly half of the integers as illustrated
in Figure 6. This way, we also ensure that our covering systems do not contain the whole set of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 (2)
2, 3 (4)

0, 2, 4 (6)
0, 1, 4, 5 (8)

Figure 6: {1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8)} is a uniform exact 2-cover.
Each modulo covers exactly 12 integers out of 24.

congruence classes for a given modulo such as 0 (mod 2); 1 (mod 2). We acknowledge that this
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generation strategy is pretty basic. It proved sufficient to generate exact n-covers of reasonably
large covering degree4 but can certainly be improved using more sophisticated tools, for example
using efficient CSP5 heuristics.

5 Conclusions
In this paper, we proposed a new randomized scalar multiplication algorithm with built-in pro-
tection against various side-channel attacks, which represents an efficient alternative to Coron’s
scalar randomization method, in particular for curves defined modulo primes that are close to
powers of two. Compared to classical addition chains (D&A, wNAF, etc.) the extra cost implied
by integer arithmetic remains negligible.

It was purposely designed to inhibit several side-channel attacks at once. Contrary to previous
solutions aiming at randomizing the addition chain [12, 14], we showed that differential attacks
are defeated by the proper randomization of our algorithm which guarantees the requirements
given in [16], i.e. a very large number of possible internal states and a large number of possible
transitions from each state. Despite some fitting adjustments to the previously published HMM
attacks on finite state stochastic processes [13, 38], our simulation results also demonstrated the
robustness of our algorithm against this eminently relevant class of attacks. Likewise, we proved
that simple attacks and the recent horizontal collision correlation attack from Bauer et al. [6]
remain worthless, even when the adversary is able to distinguish, without any error, a point
doubling from a general addition. Finally, although our algorithm does not run in constant time,
we presented some experimental results assessing the inapplicability of Brumley and Tuveri’s
timing attack on an OpenSSL implementation of ECDSA [40]. We showed that the timing
variations implied by the randomization do not provide any useful information on the bits of k.

Nevertheless, past and recent advances in side-channel attacks imply a close attentiveness.
The fact that none of the previously published attacks seem to operate does not mean that
our randomized algorithm will remain unscathed forever. In fact, we hope that side-channel
experts and cryptanalysts will consider the challenging questions behind our proposal. Sound
side-channel attacks may exist but, at this point, are still to be discovered.
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4Our largest covering system is an exact 12-cover comprised of more than 3000 congruence classes.
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A Transition matrix and stationary probability
Given any covering system S, the corresponding transition matrix can be computed using Algo-
rithm 3. If integer i is covered by more than one congruence class, we assume that the choice of
which covering class is selected is computed uniformly at random, hence with probability 1/|S(i)|.

Algorithm 3 Transition matrix of Markov chain
Input: S a covering system of congruences
Output: The transition matrix A associated to S
1: A := (0)
2: for i = 0, . . . , `− 1 do
3: for (r,m) ∈ S(i) do
4: for j = 0, . . . , `− 1; j ≡ (i− r)/m (mod `/m) do
5: Ai,j := Ai,j + 1/(|S(i)|m)
6: return A

The stationary probability vector of A is the vector π∞ such that π∞A = π∞. It is known
that π∞ = limn→∞ πAn, for any probability distribution π. Let B = limn→∞An. We have

BA = lim
n→∞

AnA = lim
n→∞

An+1 = lim
n→∞

An = B.

And thus B(A − Id) = 0. This equality can be seen as the union of several linear systems
of equations of the form BCj = 0. Since B is stochastic, we also have a system of stochastic
equations given by B1t = 1t, where 1 is the 1-vector. A known trick then consists of replacing the
last system of equations BCj = 0 by these stochastic equations. Denoting by f the application
which replaces the last column of a matrix by 1t, we get Bf(A− Id) = f(0) so that

B = f(0) (f(A− Id))−1
. (9)

If, in addition, the Markov chain is irreducible and aperiodic, π∞ is unique and satisfies

π∞ = (0, . . . , 0, 1) (f(A− Id))−1
. (10)
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