
Sharper Ring-LWE Signatures

Paulo S. L. M. Barreto1,3?, Patrick Longa2, Michael Naehrig2,
Jefferson E. Ricardini3??, and Gustavo Zanon3

1 University of Washington Tacoma
2 Microsoft Research

3 University of São Paulo.
E-mails: pbarreto@{uw.edu,usp.br},{plonga,mnaehrig}@microsoft.com,

{jricardini,gzanon}@larc.usp.br

Abstract. We present TESLA] (pronounced “Tesla Sharp”), a digital
signature scheme based on the R-LWE assumption that continues a recent
line of proposals of lattice-based digital signature schemes originating in
work by Lyubashevsky as well as by Bai and Galbraith. It improves
upon all of its predecessors in that it attains much faster key pair gen-
eration, signing, and verification, outperforming most (conventional or
lattice-based) signature schemes on modern processors. We propose a se-
lection of concrete parameter sets, including a high-security instance that
aims at achieving post-quantum security. Based on these parameters, we
present a full-fledged software implementation protected against timing
and cache attacks that supports two scheme variants: one providing 128
bits of classical security and another providing 128 bits of post-quantum
security.

1 Introduction

One of the simplest, most distinctive and, perhaps, most critical public-key cryp-
tographic constructions is that of digital signatures. They are a fundamental in-
gredient in every public-key infrastructure (PKI), web of trust or related method
of identity certification. Therefore, any system intended to offer large-scale se-
curity services (including key agreement, plain or authenticated encryption, and
more complex protocols) will have to rely ultimately upon the basic functionality
provided by digital signatures.

Given the existence of efficient quantum algorithms for the integer factoriza-
tion problem (IFP) and for the discrete logarithm problem (DLP) in Abelian
groups [36], digital signatures and other cryptosystems whose security stems
from the presumed intractability of those problems cannot be expected to re-
main useful for practical deployment in the medium-to-long term. Coupled with
the ever-growing evidence that quantum computers will become technologically

? Supported by CNPq research productivity grant 306935/2012-0.
?? Supported by the joint São Paulo Research Foundation (FAPESP)/Intel Research

grant 2015/50520-6 “Efficient Post-Quantum Cryptography for Building Advanced
Security Applications.”

feasible in the foreseeable future [8, 9, 17], this means that cryptographic systems
like the widespread RSA [31] and ECC [24, 28] will have to be replaced by alter-
natives that withstand attacks mounted with the help of quantum computers.

This has led to the announcement of multiple efforts [15, 23] to develop and
standardize so-called quantum-resistant or post-quantum cryptosystems. Among
these, cryptosystems based on the hardness of certain computational problems
on lattices have gained significant importance due to their high flexibility to sup-
port a large variety of cryptographic primitives, including encryption, signatures
and key agreement protocols. Also, lattice based cryptosystems allow for strong
security reductions and, when defined over ideal lattices, offer high performance
coupled with relatively small key sizes (e.g., in comparison with cryptosystems
based on standard lattices).

Our contributions: In the light of the central role played by digital signatures
as a necessary framework underlying the deployment of essentially all large-
scale cryptographic services, and the need to obtain and standardize efficient
quantum-resistant constructions for that purpose, in this paper we propose a
high-performance, high-security digital signature scheme dubbed TESLA] (pro-
nounced “Tesla Sharp”). Our proposal is an improvement of the Ring-TESLA
scheme [2], a ring variant of the earlier TESLA [4] scheme, which in turn im-
proves upon the schemes by Dağdelen et al. [16] and by Bai and Galbraith [7].

As for Ring-TESLA [2], the security of TESLA] stems from the hardness of
the Ring Learning with Errors (R-LWE) problem. Our scheme corrects a flaw
that was present in all of its predecessors except for the earliest scheme by
Lyubashevsky [26] from which all of the above constructions derive, and attains
much faster signing and verification. The problem has been fixed in a recent
update to TESLA [4] at the cost of an additional rejection condition during
signature generation.

Moreover, previous TESLA variants ([2, 4]) make use of global parameters
that force the use of a fixed and unique lattice for all the signatures. An attacker
can potentially exploit this either by forcing the use of a “weak” lattice instance,
which would reduce the security of the whole signature scheme, or by exploiting
“all-for-the-price-of-one” precomputation attacks (e.g., see [1]). We propose a
variant of TESLA] that minimizes the risk of these potential vulnerabilities.

Most lattice-based signature schemes in the literature (including all of the
aforementioned constructions as well as GLP [22]) provide parameters only for
classical pre-quantum security. In contrast, we target not only the classical set-
ting but, arguably, proper post-quantum security as well. In the classical setting,
TESLA] could be adopted as a plug-in replacement even for RSA and ECC digi-
tal signatures at lower security levels and surpass, in many cases, their efficiency.
For the post-quantum parameters, we present experimental evidence that such
a long-term secure instantiation of TESLA] is still competitive and even beats
in some cases the performance of other schemes that do not offer proper post-
quantum security.

2

Interestingly, the above is possible despite the proposal being fully and easily
implementable in an isochronous4 fashion, thereby being arguably far more re-
sistant against side-channel attacks than signature schemes that need to perform
Gaussian sampling for signing, particularly the scheme by Lyubashevsky [26] as
well as BLISS and its variants [19, 18].

To showcase the performance of TESLA], we wrote a reference software im-
plementation in C targeting x64 platforms and supporting two different security
levels: one variant that offers 128 bits of classical security and another variant
that offers 128 bits of post-quantum security (with 256 bits of classical secu-
rity). Our implementations are secure against timing and cache attacks, and
are shown to achieve high-performance even though they do not exploit modern
256-bit wide vector instructions and are only assisted by a few lines of inline
assembly. Our software will be made publicly available.

As an additional contribution that may have independent interest, we im-
prove upon the Gaussian sampler that was proposed by Ducas et al. [19, Sec-
tion 6] and propose a simpler, more efficient and isochronous Gaussian sampler.
The design is not only easier to protect against timing attacks but also reduces
significantly the amount of entropy required to generate each sample. We use
this improved Gaussian sampler to speed up the computation of TESLA]’s key
generation.

Organization: The remainder of this document is organized as follows. Section 2
introduces the essential notation and recaps basic notions on rings, lattices,
signatures and their security. In Section 3, we describe our proposed signature
scheme TESLA]. This is also where we explain the flaw present in some TESLA]

predecessor schemes and show how it is avoided in our proposal. A formal se-
curity proof in the random oracle model under the Ring Learning with Errors
(R-LWE) assumption is presented in Appendix A. In Section 4, we propose two
parameter sets that favor secure and efficient implementations of TESLA] at
both classical (pre-quantum) and post-quantum scenarios. In Section 5, we de-
scribe an efficient isochronous Gaussian sampler that is considerably simpler
than related constructions in the literature, and we also review our guidelines
to obtain a concrete and efficient implementation. We summarize and compare
our experimental results in Section 6, and we conclude in Section 7.

4 We mostly avoid the expression ‘constant time’ that is often abused in the literature,
and use the term ’isochronous’ instead. This is to stress that an implementation need
not (and, at times, cannot possibly) be properly “constant time,” and that what is
really required to protect against timing attacks is that execution takes the “same
time” (hence the Greek roots, iso+chronos) regardless of the private data. By the
same token, we adopt the expression “isotopic” rather than “uniform access” to refer
to table access that does not depend on private data (but need not be “uniform” in
any sense).

3

2 Preliminaries

The following notation is adhered to throughout the text, except where other-
wise indicated. To make this paper more self-contained, we repeat here several
concepts and closely follow the notation from [2, 7].

2.1 Notation and definitions

Rounding operators: For c ∈ Z and d ∈ N, [c]2d stands for the unique integer
c mod 2d in the range (−2d−1, 2d−1], and [v]2d extends that to every component
(or coefficient) of a vector (or polynomial) v. The d-bit modular rounding of c
is denoted by bced := (c− [c]2d) /2d and the notation is extended to vectors and
polynomials in the same manner.

Rings: For any integer q, we write Zq := Z/qZ for the sake of brevity.
For an integer k > 0, let n = 2k. The ring Rq := Zq[x]/〈xn+1〉 is isomorphic

to Znq as a Z-module by associating the corresponding polynomial coefficients
to vector components and vice versa. Therefore, we can identify the ring ele-
ment uniquely represented by a0 + · · · + an−1x

n−1 with the coefficient vector(
a0, . . . , an−1

)T
, and write a for either representation. As in [2], we also write

Rq,[B] := {
∑n−1
i=0 aix

i ∈ Rq | ai ∈ [−B,B]} for any non-negative B ∈ R.

Given a vector a = (a0, . . . , an−1)
T ∈ Znq , its negacyclic rotation is the vector

rot(a) := (−an−1, a0, . . . , an−2)
T ∈ Znq , which is the sequence of coefficients of

the ring element (a0 + · · · + an−1x
n−1) · x ∈ Zq[x]/〈xn + 1〉, and its associated

negacyclic matrix is Rot(a) :=
(
a, rot(a), rot2(a), . . . , rotn−1(a)

)T ∈ Zn×nq .
We denote the product of two ring elements u,v ∈ Rq as u ∗ v, and the

component-wise product of two vectors û = (u0, . . . , un−1), v̂ = (v0, . . . , vn−1) ∈
Znq as û · v̂ = (u0v0, . . . , un−1vn−1). This component-wise product typically ap-
pears after applying the number theoretic transform (NTT) in Rq to diagonalize
ring elements u and v, obtaining their so called ‘frequency domain’ representa-
tion (i.e. û, v̂ are typically the eigenvalues of Rot(u) and Rot(v), respectively).

Fixed weight encoding of bit strings. Let Bnω be the set of binary vectors
of length n with Hamming weight ω, i.e. Bnω = {v ∈ {0, 1}n | ||v||2 = ω}.
Analogously, denote by Tnω the set of signed binary vectors of length n with
Hanming weight ω, i.e. Tnω = {v ∈ {−1, 0, 1}n | ||v||2 = ω}. Let κ be a positive
integer. We denote by F a function that maps bit strings of length κ to fixed
weight ω vectors in Bnω or Tnω, e.g. F : {0, 1}κ → Tnω. In order, for F to be a useful
encoding, which means that F is injective (or almost injective), it is necessary
that 2κ ≤ |Bnω| =

(
n
ω

)
, or 2κ ≤ |Bnω| =

(
n
ω

)
2ω, respectively.

Algorithms, distributions and oracles: Let A be a randomized algorithm.
Then, y ← A(x) denotes the process of running A on input x and internally

4

chosen randomness and assigning the output to y. Further, if O is an oracle, we
write AO to indicate that A has access to O.

For a finite set S the notation s← U(S) or s
$← S, means that an element is

sampled uniformly at random from S and assigned to s.
Because of their importance, we particularly define the (discrete) Gaussian

distribution and the R-LWE distribution as follows.

Definition 1 (Discrete Gaussian Distribution). Let σ ∈ R be positive. The
(centered) discrete Gaussian distribution Dσ over Z with standard deviation σ
is the unique distribution such that the probability of any z ∈ Z is ρσ(z)/ρσ(Z),

where ρσ(z) := e−
z2

2σ2 and ρσ(Z) := 1 + 2
∑∞
z=1 ρσ(z).

The operation of sampling an integer d with discrete Gaussian distribution Dσ is
denoted by d← Dσ. Likewise, the coefficient-wise extension of this operation to
vectors, i.e. the sampling of a vector d ∈ Zn whose components are all distributed
according to Dσ is denoted by d ← Dn

σ . For the sake of simplicity, via the
identification of polynomials with their coefficient vectors, we also denote by
a← Dn

σ the sampling of a ring element a ∈ R whose polynomial coefficients are
all distributed according to Dσ.

Definition 2 (R-LWE Distribution). Let k, q ∈ N be positive integers, n = 2k,
s ∈ Rq, and let χ be a distribution over R. The ring learning with errors (R-

LWE) distribution Ds,χ is defined as the distribution that samples a
$← Rq and

e← χ and outputs (a,a ∗ s + e) ∈ Rq ×Rq.

2.2 Security notions

In this section, we define the R-LWE problem, digital signatures and the security
model for signatures.

Definition 3 (R-LWE Problem). Let k, q ∈ N be positive integers, n = 2k,
and let χ be a probability distribution over R. For a uniform choice s← U(Rq),
the ring learning with errors (R-LWE) problem is to distinguish the R-LWE dis-
tribution Ds,χ from the uniform distribution U(Rq ×Rq). Given s ∈ Rq define
the following two oracles:

– Os,χ: return a sample (a,b = a∗s+e)← Ds,χ from the R-LWE distribution,

– URq×Rq : return a uniformly random sample (a,u)
$← Rq ×Rq.

We write R-LWEn,m,q,χ for the R-LWE problem with parameters n, q and χ given
at most m samples. We say that it is (τ, ε)-hard, if for any probabilistic polyno-
mial time (PPT) algorithm A that runs in time τ and makes at most m queries
to its oracle, it holds that

AdvR-LWE
n,q,χ (A) :=

∣∣Pr
[
AOs,χ = 1

]
− Pr

[
AURq×Rq = 1

]∣∣ 6 ε,

where the probabilities are taken over the random choice of s
$← Rq, the random

choices of the oracles Os,χ, URq×Rq , and the random coins of A.

5

The R-LWE problem was introduced in [27] together with a (quantum) worst-
case to average-case reduction to certain problems over ideal lattices. The as-
sumption that it is hard is called the R-LWE assumption. It has been shown [5]
that the problem does not become easier if s is sampled from the distribution χ.
If χ = Dn

σ , we write R-LWEn,m,q,σ.

Signatures. A signature scheme with key pair space K, message spaceM, and
signature space S, is a triple Σ = (KeyGen,Sign,Verify) of algorithms defined as
follows.

– KeyGen: Given a security parameter λ, the probabilistic key generation al-
gorithm creates a key pair (sk, pk) ∈ K, denoted by (sk, pk) ← KeyGen(1λ).
We call sk the secret signing key and pk the public verification key.

– Sign: On input of a signing key sk and a message µ ∈ M, the probabilistic
signing algorithm outputs a signature σ ∈ S, denoted by σ ← Sign(sk, µ).

– Verify: On input of a verification key pk, a message µ ∈M, and a purported
signature σ ∈ S, the verification algorithm returns a bit b ∈ {0, 1}, denoted
by b ← Verify(pk, µ, σ). We say that the algorithm accepts the signature if
b = 1, otherwise we say that it rejects the signature.

Definition 4. A signature scheme is said to be (perfectly) correct if, for every
security parameter λ, every key pair (sk, pk)← KeyGen(1λ), every message µ ∈
M, every signature σ ← Sign(sk, µ), and every choice of the randomness of
KeyGen and Sign, it holds that Verify(pk, µ, σ) = 1.

We require signature schemes to be (perfectly) correct according to Defi-
nition 4. The standard security requirement for signature schemes is existential
unforgeability under chosen-message attack (EUF-CMA). Figure 1 shows the cor-
responding security game for an adversary A against a signature scheme Σ. The
algorithm A has access to a signing oracle OSign that, on input of a message
µ ∈M, returns a valid signature σ ← Sign(sk, µ). We prove security of TESLA]

in the random oracle model [11], which means that in the EUF-CMA game, A
has access to a random oracle H : Rq ×Rq ×M→ {0, 1}κ.

Definition 5. Let Σ be a signature scheme. We say that Σ is (τ, ε, qH, qS)-
unforgeable under a chosen-message attack if every adversary A that runs in
time τ and poses at most qS queries to the signing oracle and qH queries to the
random oracle has advantage

AdvEUF−CMA
Σ (A) = Pr

[
GameEUF−CMA

Σ,A = 1
]
6 ε.

Definition 6 (EUF-CMA security [21]). Let Σ = (KeyGen,Sign,Verify) be
a signature scheme and let A be a probabilistic algorithm. We say that it
(τ, ε, qH, qS)-breaks Σ if it runs for at most τ steps, makes at most qH adap-
tive queries to a hash function oracle, and at most qS queries to a signing oracle
for the signature of messages µi ∈ M, 1 ≤ i 6 qS , of its choice, and then

6

GameEUF−CMA
Σ,A

1. (sk, pk)← KeyGen(1λ)
2. (µ∗, σ∗)← A(1λ, pk)OSign,H

3. If Verify(pk, µ∗, σ∗) = 1 and µ∗ 6∈ QS
4. return 1
5. Else return 0

If A queries OSign(µ)

1. QS ← QS ∪ {µ}
2. σ ← Sign(sk, µ)
3. Return σ to A

Fig. 1. The EUF-CMA game for an adversary A against a signature scheme Σ =
(KeyGen,Sign,Verify) in the random oracle model (i.e. all parties including A have
access to a public function H with uniformly distributed output).

outputs a forged signature σ∗ on some other message µ∗ ∈ M, µ∗ 6= µi for all
1 ≤ i 6 qS , with probability at least ε. The probability is taken over the coins A
tosses, the KeyGen and Sign algorithms of the signature scheme, and the hash
function oracle H.

A signature scheme is said to be (τ, ε, qH, qS)-EUF-CMA-secure if no adver-
sary A can (τ, ε, qH, qS)-break it.

3 The proposed TESLA] scheme

Our proposal is the R-LWE-based digital signature scheme specified by Algo-
rithms 1, 2, and 3. These algorithms continue the line of research originating in
Lyubashevsky’s work [26] with various modifications and improvements by Bai
and Galbraith [7], Dağdelen et al. [16], Alkim et al. [4], and Akleylek et al. [2].
In particular, our algorithms are direct modifications of the Ring-TESLA algo-
rithms from [2]. In this section, we comment on the specific changes and their
consequences.

Algorithm 1 TESLA] Key Pairs

Input: Parameters n, q, σ, and two uniform, invertible ring elements a1 and a2.
Output: A private key (s, e1, e2) and a public key (t1, t2).

1: s
$← Dn

σ

2: e1
$← Dn

σ , e2
$← Dn

σ

3: t1 ← a1 ∗ s + e1, t2 ← a2 ∗ s + e2

4: return (s, e1, e2), (t1, t2)

Simplification to KeyGen. The key generation algorithm is simplified to the
pure generation of two samples from the R-LWE distribution. Specifically, the
components e1 and e2 of the private key (generated in line 2 of Algorithm 1)
are simple Gaussian samples. In contrast with the corresponding components in
the TESLA] predecessor schemes [2, 4, 7], these ring elements are not filtered to

7

ensure that the sum of their ω largest absolute coefficients is upper-bounded by
a certain constant L. This not only speeds up the key generation substantially,
but also eliminates the need to maintain a priority queue, which is difficult to
implement in an isochronous, isotopic fashion.

Algorithm 2 TESLA] Signing

Input: public parameters n, q, ω, d, B, U , κ; base (a1,a2) ∈ R2
q; message µ ∈ {0, 1}∗;

private key (s, e1, e2) ∈ R3
q; hash function H : {0, 1}∗ → {0, 1}κ, nearly injective

mapping F : {0, 1}κ → Tnω.
Output: A signature (z, c).
1: repeat

2: r
$← [−B,B]n

3: v1 ← a1 ∗ r, v2 ← a2 ∗ r
4: c← H(bv1ed, bv2ed, µ)
5: c← F (c)
6: z← r + s ∗ c
7: w1 ← v1 − e1 ∗ c, w2 ← v2 − e2 ∗ c
8: until ‖z‖∞ 6 B − U
9: and bw1ed = bv1ed and bw2ed = bv2ed

10: return (z, c)

Algorithm 3 TESLA] Verification

Input: Public parameters n, q, ω, d, κ; base (a1,a2) ∈ R2
q; message µ ∈ {0, 1}∗,

public key (t1, t2) ∈ R2
q, signature (z, c), hash function H : {0, 1}∗ → {0, 1}κ,

nearly injective mapping F : {0, 1}κ → Tnω.
Output: {0, 1} . reject, accept
1: c← F (c)
2: w1 ← a1 ∗ z− t1 ∗ c, w2 ← a2 ∗ z− t2 ∗ c
3: c′ ← H(bw1ed, bw2ed, µ)
4: return (if c′ = c and ‖z‖∞ 6 B − U then 1 else 0)

Verification failures with previous rejection conditions in Sign. Simi-
larly, during signature generation, our proposal makes no attempt at ensuring
that the absolute coefficients |[wi]2d | of the “rounded modular nonces” are upper-
bounded by 2d−1−L, as the predecessor schemes did. Apparently, the purpose of
this test was to cause the rounded nonces computed during verification to match
the corresponding rounded nonces computed during signing, which is necessary
since those rounded values are part of the input to the hash function.

It turns out that the above test does not prevent some genuine signatures
from failing to verify. In other words, it is possible (and observable in practice)

8

that the rounded wi nonces computed by the verifier satisfy |[wi]2d | < 2d−1 −
L, yet they do not match the rounded vi nonces computed by the signer, i.e.
bwied 6= bvied. This points to the fact that this test alone is not suitable to
ensure that those schemes are (perfectly) correct as required by Definition 4.
Appendix B describes concrete instances for which the test fails and gives more
details about the nature of the problem.

Simplification of the rejection condition in Sign. Instead of the above, we
resort to the exact condition (line 9 of Algorithm 2) that the actual input to the
hash function is the same at signing and at verification, i.e. bwied = bvied. As a
bonus, the new signature consistency test (whose running time is dominated by
the check on z) attains a success rate of ≈ e−1/β where β is a ‘speed’ parameter,
typically close to 1 + e that leads to signing success rates above ≈ 0.75. This is
much better than the predecessor schemes, where signing success rates of≈ 0.4 or
less are common. These modifications make the parameter L of the predecessor
schemes useless, and indeed it does not occur anywhere in our scheme.

Remark 1. Dağdelen et al. note in Section 3.2 of [16] the possibility of simplifying
the rejection condition during signing by checking the modular rounded values of
the nonces for equality. However, they conclude that such a modification would
be incompatible with the security proof by Bai and Galbraith [7] and discard it.

As far as we can see, the security proof for TESLA] given in Appendix A
does not incur the problem mentioned by Dağdelen et al. Indeed, the extra
condition on the absolute values of the modular rounded nonces is essential to
the Bai-Galbraith sequence of games because it seeks a reduction to the search-
SIS problem [7, Lemma 6], but becomes irrelevant in the corresponding TESLA]

sequence of games, which establishes a reduction to the R-LWE problem instead.

Remark 2. We note that the most recent update to the TESLA paper [4] has
added an additional condition to the signing algorithm. Namely, it is now tested
that |w| < bq/2c − L for all coefficients w of w1 and w2. If this is not the case,
the signature algorithm restarts. The discussion in Appendix B.1 shows that this
fixes the flaw described here and thus achieves perfect correctness at the price
of an additional check. This solution increases the complexity of the scheme,
it decreases the signing success rate, and also makes it necessary to keep the
filtering of Gaussian samples during key generation, which is a lot more difficult
to implement in a side-channel resistant fashion than our simpler solution, which
speeds up key generation considerably.

Fixed weight encoding of hash values. The Sign algorithm computes a hash
value c of length κ in Line 4 of Algorithm 2. For encoding c as a fixed weight
vector, we use an encoding function F : {0, 1}κ → Tnω using signed binary vectors
of fixed weight ω (see Section 5.3).

9

The role of Gaussian sampling. TESLA] inherits the property from Ring-
TESLA that Gaussian sampling is only needed for key pair generation. The
signing process itself only needs uniform sampling. This favors high-performance
isochronous signing. Although isochronous key generation incurs a heavier com-
putational cost, it is also carried out far less frequently than signing. Yet, neither
is such a sampler difficult to implement nor is its cost prohibitively high, as we
will show in Section 5.1.

Sampling fresh public constants (a1, a2) per key pair. TESLA] makes use
of a pair (a1,a2) of public, invertible ring elements, which in our description are
independent from the public keys. However, they can be easily generated already
in the frequency domain: hash a seed (which may be e.g. the user identifier and
a timestamp) into the sequence of their eigenvalues rather than their coefficients
and make sure none of them is zero, so that the ring elements are themselves
invertible.

In this light, a fresh pair (a1,a2) could be generated for each key pair from
information that is kept as part of the public key. The security benefits of doing
this, namely, forcing adversaries to face a distinct lattice for each new key pair
rather than optimizing an attack against a single lattice that is shared by several
users, more than make up for the relatively small loss in performance. In Ap-
pendix C, we present a modified version of TESLA] with this additional security
measure. In our experiments (see Table 3), regenerating the pair (a1,a2) using
a 32-byte seed and the ChaCha20 pseudo-random function incurs a slowdown
below 15% and 20% during signing and verification, respectively. Therefore, we
recommend that users of TESLA] benefit from this distinctive, advantageous
feature whenever possible.

Security proof. Finally, TESLA] is EUF-CMA secure under the R-LWE assump-
tion in the random oracle model. The proof is in Appendix A and closely follows
the corresponding proofs of the Ring-TESLA and Bai-Galbraith schemes [2, 7].

4 Choosing parameters

In this section, we provide two parameter sets for instantiating TESLA] signa-
tures: one pre-quantum parameter set at the 128-bit classical security level, and
one post-quantum set at (presumably) the 128-bit post-quantum security level,
with 256-bit classical security.

We note that the parameters adopted in the predecessors to TESLA] appear
to be either largely generic or not suitable for implementations that are intended
to offer strong security against quantum attacks. Next, we lay out our reasoning
for choosing the TESLA] parameters.

Dimension n, modulus q and Gaussian standard deviation σ. In order
to use the standard techniques for the number theoretic transform, the dimension
n is restricted to being a power of 2, i.e. n = 2k for some k > 0.

10

We choose the modulus q to be a prime of the form q = 2r − 2s + 1 for
some r and s, so as to enable efficient modular reduction on constrained (8-bit
and 16-bit) platforms. This also helps to speed up uniform sampling modulo q
via rejection sampling from the uniform distribution modulo 2r, as needed to
generate the lattice base (a1,a2) directly in the frequency domain (as mentioned
before, by specifying their eigenvalues rather than their coefficients, thereby
speeding up the inspection of those ring elements for invertibility). Also, we
require q ≡ 1 (mod 2n) in order to have the right roots of unity modulo q for
the number theoretic transform.

The standard deviation σ for the Gaussian distribution is an integer multiple
σ = ξσ2 of the constant σ2 := 1/

√
2 ln 2 to enable efficient Gaussian sampling.

This condition is used in the Gaussian sampling technique by Ducas et al. [19],
which is the basis for our Gaussian sampler described in Section 5.1 below.

In order to estimate the concrete security level of the above parameters, we
followed the thorough methodology by Albrecht et al. [3]. Although their work
focuses on the general LWE problem, no asymptotically faster attack is presently
known against R-LWE (only linear factor speedups are currently obtainable due
to the ring structure through sieving algorithms). Besides, the analysis can be
easily reproduced by using the public script the authors made available online5.

Hash output size. Finally, the hash size κ is taken to be the classical security
level λ itself. This is consistent with the use of the hash in a Fiat-Shamir-style
scheme where preimage resistance is relevant while collision resistance is much
less so: in a pre-quantum scenario a λ-bit hash is expected to have preimage
resistance ≈ 2λ, but only ≈ 2λ/2 in a post-quantum setting.

Parameters ω, B and U and rounding parameter d. The dimension
n and hash length κ are chosen according to the desired security level. Once
they are fixed, the weight parameter ω can be chosen such that the function
F : {0, 1}κ → Tnω can be injective. This means that 2κ ≤ 2ω

(
n
ω

)
.

The parameter U is defined as U = bη
√
ωσe where η is chosen so that the

probability of n independent ησ events is ≈ 2−λ for the (classical) security level
λ. This ensures that the coefficients of the secret key s will not leak through the
signature component z beyond the target security level.

The minimum restriction between B and U for the security reduction to hold
is B > nU . To facilitate uniform sampling modulo B (as needed for signing) via
rejection sampling, we want it to be as close as possible to the next power of 2.
Because the security proof also requires q > 4B, we specifically take B = bq/4c ≈
βnU , where β is a small “speed” parameter: the probability that ‖z‖∞ < B−U
is
(

2(B−U)+1
2B+1

)n
≈ e−1/β . Therefore, the larger the chosen β, the higher the

signing success rate and hence the faster the signing (with diminishing returns),
and also the larger the signatures. The best trade-off (the ‘elbow’ of the curve
e−1/β for β > 1) is around β ≈ e, so in practice we keep β close to that value.

5 <https://bitbucket.org/malb/lwe-estimator/src>.

11

The parameter d is simply dlgBe = dlg qe − 2.

Parameter sets. Overall, taking into account the above choices and relations
between the different parameters, we suggest the following two parameter sets.

1. TESLA]–I: 128-bit classical security, n = 512, q = 226−216 +1, σ = 158σ2,
ω = 19, η ≈ 13.91 and β = 4 (and hence d = 24, B = 224 − 214 = 16760832,
U = 8137): signatures are 1616 bytes long, private keys are 2112 bytes long,
public keys are 3328 bytes long.

2. TESLA]–II: 128-bit post-quantum security, 256-bit classical security, n =
1024, q = 228− 216 + 1, σ = 164σ2, ω = 37, η = 19.30 and β = 4 (and hence
d = 26, B = 226 − 214 = 67092480, U = 16349): signatures are 3488 bytes
long, private keys are 4224 bytes long, public keys are 7168 bytes long.

5 Implementation aspects

This section details several implementation aspects of TESLA]. We discuss the
improved Gaussian sampler, polynomial multiplication via the number theoretic
transform (NTT), and implementation choices like hash and extendable-output
functions as well as the integration of the NTT into the signature scheme.

5.1 An isochronous Gaussian sampler

In this section, we improve upon the Gaussian sampler that was proposed by
Ducas et al. [19, Section 6]. We propose a simpler, more efficient, and isochronous
Gaussian sampler that offers protection against timing attacks and requires less
entropy per sample.

The basic idea of Ducas et al. [19, Algorithms 10–12] is to start from a distri-
bution that approximates the desired Gaussian much more closely than a plain
uniform distribution, namely, a stepwise uniform distribution where the steps
have width ξ and height distributed according to an efficiently implementable,
ξ-scaled binary Gaussian. From there, a high-quality Gaussian is obtained by re-
jection sampling guided by Bernoulli distributions Bc with parameters c related
to the σ parameter of the desired Gaussian, as well as to the particular segment of
the stepwise approximation. Ducas et al. implement those Bernoulli distributions
by decomposing them into ` certain base distributions (Bc0 ,Bc1 , . . . ,Bc`−1

) where
the ck constants are precomputed to the desired accuracy, and then sampling
from those base distributions to that accuracy. This Bernoulli decomposition
is rather involved as it requires heavy algebraic manipulation of distributions,
and although the result is reportedly quite efficient, its running time is highly
dependent on the private bits, which are sampled one at a time and individually
influence the sampling termination. Besides, each Bck must be sampled to the
same precision as the target distribution, so the total amount of entropy needed
to obtain one Gaussian sample is far higher than theoretically necessary, roughly
O(`λ) bits rather than O(λ) for security level λ.

12

However, because we only need a basic Gaussian sampler for key genera-
tion, we are able to obtain a much simpler construction. Specifically, only one
kind of Bernoulli distribution is ever needed in our case6, namely, a distribution
Bexp(−t/2σ2) and t is an `-bit integer. This means that we could simply compute
the bias c = exp(−t/2σ2) directly using well known isochronous exponentiation
techniques that are commonplace for (say) DLP-based cryptographic schemes.
The value c is an approximation of a real number between 0 and 1 to the desired
precision. Because floating point support in hardware at the desired precision
may be unavailable for the higher security levels, (isochronous, isotopic) integer
approximations may be necessary according to the underlying processor. Yet,
the required precision for the λ security level is arguably about λ/2 bits [32], so
this can be done with available floating point arithmetic at pre-quantum security
levels on most processors.

Having that bias, a single uniform sample to the desired precision is necessary,
plus one uniform sample modulo ξ and one binary Gaussian sample that can be
obtained by cumulative distribution table (CDT) lookup by always scanning
over the whole table (to ensure the process is isochronous and isotopic). The
total entropy consumption is thus O(λ) bits.

5.2 NTT computation

Efficient instantiations in the context of R-LWE exploit the number theoretic
transform (NTT) to speed up polynomial multiplication of ring elements in Rq.
In the case of TESLA], key generation (Algorithm 1), signing (Algorithm 2),
and verification (Algorithm 3) require one NTT computation and two inverse
number theoretic transform (NTT−1) computations each. Hence, improvements
to the NTT should have a noticeable impact on the proposed signature scheme.

There is plenty of literature focused on the optimization and efficient imple-
mentation of the NTT. Below, we describe an efficient yet compact implemen-
tation approach.

The plain number theoretic transform is a map NTT on Rq := Zq[x]/〈xn −
1〉, mapping to vectors in Znq such that NTT(a ∗ b) = NTT(a) · NTT(b) and
NTT(c−1) = NTT(c)−1 for any a,b ∈ Rq and any invertible c ∈ Rq, with
component-wise products and inversions on the NTT outputs. The NTT requires
the existence of a primitive n-th root of unity ω ∈ Zq.

The usual technique to obtain a map NTT′ onR′q := Zq[x]/〈xn+1〉 satisfying
the same properties as the plain NTT is to choose a primitive 2n-th root of unity
ζ ∈ Zq, set a primitive n-th root of unity as required by the plain NTT as ω := ζ2,
then define an auxiliary map ψ(a) = ψ(a0 + a1x + a2x

2 + · · · + an−1x
n−1) :=

(a0 + a1xζ + a2x
2ζ2 + · · ·+ an−1x

n−1ζn−1), and finally set NTT′ := NTT ◦ ψ.
At first sight, implementing NTT′ would require storing a table for the powers

of ω (to compute NTT) and another for their inverses (to compute NTT−1), plus

6 The BLISS scheme, for which that sampler was designed, has the additional compli-
cation that Bernoulli distributions with inverse hyperbolic cosine biases B1/ cosh(t/f)

are needed as well.

13

an extra table for the powers of ζ (to compute ψ) and another for their inverses
(to compute ψ−1). It turns out one can implement NTT′ while storing only one
table, namely the powers of ζ, without any substantial performance loss. This is
the result of the following observations.

First, the NTT is not far from being a scaled involution. More precisely, let
ρ denote the map:

ρ(a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1) := a0 + an−1x+ an−2x
2 + · · ·+ a1x

n−1,

and notice that ρ−1 = ρ. Then NTT2 = n ◦ ρ, or NTT−1 = n−1 ◦ ρ ◦ NTT, so
that a multiplication by n−1 mod q and a cyclic coefficient permutation enable
implementing NTT−1 using the NTT implementation itself and very simple extra
computations.

Second, a related property holds for ψ. Specifically, let φ denote the map:

φ(a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1) := (a0 − a1x− a2x2 − · · · − an−1xn−1),

and notice that φ−1 = φ. Then (ρ ◦ ψ)2 = φ, or ψ−1 = φ ◦ ρ ◦ ψ ◦ ρ, so that
simple sign changes and a cyclic coefficient permutation enable implementing
ψ−1 using the ψ implementation itself and very simple extra computations.

Combining both observations above one gets the following relation:
NTT′−1 = (NTT ◦ ψ)−1 = ψ−1 ◦ NTT−1 = (φ ◦ ρ ◦ ψ ◦ ρ) ◦ (n−1 ◦ ρ ◦ NTT) =
n−1 ◦ φ ◦ ρ ◦ ψ ◦ NTT. In other words, one can compute NTT′−1 using existing
implementations of NTT and ψ.

Finally, we remark that the j-th power of ω coincides with the 2j-th power
of ζ, so if one defines a table phi tab[j] := ζj , then phi tab[2j] = ωj , i.e., the
powers of ω are contained in the even-indexed entries of a table of powers of ζ.

Yet, one may argue that, although the computation of φ ◦ ρ is lightweight,
multiplying by n−1 mod q is not, so it would still be necessary to keep an extra
table for (say) n−1◦φ◦ψ, noticing that ρ commutes with φ and n−1 so NTT′−1 =
ρ ◦ (n−1 ◦ φ ◦ ψ) ◦ NTT. However, that multiplication can be combined with
other operations in several circumstances. For instance, in a convolution a ∗b =
NTT−1(NTT(a) · NTT(b)) it could be combined with Barrett reduction in the
component-wise multiplications involved in computing NTT(a) ·NTT(b).

5.3 Implementation choices

We have implemented TESLA] in the C language with very scarce use of in-
line assembly and intrinsics, which were limited to implementing Barrett reduc-
tion [10] and vectorized ring additions. This was done in order to facilitate the
portability of the implementation to other platforms and to offer a first-order
evaluation of TESLA]’s performance.

We now review the actual choices that accompany our reference implemen-
tation. Because many primitives involved are not part of the signature scheme
itself, many other settings would be equally possible, e.g., different hash func-
tions could substitute for the ones we report herein.

14

We adopted ChaCha20 [12, 30, 29, 25] as the underlying pseudo-random bit
generator due to its widespread availability and efficiency. We also adopted
BLAKE2 [6, 34] and the SHAKE extendable-output functions derived from SHA-
3 [20] for the hash functions needed by the signature scheme.

For the encoding of hash values as sparse ring elements of constant weight,
we chose Sendrier’s method [35]. Although the more elaborate Biswas-Sendrier
method [13] is reported to outperform Sendrier’s method in certain scenarios,
its performance impact within TESLA] would be limited: our experiments show
that the overall performance improvement is very small, even when completely
eliminating the cost of encoding (e.g. by setting the sparse polynomial c to a
constant). Since this encoding never involves private data (specifically, it merely
changes the representation of the signature component c, which is entirely pub-
lic), it does not need to be isochronous nor isotopic.

Ring products are usually carried out using the number theoretic transform
(NTT). This requires keeping the base elements (a1,a2) in the form of their
eigenvalues, as they are never used in the protocol except as part of products.

However, the multiplications by c (lines 6 and 7 of Algorithm 2, and line 2
of Algorithm 3) benefit from sparse product techniques. In particular, one can
resort to key-scheduling the private key s into a precomputed table of form
(−s, s,−s) and length 3n, so that the negacyclic structure of the underlying
ring maps the multiplication by ±xj (all nonzero terms of c have this form) to
an addition/subtraction of n table entries starting at offset j on that table. A
similar observation holds for e1, e2, t1, t2 with a change in sign, so that the
tables have the form (e1,−e1, e1), (e2,−e2, e2), (t1,−t1, t1), (t2,−t2, t2). It is
possible to reduce the tables sizes down to 2n at the cost of a modest decrease
in performance by reducing indices modulo 2n when accessing the middle part
of the table. On the other hand, at the higher security levels the sparse products
needed at verification become less competitive than the NTT.

Exact modular reductions and centerings within loops are typically deferred
as much as the machine word size permits. Meanwhile, representatives stemming
from incomplete reduction are used, e.g. when mapping to the frequency domain
via the NTT or processing the corresponding values.

Loop unrolling has only a limited impact on performance (no more than 5%
or so) and was therefore applied sparingly.

To reduce the performance impact of the underlying hash function, the co-
efficients of modular-rounded polynomial coefficients are packed together before
being hashed, keeping only the 32 − d most significant bits of each coefficient
rather than the entire 32-bit word where they are stored, since all the other bits
are forcibly discarded anyway.

6 Experimental results

To evaluate the performance of TESLA], we benchmarked our reference imple-
mentation with the GNU GCC compiler v4.9.2 on a 3.4GHz Intel Core i7-4770
Haswell processor running Ubuntu 14.04 LTS and with TurboBoost disabled. To

15

restrict the influence of the adopted hash function on the measurements to the
signature nonces that accompany the message, we sign only the empty string.
Timings were averaged over 106 random tests for key generation, signing and
verification.

6.1 TESLA] performance results

Table 1 summarizes the observed results at the classical 128-bit security level
using parameter set TESLA]–I and at the post-quantum 128-bit security level
(roughly 256-bit classical security level) using parameter set TESLA]–II. For
comparison, we also list published results for other signature schemes based on
ideal lattices: the GLP scheme [22, 16] (benchmarked on a 3.4GHz Intel Core i5-
3210M Ivy Bridge processor with TurboBoost disabled, and using an unknown
hash function), Ring-TESLA-II [2] (benchmarked on a 3.3GHz Intel Core i7-
5820K Haswell CPU with TurboBoost disabled, and using the SHA-256 hash
function) and for BLISS-BI [18] (benchmarked on an unspecified processor of
the Intel Core family at 3.4 GHz, and using an unknown hash function; the use
of TurboBoost is not specified). From all the implementations listed in Table 1,
only the ones corresponding to GLP and ring-Tesla-II have been optimized using
AVX2 instructions. Public key (PK), secret key (SK) and signature sizes are
given in bytes. Timings have been rounded to the closest 103 clock cycles.

Table 1. Performance of various signature schemes over ideal lattices.

Scheme GLP BLISS-BI
Ring-

TESLA]–I TESLA]–II
TESLA-II

Security (Pre-Q) 100 128 118 128 256

Security (Post-Q) 6 80† 6 66† 64 64 128

PK size 1536 896 3328 3328 7168

SK size 256 ≈ 256 1920 2112 4608

Signature size 1184 ≈ 700 1568 1616 3488

Isochronous? 3 7 7 3‡ 3 3

Base NA NA NA 18000 37000

KeyGen NA NA NA 340000 710000

Sign 452000 422000 511000 114000 268000

Verify 34000 102000 168000 81000 202000

† Our conservative approach would put this at no more than half the classical security.
‡ Key generation: 7 Signing/verification: 3

As we can see, TESLA]–I achieves significantly faster signing and verifica-
tion times in comparison with other alternatives at the 128-bit classical level.
Note that this is achieved with full protection against timing and cache attacks
and without exploiting AVX2 instructions. The TESLA]–II instantiation of the

16

implementation achieves 128 bits of post-quantum security7. Nonetheless, it still
achieves very competitive performance in comparison with pre-quantum schemes
(e.g., signing is faster than any other competing signature scheme).

Recently, Saarinen [33] proposed a quantum-secure signature scheme called
BLZZRD, and reported performance results for a side-channel secure imple-
mentation on a 2.5GHz Core-i7 Haswell processor. Although verification cost of
BLZZRD is quite competitive, signing is significantly more costly. For example,
BLZZRD-I, a variant that offers 128-bit security, computes a signature in about
1.25 million cycles, whereas verification takes only 160 Kcycles. On the other
hand, we note that Saarinen’s implementation has not been optimized yet, and
that BLZZRD offers shorter signature sizes (e.g., BLZZRD-I’s signatures are
roughly 731 bytes long).

Table 2 compares TESLA]–I and TESLA]–II against several other signa-
ture schemes as benchmarked in [19] using OpenSSL v1.0.1c. Security is stated
against both classical and quantum attacks (in the format ‘classical:quantum’);
we indicate the fact that RSA and ECDSA are breakable in quantum polyno-
mial time by assigning them a zero quantum security level. The timings are those
observed on an Intel Core i7 processor at 3.4 GHz.

We can see that TESLA]–I, which offers 128-bit security, beats the signing
and verification times of all signature schemes on this list, except for the verifica-
tion times of RSA-1024, GLP (which offer 80-bit classical security) and BLISS-0
(which offers no more than 60-bit classical or 33-bit quantum security). We
point out that the security estimates for the BLISS family follow Saarinen [33,
Section 3], who shows how those schemes are more susceptible to Grover-style
quantum attacks and, hence, are less secure than anticipated by the authors.

6.2 TESLA] with fresh, per key pair generation of (a1, a2)

As discussed in Section 3, TESLA] requires the use of a public pair (a1,a2) ∈
R2
q. Arguably, there is a potential risk associated to the generation of these

global values: an adversary could fix these parameters based on a “weak” lattice
instance and thus reduce the security of the whole signature scheme. Moreover,
the use of a unique lattice for all the generated signatures can facilitate “all-
for-the-price-of-one” precomputation attacks, as was exemplified by the Logjam
attack in the case of finite field Diffie-Hellman [1]. Note that similar issues also
appear in previous TESLA variants ([2, 4]).

In order to avoid these vulnerabilities, we present a slightly modified version
of TESLA] that requires the generation of a fresh pair (a1,a2) for every new
key pair using a 32-byte random seed. Algorithms for the modified scheme are
shown in Algorithms 4, 5 and 6 in Appendix C.

7 GLP has a purported high security version where the underlying lattice problem
would attain 256-bit classical security. However, as per [22, Section 2.3], all versions
of that scheme use a 160-bit hash, thus offering no more than 160-bit classical security
while also creating an 80-bit quantum security bottleneck since a quantum algorithm
is known [14] that can find preimages of κ-bit hashes in O(2κ/2) time.

17

Table 2. General benchmarks

Scheme Sec(bits) Sign/s Verify/s

TESLA]–I 128:64 29.9k 42.1k
TESLA]–II 256:128 12.7k 16.8k

GLP 80:80 7.5k 100.0k

BLISS-0 60:33 4.2k 58.8k
BLISS-I 128:66 8.1k 33.3k
BLISS-II 128:66 2.1k 33.3k
BLISS-III 160:80 4.9k 32.3k
BLISS-IV 192:97 2.7k 31.3k

RSA-1024 80:0 6.0k 90.9k
RSA-2048 112:0 0.85k 26.3k
RSA-4096 144:0 0.11k 7.3k

ECDSA-160 80:0 17.24k 4.9k
ECDSA-256 128:0 9.43k 2.6k
ECDSA-384 192:0 5.13k 1.2k

In Table 3, we show the performance of TESLA] with the aforementioned
modifications. In our implementation, we used ChaCha20 for pseudo-random
generation of the pair (a1,a2). As can be seen, the increase in computing cost
is very small (below 15% cost increase in most cases) as well as the increase in
the public key size (only 32 bytes). In addition, the modified scheme potentially
saves space and bandwidth by avoiding the storage or transmission of a full pair
(a1,a2) ∈ R2

q, which is replaced by a 32-byte seed.

7 Concluding remarks

We have described the high-performance, high-security digital signature scheme
TESLA] and proved its security on the random oracle model under the R-LWE
assumption. Our proposal achieves fast key generation, signing, and verifica-
tion on modern processors, partly as a bonus result of correcting a design flaw
that was present in its predecessors. We proposed specific parameter sets for
both pre-quantum and post-quantum applications, and showed that our pro-
posal typically outperforms alternative conventional or lattice-based signature
schemes even when our scheme targets a higher (and hence more computation-
ally expensive) security level. Finally, we described a variant of our signature
scheme that offers improved security against backdoors and “all-for-the-price-of-
one” precomputation attacks.

References

1. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella Béguelin, and P. Zimmermann. Imperfect forward secrecy: how Diffie-
Hellman fails in practice. In I. Ray, N. Li, and C. Kruegel, editors, Proceedings of

18

Table 3. Performance of the modified TESLA] scheme in comparison with other signa-
ture schemes over ideal lattices. In the case of TESLA], each new key pair uses a differ-
ent underlying lattice and a fresh pseudo-randomly generated pair (a1,a2), providing
protection against potential backdoors and “all-for-the-price-of-one” precomputation
attacks.

Scheme GLP BLISS-BI
Ring-

TESLA]–I TESLA]–II
TESLA-II

Security (Pre-Q) 100 128 118 128 256

Security (Post-Q) 6 80† 6 66† 64 64 128

PK size 1536 896 3328 3360 7200

SK size 256 ≈ 256 1920 2112 4608

Signature size 1184 ≈ 700 1568 1616 3488

Isochronous? 3 7 7 3‡ 3 3

KeyGen NA NA NA 358000 740000

Sign 452000 422000 511000 129000 294000

Verify 34000 102000 168000 96000 226000

† Our conservative approach would put this at no more than half the classical security.
‡ Key generation: 7 Signing/verification: 3

the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 5–17, Denver (CO), USA, 2015. ACM.

2. S. Akleylek, N. Bindel, J. Buchmann, J. Krämer, and G. A. Marson. An ef-
ficient lattice-based signature scheme with provably secure instantiation. In
D. Pointcheval, A. Nitaj, and T. Rachidi, editors, Progress in Cryptology –
Africacrypt 2016, volume 9646 of Lecture Notes in Computer Science, pages 44–60,
Fes, Morocco, 2016. Springer.

3. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

4. E. Alkim, N. Bindel, J. Buchmann, Ö. Dağdelen, and P. Schwabe. TESLA: Tightly-
secure efficient signatures from standard lattices. Cryptology ePrint Archive, Re-
port 2015/755, 2015.

5. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In S. Halevi,
editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 595–618, Santa Barbara, CA, USA, 2009. Springer.

6. J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. BLAKE2: sim-
pler, smaller, fast as MD5. https://blake2.net/blake2.pdf, 2013.

7. S. Bai and S. D. Galbraith. An improved compression technique for signatures
based on learning with errors. In J. Benaloh, editor, RSA Conference – Cryptogra-
pher’s Track – CT-RSA 2014, volume 8366 of Lecture Notes in Computer Science,
pages 28–47, San Francisco, CA, USA, 2014. Springer.

8. C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. High-
fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett.,
117(6):060504, 2016.

9. R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Bab-
bush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,
E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J.

19

O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C.
White, E. Solano, H. Neven, and J. M. Martinis. Digitized adiabatic quantum
computing with a superconducting circuit. Nature, 534(7606):222–226, 2016.

10. P. D. Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In H. C. Williams, editor, Ad-
vances in Cryptology – CRYPTO 1986, volume 263 of Lecture Notes in Computer
Science, pages 311–323, Santa Barbara (CA), USA, 1986. Springer.

11. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security
– CCS 1993, volume 263 of CCS, pages 62–73, Fairfax (VA), USA, 1993. ACM.

12. D. J. Bernstein. ChaCha, a variant of Salsa20. Technical report, University of
Illinois at Chicago, 2008.

13. B. Biswas and N. Sendrier. McEliece cryptosystem implementation: Theory and
practice. In J. Buchmann and J. Ding, editors, International Conference on Post-
Quantum Cryptography – PQCrypto 2008, volume 5299 of Lecture Notes in Com-
puter Science, pages 47–62, Cincinnati (OH), USA, 2008. Springer.

14. G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem.
ACM SIGACT News (Cryptology Column), 28:4–19, 1997.

15. L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-
Tone. Report on Post-Quantum Cryptography (NIST IR 8105 draft). Techni-
cal report, National Institute of Standards and Technology (NIST), Gaithersburg
(MD), USA, 2 2016.

16. Ö. Dağdelen, R. E. Bansarkhani, F. Göpfert, T. Güneysu, T. Oder, T. Pöppelmann,
A. H. Sánchez, and P. Schwabe. High-speed signatures from standard lattices. In
D. F. Aranha and A. Menezes, editors, International Conference on Cryptology and
Information Security in Latin America – Latincrypt 2014, volume 8895 of Lecture
Notes in Computer Science, pages 84–103, Florianópolis, Brazil, 2014. Springer.

17. S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe.
Demonstration of a small programmable quantum computer with atomic qubits.
Nature, 536(7614):63–66, 2016.

18. L. Ducas. Accelerating BLISS: the geometry of ternary polynomials. Cryptology
ePrint Archive, Report 2014/874, 2014.

19. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal Gaussians. In R. Canetti and J. A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science, pages 40–56,
Santa Barbara (CA), USA, 2013. Springer.

20. M. J. Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. National Institute of Standards and Technology (NIST), Gaithersburg
(MD), USA, 8 2015.

21. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308,
1988.

22. T. Güneysu, V. Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based
cryptography: A signature scheme for embedded systems. In E. Prouff and
P. Schaumont, editors, Conference on Cryptographic Hardware and Embedded Sys-
tems – CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages
530–547, Leuven, Belgium, 2012. Springer.

23. National Security Agency (NSA) Information Assurance Directorate (IAD). Com-
mercial national security algorithm suite. Technical report, National Security
Agency (NSA), Fort George G. Meade (MD), USA, 8 2015.

20

24. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

25. A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and S. Josefsson.
ChaCha20–Poly1305 cipher suites for transport layer security (TLS). RFC 7905,
Internet Research Task Force (IRTF), June 2016.

26. V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and
T. Johansson, editors, Advances in Cryptology – Eurocrypt 2012, volume 7237
of Lecture Notes in Computer Science, pages 738–755, Cambridge, UK, 2012.
Springer.

27. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In H. Gilbert, editor, Advances in Cryptology – Eurocrypt 2010,
volume 6110 of Lecture Notes in Computer Science, pages 1–23, French Riviera,
France, 2010. Springer.

28. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Ad-
vances in Cryptology – CRYPTO 1985, volume 218 of Lecture Notes in Computer
Science, pages 417–426, Santa Barbara (CA), USA, 1985. Springer.

29. Y. Nir. ChaCha20, Poly1305 and their use in the internet key exchange protocol
(IKE) and IPsec. RFC 7634, Internet Research Task Force (IRTF), August 2015.

30. Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF protocols. RFC 7539,
Internet Research Task Force (IRTF), May 2015.

31. R. L. Rivest, A Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

32. M.-J. Saarinen. Gaussian sampling precision in lattice cryptography. Cryptology
ePrint Archive, Report 2015/953, 2015.

33. M.-J. Saarinen. Arithmetic coding and blinding countermeasures for lattice sig-
natures: Engineering a side-channel resistant post-quantum signature scheme with
compact signatures. Cryptology ePrint Archive, Report 2016/276, 2016.

34. M.-J. Saarinen and J.-P. Aumasson. The BLAKE2 cryptographic hash and message
authentication code (MAC). RFC 7693, Internet Research Task Force (IRTF),
November 2015.

35. N. Sendrier. Encoding information into constant weight words. In IEEE Inter-
national Symposium on Information Theory – ISIT 2005, pages 435–438. IEEE,
2005.

36. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Computing, 26(5):1484–1509, 1997.

A Formal security proof

In this section, we provide the formal proof that the TESLA] scheme is EUF-
CMA-secure under the R-LWE assumption. The proof follows the proof of Theo-
rem 1 in the original paper introducing the ring version of TESLA by Akleylek
et al. [2] very closely. Hence, we state some of their results almost word for word.
The following theorem is the main result of the security reduction, which is the
analog of [2, Theorem 1].

Theorem 1. Let n, ω, d, B, q, U , σ, κ be the TESLA] parameters satisfying the
conditions described in Sections 3 and 4. We assume that the Gaussian heuristic
holds for lattice instances defined by the parameters above. Let A be a probabilistic

21

algorithm that breaks EUF-CMA security, i.e. A runs in time τA, asks at most
qS queries to the signing oracle and at most qH queries to the hash oracle, and
forges a valid TESLA] signature with probability εA.

Then there exists a distinguisher D that runs in time τD = τA+O(qSκ
2+qH)

and solves the R-LWEn,2,q,σ problem (in the random oracle model) with success
probability

εD > εA

(
1− qS(qH + qS)2(d+1)2n

(2B + 1)nqn

)
− qH2dn(2(B − U) + 1)n + (2ησ + 1)3n

q2n
.

Proof. We first describe the distinguisher D that solves the R-LWEn,2,q,σ problem
by running the EUF-CMA adversary A internally.

The distinguisher D receives as input two challenge samples (a1, t1) and
(a2, t2) ∈ Rq × Rq and outputs a bit guessing whether the two samples came
from the R-LWE distribution Ds,χ for some given secret s or from the uniform
distribution on Rq ×Rq. In order to use the algorithm A, D has to simulate the
EUF-CMA-game for A. The first step for D is to define pk = (a1,a2, t1, t2) and
hand pk over to A as a public signing key. To simulate the EUF-CMA game, the
distinguisher D answers the hash and signing queries by A as follows.

– Hash queries: The distinguisher D keeps a list of queries to the hash oracle
H and their hash values. When A asks a query that has been asked before,
D returns the corresponding answer. When A asks a query that has not been
asked before, D samples a fresh, uniformly random c′ ∈ {0, 1}κ, records this
value together with its input in the list and returns c′ to A.

– Signing queries: When A asks to obtain a signature on a message µ, D
samples a uniformly random bit string c′

$← {0, 1}κ and a uniformly random

polynomial z
$← Rq,[B−U]. It then computes c ← F (c′) and wi ← aiz −

tic (mod q) for i = 1, 2. If A has already asked the hash oracle H a query
with input (bw1ed, bw2ed, µ) before, D aborts the simulation. If this input
is used for the first time, D sets H(bw1ed, bw2ed, µ) = c′ and returns (z, c′)
as its signature on µ with probability 1/M , where M = (2B + 1)n/(2(B −
U) + 1)n.

The simulation ends, when A outputs a forgery (z̃, c̃′) on a message µ̃ for which it
has not yet asked to obtain a signature. The distinguisher D verifies the signature
(z̃, c̃′): if Verify(pk, µ, (z̃, c̃′)) = 1 it returns 1, else it returns 0 as its guess for the
solution of the R-LWEn,2,q,σ problem.

We first show that responses provided by the distinguisher D to A’s hash
and signing queries are both indistinguishable from responses provided by the
random oracle and a true signing oracle.

In the random oracle model, hash query responses by D return uniformly
random values as long as queries do not repeat on the same input. If during
the response to a signing query a hash query on a previously used input occurs,
the simulation aborts. The probability for aborts in this case is analyzed below.
We need to show that if the forger A plays the game against an instantiation
of the real signature scheme, hash values are indistinguishable from uniformly

22

random values. As argued by Bai and Galbraith, we need to ensure that the
set {(ba1 ∗ yed, ba2 ∗ yed) | y

$← Rq,B} carries enough entropy. The following
lemma shows that this is the case. It is based on [7, Lemma 3] and essentially
the same as [2, Lemma 2]. For an integer a the notation baed,q means ba mod qed
and extends to vectors, matrices and polynomials coefficientwise.

Lemma 1. Let parameters be as in Theorem 1 and let a1,a2 ∈ R∗q . Define
the lattice Λ = {v ∈ Z2n | v ≡ Aw (mod q) for some w ∈ Zn}, where A =(

Rot(a1) Rot(a2)
)T

. Assume that the Gaussian heuristic holds for Λ, i.e. Λ ∩[
−2d, 2d

]
6 2(d+1)2n/qn. Then for all y1 ∈ Rq,[B] we have

Pr
y2

$←Rq,[B]

[bAy1ed,q = bAy2ed,q] 6
2(d+1)2n

(2B + 1)nqn
.

In particular,
∣∣{bAyed,q

∣∣ y ∈ Rq,[B]}
∣∣ > (2B + 1)nqn

2(d+2)2n
.

Proof (Proof of Lemma 1). The proof is the same as that of [2, Lemma 2], which
closely follows the proof of [7, Lemma 3]. We repeat the main arguments here
for clarity.

For y1 ∈ Rq,[B] consider the set S =
{
y2 ∈ Rq,[B]

∣∣ bAy1ed,q = bAy2ed,q
}

.

The lemma follows by showing that |S| 6 2(d+1)2n/qn since |Rq,[B]| = (2B +
1)n. The set M = {y1 − x ∈ Zn | x ∈ S} satisfies |M | = |S|. Let N :=
{Ax mod q | x ∈ M}. Since both a1,a2 are invertible in Rq, M ⊆ Rq,[2B], and
q/2 > 2B, it follows that |N | = |M |.

Let x = A(y1 − z) (mod q) with z ∈ S be an arbitrary element in N . Then,
bAy1ed,q = bAzed,q and thus bxed+1,q = bAy2 −Azed+1,q = 0, which means

x ∈
[
−2d, 2d

]2n
. Therefore, N ⊆ Λ∩

[
−2d, 2d

]2n
and by the Gaussian heuristic,

we obtain |N | 6
∣∣∣Λ ∩ [−2d, 2d

]2n∣∣∣ 6 2(d+1)2n/qn. ut

Next, for signing queries, we need to show that the distribution of polynomials
z returned by D in the simulation is indistinguishable from the distribution
of polynomials z produced by the signing algorithm. This means, it needs to
be shown that the latter is statistically close to the uniform distribution on
Rq,[B−U]. Again, this can be shown exactly as in [2] by deploying the rejection
sampling lemma by Lyubashevsky [26, Lemma 4.7 of the full version]. We do
not state the general lemma again, but directly apply it to the situation needed
for this proof.

Lemma 2. For the parameters as in Theorem 1, let X be the uniform distri-
bution on Rq,[B−U], i.e. the probability for a polynomial z

$← Rq,[B−U] to be
sampled according to X is fX(z) = 1/(2(B − U) + 1)n. We extend the distri-
bution to R and assign the probability fX(z) = 0 for all z /∈ Rq,[B−U]. For a

fixed secret s
$← Dn

σ , define V = {s ∗ c : c = F (c), c ∈ {0, 1}κ} and let Y be the
distribution on V that samples c ∈ {0, 1}κ uniformly at random, then computes

23

c = F (c) and returns v = s ∗ c. Finally, for v ∈ V , let Zv be the uniform distri-
bution on polynomials with coefficient vectors v + [−B,B]n, i.e. the probability

for sampling z = v + y, y
$← Rq,[B] is fZv(z) = 1/(2B + 1)n, and fZv(z) = 0

for z /∈ v +Rq,[B].
Then for M = (2B + 1)n/(2(B − U) + 1)n, we have for any v ∈ V

Pr
z

$←X
[M · fZv(z) > fX(z)] > 1− 2−ν , (1)

where ν > log(e) · η2/2 + log(2η(βn − 1)) and the output distributions of the
following two algorithms are within statistical distance 2−ν/M :

1. v
$← Y , z

$← Zv, output (z,v) only if z ∈ Rq,[B−U].
2. v← Y , z← X, output (z,v) with probability 1/M .

The probability that the first algorithm produces an output is (1− 2−ν)/M . Note
that with our concrete parameter choice, 1/M ≈ e−1/β.

Proof (Proof of Lemma 2). We first show that the inequality in (1) holds for all
v ∈ V . Note that if |v| < U for any coefficient v of v, then any z sampled from
X lies in v +Rq,[B], i.e. in the support of Zv. In this case, M · fZv(z) = fX(z)
and the probability in (1) is equal to 1.

The condition M · fZv(z) > fX(z) is not satisfied if there exists a coefficient
v of v such that |v| > U and if the corresponding coefficient z of z is sampled
from [B − v,B − U] or [−B + U,−B − v], depending on the sign of v. The
probability for this to happen is 2

∑∞
j=U+1 Pr[v = j] · j−U

2(B−U)+1 . The fraction is

the probability that z is sampled from one of the above intervals, the factor 2
takes into account both cases, positive and negative v. Using the fact that v is
the sum of exactly ω coefficients of s, i.e. is distributed as a discrete Gaussian
with standard deviation σω =

√
ωσ, we have that Pr[v = j] = e−j

2/2ωσ2

/
√

2πωσ.
Replacing the sum by an integral and integrating, we obtain an upper bound on
the probability for one coefficient of z to fall outside the valid interval. Summing
up over all n coefficients and taking the complement, we obtain a lower bound
for the probability in (1) as 1 − e−k

2/2/2k(βn − 1), which directly yields the
bound on ν.

At this point, we note that the assumptions in the rejection sampling
lemma [26, Lemma 4.7 of the full version] are satisfied and the remainder of
the proof is simply an application of that lemma. Note that the condition on the
probabilities in the first algorithm translates into the check z ∈ Rq,[B−U]. ut

The above lemma shows that the forger A cannot distinguish between the
distribution of z presented by the distinguisher D and that presented by the
actual signing algorithm. We now turn to analyzing the abort probability during
the signing simulation.

Probability of abort during simulation. As described above, the simulation
in the EUF-CMA game aborts, when, during a sign query for a message µ, the

24

simulator notices that the hash function oracle has already been queried on
(bw1ed, bw2ed, µ). The following argument is the same as in [2].

Assume that the signing simulation samples an additional value y uni-
formly at random from Rq,[B]. Furthermore, the simulation programs not only
c′ = H(bw1ed, bw2ed, µ) but also c′ = H(ba1yed, ba2yed, µ). Sampling y does
not influence (z, c′). The probability of aborting during the original signing sim-
ulation is at most the abort probability during the signing simulation with the
changes just described. The latter probability is the same as finding a collision
for the rounding function. Hence, by Lemma 1, the probability that D aborts

during the simulation of A’s environment is less than qS(qH + qS) 2(d+1)2n

(2B+1)nqn .

Next we derive the bound on D’s distinguishing advantage depending on
the probability εA for A to forge a valid signature. As is done in the proof of
security in the appendix of [2], we also distinguish between the two possible cases
for (a1, t1) and (a2, t2) ∈ Rq×Rq that can occur in the security game. Namely,
either, (a1, t1) and (a2, t2) are both chosen according to the R-LWE distribution
or both according to the uniform distribution on Rq ×Rq.

Case 1: (R-LWE samples) We assume that (a1, t1) ← Dn
σ and (a2, t2) ← Dn

σ ,
which means that t1 = a1 ∗ s + e1 and t2 = a2 ∗ s + e2 for e1, e2 ← Dn

σ . We need
to determine a bound for the probability that D returns 1 correctly.

There are two possibilities for D to falsely return 0, namely first, if D aborts
while answering a signing query; or, second, if the algorithm A does not output
a valid forgery. As described above, the probability that D aborts during the

simulation is at most qS(qS + qH) 2(d+1)2n

(2B+1)nqn . For D to return 1, both situations

above must not occur, which means that A must output a valid forgery, which
happens with probability εA and the simulation must not abort. Thus, D returns

1 with probability at least εA

(
1− qS(qH + qS) 2(d+1)2n

(2B+1)nqn

)
.

Case 2: (Uniformly random samples) The second case assumes that (a1, t1)
$←

R∗q × Rq and (a2, t2)
$← R∗q × Rn are sampled uniformly at random. First, we

argue that it is highly unlikely that the ti have the form as in the first case,
where ti = ai ∗ s + ei for polynomials s, ei with small coefficients.

We start by repeating [2, Remark 1], which bounds the size of coefficients
sampled from a discrete Gaussian distribution by ησ with overwhelming proba-
bility. We repeat it here, since we differentiate between different cases that apply
to different parameter sets.

Remark 3. Lemma 4.4 in [26] states that for any η > 0 and a single coefficient

x ← Dσ, we have Pr[|x| > ησ] 6 2e−η
2/2. It follows that the probability that

all coefficients of s ← Dn
σ , e1 ← Dn

σ , and e2 ← Dn
σ are in [−ησ, ησ] is at least(

1− 2e−η2/2
)3n

. In other words, the probability that KeyGen will fail to yield

a suitable private key does not exceed 1 −
(

1− 2e−η
2/2
)3n

. For instance, for

25

n = 512, any value η & 13.91 limits the probability of failure to less than 2−128.
Similarly, for n = 1024, any value η & 19.30 limits the probability of failure to
less than 2−256.

With the above bound, we may use the following lemma, also resembling the
analogous result in [2, Appendix B], to obtain a bound on the probability that
ti = ai ∗ s + ei, where s, ei have small coefficients.

Lemma 3. Let parameters be as in Theorem 1. Furthermore, let a1,a2
$← R∗q

and t1, t2
$← Rq. Then it holds that

Pr
[
∃ s, e1, e2 ∈ Rq,[ησ]

∣∣ ti = ai ∗ s + ei (mod q), i ∈ {1, 2}
]
6

(2ησ + 1)3n

q2n
,

where the probability is taken over random choices of a1, a2, t1, and t2.

Proof. The polynomials t1, and t2 are uniformly random, therefore, the proba-
bility to sample two specific polynomials t1, t2 is 1/

∣∣{(t1, t2) ∈ Znq × Znq }
∣∣ =

1/q2n. Next, we take a look at the set Sa1,a2 = {(a1 ∗ s + e1,a2 ∗ s +
e2) | s, e1, e2 ∈ [−ησ, ησ]n}. Its cardinality can be bounded by |Sa1,a2

| 6
|{(a1 ∗ s,a2 ∗ s) | s ∈ [−ησ, ησ]n}|·|{(e1, e2) | e1, e2 ∈ [−ησ, ησ]n}| = (2ησ+1)n ·
(2ησ + 1)2n since a1,a2 ∈ R∗q . ut

This lemma shows that the probability for the ti being sampled uniformly at
random and at the same time having the R-LWE shape is very low. From now on,
we assume that there do not exist s, e1, e2 ∈ [−ησ, ησ]n such that ti = ai ∗s+ei.

We continue to follow the proofs in [7] and [2]. At the end of the simulation,
the forger A will output a forged signature (z̃, c̃′) on a message µ̃. Therefore, we
conclude that A has made a hash query on (ba1z̃−t1c̃ed,q, ba2z̃−t2c̃ed,q, µ̃) and
recieved c̃′ in order for the verification equation to hold. Note that c̃′ = F (c̃′).
The forger A can only produce a valid signature on some message µ, if for some
v1,v2 ∈ Rq with c′ = H(v1,v2, µ), there exists a z ∈ Rq,[B−U] such that (z, c′)
satisfies the verification condition. With the next lemma, we give an upper bound
on the probability for this to happen.

Lemma 4. Let the parameters be as in Theorem 1, and let δ ∈ Q > 0. For

u ∈ Rq, let Λu = {z̄ ∈ Zn | Az̄ = u (mod q)}, where A =
(

Rot(a1) Rot(a2)
)T

for a1,a2 ∈ R∗q . Assume that the Gaussian heuristic holds for Λu, i.e. |Λu ∩
[−δ, δ]n| = (2δ + 1)n/qn.

Then for all v1,v2 ∈ Rq, c′ $← {0, 1}κ, c = F (c′), a1,a2
$← R∗q , and t1, t2

$←
Rq it holds that

Pr
[
∃ z ∈ Rq,[δ]

∣∣ vi = bai ∗ z− ti ∗ ced,q (mod q), i ∈ {1, 2}
]
6

2dn(2δ + 1)n

q2n
,

where the probability is taken over random choices of c′, a1, a2, t1, and t2.

Proof. This statement follows from the proof of [2, Lemma 4]. ut

26

With this result, it follows that the probability for A to forge a valid sig-
nature, i.e. the probability that for v1,v2 ∈ Rq, and c′

$← {0, 1}κ, there
exists z ∈ Rq such that ‖z‖∞ 6 B − U and vi = baiz − ticed,q (modq),
i ∈ {1, 2} is smaller than 2dn(2(B−U) + 1)n/q2n. Given that A asks at most qH
hash queries, the probability that A forges a valid signature can be bound by
qH2dn(2(B − U) + 1)n/q2n. Overall, the probability that D returns 1 is smaller
than qH2dn(2(B − U) + 1)n/q2n + (2ησ + 1)3n/q2n.

The distinguisher’s advantage. Putting the results from the two cases to-
gether, we observe that the distinguisher D has the advantage AdvR-LWE

n,q,χ (A) =
εD, which is bounded from below by

εD > εA

(
1− qS(qH + qS)2(d+1)2n

(2B + 1)nqn

)
− qH2dn(2(B − U) + 1)n + (2ησ + 1)3n

q2n
.

The distinguisher’s running time. The relation between A’s running time
τA and D’s running time τD is deduced by the arguments presented in [2,
Appendix B], which we recall below.

Because A is a subroutine of D, it follows that τD > τA. The running time
overhead for D is generated by the extra steps needed to emulate the EUF-
CMA game for A. These consist of two queries to an R-LWE-oracle to obtain
the challenge tuples (a1, t1) and (a2, t2), and the answers to hash and signing
oracle queries. Lemma 2 shows that the distributions of the signatures simulated
by D and those output by the actual signing algorithm are statistically close.
Thus, when emulating the signing procedure, D rejects a pair (z, c′) with the
same probability as Algorithm 2 (Sign) restarts the loop on line 2 due to an
unsatisfied condition on lines 8 or 9. The answer to each signing query requires
a constant number of polynomial multiplications, which cost O(κ2). Overall, we
obtain the approximate bound τD ≈ τA + O(qSκ

2 + qH). This concludes the
proof of Theorem 1. ut

B Verification failures in predecessor schemes

The Bai-Galbraith scheme [7], the original TESLA8 [4], and the Ring-TESLA
scheme [2] all try to ensure that a genuine signature (z, c) generated with c ←
H(bv1ed, bv2ed, µ) (as computed in line 4 of the TESLA] signing algorithm) will
verify by matching a corresponding c′ = H(bw1ed, bw2ed, µ) (as computed in
line 3 of the TESLA] verification algorithm) by restricting the e1, e2 components
of the private key so that the sum of their ω largest coefficients in absolute value
does not exceed a certain bound L, and by discarding attempted signatures
unless |[w1]2d | and |[w2]2d | are both bounded by 2d−1 − L. The probability

of meeting this condition is thus approximately
(
1− 2L/2d

)2n
. Each scheme

8 As mentioned in Remark 2, the authors of TESLA have recently updated their
scheme and added an additional check that fixes the problem.

27

then chooses the parameter L on different but largely arbitrary grounds: Bai-
Galbraith sets L = 7ωσ, TESLA takes L between 2.65ωσ and 3ωσ, and Ring-

TESLA sets L so that this probability is at least
(
1− 2L/2d

)2n
6 0.4.

We show that these conditions are not sufficient to ensure that the inputs to
the hash function match. To avoid wraparound errors, it is necessary that the
prime modulus q and the rounding parameter d satisfy the restriction bq/2c > 2d,
and indeed this condition is satisfied by all parameter sets proposed for TESLA]

and its predecessors. Hence, the overall relations between the parameters are
0 < L� 2d−1 and 2d+1 < 2bq/2c < q.

As a concrete example we now consider the algorithms for Ring-TESLA. We
focus on a single coefficient w of either w1 or w2. Let v be the corresponding
coefficient of v1 or v2, respectively. Then it holds for the corresponding coefficient
e of −e1∗c or −e2∗c that w = v+e (mod q). Since every coefficient of e1∗c and
e2 ∗c is a sum of exactly ω values that are equal to plus or minus the coefficients
of e1 or e2, the check on those during key generation ensures that |e| 6 L.

We have v, w ∈ [−bq/2c, bq/2c] and |e| 6 L and therefore w = v + e − cq,
where c ∈ {−1, 0, 1}. Since the absolute value of e is so much smaller than bq/2c,
in most cases, there is no reduction modulo q, i.e. c = 0.

B.1 Concrete instances leading to verification failures

We want to see whether bwed 6= bved. It holds

bwed − bved = (e− cq − [w]2d + [v]2d) /2d.

Thus, bwed = bved if, and only if e− [w]2d +[v]2d = cq. Since |e− [w]2d +[v]2d | 6
L+ 2d−1 + 2d−1 < 2d+1 < q, it follows that c 6= 0 implies bwed 6= bved.

If c = 0, then the conditions enforced by the checks in the original signature
generation are indeed sufficient to ensure that bwed = bved. Namely, using the
above equation, we see that bwed = bved if, and only if [w]2d−e = [v]2d . Because
|[w]2d | < 2d−1 − L and |e| 6 L, it follows that |[w]2d − e| < 2d−1 and therefore
[w]2d − e = [w − e]2d = [v]2d . This means that bwed = bved.

Under the above assumptions in the context of a genuinely generated signa-
ture, we have shown that bwed 6= bved occurs if and only if c 6= 0 holds9. Indeed
one can now easily write down an instance of v and e such that a reduction
modulo q occurs in the computation of w.

Fix 0 < e 6 L and set v = bq/2c − δ, where δ < e. Then v + e > bq/2c and
w = v+e−q, leading to bwed 6= bved. Analogously, let 0 > e > −L, then setting
v = −bq/2c + ε for 0 6 ε < −e means that v + e < −bq/2c and w = v + e + q
such that, again, bwed 6= bved. If e = 0, then always bwed = bved.

When choosing e 6= 0 and v as above, w will be within distance L to −bq/2c
or bq/2c. Write bq/2c = m · 2d + r, where r = bq/2c mod 2d such that −2d−1 6
r < 2d−1 and m > 0 since bq/2c > 2d. Then [bq/2c]2d = r and if −2d−1 + 2L <

9 The additional check in the updated TESLA scheme prevents the case c 6= 0 and
thus prevents such verification failures.

28

r < 2d−1−2L, it follows that |[w]2d | < 2d−1−L. This is highly likely to occur in
practice and is indeed true for both parameter sets proposed in the Ring-TESLA
paper [2], namely, (q = 8399873, d = 21, L = 814 < r = 5632 < 2d−1 = 1048576)
and (q = 39960577, d = 23, L = 2766 < r = 3203072 < 2d−1 = 4194304).
Hence all conditions in the Ring-TESLA signing are satisfied and still a signature
generated from these values for e and v will fail to verify. This shows that there
exist genuine signatures that will be rejected by the verification algorithm. For
the second Ring-TESLA parameter set above, we have observed this behavior
in practice.

B.2 The probability of verification failures

In this subsection, we show that the probability for a legitimate signing algorithm
to generate non-verifying signatures is non-negligible. We can assume that v ∈
[−bq/2c, bq/2c] is generated uniformly at random during the signing operation.
The coefficient e is generated as the sum of ω coefficients that are distributed
according to a discrete Gaussian with standard deviation σ. This means that e
is distributed according to a discrete Gaussian with standard deviation

√
ωσ.

We can also assume that |e| 6 L. Since these coefficients are selected according
to the output of a hash function, we assume that e is independent of v, although
v determines part of the input to the hash function.

Then, in order to get a failure bwed 6= bved, v must fall into the interval
[bq/2c − e + 1, bq/2c] if e > 0 and into the interval [−bq/2c,−bq/2c − e − 1] if
e < 0. The probabilty for this to happen is |e|/q in either case.

Overall, averaging over the possibilities for e, the probability that either case
is satisfied is

Pr(bwed 6= bved) = 2

L∑
x=1

Pr(e = x)
x

q
,

where Pr(e = x) = ρ√ωσ(x)/ρL = exp(−x2/(2ωσ2))/ρL with ρL =

ρ√ωσ([−L,L]) = 1 + 2
∑L
x=1 exp(−x2/(2ωσ2). Thus, we obtain

Pr(bwied 6= bvied | i ∈ {1, 2}) =
4n

qρL

L∑
x=1

xe−x
2/(2ωσ2).

Evaluating this probability for the first set of Ring-TESLA parameters above
yields approximately 0.0097, for the second, one obtains 0.0046. For the latter,
we have observed this failure rate exactly in our experiments.

C TESLA] algorithms with fresh, per key pair generation
of (a1, a2)

29

Algorithm 4 TESLA] Key Pairs

Input: Parameters n, q, σ, and ω; pseudo-random generator PRG : {0, 1}256 → R2
q.

Output: A private key (s, e1, e2) and a public key (t1, t2, seed).

1: seed
$← {0, 1}256

2: (a1,a2)← PRG(seed)

3: s
$← Dn

σ

4: e1
$← Dn

σ , e2
$← Dn

σ

5: t1 ← a1 ∗ s + e1, t2 ← a2 ∗ s + e2

6: return (s, e1, e2), (t1, t2, seed)

Algorithm 5 TESLA] Signing

Input: public parameters n, q, ω, d, B, U , κ; message µ ∈ {0, 1}∗; private key
(s, e1, e2) ∈ R3

q; public key (t1, t2, seed), where (t1, t2) ∈ R2
q and seed is a

32-byte string; pseudo-random generator PRG : {0, 1}256 → R2
q; hash function

H : {0, 1}∗ → {0, 1}κ, nearly injective mapping F : {0, 1}κ → Bnω.
Output: A signature (z, c).
1: (a1,a2)← PRG(seed)
2: repeat

3: r
$← [−B,B]n

4: v1 ← a1 ∗ r, v2 ← a2 ∗ r
5: c← H(bv1ed, bv2ed, µ)
6: c← F (c)
7: z← r + s ∗ c
8: w1 ← v1 − e1 ∗ c, w2 ← v2 − e2 ∗ c
9: until ‖z‖∞ 6 B − U

10: and bw1ed = bv1ed and bw2ed = bv2ed
11: return (z, c)

Algorithm 6 TESLA] Verification

Input: Public parameters n, q, ω, d, κ; base (a1,a2) ∈ R2
q; message µ ∈ {0, 1}∗; public

key (t1, t2, seed), where (t1, t2) ∈ R2
q and seed is a 32-byte string; signature (z, c);

pseudo-random generator PRG : {0, 1}256 → R2
q; hash function H : {0, 1}∗ →

{0, 1}κ; nearly injective mapping F : {0, 1}κ → Bnω.
Output: {0, 1} . reject, accept
1: (a1,a2)← PRG(seed)
2: c← F (c)
3: w1 ← a1 ∗ z− t1 ∗ c, w2 ← a2 ∗ z− t2 ∗ c
4: c′ ← H(bw1ed, bw2ed, µ)
5: return if c′ = c and ‖z‖∞ 6 B − U then 1 else 0

30

