
Constant-Time Higher-Order
Boolean-to-Arithmetic Masking

Michael Hutter and Michael Tunstall

Cryptography Research,
425 Market Street, 11th Floor, San Francisco,

CA 94105, United States
{michael.hutter,michael.tunstall}@cryptography.com

Abstract. Converting a Boolean mask to an arithmetic mask, and vice
versa, is often required in implementing side-channel resistant instances
of cryptographic algorithms that mix Boolean and arithmetic operations.
In this paper, we describe a method for converting a Boolean mask to an
arithmetic mask that runs in constant time for a fixed order. We propose
explicit algorithms for a second-order secure Boolean-to-arithmetic mask
conversion that uses 24 instructions and for a third-order secure mask
conversion that uses 56 instructions. We show that our solution is more
efficient than previously proposed methods for any choice of masking-
scheme order, typically by several orders of magnitude.

Keywords: Side-channel analysis, higher-order DPA, mask switching,
countermeasures, Boolean-to-arithmetic mask conversion, SHA.

1 Introduction

Differential Power Analysis (DPA) was introduced as a means of extracting cryp-
tographic keys by Kocher, Jaffe, and Jun [1] in 1999, who noted that the power
consumption of a device was dependent on the operations being performed, and
the value of the operands used. They showed that one could acquire the power
consumption over time while a device was computing a cryptographic algorithm,
and analyze the acquisitions to determine the cryptographic key. Subsequently,
it was shown that the same analyses could be conducted by exploiting other side
channels, e.g., the changes in the electromagnetic field around a microproces-
sor [2,3,4].

A typical DPA attack involves acquiring a series of acquisitions while a device
is operating on varying inputs and analyzing the power traces by comparing
what occurred at the same point in time in each trace. The simplest analysis
is to choose one bit of an intermediate state and divide the set of acquisitions
depending on the value of this bit, make two mean traces and subtract one trace
from the other point-by-point. A significant difference should be visible in the
trace corresponding to where this intermediate state was created by the device.
This is typically referred to as a first-order analysis, as each point in the output
trace is dependent on the same point in time in the acquisitions. If two (or more)



points in each trace are combined, we refer to as a second-order (or higher-order)
analysis.

To prevent the side-channel analyses of a cryptographic implementation, one
would typically apply a random mask to the input such that operating on the
masked data is indistinguishable from random data. A common masking tech-
nique is Boolean masking, where an input word gets masked by a random value.
All operations are then performed using the Boolean-masked data. However,
there exist many cryptographic algorithms that require both Boolean and arith-
metic operations, such as integer addition, e.g., SHA-1, SHA-2, Blake, ChaCha,
Skein, IDEA, RC6, etc. Masked versions of these algorithms therefore require
changing Boolean masks into arithmetic masks, and vice versa, which we refer
to as “Boolean-to-arithmetic” and “Arithmetic-to-Boolean” mask conversions,
respectively.

In 2001, Goubin proposed an efficient constant-time method for Boolean-
to-arithmetic mask conversion [5]. His method is secure against first-order anal-
ysis, but does not resist second-order attacks. The solutions in the literature
use recursive methods [6,7], where the missing carry bits are calculated using
a masked-adder structure, or Look-up Table based methods [8,9], that perform
pre-computations and store intermediates in memory. It has also been suggested
that higher-order versions of Boolean-to-arithmetic mask conversion cannot be
done in constant time [8].

In this paper, we present novel algorithms for higher-order secure Boolean-
to-arithmetic mask conversion. All proposed methods run in constant time and
are independent on the input word size. In particular, we present a second-order
secure algorithm that requires only 24 instructions and a third-order secure
algorithm that requires only 56 instructions. Furthermore, we provide a gener-
alized algorithm that provides side-channel resistance for masking schemes of
any higher order. Our n-th order secure algorithm is significantly faster than the
best recursive method in the literature [6] for any order, often by several orders
of magnitude.

Outline. The paper is organized as follows. In Section 2, we describe the Boolean-
to-arithmetic mask conversion problem and discuss previous work. In Section 3
we present a novel constant-time algorithm to perform a secure second-order
Boolean-to-Arithmetic mask conversion, and generalize it to higher orders in
Section 4. Conclusions are drawn in Section 5.

2 Boolean-to-Arithmetic Masking

In this paper we shall consider operations available in a typical microprocessor
with registers of a fixed bit length. Specifically, we shall consider values that are
in the field (Z2k ,⊕,+) where k ∈ Z≥0 is the bit length of the registers used, ⊕ is a
bitwise XOR operation and + is integer addition. Other operations are available
in a typical microprocessor, but are not relevant to the algorithms described in
this paper.

2



We define the problem of changing a Boolean mask into an arithmetic mask
as follows:

Definition 1 (Boolean-to-Arithmetic Mask Conversion Problem). Given
x′ = x ⊕ r, where x, r ∈ (Z2k ,⊕,+), as a Boolean masked secret x and r is a
random value taken from Z2k , we wish to be able to compute x′′ = x + s, with
s ∈ (Z2k ,⊕,+) where k ∈ Z≥0, without revealing any information on x through
some side channel. Where x′′ is the arithmetically masked secret x and s is a
random value taken from Z2k .

One näıve approach would be to perform the conversion directly by simply
removing the Boolean mask and by adding an arithmetic mask afterwards, i.e.,

(x′ ⊕ r) + s = ((x⊕ r)⊕ r) + s = x+ s = x′′ ,

using the notation given in Definition 1. This, however, would manipulate x
directly, allowing an attacker to use side-channel analysis to determine that a
hypothesized value of x is manipulated during the mask conversion. Hence, one
needs to use an algorithm where all intermediates are statistically independent
of the secret x.

Definition 1 generalizes to higher-order masking schemes as follows:

Definition 2 (Higher-Order Boolean-to-Arithmetic Mask Conversion
Problem). Assuming a masking scheme of order n. Then, given x′ = x⊕ r1 ⊕
. . . ⊕ rn, where x, ri ∈ (Z2k ,⊕,+), k ∈ Z≥0 for i ∈ {1, . . . , n}, as a Boolean
masked secret x and n a random values, ri for i ∈ {1, . . . , n}, taken from Z2k ,
we wish to compute x′′ = x+s1+. . .+sn, with si ∈ (Z2k ,⊕,+) for i ∈ {1, . . . , n},
without revealing any information on x through some side channel. Where x′′ is
the arithmetically masked secret x and si, for i ∈ {1, . . . , n}, are random values
taken from Z2k .

Higher-order mask conversion methods require that the masks used for the
arithmetically masked output are not related to the Boolean masked input to
avoid any side-channel leakage. If we consider, without loss of generality, a
second-order secure Boolean-to-arithmetic mask conversion that uses the same
input masks r1 and r2 to mask the output, information would leak through the
carries generated from the arithmetic masks. For ease of expression, we shall con-
sider an attacker able to XOR two intermediate states together in a second-order
side-channel attack (a very rough approximation of a second-order side-channel
attack, we refer the interested reader to Mangard et al. [10] for a more detailed
discussion). If an attacker can combine the input x′ and the output x′ using
some side channel they obtain the following:

x′ ⊕ x′′ = (x⊕ r1 ⊕ r2)⊕ (x+ r1 + r2)

= (x⊕ r1 ⊕ r2)⊕ ((x⊕ r1 ⊕ c1)⊕ r2 ⊕ c2)

= c1 ⊕ c2,

3



where c1 and c2 represent the carries produced in the additions x + r1 and
(x+ r1) + r2, respectively, as an XOR difference. That is, ci = (x+ ri)⊕ x⊕ ri
for i ∈ {1, 2}. We note that c1 and c2 are dependent on x and could be used to
conduct a side-channel attack.

To avoid this source of higher-order leakage, the output of the mask conver-
sion needs to be masked with values that are independent of the input Boolean
masks. This can be achieved through re-freshing the masks during the conver-
sion, either once or periodically, as required [6].

In the following, we describe some of the methods for mask conversion that
have been presented in the literature.

2.1 Goubin’s Method

Goubin proposed an efficient method of converting a Boolean mask to an arith-
metic mask at CHES 2001 [5]. His method requires a constant number of instruc-
tions, is resistant to first-order side-channel analysis and, at the time of writing,
remains the most efficient algorithm known.

The essential observation of Goubin was that the function

ΦZ(a, b) : Z2 −→ Z : a, b 7−→ (a⊕ b) + b (1)

is affine over F2, from which it follows that (Φ(a, b)⊕ Φ(a, 0)) is linear for any
value of b. Trivially, we note the same function is valid in the field (Z2k ,⊕,+), for
any k ∈ Z≥0, and in the remainder of this paper we shall consider the function:

Φ(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (2)

a, b 7−→ (a⊕ b) + b

for some k ∈ Z≥0.
Taking the notation from Definition 1, for some arbitrary k in Z≥0, the above

allows one to mask the computation of Φ(x′, r) = (x′⊕ r) + r with an additional
random value γ ∈ Z2k . We recall x, r ∈ (Z2k ,⊕,+) and x′ = x⊕ r. Then,

Φ(x′, γ ⊕ r) = (x′ ⊕ (γ ⊕ r)) + (γ ⊕ r) , (3)

which can be followed by an unmasking step using

Φ(x′, γ) = (x′ ⊕ γ) + γ . (4)

Hence, a secure Boolean-to-arithmetic mask conversion can be performed using
the following relationship:

x′′ = x′ ⊕ Φ(x′, γ)⊕ Φ(x′, γ ⊕ r)
= x′ ⊕ [(x′ ⊕ γ) + γ]⊕ [(x′ ⊕ (γ ⊕ r)) + (γ ⊕ r)] (5)

where, following the notation in Definition 1, s = r, i.e., x′′ = x + r. One
can implement this conversion using 7 instructions (2 additions and 5 XOR
operations), as described by Goubin, and is recalled in Algorithm 1.

Goubin then proceeds to give a proof of the following:

4



Algorithm 1: First-order Secure Boolean-to-Arithmetic Masking

Input: x′ = x⊕ r, the mask r, a random integer γ, where
x, r, γ ∈ (Z2k ,⊕,+)

Output: x′′ = x+ r

1 t← x′ ⊕ γ
2 t← t+ γ
3 t← t⊕ x′
4 γ ← γ ⊕ r
5 z ← x′ ⊕ γ
6 z ← z + γ
7 z ← z ⊕ t

return z

Lemma 1. An implementation of Algorithm 1 is resistant to first-order side-
channel analysis.

Proof. From Algorithm 1, we can obtain the list of intermediate values V0, . . . , V6
that appear during the computation of (5):

V0 = γ
V1 = γ ⊕ r
V2 = x′ ⊕ γ
V3 = (x′ ⊕ γ) + γ

V4 = [(x′ ⊕ γ) + γ]⊕ x′
V5 = x′ ⊕ γ ⊕ r
V6 = (x′ ⊕ γ ⊕ r) + (γ ⊕ r)

If we suppose that γ is uniformly distributed on Z2k , for some arbitrary k ∈ Z≥0,
it is easy to see that:

– the values V0, V1, V2, and V5 are uniformly distributed on Z2k .
– the distributions of V3, V4, and V6 are dependent on x′ but not on r. ut

We note that this proof holds in the field (Z2k ,⊕,+), for any k ∈ Z≥0, but
not in Z since the carry produced by the most significant bits of x combined
with the arithmetic mask will depend on x.

2.2 Recursive Methods

One can also convert a Boolean masked value into an arithmetically masked value
using an addition operation, which generates the required carries that can then
be applied to the Boolean masked input value bit-by-bit. The first application
was proposed by Goubin [5] as a means of converting an arithmetic mask to a
Boolean mask (a topic beyond the scope of this paper), and a similar technique
was described by Golić in 2007 who proposed using the same method for Boolean-
to-arithmetic mask conversion in hardware [11]. Both conversion methods have
a complexity of O(n) with regard to the bit length of the inputs because all n
bits of the input word are processed individually.

5



Another hardware-oriented design was proposed by Schneider et al. [7], who
presented a conversion method based on a Carry Look-ahead Adder (CLA) struc-
ture which reduces the complexity to O(log n). They adopted a threshold imple-
mentation [12,13] approach to avoid first and second-order side-channel leakage.

Recursive software implementations were proposed by, for example, Karroumi
et al. They described a method adding two Boolean masked values in O(n)
time [14]. Coron et al. [15] were the first to propose the use of Carry Look-ahead
Adders in software, thus reducing the complexity to O(log n). Both works made
use of masked AND operations, as defined by Trichina [16] and Ishai et al. [17],
respectively.

2.3 Higher-Order Boolean-to-Arithmetic Masking

Coron et al. [6] proposed a method for higher-order Boolean-to-arithmetic mask
conversion (see Definition 2) at CHES 2014. Their algorithm calculates carries
recursively and is built on masked AND and XOR operations that are resistant
to higher-order side-channel analysis. Using these secure operations, one can
construct an adder resistant to higher-order side-channel analysis with which one
can also convert an arithmetic mask to a Boolean mask (the latter topic being
beyond the scope of this paper). The authors reported that their fastest h-th
order Boolean-to-arithmetic mask conversion has a minimum time complexity
of O((2h+ 1)2n), with regard to the bit length of the inputs n.

The first look-up table-based conversion algorithm that resists second-order
attacks was proposed by Vadnala and Großschädl in 2013 [8], where, to achieve
the desired level of resistance, the algorithm adopts the generic second-order se-
cure S-box implementation of Rivain et al. [18]. Using this method, following the
notation in Definition 2, one computes xi + r for fixed r, where xi ∈ {0, . . . , 2k},
and then chooses the correct masked output from all the possible values gener-
ated. However, a table with 2k entries is required which is problematic if k is
not small.

An improved version was proposed by Vadnala and Großschädl in 2015 [9],
where an input k-bit word would be split into p words with smaller bit widths
of ` ≤ 8 bits. The conversion is then done on each word individually, and the
results combined. Their final solution has a time complexity of O(2`+2p) and a
memory requirement of O(2`+2(`+ 2)).

3 Constant-Time Second-Order Boolean-to-Arithmetic
Mask Conversion

In this section, we present a novel method to perform second-order secure Boolean-
to-arithmetic mask conversion whose time complexity is independent of the
input-word size. Following the notation in Definition 2, we consider a Boolean
masked input x′ = x⊕r1⊕r2, where x, r1, r2 ∈ (Z2k ,⊕,+), and an arithmetically
masked output x′′ = x+ s1 + s2, where s1, s2 ∈ (Z2k ,⊕,+).

6



3.1 Definitions

We recall (2), defined over the field (Z2k ,⊕,+), for any k ∈ Z≥0

Φ(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (6)

a, b 7−→ (a⊕ b) + b

for any k ∈ Z≥0. We shall also use the function

Φ̄(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (7)

a, b 7−→ (a⊕ b)− b

for any k ∈ Z≥0. While subtraction is not a field operation, we shall use it
as a convenient way of expressing the addition with the additive inverse of an
operand. Similar to Φ, Goubin notes that

x− r = x′ ⊕ Φ̄(x′, γ)⊕ Φ̄(x′, γ ⊕ r) , (8)

using the notation in Definition 1, and that Φ̄ is also affine over F2 [5].

3.2 The Algorithm

Our conversion method consists of three steps.

1. We compute x+ (r1 ⊕ r2 ⊕ α) for some random α ∈ Z2k .
2. We compute s1 − (r1 ⊕ r2 ⊕ α) for some random s1 ∈ Z2k .
3. Add the results of Steps 1 and 2 to s2, a random value taken from Z2k ,

resulting in x+ s1 + s2.

We describe these steps in detail below.

Step 1: We consider Goubin’s solution to the first-order Boolean-to-arithmetic
mask conversion (5),

x+ r = (x⊕ r)⊕ Φ(x⊕ r, γ)⊕ Φ(x⊕ r, γ ⊕ r) .

Let r = r1 ⊕ r2 and γ = γ1 ⊕ γ2, where r1, r2, γ1, γ2 ∈ Z2k , then

x+ (r1 ⊕ r2) = (x⊕ r1 ⊕ r2)⊕ Φ(x⊕ r1 ⊕ r2, γ1 ⊕ γ2)

⊕ Φ(x⊕ r1 ⊕ r2, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) , (9)

or, more succinctly, using the notation from Definition 2,

x+ (r1 ⊕ r2) = x′ ⊕ Φ(x′, γ1 ⊕ γ2)⊕ Φ(x′, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) . (10)

Given that Φ is affine over F2, we can split the first Φ operation giving,

x+ (r1 ⊕ r2) = Φ(x′, γ1)⊕ Φ(x′, γ2)⊕ Φ(x′, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) . (11)

7



If one were to compute x+(r1⊕r2) using the above, a second-order side-channel
attack would be possible for same reason that we require the input and output
mask to be different. That is, the combined leakage of the input x′ and x+(r1⊕r2)
will depend on x (see Section 2).

To overcome this problem, we apply an extra Boolean mask, α ∈ Z2k , to x′

as follows:

(x⊕ α) + (r1 ⊕ r2) = Φ(x′ ⊕ α, γ1)⊕ Φ(x′ ⊕ α, γ2)⊕ Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) .
(12)

However, (x ⊕ α) + (r1 ⊕ r2) is not useful but can be modified given that Φ is
affine over F2, resulting in

x+ (r1 ⊕ r2 ⊕ α) =Φ(x′ ⊕ α, γ1)⊕ Φ(x′ ⊕ α, γ2)

⊕ Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2 ⊕ α) , (13)

which will produce a result that prevents second-order leakage.
The order that (13) is computed is important to avoid combining masks that

would allow a second-order side-channel attack. However, this is quite straight-
forward and will not be detailed here.

Step 2: The second step is another Boolean-to-arithmetic mask conversion to
securely compute s1 − (r1 ⊕ r2 ⊕ α), where s1 represents one of the two output
masks. For this purpose, one can use the first-order secure Boolean-to-arithmetic
mask conversion defined in (5), where we define s′1 = s1 ⊕ (r1 ⊕ r2 ⊕ α) as the
Boolean masked input and s′′1 = s1 − (r1 ⊕ r2 ⊕α) as the arithmetically masked
output of the following conversion. Then, given (5), we have

s′′1 = s′1 ⊕ Φ̄(s′1, δ)⊕ Φ̄(s′1, δ ⊕ r1 ⊕ r2 ⊕ α) , (14)

where δ is a random value taken from Z2k . If we let δ = r1, then

s′′1 = s′1 ⊕ Φ̄(s′1, r1)⊕ Φ̄(s′1, r2 ⊕ α) , (15)

and, given that Φ̄ is affine over F2, this can be rewritten as

s1 − (r1 ⊕ r2 ⊕ α) = Φ̄(s′1, r1)⊕ Φ̄(s′1, r2)⊕ Φ̄(s′1, α) . (16)

Equation (15) requires a total of 7 XORs and 2 additions, whereas Equation (16)
requires 5 XORs and 3 additions. Thus, the first equation might be attractive
for hardware implementations in cases where additions are more expensive than
XOR operations.

Step 3: Given (13), (15) and (16), one can generate another random s2 ∈ Z2k

and the desired arithmetically masked value x′′ can be computed as follows:

x′′ = (s2 + (x+ (r1 ⊕ r2 ⊕ α))) + (s1 − (r1 ⊕ r2 ⊕ α))

= x+ s1 + s2 .

8



Algorithm 2: Second-order Secure Boolean-to-Arithmetic Masking.

Input: x′ = x⊕ r1 ⊕ r2 with x, r1, r2 ∈ Z2k and random numbers
γ1, γ2, α, s1, s2 ∈ Z2k for some k ∈ Z≥0

Output: x′′ = x+ s1 + s2

1 z ← γ1 ⊕ r1
2 z ← z ⊕ γ2
3 z ← z ⊕ r2
4 u← x′ ⊕ z
5 z ← z ⊕ α
6 u← u+ z
7 v ← x′ ⊕ γ1
8 v ← v ⊕ α
9 v ← v + γ1

10 w ← x′ ⊕ γ2
11 w ← w ⊕ α
12 w ← w + γ2
13 z ← u⊕ v
14 z ← z ⊕ w
15 z ← z + s1
16 w ← α⊕ r2
17 u← s2 ⊕ r1
18 u← u− w

19 w ← w ⊕ s2
20 v ← w ⊕ r1
21 w ← w − r1
22 u← u⊕ v
23 u← u⊕ w
24 z ← z + u

return z

3.3 Implementation Details

Algorithm 2 shows the second-order secure Boolean-to-arithmetic mask conver-
sion described above, which requires 24 instructions.

We note that the combination of random values used as masks often involves
combinations of values that are uniformly and non-uniformly distributed over
Z2k . The latter caused by the use of Boolean and arithmetic operations to make
the conversion. For example, Line 17 in Algorithm 2 sets t to (α⊕ s1) − s1,
where α is defined as uniformly distributed over Z2k , whereas the combination
of the two operations involving s1 will mean that the effect of s1 on t is not
uniform. This is advantageous to an attacker since combining a point where t is
manipulated with a point where a combination of x and α, or a combination of
x, α and s1, would both provide an effective second-order side-channel attack.

Lemma 2. An implementation of Algorithm 2 is resistant to second-order side-
channel analysis.

Proof. From Algorithm 2, we can obtain the list of intermediate values V0, . . . , V31
that appear during the computation, including all inputs and the output:

V0 = x′ = x⊕ r1 ⊕ r2
V1 = x′′ = x+ s1 + s2
V2 = r1
V3 = r2
V4 = s1
V5 = s2
V6 = γ1
V7 = γ2
V8 = α
V9 = r1 ⊕ γ1
V10 = r1 ⊕ γ1 ⊕ γ2
V11 = r1 ⊕ r2 ⊕ γ1 ⊕ γ2

V12 = r1 ⊕ r2 ⊕ γ1 ⊕ γ2 ⊕ α
V13 = x′ ⊕ γ1
V14 = x′ ⊕ γ1 ⊕ α
V15 = (x′ ⊕ γ1 ⊕ α) + γ1
V16 = x′ ⊕ γ2
V17 = x′ ⊕ γ2 ⊕ α
V18 = (x′ ⊕ γ2 ⊕ α) + γ2
V19 = x⊕ γ1 ⊕ γ2
V20 = (x⊕γ1⊕γ2)+(r1⊕r2⊕γ1⊕γ2⊕α)
V21 = [(x′⊕γ1⊕α)+γ1]⊕[(x′⊕γ2⊕α)+γ2]
V22 = x+ (r1 ⊕ r2 ⊕ α)
V23 = x+ (r1 ⊕ r2 ⊕ α) + s2

9



V24 = α⊕ s1
V25 = (α⊕ s1)− s1
V26 = (α⊕ r1)
V27 = (α⊕ r1)− r1

V28 = (α⊕ r2)
V29 = (α⊕ r2)− r2
V30 = [(α⊕ s1)− s1]⊕ [(α⊕ r1)− r1]
V31 = s1 − (r1 ⊕ r2 ⊕ α)

We shall assume that the random values input to the algorithm, γ1, γ2, s1, s2,
and α, are uniformly distributed over Z2k , for some arbitrary k ∈ Z≥0. We shall
consider an attacker able to combine two intermediate states. One of these states
will have to contain x where the variables that act to mask x are the variables
that contribute an odd number of times. The variables that contribute an even
number of times will, at best, introduce a mask with a non-uniform distribution
and not contribute to protecting x. For example, consider V15 where r1, r2 and
α occur an odd number of times and will mask x, but γ1 occurs an even number
of times and will not prevent an attack. An attack is successful if one of the
following conditions is met for the second intermediate state.

1. The combination of all the distinct variables combined in one intermedi-
ate state are equal to the variables used to masks x, i.e., a non-uniformly
distributed variable can be used to reveal a secret but not protect it.

2. The combination of all the variables contributing to an intermediate state
with an odd frequency are equal to the variables used to masks x, i.e., the
uniformly distributed variables can still be used to reveal a secret even when
combined with a non-uniformly distributed variable.

We note an attacker could choose the empty set for the second state, which
includes the possibility of a first-order side channel attack.

We list the intermediate states given above that do not contain x, where
we list two sets: the first is the number of distinct variables contributing to the
intermediate state and the second is the number of variables that contribute
with an odd frequency.

V2 : {r1}, {r1}
V3 : {r2}, {r2}
V4 : {s1}, {s1}
V5 : {s2}, {s2}
V6 : {γ1}, {γ1}
V7 : {γ2}, {γ2}
V8 : {α}, {α}
V9 : {r1, γ1}, {r1, γ1}

V10 : {r1, γ1, γ2}, {r1, γ1, γ2}
V11 : {r1, r2, γ1, γ2},

{r1, r2, γ1, γ2}
V12 : {r1, r2, γ1, γ2, α},

{r1, r2, γ1, γ2, α}
V24 : {α, s1}, {α, s1}
V25 : {α, s1}, {α}
V26 : {α, r1}, {α, r1}

V27 : {α, r1}, {α}
V28 : {α, r2}, {α, r2}
V29 : {α, r2}, {α}
V30 : {α, s1, r1}, {∅}
V31 : {s1, r1, r2, α},,

{s1, r1, r2, α}

We also list the same information for the intermediate states that include x.

V0 : {r1, r2}, {r1, r2}
V1 : {s1, s2}, {s1, s2}
V13 : {r1, r2, γ1}, {r1, r2, γ1}
V14 : {r1, r2, γ1, α}, {r1, r2, γ1, α}
V15 : {r1, r2, γ1, α}, {r1, r2, α}
V16 : {r1, r2, γ2}, {r1, r2, γ2}

V17 : {r1, r2, γ2, α}, {r1, r2, γ2, α}
V18 : {r1, r2, γ2, α}, {r1, r2, α}
V19 : {γ1, γ2}, {γ1, γ2}
V20 : {γ1, γ2, r1, r2, γ1, γ2, α}, {r1, r2, α}
V22 : {r1, r2, α}, {r1, r2, α}
V23 : {r1, r2, α}, {r1, α}

10



We have a special case with V21, where the contribution from x has a non-
uniform distribution protected by other values with non-uniform distributions.
Hence, we define the sets associated with V21 as

V21 : {r1, r2, γ1, α}, {∅}

where we note that the empty set used in the second set does not imply an
attack is trivial since x is not uniformly distributed.

For each of V1, V13, V14, V15, V16, V17, V18, V19, V20, V22, V23 affected by x, we
consider the uniformly distributed variables affecting each intermediate state
(the second listed set) and V21 where we consider the first set. There does not
exist another set with the same combination of variables that would allow an
instance of x to be unmasked permitting a side-channel attack.

Hence, Algorithm 2 is resistant to first and second-order side-channel analysis.
ut

4 Higher-Order Boolean-to-Arithmetic Masking

To generalize the algorithm described in Section 3, we consider an n-th order
Boolean masking scheme, for n > 2, that masks the secret value x with random
masks r1, . . . , rn. That is, we wish to take x′ = x⊕

⊕n
i=1 ri and compute x′′ =

x+
∑n

i=1 si without allowing any n-th order leakage to occur (see Definition 2).
As above, we shall use the functions Φ and Φ̄, as defined in Section 3.1.

4.1 The Algorithm

Our conversion method consists of three steps.

1. We compute (x+ (α⊕
⊕n

i=1 ri)) +
∑n−2

i=1 si for some random values α, si ∈
Z2k for i ∈ {1, . . . , n− 2}.

2. We compute
(⊕n−1

i=1 κi

)
− (α⊕

⊕n
i=1 ri) for some random values κi ∈ Z2k

for i ∈ {1, . . . , n− 1}.
3. We combine the results of Steps 1 and 2, and a further Boolean-to-arithmetic

mask conversion, resulting in x +
∑n

i=1 si for some random values si ∈ Z2k

for i ∈ {1, . . . , n}.

We describe these steps in detail below.

Step 1: We consider Goubin’s solution to the first-order Boolean-to-arithmetic
mask conversion (5).

x+ r = (x⊕ r)⊕ Φ(x⊕ r, γ)⊕ Φ(x⊕ r, γ ⊕ r) .

Let r = r1 ⊕ . . . ⊕ rn and γ = γ1 ⊕ . . . ⊕ γn, where r1, . . . , rn, γ1, . . . , γn ∈ Z2k ,
then following the reasoning given in Section 3.2, we can state

x+

n⊕
i=1

ri = x′ ⊕ Φ

(
x′,

n⊕
i=1

γi

)
⊕ Φ

(
x′,

n⊕
i=1

γi ⊕ ri

)
. (17)

11



Given that Φ is affine over F2, we can split the first Φ operation giving,

x+

n⊕
i=1

ri = ((n ∧ 1)x′)⊕

(
n⊕

i=1

Φ(x′, γi)

)
⊕ Φ

(
x′,

n⊕
i=1

γi ⊕ ri

)
. (18)

where ∧ is a logical-AND operation. That is, we require an XOR with x′ only
when n is odd.

To prevent second-order leakage caused by the combination of the input x′

and the output of (18), we apply an extra Boolean mask, α ∈ Z2k , following the
reasoning given in Section 3, i.e.,

x+

(
α⊕

n⊕
i=1

ri

)
= ((n ∧ 1) (x′ ⊕ α))⊕

(
n⊕

i=1

Φ(x′ ⊕ α, γi)

)

⊕ Φ

(
x′ ⊕ α, α⊕

n⊕
i=1

γi ⊕ ri

)
, (19)

where we compute Φ(x′ ⊕ α, γi), for i ∈ {1, . . . , n}, as

x′, α, γi 7−→ ((x′ ⊕ γi)⊕ α) + γi

to avoid any second-order leakage caused by combining (x′⊕α) with the output
of (19).

However, the computation would still cause a higher-order leak, i.e., when x′,
α, and (19) get combined. Thus, we are required to add extra masks to prevent
this leakage, and we use (n− 2) masks µi, for i ∈ {1, . . . , n− 2}, as follows:(
x+

(
α⊕

n⊕
i=1

ri

))
⊕

n−2⊕
i=1

µi = ((n ∧ 1) (x′ ⊕ α))⊕

(
n−2⊕
i=1

Φ(x′ ⊕ α, γi)⊕ µi

)

⊕Φ(x′ ⊕ α, γn−1)⊕ Φ(x′ ⊕ α, γn))⊕ Φ

(
x′ ⊕ α, α⊕

n⊕
i=1

γi ⊕ ri

)
.

(20)

The result is then passed through a function that will perform a Boolean-to-
arithmetic mask conversion resistant to (n− 2)-th order side-channel attacks to
produce (

x+

(
α⊕

n⊕
i=1

ri

))
+

n−2∑
i=1

si , (21)

where si, for i ∈ {1, . . . , n− 2}, are the output masks required in the output of
Step 3. Note that in case of a third-order Boolean-to-arithmetic mask conversion,
one can directly use one of the output masks, i.e., s1 = µ1, because the first-
order Boolean-to-arithmetic mask conversion does not require that the input
and output masks are different (see Section 2).

12



We note that using a function that will perform a Boolean-to-arithmetic
mask conversion resistant to an (n − 2)-th order side-channel attack will call a
function that is resistant to an (n − 4)-th order side-channel attack etc. That
is, until a first or second-order resistant algorithm is required (see Sections 2.1
and 3, respectively).

Step 2: In the second step, we can perform another Boolean-to-arithmetic mask

conversion to securely compute
(⊕n−1

i=1 κi

)
− (α⊕

⊕n
i=1 ri), for some random

values κi ∈ Z2k , for i ∈ {1, . . . , n− 1}. In which we view the combination of any
elements of {κ1, . . . , κn−1} as secret and (r1 ⊕ . . .⊕ rn ⊕ α) as the mask, where
any combination of any elements of {r1 ⊕ . . . ⊕ rn ⊕ α} is also secret. We can
use an (n− 1)-th-order version of Step 1, as follows(

n−1⊕
i=1

κi

)
−

(
α⊕

n⊕
i=1

ri

)
= ((¬n ∧ 1)β)⊕

n−1⊕
i=1

(
Φ̄ (β, δi)

)
⊕ Φ̄

(
β, α⊕ rn ⊕

n−1⊕
i=1

δi ⊕ ri

)
(22)

where β =
(
α⊕ rn ⊕

⊕n−1
j=1 κj ⊕ rj

)
and δi are random values taken from Z2k

for i ∈ {1, . . . , n − 1}. We note that the order in which operands are treated
is particularly important. For example, α and rn cannot be combined but need
to be XORed separately with the result of the XOR sum they are combined
with. Likewise, the terms of the XOR sums need to be computed separately, i.e.,⊕n−1

i=1 δi ⊕ ri = (δ1 ⊕ r1)⊕ (δ2 ⊕ r2)⊕ . . .⊕ (δn−1 ⊕ rn−1).

Step 3: Summing (21) with the left-hand sides of (22) and the remaining output
masks si with i ∈ {n− 1, . . . , n}, we have(

x+

(
α⊕

n⊕
i=1

ri

)
+

n−2∑
i=1

si

)
+

(
n−1⊕
i=1

κi − α⊕
n⊕

i=1

ri

)
+

n∑
i=n−1

si =

x+

n∑
i=1

si +

n−1⊕
i=1

κi. (23)

One can then generate other random values `1, . . . , `n−2 ∈ Z2k and compute

κn−1 ⊕
n−2⊕
i=1

`i ⊕ κi , (24)

followed by an (n − 2)-th order Boolean-to-arithmetic mask conversion where⊕n−1
i=1 κi is the secret and

⊕n−2
i=1 `i are the Boolean masks to produce

∑n−2
i=1 `i +⊕n−1

i=1 κi. Note that the elements of {κ1, . . . , κn−1} cannot be combined without

13



causing leakage. Finally, we subtract
∑n−2

i=1 `i +
⊕n−1

i=1 κi from (23) and add all
elements of {1, . . . , `n−2}, which gives us the arithmetically masked output, i.e.,(

x+

n∑
i=1

si +

n−1⊕
i=1

κi

)
−

(
n−2∑
i=1

`i +

n−1⊕
i=1

κi

)
+

n−2∑
i=1

`i = x+

n∑
i=1

si . (25)

Again, we note that the order in which the operations in the above step is
computed is important to not combine masks that will produce leakage that
could be exploited by a side-channel attack. However, this is quite straightfor-
ward and, other than the cases mentioned above, will not be detailed here (see
Algorithm 3 for an example of a third-order resistant mask conversion).

Complexity
Each of the steps described above, without the use of Boolean-to-arithmetic mask
conversions of a lower order, will have a linear increase in time complexity with
regard to the order of the side-channel resistance. That is, have time complexity
O(n). The recursive calls to Boolean-to-arithmetic mask conversions of a lower
order will increase the time complexity to O(n2).

4.2 Implementation Details

Algorithm 3 shows a third-order secure Boolean-to-arithmetic mask conversion
as an example of the method described above, which requires 56 instructions.
We give a proof of security in Appendix B.

4.3 Comparison

Table 1 compares the performance of our proposed method with related work.
We consider the work of Coron et al. [6] who proposed a higher-order secure
Boolean-to-arithmetic algorithm; we do not consider LUT-based methods as they
would require a pre-compuation phase and additional memory (see Section 2).
We estimated the operation count of all methods by considering all necessary
operations excluding the generation of random numbers, loop-instruction over-
heads, and variable initialization. Appendix A provides more details about the
calculation and also compares the requirements on randomness.

Table 1 clearly shows that our solution is faster than Coron et al.’s method
for all considered register widths and security orders, often by several orders
of magnitude. Our methods also require fewer random values by at least one
magnitude as shown in Table 3 (see Appendix A).

5 Conclusions

In this paper, we present Boolean-to-arithmetic mask conversion methods that
can be computed in constant time for a masking scheme of a given order. Our
proposed methods have a complexity of O(n2) with regard to the security order

14



Algorithm 3: Third-order Secure Boolean-to-Arithmetic Masking.

Input: x′ = x⊕ r1 ⊕ r2 ⊕ r3 with x, r1, r2, r3 ∈ Z2k and random numbers
γ1, γ2, γ3, α, δ1, δ2, κ1, κ2, s1, s2, s3 ∈ Z2k for some k ∈ Z≥0

Output: x′′ = x+ s1 + s2 + s3

1 t← γ1 ⊕ r1
2 t← t⊕ γ2
3 t← t⊕ r2
4 t← t⊕ γ3
5 t← t⊕ r3
6 u← t⊕ α
7 t← x′ ⊕ t
8 t← t+ u
9 u← x′ ⊕ γ1

10 u← u⊕ α
11 u← u+ γ1
12 v ← x′ ⊕ γ2
13 v ← v ⊕ α
14 v ← v + γ2
15 w ← x′ ⊕ γ3
16 w ← w ⊕ α
17 w ← w + γ3
18 z ← α⊕ u
19 z ← z ⊕ s1

20 z ← z ⊕ v
21 z ← z ⊕ x′
22 z ← z ⊕ w
23 z ← z ⊕ t
24 t← z ⊕ r2
25 t← t+ r2
26 t← t⊕ z
27 u← r2 ⊕ s1
28 z ← z ⊕ u
29 z ← z + u
30 z ← z ⊕ t
31 t← κ1 ⊕ r1
32 t← t⊕ κ2

33 t← t⊕ r2
34 t← t⊕ α
35 t← t⊕ r3
36 u← t⊕ δ1
37 u← u− δ1
38 v ← t⊕ δ2

39 v ← v − δ2
40 w ← κ1 ⊕ δ1
41 w ← w ⊕ δ2
42 w ← w ⊕ κ2

43 t← t⊕ w
44 w ← w − t
45 t← u⊕ v
46 t← t⊕ w
47 z ← z + s2
48 z ← z + t
49 v ← s3 ⊕ κ2

50 w ← v ⊕ κ1

51 u← v − κ1

52 u← u⊕ w
53 v ← s3 ⊕ κ1

54 v ← v − κ2

55 w ← u⊕ v
56 z ← z + w

return z

and are independent of the input-word size. We present explicit algorithms for a
second-order secure mask conversion that requires 24 instructions, i.e., a multiple
of 3.4 compared to the instruction count of Goubin’s method (7 instructions), and
a third-order secure mask conversion that requires 56 instructions, i.e., a multiple
of 8 compared to Goubin’s method. We also describe a generic conversion method
for masking schemes of any higher order. All methods offer a better performance
that the state-of-the-art by at least one order of magnitude and also require
fewer random values also by at least one order of magnitude.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In Wiener, M.J., ed.:
CRYPTO ’99. Volume 1666 of LNCS., Springer, Heidelberg (1999) 388–397

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-channel(s).
In Kaliski Jr., B.S., Koç, Ç.K., Paar, C., eds.: CHES 2003. Volume 2523 of LNCS.,
Springer, Heidelberg (2003) 29–45

3. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In Koç, C.K., Naccache, D., Paar, C., eds.: CHES 2001. Volume 2162 of LNCS.,
Springer, Heidelberg (2001) 251–261

4. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In Attali, I., Jensen, T.P., eds.: E-smart 2001.
Volume 2140 of LNCS., Springer, Heidelberg (2001) 200–210

15



Table 1. Operation count for different Boolean-to-arithmetic mask conversion methods
up to a security order of 8.

B → A Security Order

Conversion 1 2 3 4 5 6 7 8

Goubin’s method 7 - - - - - - -

Coron et al. (8 bits) - 909 1,369 1,962 2,619 3,372 4,189 5,171

Coron et al. (16 bits) - 1,781 2,681 3,842 5,131 6,612 8,221 10,155

Coron et al. (32 bits) - 3,525 5,305 7,602 10,155 13,092 16,285 20,123

Coron et al. (64 bits) - 7,013 10,553 15,122 20,203 26,052 32,413 40,059

Our proposal - 24 56 115 197 331 513 763

5. Goubin, L.: A Sound Method for Switching between Boolean and Arithmetic
Masking. In Koç, Ç.K., Naccache, D., Paar, C., eds.: CHES 2001. Volume 2162 of
LNCS., Springer, Heidelberg (2001) 3–15

6. Coron, J., Großschädl, J., Vadnala, P.K.: Secure Conversion between Boolean and
Arithmetic Masking of Any Order. In Batina, L., Robshaw, M., eds.: CHES 2014.
Volume 8731 of LNCS., Springer, Heidelberg (2014) 188–205

7. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic Addition over Boolean
Masking—Towards First- and Second-Order Resistance in Hardware. In Malkin,
T., Kolesnikov, V., Lewko, A.B., Polychronakis, M., eds.: ACNS 2015. Volume
9092 of LNCS., Springer, Heidelberg (2015) 559–578

8. Vadnala, P.K., Großschädl, J.: Algorithms for Switching between Boolean and
Arithmetic Masking of Second Order. In Gierlichs, B., Guilley, S., Mukhopadhyay,
D., eds.: SPACE 2013. Volume 8204 of LNCS., Springer, Heidelberg (2013) 95–110

9. Vadnala, P.K., Großschädl, J.: Faster Mask Conversion with Lookup Tables. In
Mangard, S., Poschmann:, A.Y., eds.: COSADE 2015. Volume 9064 of LNCS.,
Springer, Heidelberg (2015) 207–221

10. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks — Revealing the
Secrets of Smart Cards. Springer (2007)

11. Golić, J.D.: Techniques for Random Masking in Hardware. IEEE Transactions on
Circuits and Systems 54(2) (2007) 291–300

12. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In Ning, P., Qing, S., Li, N., eds.: ICICS 2006.
Volume 4307 of LNCS., Springer, Heidelberg (2006) 529–545

13. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. Journal of Cryptology 24(2) (2011)
292–321

14. Karroumi, M., Richard, B., Joye, M.: Addition with Blinded Operands. In Prouff,
E., ed.: COSADE 2014. Volume 8622 of LNCS., Springer, Heidelberg (2014) 41–55

15. Coron, J., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from Arith-
metic to Boolean Masking with Logarithmic Complexity. In Leander, G., ed.: FSE
2015. Volume 8731 of LNCS., Springer, Heidelberg (2015) 130–149

16. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. IACR Cryptology ePrint Archive 2003 (2003) 236

16



17. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against
Probing Attacks. In Boneh, D., ed.: CRYPTO 2003. Volume 2729 of LNCS.,
Springer, Heidelberg (2003) 463–481

18. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In Nyberg, K., ed.: FSE 2008.
Volume 5086 of LNCS., Springer, Heidelberg (2008) 127–143

A Complexity Calculation

We estimate the costs for Coron et al.’s higher-order Boolean-to-arithmetic mask
conversion method [6] as follows. For a single masked AND (SecAnd) operation [6,
Section 3] we estimate the number of required instructions to be

2 · (n+ 1) · n+ 25,

with n being the security order. Furthermore, we estimate the higher-order secure
masked addition function (SecAddGoubin) as defined in [6, Section 3.2] to be

(2 · (n+ 1) · n+ 26 + n) + (k − 1) · [2 · (n+ 1) · n+ 27] + (2 · (n+ 1)),

where k represents the bit-width of the operands. The Expand function has an
estimated complexity of 2 · (n+ 1) and the FullXor function requires 2 · n+ n.

Using these estimations, we calculated the total operation count for higher-
order Boolean-to-arithmetic mask conversion as defined in [6, Section 5] for reg-
ister sizes of 8, 16, 32, and 64 bits and provide the results in Table 1.

A.1 Performance Details and Comparison

We provide more performance details on our method in comparison with related
work. Table 2 lists the number of required instructions in terms of arithmetic
and Boolean operations up to a security order of 8. Note that Coron et al.’s
solution [6] does not require arithmetic operations, we therefore refer to the total
instruction count given in Table 1.

Table 2. Number of required arithmetic and Boolean operations of our proposed
method up to a security order of 8.

B → A Security Order

Conversion 1 2 3 4 5 6 7 8

Arithmetic operations 2 8 14 31 46 83 116 193

Boolean operations 5 16 42 84 151 248 397 570

Furthermore, we list the number of required random variables to perform a
Boolean-to-arithmetic mask conversion in Table 3. We estimate the number of

17



random variables according to [6] and, for simplicity, we do not consider opti-
mization techniques such as re-using random inputs or common sub-expression
elimination. Furthermore, we do not apply optimization techniques for our pro-
posed method for security order 4 and above (for lower security orders, we give
the same number of required random variables from the explicit algorithms pro-
posed in this paper). For completeness, we also list the number of required ran-
dom variables for the first-order mask conversion method proposed by Goubin [5].

Table 3. Comparison of required number of random variables.

B → A Security Order

Conversion 1 2 3 4 5 6 7 8

Goubin’s method 1 - - - - - - -

Coron et al. (8 bits) - 66 127 221 331 465 615 806

Coron et al. (16 bits) - 122 239 421 635 897 1,191 1,566

Coron et al. (32 bits) - 234 463 821 1,243 1,761 2,343 3,086

Coron et al. (64 bits) - 458 911 1,621 2,459 3,489 4,647 6,126

Our proposal - 5 11 27 44 81 120 199

B Security Proof for Algorithm 3

Lemma 3. An implementation of Algorithm 3 is resistant to third-order side-
channel analysis.

Proof. From Algorithm 3, we can obtain the list of intermediate values V0, . . . , V70
that appear during the computation, including all inputs and the output:

V0 = x′ = x⊕ r1 ⊕ r2 ⊕ r3
V1 = x′′ = x+ s1 + s2 + s3
V2 = r1
V3 = r2
V4 = r3
V5 = s1
V6 = s2
V7 = s3
V8 = γ1
V9 = γ2
V10 = γ3
V11 = α
V12 = δ1
V13 = δ2

V14 = κ1

V15 = κ2

V16 = γ1 ⊕ r1
V17 = γ1 ⊕ γ2 ⊕ r1
V18 = γ1 ⊕ γ2 ⊕ r1 ⊕ r2
V19 = γ1 ⊕ γ2 ⊕ γ3 ⊕ r1 ⊕ r2
V20 = γ1 ⊕ γ2 ⊕ γ3 ⊕ r1 ⊕ r2 ⊕ r3
V21 = γ1 ⊕ γ2 ⊕ γ3 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ α
V22 = x′ ⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ r1 ⊕ r2 ⊕ r3
V23 = (x′ ⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ r1 ⊕ r2 ⊕ r3)

+(γ1 ⊕ γ2 ⊕ γ3 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ α)
V24 = x′ ⊕ γ1
V25 = x′ ⊕ γ1 ⊕ α
V26 = (x′ ⊕ γ1 ⊕ α) + γ1

18



V27 = x′ ⊕ γ2
V28 = x′ ⊕ γ2 ⊕ α
V29 = (x′ ⊕ γ2 ⊕ α) + γ2
V30 = x′ ⊕ γ3
V31 = x′ ⊕ γ3 ⊕ α
V32 = (x′ ⊕ γ3 ⊕ α) + γ3
V33 = [(x′ ⊕ γ1 ⊕ α) + γ1]⊕ α
V34 = [(x′ ⊕ γ1 ⊕ α) + γ1]⊕ α⊕ s1
V35 = [(x′ ⊕ γ1 ⊕ α) + γ1]⊕ α⊕ s1

⊕[(x′ ⊕ γ2 ⊕ α) + γ2]
V36 = [(x′ ⊕ γ1 ⊕ α) + γ1]⊕ α⊕ s1

⊕[(x′ ⊕ γ2 ⊕ α) + γ2]⊕ x′
V37 = [(x′ ⊕ γ1 ⊕ α) + γ1]⊕ α⊕ s1

⊕[(x′ ⊕ γ2 ⊕ α) + γ2]⊕ x′
⊕[(x′ ⊕ γ3 ⊕ α) + γ3]

V38 = [x+ (r1 ⊕ r2 ⊕ r3 ⊕ α)]⊕ s1
V39 = [x+ (r1 ⊕ r2 ⊕ r3 ⊕ α)]⊕ s1 ⊕ r2
V40 = ([x+(r1⊕r2⊕r3⊕α)]⊕s1⊕r2)+r2
V41 = [([x+ (r1 ⊕ r2 ⊕ r3 ⊕ α)]⊕ s1 ⊕ r2)

+r2]⊕ ([x+(r1⊕r2⊕r3⊕α)]⊕s1)
V42 = r2 ⊕ s1
V43 = [x+ (r1 ⊕ r2 ⊕ r3 ⊕ α)]⊕ r2
V44 = ([x+(r1⊕r2⊕r3⊕α)]⊕r2)+(r2⊕s1)
V45 = x+ (r1 ⊕ r2 ⊕ r3 ⊕ α) + s1
V46 = κ1 ⊕ r1
V47 = κ1 ⊕ κ2 ⊕ r1

V48 = κ1 ⊕ κ2 ⊕ r1 ⊕ r2
V49 = κ1 ⊕ κ2 ⊕ r1 ⊕ r2 ⊕ α
V50 = κ1 ⊕ κ2 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ α
V51 = κ1 ⊕ κ2 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ α⊕ δ1
V52 = (κ1⊕κ2⊕ r1⊕ r2⊕ r3⊕α⊕ δ1)− δ1
V53 = κ1 ⊕ κ2 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ α⊕ δ2
V54 = (κ1⊕κ2⊕ r1⊕ r2⊕ r3⊕α⊕ δ2)− δ2
V55 = κ1 ⊕ δ1
V56 = κ1 ⊕ δ1 ⊕ δ2
V57 = κ1 ⊕ κ2 ⊕ δ1 ⊕ δ2
V58 = α⊕ r1 ⊕ r2 ⊕ r3 ⊕ δ1 ⊕ δ2
V59 = (κ1 ⊕ κ2 ⊕ δ1 ⊕ δ2)

−(α⊕ r1 ⊕ r2 ⊕ r3 ⊕ δ1 ⊕ δ2)
V60 = [(κ1⊕κ2⊕r1⊕r2⊕r3⊕α⊕δ1)−δ1]

⊕[(κ1⊕κ2⊕r1⊕r2⊕r3⊕α⊕δ2)−δ2]
V61 = (κ1 ⊕ κ2) + r1 ⊕ r2 ⊕ r3 ⊕ α
V62 = x+ (r1 ⊕ r2 ⊕ r3 ⊕ α) + s1 + s2
V63 = x+ s1 + s2 + (κ1 ⊕ κ2)
V64 = s3 ⊕ κ2

V65 = s3 ⊕ κ1 ⊕ κ2

V66 = (s3 ⊕ κ2)− κ1

V67 = [(s3 ⊕ κ2)− κ1]⊕ (s3 ⊕ κ1 ⊕ κ2)
V68 = s3 ⊕ κ1

V69 = (s3 ⊕ κ1)− κ2

V70 = s3 − (κ1 ⊕ κ2)

We assume that the inputs γ1, γ2, γ3, s1, s2, s3, δ1, δ2, κ1, κ2, and α, are uniformly
distributed over Z2k , for some arbitrary k ∈ Z≥0. We shall consider an attacker
able to combine three intermediate states. One of these states will have to contain
x where the variables that act to mask x are the variables that contribute an
odd number of times. The variables that contribute an even number of times
will, at best, introduce a mask with non-uniform distribution and not contribute
to protecting x. An attack is successful if one of the following conditions is met
for the other two intermediate states.

1. The combination of all the distinct variables combined in two intermediate
states (i.e., the union of the two sets) are equal to the variables used to
masks x.

2. The combination of all the variable contributing to two intermediate states
with an odd frequency are equal to the variables used to masks x (i.e., the
union of the two sets minus the intersection).

3. A combination of one each set of variables where we consider all the distinct
variables combined in an intermediate state and another where we consider
variables contributing to an intermediate state with an odd frequency, where
combined variables are equal to the variables used to masks x.

We note an attacker could choose the empty set for the second and/or third state,
which includes the possibility of a first or second-order side channel attack.

19



We list the intermediate states given above that do not contain x, where
we list two sets: the first is the number of distinct variables contributing to the
intermediate state and the second is the number of variables that contribute
with an odd frequency.

V2 : {r1}, {r1}
V3 : {r2}, {r2}
V4 : {r3}, {r3}
V5 : {s1}, {s1}
V6 : {s2}, {s2}
V7 : {s3}, {s3}
V8 : {γ1}, {γ1}
V9 : {γ2}, {γ2}
V10 : {γ3}, {γ3}
V11 : {α}, {α}
V12 : {δ1}, {δ1}
V13 : {δ2}, {δ2}
V14 : {κ1}, {κ1}
V15 : {κ2}, {κ2}
V16 : {γ1, r1}, {γ1, r1}
V17 : {γ1, γ2, r1}, {γ1, γ2, r1}
V18 : {γ1, γ2, r1, r2},

{γ1, γ2, r1, r2}
V19 : {γ1, γ2, γ3, r1, r2},

{γ1, γ2, γ3, r1, r2}
V20 : {γ1, γ2, γ3, r1, r2, r3},

{γ1, γ2, γ3, r1, r2, r3}
V21 : {γ1, γ2, γ3, r1, r2, r3, α},

{γ1, γ2, γ3, r1, r2, r3, α}
V42 : {r2, s1}, {r2, s1}
V46 : {κ1, r1}, {κ1, r1}
V47 : {κ1, κ2, r1}, {κ1, κ2, r1}
V48 : {κ1, κ2, r1, r2},

{κ1, κ2, r1, r2}
V49 : {κ1, κ2, r1, r2, α},

{κ1, κ2, r1, r2, α}
V50 : {κ1, κ2, r1, r2, r3, α},

{κ1, κ2, r1, r2, r3, α}
V51 : {κ1, κ2, r1, r2, r3, α, δ1},

{κ1, κ2, r1, r2, r3, α, δ1}
V52 : {κ1, κ2, r1, r2, r3, α, δ1},

{κ1, κ2, r1, r2, r3, α}
V53 : {κ1, κ2, r1, r2, r3, α, δ2},

{κ1, κ2, r1, r2, r3, α, δ2}
V54 : {κ1, κ2, r1, r2, r3, α, δ2},

{κ1, κ2, r1, r2, r3, α}
V55 : {κ1, δ1}, {κ1, δ1}

V56 : {κ1, δ1, δ2}, {κ1, δ1, δ2}
V57 : {κ1, κ2, δ1, δ2},

{κ1, κ2, δ1, δ2}
V58 : {α, r1, r2, r3, δ1, δ2},

{α, r1, r2, r3, δ1, δ2}
V59 : {κ1, κ2, δ1, δ2, α, r1, r2,

r3}, {κ1, κ2, α, r1, r2, r3}
V60 : {κ1, κ2, r1, r2, r3, α, δ1,

δ2}, {∅}
V61 : {κ1, κ2, r1, r2, r3, α},

{κ1, κ2, r1, r2, r3, α}
V64 : {s3, κ2}, {s3, κ2}
V65 : {s3, κ1, κ2}, {s3, κ1, κ2}
V66 : {s3, κ1, κ2}, {s3, κ1, κ2}
V67 : {s3, κ1, κ2}, {∅}
V68 : {s3, κ1}, {s3, κ1}
V69 : {s3, κ1, κ2},

{s3, κ1, κ2}
V70 : {s3, κ1, κ2},

{s3, κ1, κ2}

We also list the same information for the intermediate states that include x.

V0 : {r1, r2, r3}, {r1, r2, r3}
V1 : {s1, s2, s3}, {s1, s2, s3}
V22 : {r1, r2, r3, γ1, γ2, γ3}, {γ1, γ2, γ3}
V23 : {r1, r2, r3, γ1, γ2, γ3, α}, {r1, r2, r3, α}
V24 : {r1, r2, r3, γ1}, {r1, r2, r3, γ1}
V25 : {r1, r2, r3, γ1, α}, {r1, r2, r3, γ1, α}
V26 : {r1, r2, r3, γ1, α}, {r1, r2, r3, α}
V27 : {r1, r2, r3, γ2}, {r1, r2, r3, γ2}
V28 : {r1, r2, r3, γ2, α}, {r1, r2, r3, γ2, α}
V29 : {r1, r2, r3, γ2, α}, {r1, r2, r3, α}
V30 : {r1, r2, r3, γ3}, {r1, r2, r3, γ3}
V31 : {r1, r2, r3, γ3, α}, {r1, r2, r3, γ3, α}
V32 : {r1, r2, r3, γ3, α}, {r1, r2, r3, α}
V33 : {r1, r2, r3, γ1, α}, {r1, r2, r3}

V34 : {r1, r2, r3, γ1, α, s1}, {r1, r2, r3, s1}
V36 : {r1, r2, r3, γ1, γ2, α, s1}, {r1, r2, r3, α, s1}
V37 : {r1, r2, r3, γ1, γ2, γ3, α, s1}, {r1, r2, r3, α, s1}
V38 : {r1, r2, r3, α, s1},

{r1, r2, r3, α, s1}
V39 : {r1, r2, r3, α, s1}, {r1, r3, α, s1}
V40 : {r1, r2, r3, α, s1},

{r1, r2, r3, α, s1}
V43 : {r1, r2, r3, α}, {r1, r3, α}
V44 : {r1, r2, r3, α, s1}, {r1, r2, r3, α, s1}
V45 : {r1, r2, r3, α, s1}, {r1, r2, r3, α, s1}
V62 : {r1, r2, r3, α, s1, s2},

{r1, r2, r3, α, s1, s2}
V63 : {s1, s2, κ1, κ2}, {s1, s2, κ1, κ2}

We have special cases with V35 and V41, where the contribution from x has a non-
uniform distribution protected by other values with non-uniform distributions.
Hence, we define the sets associated with V35 and V41 as

V35 : {r1, r2, r3, γ1, γ2, α, s1}, {∅}
V41 : {r1, r2, r3, α, s1}, {∅}

20



where we not that the empty set used in the second set does not imply an attack
is trivial since x is not uniformly distributed.

For each of V0, V1, V22, V23, V24, V25, V26, V27, V28, V29, V30, V31, V32, V33,
V34, V36, V37, V38, V39, V40, V43, V44, V45, V62, V63 affected by x, the uniformly
distributed variables affecting each intermediate state (the second listed set) and
V35, V41 where we consider the first set. There does not exist another combination
of two sets, following the attacks enumerated above, with the same combination
of variables that would allow an instance of x to be unmasked permitting a
side-channel attack.

Hence, Algorithm 3 is resistant to first, second and third-order side-channel
analysis. ut

C Implementation Considerations

All algorithms described in this paper have the property that all calculated
intermediates (and also higher-order combinations thereof) are statistically in-
dependent of the secret value x. In the past, it has however been shown that
the claimed security order of those algorithms is usually lower when they are
directly applied in software or hardware. The reason for this, for example in case
of a software implementation, lies in the fact that intermediate values are often
unintentionally combined by the underlying hardware architecture. One Typical
cause of leaks is where intermediate values of the algorithm, which are stored in
some registers, get overwritten with other intermediate results of the algorithms.
Thus, the Hamming distance of both intermediates will leak information. Other
reasons for leakage are the combination of internal signals that depend on two
or more intermediate values which are either stored in registers or currently (or
previously) used in operations in the processor’s datapath. First-order secure
algorithms will therefore often show first-order leakage in practice. The same
holds true for higher-order secure algorithms which resistance level has shown
to be actually lower than claimed.

Direct applications of secure algorithms in hardware require similar care when
implemented. Integrated circuits in CMOS, for example, have the property that
many gates make output transitions several times per clock cycle. Such tran-
sitions (or often called glitches) contain information about the secret value,
even though all intermediates have been carefully masked at the algorithm level.
State-of-the-art countermeasures try to get rid of those physical effects by ap-
plying (additional) masking or hiding techniques on either the gate level (e.g.,
using secure logic styles such as dual-rail logic etc.) or algorithm level (e.g., using
secret sharing and multi-party computation such as threshold implementations).

Implementation of secure algorithms that have been proven secure, for ex-
ample, that every calculated intermediate is statistically independent of the se-
cret, can, therefore, not be automatically considered “secure”. However, such
algorithms are important to be able to construct secure systems. The proposed
algorithms in this paper can be used in combination with other countermeasures
in order to guarantee resistance at the claimed security order.

21


