Formal Abstractions for Attested Execution Secure Processors

Rafael Pass Elaine Shi Florian Tramer
CornellTech Cornell Stanford
Abstract

Realistic secure processors, including those built for academic and commercial purposes,
commonly realize an “attested execution” abstraction. Despite being the de facto standard
for modern secure processors, the “attested execution” abstraction has not received adequate
formal treatment. We provide formal abstractions for “attested execution” secure processors
and rigorously explore its expressive power. Our explorations show both the expected and the
surprising.

On one hand, we show that just like the common belief, attested execution is extremely
powerful, and allows one to realize powerful cryptographic abstractions such as stateful obfusca-
tion whose existence is otherwise impossible even when assuming virtual blackbox obfuscation
and stateless hardware tokens. On the other hand, we show that surprisingly, realizing com-
posable two-party computation with attested execution processors is not as straightforward as
one might anticipate. Specifically, only when both parties are equipped with a secure processor
can we realize composable two-party computation. If one of the parties does not have a secure
processor, we show that composable two-party computation is impossible. In practice, however,
it would be desirable to allow multiple legacy clients (without secure processors) to leverage a
server’s secure processor to perform a multi-party computation task. We show how to introduce
minimal additional setup assumptions to enable this. Finally, we show that fair multi-party
computation for general functionalities is impossible if secure processors do not have trusted
clocks. When secure processors have trusted clocks, we can realize fair two-party computation
if both parties are equipped with a secure processor; but if only one party has a secure processor
(with a trusted clock), then fairness is still impossible for general functionalities.

Contents

1__Introductionl 1
(I.1__Attested Fxecution Secure Processorsl 1
1.2 Why Formal Abstractions for Secure Processors?| 2
1.3 Summary of Our Contributions| 3
[1.4 Non-Goals and Frequently Asked Questions| 6

2 Technical Roadmap)| 6
2.1 Formal Modeling| 6
2.2 Power of Attested Fxecution: Stateful Obfuscationl 9
[2.3 Impossibility of Composable 2-Party Computation with a Single Secure Processor|. . 9
2.4 Composable 2-Party Computation When Both Have Secure Processors| 12
[2.5 Circumventing the Impossibility with Minimal Global Setup|. 13
P66 Tairmess] v e e e e e 15
2.7 Additional Resultsl 18
2.8 Related Workl 20

3__Formal Abstractions for Attested Execution Processors| 21
BT OVEIVIEW] o oot o e e e 22
3.2 Modeling Choices and Discussions| 24
B.3 A Few Useful Observations| 25

[4 Stateful Obfuscation from G, 25
4.1 Formal Definitions] 26
|4.2 Impossibility in the Standard Model or with Stateless Tokens| 27
4.3 Construction from Attested Iixecution Processors| 27

[> Composable 2-Party Computation| 31
b1 Lower Boundl e 31
5.2 Composable 2-Party Computation When Both Have Secure Processors| 31

[6 Composable Multi-Party Computation with a Single Secure Processor and an |

[Augmented Global CRYS| 33
6.1 Augmented Global CRS| o 33
6.2 NP Languages Adopted in the Protocoll 34
6.3 Detailed Protocoll 36

7 Fair 2-Party Computation| 41
7.1 Background on Fair 2-Party Computation| 41
7.2 Modeling a Trusted Clock| 42
(7.3 Definition: Protocols and Fairness in the Clock Modell 42
7.4 Lower Bounds for Fair 2-Party Computation| 43
[7.5 Fair 2-Party Coin Toss with a Single Secure Processor| 49
[7.6 Fair Generic 2-Party Computation When Both Have Secure Processors|. 53

B Van Model [Additional Resulis

[8.1 Side-Channel Attacks and Transparent Enclaves|

[8.2 Composable Commitments with Transparent Enclaves|

8.3 Composable Zero-Knowledge Proots with Transparent Enclaves|

8.4 Non-Anonymous Attestation|

(A" Universal Composition Background and Conventions|

|A.1 Brief Background on the Universal Composition Frameworkl

[A.2 UC Notational Conventions
[A.3 Multi-Party Computation|
|A.4 Preliminaries on Zero-Knowledge Proofs|

(B Warmup: Secure Outsourcing from (¢

57
o7
o8
62
63

70
70
71
71
73

74

1 Introduction

The science of cybersecurity is founded atop one fundamental guiding principle, that is, to minimize
a system’s Trusted Computing Base (TCB) [76]. Since it is notoriously difficult to have “perfect”
software in practice especially in the presence of legacy systems, the architecture community have
advocated a new paradigm to bootstrap a system’s security from trusted hardware (henceforth also
referred to as secure processors). Roughly speaking, secure processors aim to reduce a sensitive
application’s trusted computing base to only the processor itself (possibly in conjunction with a
minimal software TCB such as a secure hypervisor). In particular, besides itself, a sensitive appli-
cation (e.g., a banking application) should not have to trust any other software stack (including the
operating system, drivers, and other applications) to maintain the confidentiality and/or integrity
of mission-critical data (e.g., passwords or credit card numbers). Security is retained even if the
software stack can be compromised (as long as the sensitive application itself is intact). Besides
a software adversary, some secure processors make it a goal to defend against physical attackers
as well. In particular, even if the adversary (e.g., a rogue employee of a cloud service provider or
a system administrator) has physical access to the computing platform and may be able to snoop
or tamper with memory or system buses, he should not be able to harvest secret information or
corrupt a program’s execution.

Trusted hardware is commonly believed to provide a very powerful abstraction for building
secure systems. Potential applications are numerous, ranging from cloud computing [13,|3558.|67,
68], mobile security [66], web security, to cryptocurrencies [80]. In the past three decades, numerous
secure processors have been proposed and demonstrated by both academia and industry [7},28.|34}
39,|40%56,/57,59,/72,|79]; and several have been commercialized, including the well-known Trusted
Platform Modules (TPMs) [2], Arm’s TrustZone [6,§], and others. Notably, Intel’s recent release
of its new x86 security extensions called SGX [7,33,/59] has stirred wide-spread interest to build
new, bullet-proof systems that leverage emerging trusted hardware offerings.

1.1 Attested Execution Secure Processors

Although there have been numerous proposals for the design of trusted hardware, and these designs
vary vastly in terms of architectural choices, instruction sets, implementation details, cryptographic
suites, as well as adversarial models they promise to defend against — amazingly, it appears that
somehow most of these processors have converged on providing a common abstraction, henceforth
referred to as the attested execution abstraction [2}7,34L59,|73}/75]. Roughly speaking, an attested
execution abstraction enables the following:

e A platform equipped with an attested execution processor can send a program and inputs
henceforth denoted (prog, inp) to its local secure processor. The secure processor will execute the
program over the inputs, and compute outp := prog(inp). The secure processor will then sign the
tuple (prog, outp) with a secret signing key to obtain a digital signature ¢ — in practice, a hash
function is applied prior to the signing. Particularly, this signature ¢ is commonly referred to
as an “attestation”, and therefore this entire execution is referred to as an “attested execution”.

e The execution of the aforementioned program is conducted in a sandboxed environment (hence-
forth referred to as an enclave), in the sense that a software adversary and /or a physical adversary
cannot tamper with the execution, or inspect data that lives inside the enclave. This is impor-
tant for realizing privacy-preserving applications. For example, a remote client who knows the

secure processor’s public key can establish a secure channel with a secure processor residing on a
remote server S. The client can then send encrypted and authenticated data (and/or program)
to the secure processor — while the messages are passed through the intermediary &, & cannot
eavesdrop on the contents, nor can it tamper with the communication.

e Finally, various secure processors make different concrete choices in terms of how they realize
such secure sandboxing mechanisms as mentioned above — and the choices are closely related
to the adversarial capabilities that the secure processor seeks to protect against. For example,
roughly speaking, Intel’s SGX technology [7,59] defends against a restricted software adversary
that does not measure timing or other possible side channels, and does not observe the page-
swap behavior of the enclave application (e.g., the enclave application uses small memory or
is by design data-oblivious); it also defends against a restricted physical attacker capable of
tapping memory, but not capable of tapping the addresses on the memory bus or measuring
side-channel information such as timing and power consumption.

We refer the reader to Shi et al. [70] for a general-purpose introduction of trusted hardware, and
for a comprehensive comparison of the different choices made by various secure processors.

The fact that the architecture community has converged on the “attested execution” abstraction
is intriguing. How exactly this has become the de facto abstraction is beyond the scope of this
paper, but it is helpful to observe that the attested execution abstraction is cost-effective in practice
in the following senses:

e General-purpose: The attested execution abstraction supports the computation of general-
purpose, user-defined programs inside the secure enclave, and therefore can enable a broad
range of applications;

o Reusability: It allows a single trusted hardware token to be reused by multiple applications,
and by everyone in the world — interestingly, it turns out such reusability actually gives rise to
many of the technicalities that will be discussed later in the paper;

e Integrity and privacy: It offers both integrity and privacy guarantees. In particular, although
the platform P that is equipped with the trusted hardware serves an intermediary in every
interaction with the trusted hardware, privacy guarantees can be bootstrapped by having remote
users establish a secure channel with the secure processor.

In the remainder of the paper, whenever we use the term “secure processors” or “trusted
hardware”, unless otherwise noted we specifically mean attested execution secure processors.

1.2 Why Formal Abstractions for Secure Processors?

Although attested execution has been accepted by the community as a de facto standard, to the
best of our knowledge, no one has explored the following fundamental questions:

1. Precisely and formally, what is the attested execution abstraction?

2. What can attested execution express and and what can it not express?

If we can formally and precisely articulate the answers to these questions, the benefits can be
wide-spread. It can help both the producer as well as the consumer of trusted hardware, in at least
the following ways:

o Understand whether variations in abstraction lead to differences in expressive power. First,
various secure processors may provide similar but subtly different abstractions — do these
differences matter to the expressive power of the trusted hardware? If we wish to add a specific
feature to a secure processor (say, timing), will this feature increase its expressive power?

e FEnable formally correct use of trusted hardware. Numerous works have demonstrated how to
use trusted hardware to build a variety of secure systems [13}/14,29,[35,58,|62}65,/67-69]. Un-
fortunately, since it is not even clear what precise abstraction the trusted hardware offers, the
methodology adopted by most existing works ranges from heuristic security to semi-formal rea-
soning.

Moreover, most known secure processors expose cryptography-related instructions (e.g., involv-
ing hash chains or digital signatures [2}[7,33,/59]), and this confounds the programming of trusted
hardware — in particular, the programmer essentially has to design cryptographic protocols to
make use of trusted hardware. It is clear that user-friendly higher-level programming abstrac-
tions that hide away the cryptographic details will be highly desirable, and may well be the key
to the democratization of trusted hardware programming (and in fact, to security engineering in
general) — and yet without precisely articulating the formal abstraction trusted hardware offers,
it would clearly be impossible to build formally correct higher-level programming abstractions
atop.

o Towards formally secure trusted hardware. Finally, understanding what is a “good” abstrac-
tion for trusted hardware can provide useful feedback to the designers and manufacturers of
trusted hardware. The holy grail would be to design and implement a formally secure processor.
Understanding what cryptography-level formal abstraction to realize is a necessary first step
towards this longer-term goal — but to realize this goal would obviously require additional,
complementary techniques and machinery, e.g., those developed in the formal methods com-
munity [39,63,/64,(79], that can potentially allow us to ensure that the actual secure processor
implementation meets the specification.

1.3 Summary of Our Contributions

To the best of our knowledge, we are the first to investigate cryptographically sound and composable
formal abstractions for realistic, attested execution secure processors. Our findings demonstrate
both the “expected” and the (perhaps) “surprising”.

The expected and the surprising. On one hand, we show that attested execution processors
are indeed extremely powerful as one might have expected, and allow us to realize primitives that
otherwise would have been impossible even when assuming stateless hardware tokens or virtual
blackbox secure cryptographic obfuscation.

On the other hand, our investigation unveils subtle technical details that could have been easily
overlooked absent an effort at formal modeling, and we draw several conclusions that might have
come off as surprising initially (but of course, natural in hindsight). For example,

e We show that universally composable two-party computation is impossible if a single party does
not have such a secure processor (and the other party does);

This was initially surprising to us, since we commonly think of an attested execution processor
as offering an “omnipotent” trusted third party that can compute general-purpose, user-defined
programs. When such a trusted third party exists, it would appear that any function can be
evaluated securely and non-interactively, hiding both the program and data. One way to interpret
our findings is that such intuitions are technically imprecise and dangerous to presume — while
attested execution processors indeed come close to offering such a “trusted third party” ideal
abstraction, there are aspects that are “imperfect” about this ideal abstraction that should not
be overlooked, and a rigorous approach is necessary towards formally correct usage of trusted
hardware.

Additional results for multi-party computation. We additionally show the following results:

e Universally composable two-party computation is indeed possible when both parties are equipped
with an attested execution processor. We give an explicit construction and show that there are
several interesting technicalities in its design and proof (which we shall comment on soon). Deal-
ing with these technicalities also demonstrates how a provably secure protocol candidate would
differ in important details from the most natural protocol candidates [49} 62, 68| practitioners
would have adopted (which are not known to have provable composable security). This confirms
the importance of formal modeling and provable security.

e Despite the infeasibility of multi-party computation when even a single party does not have a
secure processor, in practice it would nonetheless be desirable to build multi-party applications
where multiple possibly legacy clients outsource data and computation to a single cloud server
equipped with a secure processor.

We show how to introduce minimal global setup assumptions — more specifically, by adopting a
global augmented common reference string [22] (henceforth denoted G,ers) — to circumvent this
impossibility. Although the theoretical feasibility of general UC-secure MPC is known with Gacps
even without secure processors [22], existing constructions involve cryptographic computation
that is (at least) linear in the runtime of the program to be securely evaluated. By contrast,
we are specifically interested in practical constructions that involve only O(1) amount of cryp-
tographic computations, and instead perform all program-dependent computations inside the
secure processor (and not cryptographically).

Techniques. Several interesting technicalities arise in our constructions. First, composition-style
proofs typically require that a simulator intercepts and modifies communication to and from the
adversary (and the environment), such that the adversary cannot distinguish whether it is talking
to the simulator or the real-world honest parties and secure processors. Since the simulator does
not know honest parties’ inputs (beyond what is leaked by the computation output), due to the
indistinguishability, one can conclude that the adversary cannot have knowledge of honest parties
inputs either.

e FEquivocation. Our simulator’s ability to perform such simulation is hampered by the fact that
the secure processors sign attestations for messages coming out — since the simulator does not

possess the secret signing key, it cannot modify these messages and must directly forward them to
the adversary. To get around this issue would require new techniques for performing equivocation,
a technicality that arises in standard protocol composition proofs. To achieve equivocation, we
propose new techniques that place special backdoors inside the enclave program. Such backdoors
must be carefully crafted such that they give the simulator more power without giving the real-
world adversary additional power. In this way, we get the best of both worlds: 1) honest
parties’ security will not be harmed in the real-world execution; and 2) the simulator in the
proof can “program” the enclave application to sign any output of its choice, provided that it
can demonstrate the correct trapdoors. This technique is repeatedly used in different forms in
almost all of our protocols.

e FExtraction. Extraction is another technical issue that commonly arises in protocol composition
proofs. The most interesting manifestation of this technical issue is in our protocol that realizes
multi-party computation in the presence of a global common reference string (G,.s) and a single
secure processor (see Section @ Here again, we leverage the idea of planting special backdoors
in the enclave program to allow for such extraction. Specifically, when provided with the correct
identity key of a party, the enclave program will leak the party’s inputs to the caller. Honest
parties’ security cannot be harmed by this backdoor, since no one ever learns honest parties’
identity keys in the real world, not even the honest parties themselves. In the simulation,
however, the simulator learns the corrupt parties’ identity keys, and therefore it can extract
corrupt parties’ inputs.

Trusted clocks and fairness. Finally, we formally demonstrate how differences in abstraction
can lead to differences in expressive power. In particular, many secure processors provide a trusted
clock, and we explore the expressive power of such a trusted clock in the context of fair 2-party com-
putation. It is well-known that in the standard setting fairness is impossible in 2-party computation
for general functionalities [32]. However, several recent works have shown that the impossibility for
general functionalities does not imply impossibility for every functionality — interestingly, there
exist a broad class of functionalities that can be fairly computed in the plain setting [9}46,47]. We
demonstrate several interesting findings in the context of attested execution processors:

e First, even a single attested execution processor already allows us to compute more functionalities
fairly than in the plain setting. Specifically, we show that fair two-party coin flipping, which
is impossible in the plain setting, is possible if only one party is equipped with an attested
execution processor.

e Unfortunately, we show that a single attested execution processor is insufficient for fairly com-
puting general 2-party functionalities;

e On the bright side, we prove that if both parties are equipped with an attested execution
processor, it is indeed possible to securely compute any function fairly.

Variant models and additional results. Besides the trusted clock, we also explore variations
in abstraction and their implications — for example, we compare non-anonymous attestation and
anonymous attestation since various processors seem to make different choices regarding this.

We also explore an interesting model called “transparent enclaves” [77|, where secret data
inside the enclave can leak to the adversary due to possible side-channel attacks on known secure

processors, and we show how to realize interesting tasks such as UC-secure commitments and
zero-knowledge proofs in this weaker model — here again our protocols must deal with interesting
technicalities related to extraction and equivocation.

1.4 Non-Goals and Frequently Asked Questions

Trusted hardware has been investigated by multiple communities from different angles, ranging
from how to architect secure processors [7}28,34,[39}140}56,57,/59}(72,/79], how to apply them in
applications [13}14,29,35,58.62,65,67-69], side-channels and other attacks [44.[54,/55|74,/78,81] and
protection against such attacks [40L/57,79,81]. Despite the extensive literature, cryptographically
sound formal abstractions appear to be an important missing piece, and this work aims to make
an initial step forward towards this direction. In light of the extensive literature, however, several
natural but frequently asked questions arise regarding the precise scope of this paper, and we
address such questions below.

First, although we base our modeling upon what realistic secure processors aim to provide, it
is not our intention to claim that any existing secure processors provably realize our abstraction.
We stress that to make any claim of this nature (that a secure processor correctly realizes any
formal specification) is an area of active research in the formal methods and programming language
communities [39,/63,/64,|79], and thus still a challenging open question — let alone the fact that
some commercial secure processor designs are closed-source.

Second, a frequently asked question is what adversarial models our formal abstraction defends
against. The answer to such a question is processor-specific, and thus outside the scope of our
paper — we leave it to the secure processor itself to articulate the precise adversarial capabilities
it protects against. The formal models and security theorems in this paper hold assuming that
the adversary is indeed confined to the capabilities assumed by the specific secure processor. As
mentioned earlier, some processors defend only against software adversaries [34]; others additionally
defend against physical attackers [40-42,57]; others defend against a restricted class of software
and/or physical attackers that do not exploit certain side channels [2}[7,56,59,72]. We refer the
reader to a comprehensive systematization of knowledge paper by Shi et al. [70] for a taxonomy
and comparison of various secure processors.

Finally, it is also not our goal to propose new techniques that defend against side-channel
attacks, or suggest how to better architect secure processors — these questions are being explored
in an orthogonal but complementary line of research [34},39-42,57.(79,81].

2 Technical Roadmap

2.1 Formal Modeling

Modeling choices. To enable cryptographically sound reasoning, we adopt the universal com-
position (UC) paradigm in our modeling [21,122,26]. At a high level, the UC framework allows
us to abstract complex cryptographic systems as simple ideal functionalities, such that protocol
composition can be modularized. The UC framework also provides what is commonly referred to as
“concurrent composition” and “environmental friendliness”: in essence, a protocol 7 proven secure
in the UC framework can run in any environment such that 1) any other programs or protocols
executing possibly simultaneously will not affect the security of the protocol 7, and 2) protocol =

will not inject undesirable side effects (besides those declared explicitly in the ideal abstraction)
that would affect other programs and protocols in the system.

More intuitively, if a system involving cryptography UC-realizes some ideal functionality, hence-
forth, a (possibly non-cryptography-expert) programmer can simply program the system pretending
that he is making remote procedural calls to a trusted third party, and basically in a worry-free
manner. We refer the reader to Appendix [A]for a more detailed overview of the UC framework. Be-
fore we proceed, we stress the importance of cryptographically sound reasoning: by contrast, earlier
works in the formal methods community would make assumptions that cryptographic primitives
such as encryption and signatures realize the “most natural” ideal box without formal justification
— and such approaches have been shown to be flawed when the ideal box is actually instantiated
with cryptography [3-5,(10%/16}24},50,/52,/60%61].

Roadmap for formal modeling. We first describe an ideal functionality G.t+ that captures the
core abstraction that a broad class of attested execution processors intend to provide. We are well
aware that various attested execution processors make different design choices — most of them
are implementation-level details that do not reflect at the abstraction level, but a few choices do
matter at the abstraction level — such as whether the secure processor provides a trusted clock
and whether it implements anonymous or non-anonymous attestation.

In light of such differences, we first describe a basic, anonymous attestation abstraction called
Gatt that lies at the core of off-the-shelf secure processors such as Intel SGX [7,59]. We explore the
expressive power of this basic abstraction in the context of stateful obfuscation and multi-party
computation. Later in the paper, we explore variants of the abstraction such as non-anonymous
attestation and trusted clocks. Therefore, in summary our results aim to be broadly applicable to
a wide class of secure processor designs.

The Gatt abstraction. We first describe a basic G, abstraction capturing the essence of SGX-
like secure processors that provide anonymous attestation (see Figure [1)). Here we briefly review
the Gatt abstraction and explain the technicalities that arise in the formal modeling, but defer more
detailed discussions to Section [Bl

1. Registry. First, G, is parametrized with a registry reg that is meant to capture all the
platforms that are equipped with an attested execution processor. For simplicity, we consider
a static registry reg in this paper.

2. Stateful enclave operations. A platform P that is in the registry reg may invoke enclave
operations, including

e install: installing a new enclave with a program prog, henceforth referred to as the enclave
program. Upon installation, Gt simply generates a fresh enclave identifier eid and returns
the eid. This enclave identifier may now be used to uniquely identify the enclave instance.

e resume: resuming the execution of an existing enclave with inputs inp. Upon a resume call,
Gatt executes the prog over the inputs inp, and obtains an output outp. Ga:+ would then sign
the prog together with outp as well as additional metadata, and return both outp and the
resulting attestation.

Gatt [27 reg}
// initialization:
On initialize: (mpk, msk) := ¥.KeyGen(1?), T =0

// public query interface:
On receive” getpk() from some P: send mpk to P

Enclave operations

// local interface — install an enclave:

On receive” install(idz, prog) from some P € reg:

if P is honest, assert idx = sid

generate nonce eid € {0,1}, store T[eid, P] := (idz, prog,0), send eid to P

// local interface — resume an enclave:

On receive” resume(eid,inp) from some P € reg:

let (idz, prog, mem) := T'[eid, P], abort if not found

let (outp, mem) := prog(inp, mem), update T'[eid, P] := (idz, prog, mem)
let o := X.Sige (1dz, eid, prog, outp), and send (outp, o) to P

Figure 1: A global functionality modeling an SGX-like secure processor. Blue (and
starred™) activation points denote reentrant activation points. Green activation points are executed
at most once. The enclave program prog may be probabilistic and this is important for privacy-
preserving applications. Enclave program outputs are included in an anonymous attestation o. For
honest parties, the functionality verifies that installed enclaves are parametrized by the session id
sid of the current protocol instance.

Each installed enclave can be resumed multiple times, and we stress that the enclave operations
store state across multiple resume invocations. This stateful property will later turn out to be
important for several of our applications.

. Anonymous attestation. Secure processors such as SGX rely on group signatures and other
anonymous credential techniques [18,/19] to offer “anonymous attestation”. Roughly speaking,
anonymous attestation allows a user to verify that the attestation is produced by some attested
execution processor, without identifying which one. To capture such anonymous attestation, our
Gatt functionality has a manufacturer public key and secret key pair denoted (mpk, msk), and
is parametrized by a signature scheme . When an enclave resume operation is invoked, Gt
signs any output to be attested with msk using the signature scheme 3. Roughly speaking, if a
group signature scheme is adopted as in SGX, one can think of ¥ as the group signature scheme
parametrized with the “canonical” signing key. G,y provides the manufacturer public key mpk
to any party upon query — this models the fact that there exists a secure key distribution
channel to distribute mpk. In this way, any party can verify an anonymous attestation signed

by gatt .

Globally shared functionality. Our G, functionality essentially captures all attested execution
processors in the world. Further, we stress that G,y is globally shared by all users, all applications,
and all protocols. In particular, rather than generating a different (mpk, msk) pair for each different
protocol instance, the same (mpk, msk) pair is globally shared.

More technically, we capture such sharing across protocols using the Universal Composition
with Global Setup (GUC) paradigm [22]. As we show later, such global sharing of cryptographic
keys becomes a source of “imperfectness” — in particular, due to the sharing of (mpk, msk), attes-
tations signed by msk from one protocol instance (i.e., or application) may now carry meaning in
a completely unrelated protocol instance, thus introducing potentially undesirable side effects that
breaks composition.

Additional discussions and clarifications. We defer more detailed discussions of our modeling
choices, and importantly, clarifications on how the environment Z interacts with G, to Section

Throughout this paper, we assume that parties interact with each other over secure channels.
It is possible to realize (UC-secure) secure channels from authenticated channels through key ex-
change. Whenever applicable, our results are stated for the case of static corruption.

2.2 Power of Attested Execution: Stateful Obfuscation

We show that the attested execution abstraction is indeed extremely powerful as one would have
expected. In particular, we show that attested execution processors allow us to realize a new
abstraction which we call “stateful obfuscation”.

Theorem 1 (Informal). Assume that secure key exchange protocols exist. There is a Gg-hybrid
protocol that realizes mon-interactive stateful obfuscation, which is not possible in plain settings,
even when assuming stateless hardware tokens or virtual-blackbox secure cryptographic obfuscation.

Stateful obfuscation allows an (honest) client to obfuscate a program and send it to a server,
such that the server can evaluate the obfuscated program on multiple inputs, while the obfuscated
program keeps (secret) internal state across multiple invocations. We consider a simulation secure
notion of stateful obfuscation, where the server should learn only as much information as if it were
interacting with a stateful oracle (implementing the obfuscated program) that answers the server’s
queries. For example, stateful obfuscation can be a useful primitive in the following application
scenario: imagine that a client (e.g., a hospital) outsources a sensitive database (corresponding to
the program we wish to obfuscate) to a cloud server equipped with trusted hardware. Now, an
analyst may send statistical queries to the server and obtain differentially private answers. Since
each query consumes some privacy budget, we wish to guarantee that after the budget is depleted,
any additional query to the database would return 1. We formally show how to realize stateful
obfuscation from attested execution processors. Further, as mentioned, we prove that stateful
obfuscation is not possible in the plain setting, even when assuming the existence of stateless
hardware tokens or assuming virtual-blackbox secure obfuscation.

2.3 Impossibility of Composable 2-Party Computation with a Single Secure
Processor

One natural question to ask is whether we can realize universally composable (i.e., UC-secure)
multi-party computation, which is known to be impossible in the plain setting without any setup

assumptions — but feasible in the presence of a common reference string [21,23], i.e., a public
random string that is generated in a trustworthy manner freshly and independently for each pro-
tocol instance. On the surface, G,t¢ seems to provide a much more powerful functionality than a
common reference string, and thus it is natural to expect that it will enable UC-secure multi-party
computation. However, upon closer examination, we find that perhaps somewhat surprisingly, such
intuition is subtly incorrect, as captured in the following informal theorem.

Theorem 2 (Informal). If at least one party is not equipped with an attested execution processor,
it is impossible to realize UC-secure multi-party computation absent additional setup assumptions
(even when all others are equipped with an attested execution processor).

Here the subtle technicalities arise exactly from the fact that G, is a global functionality shared
across all users, applications, and protocol instances. This creates a non-deniability issue that is
well-known to the cryptography community. Since the manufacturer signature key (mpk, msk) is
globally shared, attestations produced in one protocol instance can carry side effects into another.
Thus, most natural protocol candidates that send attestations to other parties will allow an ad-
versary to implicate an honest party of having participated in a protocol, by demonstrating the
attestation to a third party. Further, such non-deniability exists even when the secure processor
signs anonymous attestations: since if not all parties have a secure processor, the adversary can at
least prove that some honest party that is in Gut’s registry has participated in the protocol, even
if he cannot prove which one. Intuitively, the non-deniability goes away if all parties are equipped
with a secure processor — note that this necessarily means that the adversary himself must have a
secure processor too. Since the attestation is anonymous, the adversary will fail to prove whether
the attestation is produced by an honest party or he simply asked his own local processor to sign
the attestation. This essentially allows the honest party to deny participation in a protocol.

Impossibility of extraction. We formalize the above intuition, and show that not only nat-
ural protocol candidates that send attestations around suffer from non-deniability, in fact, it is
impossible to realize UC-secure multi-party computation if not all parties have secure processors.
The impossibility is analogous to the impossibility of UC-secure commitments in the plain setting
absent a common reference string [23]. Consider when the real-world committer C is corrupt and
the receiver is honest. In this case, during the simulation proof, when the real-world C outputs
a commitment, the ideal-world simulator Sim must capture the corresponding transcripts and ex-
tract the value v committed, and send v to the commitment ideal functionality F.on. However,
if the ideal-world simulator Sim can perform such extraction, the real-world receiver must be able
too (since Sim does not have extra power than the real-world receiver) — and this violates the
requirement that the commitment must be hiding. As Canetti and Fischlin show [23], a common
reference string allows us to circumvent this impossibility by giving the simulator more power.
Since a common reference string (CRS) is a local functionality, during the simulation, the simulator
can program the CRS and embed a trapdoor — this trapdoor will allow the simulator to perform
extraction. Since the real-world receiver does not possess such a trapdoor, the protocol still retains
confidentiality against a real-world receiver.

Indeed, if our G, functionality were also local, our simulator Sim could have programmed Gt
in a similar manner and extraction would have been easy. In practice, however, a local G, function
would mean that a fresh key manufacturer pair (mpk, msk) must be generated for each protocol
instance (i.e., even for multiple applications of the same user). Thus, a local G, clearly fails to

10

Progapc [f7 Po, P1, b]

On input (“keyex”): y(izp, return g¥

On input (“send”, g%, inpy):
assert that “keyex” has been called
sk := (g*)Y, ct := AE.Encg(inpy), return ct

On input (“compute”, ct,v):
assert that “send” has been called and ct not seen
inp;_p := AE.Decg(ct), assert that decryption succeeds
if v # L, return v; else return outp := f(inpg,inp;)

PI‘Otng[S?:d, fa Po, P1, b]

On input inp, from Z:
eid = Gagt-install(sid, progy,cLf, Po, P1,b])
henceforth denote G,ii.resume(-) := G,y .resume(eid, -)
(9¥,0) := Gag.resume(keyex)
send (eid, g¥,0) to Pi_yp, await (eid’, g*,0’)
assert ¥.Vermpk((sid, eid’, progapc[f; Po, P1,1 = b],g%),0')
(ct,) := Gagr.resume(“send”, g%, inp,), send ct to Py, await ct’
(outp,) := Gagt.resume(“‘compute”, ct/, L), output outp

Figure 2: Composable 2-party computation: both parties have secure processors. AE
denotes authenticated encryption. All ITIs” activation points are non-reentrant. When an activation
point is invoked for more than once, the I'TI simply outputs L. Although not explicitly noted, if
Gatt ever outputs L upon a query, the protocol aborts outputting L. The group parameters (g, p)
are hardcoded into progy.

capture the reusability of real-world secure processors, and this justifies why we model attested
execution processors as a globally shared functionality.

Unfortunately, when G, is global, it turns out that the same impossibility of extraction from
the plain setting would carry over when the committer C is corrupt and only the receiver has a
secure processor. In this case, the simulator Sim would also have to extract the input committed
from transcripts emitted from C. However, if the simulator Sim can perform such extraction, so can
the real-world receiver — note that in this case the real-world receiver is actually more powerful
than Sim, since the real-world receiver, who is in the registry, is capable of meaningfully invoking
Gatt, while the simulator Sim cannot!

It is easy to observe that this impossibility result no longer holds when the corrupt committer
has a secure processor — in this case, the protocol can require that the committer C send its input
to Gatt. Since the simulator captures all transcripts going in and coming out of C, it can extract the
input trivially. Indeed, we show that not only commitment, but also general 2-party computation
is possible when both parties have a secure processor.

11

2.4 Composable 2-Party Computation When Both Have Secure Processors

Theorem 3 (Informal). Assume that secure key exchange protocols exist. Then there exists an G-
hybrid protocol that UC-realizes Fop.. Further, in this protocol, all program-dependent evaluation
is performed inside the enclave and not cryptographically.

We give an explicit protocol in Figure The protocol is efficient in the sense that it per-
forms only O(1) (program-independent) cryptographic computations; and all program-dependent
computation is performed inside the enclave. We now explain the protocol briefly.

e First, the two parties’ secure processors perform a key exchange and establish a secret key sk
for an authenticated encryption scheme.

e Then, each party’s enclave encrypts the party’s input with sk. The party then sends the resulting
authenticated ciphertext ct to the other.

e Now each enclave decrypts ct and perform evaluation, and each party can query its local enclave
to obtain the output.

e Most of the protocol is quite natural, but one technique is necessary for equivocation. Specif-
ically, the enclave program’s “compute” entry point has a backdoor denoted v. If v = L, Gay
will sign the true evaluation result and return the attested result. On the other hand, if v # 1,
the enclave will simply sign and output v itself. In the real-world execution, an honest party will
always supply v = L as input to the enclave program’s “compute” entry point. However, as we
explain later, the simulator will leverage this backdoor v to perform equivocation and program
the output.

We now explain some interesting technicalities that arise in the proof for the above protocol.

e FExtraction. First, extraction is made possible since each party sends their input directly to its
local enclave. If a party is corrupt, this interaction will be captured by the simulator who can
then extract the corrupt party’s input;

e FEquivocate. We now explain how the backdoor v in the enclave program allows for equivocation
in the proof. Recall that initially, the simulator does not know the honest party’s input. To
simulate the honest party’s message for the adversary (which contains an attestation from the
enclave), the simulator must send a dummy input to G, on behalf of the honest party to obtain
the attestation. When the simulator manages to extract the corrupt party’s input, it will send
the input to the ideal functionality J3,. and obtain the outcome of the computation denoted
outp*. Now when the corrupt party queries its local enclave for the output, the simulator must
get Gatt to sign the correct outp® (commonly referred to as equivocation). To achieve this, the
simulator will make use of the aforementioned backdoor v: instead of sending (ct, L) to Gt as
in the real-world protocol, the simulator sends (ct, outp™) to Gay, such that G, will sign outp™.

e A note on anonymous attestation. It is interesting to note how our protocol relies on the attes-
tation being anonymous for security. Specifically, in the proof, the simulator needs to simulate
the honest party’s messages for the adversary A. To do so, the simulator will simulate the hon-
est party’s enclave on its own (i.e., the adversary’s) secure processor — and such simulation is
possible because the attestations returned by G, are anonymous. Had the attestation not been

12

anonymous (e.g., binding to the party’s identifier), the simulator would not be able to simulate
the honest party’s enclave (see Section for more discussions).

2.5 Circumventing the Impossibility with Minimal Global Setup

In practice, it would obviously be desirable if we could allow composable multi-party computation
in the presence of a single attested execution processor. As a desirable use case, imagine multiple
clients (e.g., hospitals), each with sensitive data (e.g., medical records), that wish to perform some
computation (e.g., data mining for clinical research) over their joint data. Moreover, they wish
to outsource the data and computation to an untrusted third-party cloud provider. Specifically,
the clients may not have secure processors, but as long as the cloud server does, we wish to allow
outsourced secure multi-party computation.

We now demonstrate how to introduce a minimal global setup assumption to circumvent this
impossibility. Specifically, we will leverage a global augmented common reference string [22], hence-
forth denoted G,cs. Although the feasibility of UC-secure multi-party computation is known with
Gacrs €ven absent secure processors [22], existing protocols involve cryptographic computations that
are (at least) linear in the runtime of the program. Our goal is to demonstrate a practical protocol
that performs any program-dependent computation inside the secure enclave, and performs only
O(1) cryptographic computation.

Theorem 4 (Informal). Assume that secure key exchange protocols exist. Then, there exists a
(Gacrs, Garr)-hybrid protocol that UC-realizes Fipe and makes use of only a single secure processor.
Further, this protocol performs all program-dependent computations inside the secure processor’s
enclave (and not cryptographically).

Minimal global setup G..s. To understand this result, we first explain the minimal global
setup Gaers- First, Gaers provides a global common reference string. Second, G,.s also allows each
(corrupt) party P to query an identity key for itself. This identity key is computed by signing the
party’s identifier P using a global master secret key. Note that such a global setup is minimal
since honest parties should never have to query for their identity keys. The identity key is simply
a backdoor provided to corrupt parties. Although at first sight, it might seem counter-intuitive
to provide a backdoor to the adversary, note that this backdoor is also provided to our simulator
— and this increases the power of the simulator allowing us to circumvent the aforementioned
impossibility of extraction, and design protocols where honest parties can deny participation.

MPC with a single secure processor and G,.s. We consider a setting with a server that is
equipped with a secure processor, and multiple clients that do not have a secure processor.

Let us first focus on the (more interesting) case when the server and a subset of the clients are
corrupt. The key question is how to get around the impossibility of extraction with the help of
Gacrs — more specifically, how does the simulator extract the corrupt clients’ inputs? Our idea is
the following — for the readers’ convenience, we skip ahead and present the detailed protocol in
Figure [3] as we explain the technicalities, but we will revisit it and present formal notations and
proofs in Section [6]

e First, we parametrize the enclave program with the global common reference string G,cs-mpk.

13

progmpc[f? Gacrs-mpk, S, Py, >7DTL]
On input (“init"): for i € [n]: (pk;,sk;) +— PKE.Gen(1}); return {pky, ..., pk,}

On input (“input”, {ct;}iep)):

for i € [n]: (inp;, k;) := PKE.Decg, (ct;); return Q := {ct; };c[n]
On input (“extract”, {idk; }igpn)):

for i € [n]: if check(Gacrs-mpk, P;, idk) = 1, v; 1= sk;, else v; := L; return {v; };c]
On input (“program”, {idk;, u; }iepn)):

for i € [n]: if check(Gacrs-mpk, P;,idk) = 1, outp; := u;
On input (“proceed”, {ct{}icin)):

for i € [n]: assert AE.Decy,(ct}) = “ok”

outp* := f(inpy,...,inp,), return “done”
On input* (“output”, P;):

assert outp® has been stored

if outp; has been stored, ct := Ency, (outp;), else ct := Ency, (outp*)
return ct

Protmpc[sid, f, Gacrs-mpk, S, P1, ..., Py]
Server S:

let eid := Gats.install(sid, progype[f; Gacrs-mpk, S, P1,. .., Pp))
henceforth let G,ii.resume(-) := G,y.resume(eid, -)
let ({pk;}icpn)s 0) := Gat-resume(“init”), send (eid, 9 (P;, {pk; }icpn); 0)) to each P

for each P;: await (“input”, ct;) from P;
(Q2,0) := Gae-resume(“input”, {ct; }icpy), send P(P;, 2, 0) to each P

for each P;: await (“proceed”, ct]) from P;
Gatt-resume(“proceed”, {Ct;}ie[n})
for each P;: (cty, 0;) := Gagg.resume(“output”, P;), send ct; to P;

Remote Party P;: On input inp from Z:

await (eid,) from S

// Henceforth for)= (msg, C,), let Ver((_w') := Ver(crs, (sid, eid, C, mpk, Gaers.-mpk, P;, msg),)
assert Ver (1), parse v := ({pk; }ig[n]> - -)

k «+ {0,1}*, ct = PKE.Encpk(inp, k) where pk := pk;

send (“input”,ct) to S, await ¢ from S, assert Ver(1), parse ¢ := (9, _, _)

assert 2[i] = ct, send eid to all parties, wait for all parties to ack the same eid

let ct’ := AE.Enci(“0k”), send (“proceed”, ct’) to S, await ct, assert ct not seen

outp := Decy(ct), assert ct decryption successful, return outp

Figure 3: Composable multi-party computation with a single secure processor.
(P, msg, o) outputs a tuple (msg,C,m), where 7 is a witness-indistinguishable proof that the
ciphertext C' either encrypts a valid attestation o on msg, or encrypts P’s identity key. PKE and
AE denote public-key encryption and authenticated encryption respectively. The notation send
denotes messages sent over a secure channel.

14

e Second, we add a backdoor in the enclave program, such that the enclave program will return
the secret key for P;’s secure channel with the enclave, if the caller provides the correct identity
key for P;. In this way, the simulator can be a man-in-the-middle for all corrupt parties’ secure
channels with the enclave, and extract their inputs. We note that honest parties’ security will
not be harmed by this backdoor, since honest parties will never even query G, for their identity
keys, and thus their identity keys should never leak. However, in the simulation, the simulator
will query Gacs for all corrupt parties’ identity keys, which will allow the simulator to extract
corrupt parties’ inputs by querying this backdoor in the enclave program.

e Third, we introduce yet another backdoor in the enclave program that allows the caller to
program any party’s output, provided that the caller can demonstrate that party’s identity key.
Again, in the real world, this backdoor should not harm honest parties’ security because honest
parties’ identity keys never get leaked. Now in the simulation, the simulator will query G, for
all corrupt parties’ identity keys which will give the simulator the power to query the corrupt
parties’ outputs. Such “programmability” is necessary, because when the simulator obtains the
outcome outp from F,¢, it must somehow obtain the enclave’s attestation on outp — however,
since the simulator does not know honest parties’ inputs, he cannot have provided honest parties’
inputs to the enclave. Therefore, there must be a special execution path such that the simulator
can obtain a signature on outp from the enclave.

Now, let us turn our attention to the case when the server is honest, but a subset of the clients
are corrupt. In this case, our concern is how to achieve deniability for the server — specifically,
an honest server should be able to deny participation in a protocol. If the honest server sends an
attestation in the clear to the (possibly corrupt) clients, we cannot hope to obtain such deniability,
because a corrupt client can then prove to others that some honest party in G,t¢’s registry must have
participated, although it might not be able to prove which one since the attestation is anonymous.
To achieve deniability, our idea is the following:

e Instead of directly sending an attestation on a message msg, the server will produce a witness
indistinguishable proof that either he knows an attestation on msg, or he knows the recipient’s
identity key. Note that in the real world protocol, the server always provide the attestation as
the witness when producing the witness indistinguishable proof.

e However, in the simulation when the server is honest but a subset of the clients are corrupt,
the simulator is unable to query any enclave since none of the corrupt clients have a secure
processor. However, the simulator can query G,.s and obtain all corrupt parties’ identity keys.
In this way, the simulator can use these identity keys as an alternative witness to construct the
witness indistinguishable proofs — and the witness indistinguishability property ensures that the
adversary (and the environment) cannot distinguish which witness was provided in constructing
the proof.

2.6 Fairness

It is well-known that fairness is in general impossible in secure two-party computation in the
plain model (even under weaker security definitions that do not necessarily aim for concurrent
composition). Intuitively, the party that obtains the output first can simply abort from the protocol
thus preventing the other party from learning the outcome. Cleve [32] formalized this intuition and

15

demonstrated an impossibility result for fair 2-party coin tossing, which in turns suggests the
impossibility of fairness in general 2-party computation. Interestingly, a sequence of recent works
show that although fairness is impossible in general, there are a class of non-trivial functions that
can indeed be computed fairly [9,46,/47].

Since real-world secure processors such as Intel’s SGX offer a “trusted clock” abstraction, we
explore whether and how such trusted clocks can help in attaining fairness. It is not hard to see
that Cleve’s lower bound still applies, and fairness is still impossible when our attested execution
processors do not have trusted clocks. We show how having trusted clocks in secure processors can
help with fairness.

First, we show that fairness is indeed possible in general 2-party computation, when both
parties have secure processors with trusted clocks. Specifically, we consider a clock-adjusted notion
of fairness which we refer to as A-fairness. Intuitively, A-fairness stipulates that if the corrupt
party receives output by some round r, then the honest party must receive output by round A(r),
where A is a polynomial function.

Theorem 5 (Informal). Assume that secure key exchange protocols exist, and that both parties have
an attested execution processor with trusted clocks, then there exists a protocol that UC-realizes Fopc
with A-fairness where A(r) = 2r.

In other words, if the corrupt party learns the outcome by round r, the honest party is guar-
anteed to learn the outcome by round 2r. Our protocol is a tit-for-tat style protocol that involves
the two parties’ enclaves negotiating with each other as to when to release the output to its owner.
At a high level, the protocol works as follows:

e First, each party sends their respective input to its local secure processor.

e The two secure processors then perform a key exchange to establish a secret key k for an
authenticated encryption scheme. Now the two enclave exchange the parties’ inputs over a
secure channel, at which point both enclaves can compute the output.

e However, at this point, the two enclaves still withhold the outcome from their respective owners,
and the initial timeout value 6 := 2 is set to exponentially large in A. In other words, each
enclave promises to release the outcome to its owner in round 4.

e At this moment, the tit-for-tat protocol starts. In each turn, each secure enclave sends an
acknowledgment to the other over a secure channel. Upon receiving the other enclave’s acknowl-
edgment, the receiving enclave would now halve the § value, i.e., set § := g In other words, the
enclave promises to release the outcome to its owner by half of the original timeout.

e If both parties are honest, then after A turns, their respective enclaves disclose the outputs to
each party.

e If one party is corrupt, then if he learns the outcome by round r, clearly the other party will
learn the outcome by round 2r.

To have provably security in the UC model, technicalities similar to our earlier 2-party compu-
tation protocol (the case when both parties have a secure processor) exist. More specifically, both
parties have to send inputs to their local enclave to allow extraction in the simulation. Moreover,

16

the enclave program needs to leave a second input (that is not used in the real-world protocol) such
that the simulator can program the output for the corrupt party after learning the output from
Fope.

It is also worth noting that our protocol borrows ideas from gradual release-style proto-
cols [17,38./43]. However, in comparison, known gradual release-style protocols rely on non-standard
assumptions which are not necessary in our protocol when a clock-aware G, is available.

We next consider whether a single secure processor enabled with trusted clock can help with
fairness. We show two results: first, fairness is in impossible for generic functionalities when only
one party has a clock-aware secure processor; and second, a single clock-aware secure processor
allows us to fairly compute a broader class of functions than the plain setting.

Theorem 6 (Informal). Assume that one-way functions exist, then, fair 2-party computation is
impossible for general functionalities when only one party has a clock-aware secure processor (even
when assuming the existence of Gaers)-

First, to prove the general fairness impossibility in the presence of a single secure processor, we
consider a specific contract signing functionality Feontract in which two parties, each with a secret
signing key, exchange signatures over a canonical message, say 0 (see Section 7| for a formal defini-
tion). In the plain model, there exists a (folklore) fairness impossibility proof for this functionality
— and it helps to understand this proof first before presenting ours. Imprecisely speaking, if one
party, say Py, aborts prior to sending the last protocol message, and Py is able to output a correct
signature over the message, then P; must be able to output the correct signature as well by fairness.
As a result, we can remove protocol messages one by one, and show that if the previous protocol
I1; fairly realizes Feontract, then IT;_1 (that is, the protocol IT; with the last message removed) must
fairly realize Feontract as well. Eventually, we will arrive at the empty protocol, and conclude that
the empty protocol fairly realizes Feontract @s well which clearly is impossible if the signature scheme
is secure. Although the intuition is simple, it turns out that the formal proof is somewhat subtle
— for example, clearly the proof should not work had this been some other functionality that is
not contract signing, since we know that there exist certain functions that can be computed fairly
in the plain model [9,46,/47]. Therefore, we first formalize this folklore proof in Section before
presenting our own.

We now discuss how we can prove impossibility when only one party has a clock-aware secure
processor. The overall structure of the proof is very similar to the aforementioned folklore proof
where protocol messages are removed one by one, however, as we do so, we need to carefully bound
the time by which the corrupt (i.e., aborting) party learns output. Without loss of generality, let
us assume that party Py has a secure processor and party P; does not. As we remove protocol
messages one by one, in each alternate round, party P; is the aborting party. Suppose party P;
aborts in round r < g(A) where g(A) is the runtime of the protocol if both parties are honest. Since
‘P1 does not have a secure processor, if he can learn the result in polynomially many rounds by the
honest protocol, then he must be able to learn the outcome in round r too — in particular, even if
the honest protocol specifies that he waits for more rounds, he can just simulate the fast forwarding
of his clock in a single round and complete the remainder of his execution. This means that as we
remove protocol messages one by one, in every alternate turn, the aborting party is guaranteed to
obtain output by round g(\) — and thus even if he aborts, the other party must receive output by
round A(g(A)). Similar as before, we eventually arrive at an empty protocol which we conclude to
also fairly compute Feontract (Where the parties do not exchange protocol messages) which clearly
is impossible if the signature scheme is secure.

17

We stress that the ability to reset the aborting party’s runtime back to g(A) in every alternative
round is important for the proof to work. In particular, if both parties have a clock-aware secure
processor, the lower bound clearly should fail in light of our upper bound — and the reason that it
fails is because the runtime of the aborting party would increase by a polynomial factor every time
we remove a protocol message, and after polynomially many such removals the party’s runtime
would become exponential.

We also note that the above is simply the intuition, and formalizing the proof is somewhat
subtle which we leave to Section [7.4]

Although fairness is impossible in general with only one clock-aware secure processor, we show
that even one clock-aware secure processor can help with fairness too. Specifically, it broadens the
set of functions that can be computed fairly in comparison with the plain setting.

Theorem 7 (Informal). Assume that secure key exchange protocols exist, then when only a single
party has a clock-aware secure processor, there exist functions that can be computed with A-fairness
in the (Gatt, Gacrs)-hybrid model, but cannot be computed fairly in the Gaers-hybrid model.

Specifically, we show that 2-party fair coin toss, which is known to be impossible in the plain
model, becomes possible when only one party has a clock-aware secure processor. Intuitively, the
issue in the standard setting is that the party that obtains the output first can examine the outcome
coin, and can abort if he does not like the result, say abort on 0. Although the other party can now
toss another coin on his own — the first party aborting already suffices to bias the remaining party’s
output towards 1. We now propose a (Gatt, Gacrs)-hybrid protocol that realizes 2-party fair toss,
assuming that G, is clock aware and that only one party has a secure processor. The idea is the
following. Let the server § and the client C be the two parties involved, and suppose that the server
has a secure processor but the client does not. The server’s enclave first performs key exchange
and establishes a secure channel with the client. Now the server’s enclave flips a random coin and
sends it to the client over the secure channel in a specific round, say, round 3 (e.g., assuming that
key exchange takes two rounds). At this moment, the server does not see the outcome of the coin
yet. If the client does not receive this coin by the end of round 3, it will flip an independent coin
on its own; otherwise it outputs the coin received. Finally, in round 4, the server will receive the
outcome of the coin from its local enclave. Observe that server can decide to abort prior to sending
the client the coin (over the secure channel), however, the server cannot base the decision upon the
value of the coin, since he does not get to see the coin until round 4. To formalize this intuition
and specifically to prove the resulting protocol secure in the UC model, again we need to rely on
the help of Gacps.

2.7 Additional Results

We provide some additional interesting variations in modeling and results.

The transparent enclave model. Many known secure processors are known to be vulnerable to
certain side-channel attacks such as cache-timing or differential power analysis. Complete defense
against such side channels remains an area of active research [39-42.57.79).

Recently, Tramer et al. [77] ask the question, what kind of interesting applications can we
realize assuming that such side-channels are unavoidable in secure processors? Tramer et al. [77]
then propose a new model which they call the transparent enclave model. The transparent enclave
model is almost the same as our G.t, except that the enclave program leaks all internal states to

18

the adversary A. Nonetheless, Gty still keeps its master signing key msk secret. In practice, this
model requires us to only spend effort to protect the secure processor’s attestation algorithm from
side channels, and we consider the entire user-defined enclave program to be transparent to the
adversary.

Tramer et al. then show how to realize interesting security tasks such as cryptographic com-
mitments and zero-knowledge proofs with only transparent enclaves. We note that Tramer et al.
adopt modeling techniques that inherit from an earlier manuscript version of the present paper.
However, Tramer et al. model G,; as a local functionality rather than a globally shared function-
ality — and this lets them circumvent several technical challenges that stem from the functionality
being globally shared, and allow them to achieve universally composable protocols more trivially.
As mentioned earlier, if G,ix were local, in practice this would mean that a fresh (mpk, msk) pair
is generated for every protocol instance — even for different applications of the same user. This
clearly fails to capture the reusability of real-world secure processors.

We show how to realize UC-secure commitments assuming only transparent enclaves, denoted
@m, when both parties have a secure processor (since otherwise the task would have been impossible
as noted earlier). Although intuition is quite simple — the committer could commit the value to
its local enclave, and later ask the enclave to sign the opening — it turns out that this natural
protocol candidate is not known to have provable security. Our actual protocol involves non-
trivial techniques to achieve equivocation when the receiver is corrupt, a technical issue that arises
commonly in UC proofs.

Theorem 8 (Informal). Assume that secure key exchange protocols exist. There is a G\att‘h’ybrid
protocol that UC-realizes Foom where Guy is the transparent enclave functionality.

Challenge in achieving equivocation. We note that because the committer must commit its value
b to its local enclave, extraction is trivial when the committer is corrupt. The challenge is how
to equivocate when the receiver is corrupt. In this case, the simulator must first simulate for
the corrupt receiver a commitment-phase message which contains a valid attestation. To do so,
the simulator needs to ask its enclave to sign a dummy value — note that at this moment, the
simulator does not know the committed value yet. Later, during the opening phase, the simulator
learns the opening from the commitment ideal functionality Feom. At this moment, the simulator
must simulate a valid opening-phase message. The simulator cannot achieve this through the
normal execution path of the enclave program, and therefore we must provide a special backdoor
for the simulator to program the enclave’s attestation on the opened value. Furthermore, it is
important that a real-world committer who is potentially corrupt cannot make use of this backdoor
to equivocate on the opening.

Our idea is therefore the following: the committer’s enclave program must accept a special value
¢ for which the receiver knows a trapdoor x such that owf(z) = ¢, where owf denotes a one-way
function. Further, the committer’s enclave must produce an attestation on the value ¢ such that the
receiver can be sure that the correct ¢ has been accepted by the committer’s enclave. Now, if the
committer produces the correct trapdoor x, then the committer’s enclave will allow it to equivocate
on the opening. Note that in the real-world execution, the honest receiver should never disclose
x, and therefore this backdoor does not harm the security for an honest receiver. However, in the
simulation when the receiver is corrupt, the simulator can capture the receiver’s communication
with QAML and extract the trapdoor x. Thus the simulator is now able to program the enclave’s
opening after it learns the opening from the F.,, ideal functionality.

19

More specifically, the full protocol works as follows:

e First, the receiver selects a random trapdoor z, and sends it to its local enclave. The local
enclave computes ¢ := owf(x) where owf denotes a one-way function, and returns (¢, o) where o
is an attestation for c.

e Next, the committer receives (¢, o) from the receiver. If the attestation verifies, it then sends to
its enclave the bit b to be committed, along with the value c that is the outcome of the one-way
function over the receiver’s trapdoor x. The committer’s secure processor now signs the ¢ value
received in acknowledgment, and the receiver must check this attestation to make sure that the
committer did send the correct ¢ to its own enclave.

e Next, during the opening phase, the committer can ask its local enclave to sign the opening of
the committed value, and demonstrate the attestation to the receiver to convince him of the
opening. Due to a technicality commonly referred to as “equivocation” that arises in UC proofs,
the enclave’s “open” entry point provides the following backdoor: if the caller provides a pair of
values (z,b') such that owf(xz) = ¢ where ¢ was stored earlier by the enclave, then the enclave
will sign b’ instead of the previously committed value b.

Non-anonymous attestation. Although most of the paper is concerned about modeling anony-
mous attested execution as inspired by Intel’s most recent SGX [7,59] and later versions of TPM [2],
some secure processors instead implement non-anonymous attestation. In non-anonymous attesta-
tion, the signature binds to the platform’s identity. Typically in a real-world implementation, the
manufacturer embeds a long-term signing key henceforth denoted ak in each secure processor. The
manufacturer then signs a certificate for the ak using its manufacturer key msk. In formal model-
ing, such a certificate chain can be thought of as a signature under msk, but where the message is
prefixed with the platform’s identity (e.g., ak).

It is not hard to see that our (Gatt, Gacrs)-hybrid protocol that realizes multi-party computation
with a single secure processor can easily be adapted to work for the case of non-anonymous
attestation as well. However, we point out that our 2-party protocol when both have secure
processors would not be secure if we directly replaced the signatures with non-anonymous ones.
Intuitively, since in the case of non-anonymous attestation, attestations bind to the platform’s
identity, if such signatures are transferred in the clear to remote parties, then a corrupt party
can convince others of an honest party’s participation in the protocol simply by demonstrating a
signature from that party. In comparison, if attestations were anonymous and secure processors
are omnipresent, then this would not have been an issue since the adversary could have produced
such a signature on its own by asking its local secure processor.

2.8 Related Work

Trusted hardware built by architects. The architecture community have been designing and
building general-purpose secure processors for several decades [7}28,34,39H42, 56,57, (59} |72, 79].
The motivation for having secure processors is to minimize the trust placed in software (including
the operating system and user applications) — and this seems especially valuable since software
vulnerabilities have persisted and will likely continue to persist. Several efforts have been made to
commercialize trusted hardware such as TPMs [2], Arm’s Trustzone [6,8], and Intel’s SGX [7,59]. As
mentioned earlier, many of these secure processors adopt a similar attested execution abstraction

20

despite notable differences in architectural choices, instruction sets, threat models they defend
against, etc. For example, some secure processors defend against software-only adversaries [34];
others additionally defend against physical snooping of memory buses [41,142,/57]; the latest Intel
SGX defends against restricted classes of software and physical attackers, particularly, those that do
not exploit certain side channels such as timing, and do not observe page swaps or memory access
patterns (or observe but discard such information). A comprehensive survey and comparison of
various secure processors is beyond the scope of this paper, and we refer the reader to the recent
work by Shi et al. [70] for a systematization of knowledge and comparative taxonomy.

Besides general-purpose secure processors, other forms of trusted hardware also have been built
and commercialized, e.g., hardware cryptography accelerators.

Cryptographers’ explorations of trusted hardware. The fact that general-purpose secure
processors being built in practice have more or less converged to such an abstraction is interesting.
By contrast, the cryptography community have had a somewhat different focus, typically on the
minimal abstraction needed to circumvent theoretical impossibilities rather than practical perfor-
mance and cost effectiveness 30,,36,45,48./53]. For example, previous works showed what minimal
trusted hardware abstractions are needed to realize tasks such as simulation secure program obfus-
cation, functional encryption, and universally composable multiparty computation — tasks known
to be impossible in the plain setting. These works do not necessarily focus on practical cost ef-
fectiveness, e.g., some constructions rely on primitives such as fully homomorphic encryption [30],
others require sending one or more physical hardware tokens during the protocol [45]|48], thus
limiting the protocol’s practicality and the hardware token’s global reusability.

Use of trusted hardware in applications. Numerous works have demonstrated how to apply
trusted hardware to design secure cloud systems [13,35,58,/67,/68|, cryptocurrency systems [80],
collaborative data analytics applications [62], and others [14,29}/65,69]. Due to the lack of formal
abstractions for secure processors, most of these works take an approach that ranges from heuristic
security to semi-formal reasoning. We hope that our work can lay the foundations for formally
correctly employing secure processors in applications.

Formal security meets realistic trusted hardware. A couple earlier works have aimed to
provide formal abstractions for realistic trusted hardware [12}/71], however, they either do not sup-
port cryptographically sound reasoning |71], or do not support cryptographically sound composition
in general protocol design [12].

We note that our goal of having cryptographically sound formal abstractions for trusted hard-
ware is complementary and orthogonal to the goal of providing formally correct implementations
of trusted hardware [39,79]. In general, building formally verified implementations of trusted hard-
ware — particularly, one that realizes the abstractions proposed in this paper — still remains a
grand challenge of our community.

3 Formal Abstractions for Attested Execution Processors

Notations. We summarize some helpful notations in Table

21

Gatt [27 reg}
// initialization:
On initialize: (mpk, msk) := ¥.KeyGen(1?), T =0

// public query interface:
On receive” getpk() from some P: send mpk to P

Enclave operations

// local interface — install an enclave:

On receive” install(idz, prog) from some P € reg:

if P is honest, assert idx = sid

generate nonce eid € {0,1}, store T[eid, P] := (idz, prog,0), send eid to P

// local interface — resume an enclave:

On receive” resume(eid,inp) from some P € reg:

let (idz, prog, mem) := T'[eid, P], abort if not found

let (outp, mem) := prog(inp, mem), update T'[eid, P] := (idz, prog, mem)
let o := X.Sige (1dz, eid, prog, outp), and send (outp, o) to P

Figure 4: A global functionality modeling an SGX-like secure processor. (Copy of
Figure [1| reproduced here for convenience.) Blue (and starred”) activation points denote reentrant
activation points. Green activation points are executed at most once. The enclave program prog
may be probabilistic and this is important for privacy-preserving applications. Enclave program
outputs are included in an anonymous attestation o. For honest parties, the functionality verifies
that installed enclaves are parametrized by the session identifier sid of the current protocol instance.

3.1 Overview

We model all available trusted hardware processors from a given manufacturer as a single, globally
shared functionality, denoted Gt.

Initialization. Upon initialization, the manufacturer M chooses a public verification key and a
signing key pair denoted (mpk, msk), for the signature scheme Y. Later, all attestations will be
signed using msk. We will focus on anonymous attestation as inspired by Intel SGX [7,59].

The registry. Our idealized trusted hardware functionality G, is parametrized by a signature
scheme ¥ and a global registry reg which contains the list of all parties that are equipped with an
attested execution processor. Only the machines in reg will be able to call enclave operations and
produce attestations under msk.

The registry reg aims to abstract away the manufacturer’s process of registering new machines
enabled with trusted hardware. For simplicity, we model it as a static set. We leave it as future
work to support extensions such as revocation.

22

Table 1: Notations.

P identifier of a party (potentially equipped with trusted hardware)
M Hardware Manufacturer
reg registry of machines with trusted hardware
prog a program
inp,outp | inputs and outputs resp.
mem a program’s memory tape
eid identifier of an enclave (random nonce)
% a signature scheme

Public interface. G, provides a public interface such that any party is allowed to query and
obtain the public key mpk. Essentially, this models a secure public key distribution mechanism
where the manufacturer can distribute a trusted global public key to all users.

We note that instead of providing a public key, in practice Intel’s SGX offers an online service
called Intel Attestation Service (IAS) to allow parties to verify attestations — in light of this, we
can alternatively consider that our G, offers an additional attestation verification entry point.
This detail is inconsequential to our results, since all our protocols do not require verification of
attestations inside the enclave.

Local interfaces. A local interface describes the process where a platform P interacts with its
local trusted processor. To do this, the platform P must be equipped with a processor manufactured
by M, i.e., it must appear in the registry reg. Correspondingly, when a machine P calls an “install”
instruction to Gatt, Gatt asserts that P is in the registry reg. This also models the fact that for
a remote party to interact with P’s trusted processor, all commands have to be passed through
the intermediary P. The enclave installation process (e.g., as defined in Intel’s SGX [7,/51]) is

abstracted into two types of invocations in our formalism:

e Installation. Enclave installation establishes a software enclave with program prog, linked to
some identifier idx. The functionality enforces that honest hosts provide the session identifier
of the current protocol instance as idz. We discuss and justify this technical condition in more
detail in Section Gatt further generates a random identifier (or nonce) eid for each installed
enclave, which can later be used to identify the enclave upon resume. Finally, G, returns the
generated enclave identifier eid to the caller.

o Stateful resume. An installed enclave can be resumed multiple times carrying state across these
invocations. Each invocation identifies the enclave to be resumed by its unique eid. The enclave
program prog is then run over the given input, to produce some output (together with an updated
memory mem). The enclave then signs an attestation, attesting to the fact that the enclave with
session identifier 7dz and enclave identifier eid was installed with a program prog, which was then
executed on some input to produce outp. Note that the program’s input is not included in the
software attestation. This is without loss of generality, as prog may always include its inputs as
part of its outputs outp to be signed.

Remark 1. Henceforth in this paper, we often omit explicitly writing the mem portion of the

enclave program, but the reader should assume that the enclave program stores internal variables
in between invocations.

23

3.2 Modeling Choices and Discussions

The enclave identifier. Each enclave has a unique identifier denoted eid. The role of the
enclave identifier eid is simply to link multiple attestations produced by an enclave to a unique
identifier. As we will see, this linkability property is crucial in many protocols, to provide “remote
parties” (i.e., parties other than the host that installed the enclave) with the insurance that they
are interacting with the same installed enclave program throughout a protocol execution.

Some trusted hardware platforms such as SGX assign a new identifier to each enclave. However,
the uniqueness of these identifiers is not guaranteed [33]. A better approach, actually advocated
by SGX’s design guidelines [1], is for the installed enclave program to generate a cryptographic
nonce by means of a trusted random number generator. This nonce, which acts as what we call an
“enclave identifier”, can then be included in every attestation produced by the enclave program.
In this case, we consider the enclave program wrapper that generates the nonce part of our trusted
computing base (TCB), and G, captures not only the hardware TCB but additionally the minimal
software TCB needed as well.

Interactions between the environment and G.i;. As in the standard UC framework, we
assume that the environment Z invokes each protocol instance with a unique session identifier
denoted sid.

Recall that G, is a global functionality following the GUC paradigm [22]. We assume that the
environment Z can access Gait in the following ways:

e Acting as a corrupt party;

e Acting as an honest party but only for non-challenge protocol instances. For example, the
environment Z can access Gt through rogue protocols running on honest parties — however,
by assumption these rogue protocols must have session identifiers different from the challenge
sid.

Because of these assumptions and also due to the way G, is defined, we make the following
“non-interference” observations:

e The environment Z cannot install an enclave with the challenge sid without going through A;

e The environment Z cannot access any enclave installed by a corrupt party without going through

A;

e The environment Z cannot access enclaves honest parties install during the challenge protocol
instance; and

e A cannot access any enclave Z installed acting as an honest party (i.e., calls that did not go
through A).

Additional assumptions. We additionally assume that honest parties always invoke
Gatt-install where idx is set to the correct sid corresponding to the current protocol instance.
In practice, this check could be performed by an extra software wrapper, that all honest parties
(in all protocols) use to interact with their trusted hardware platform. As such, our idealized Gy
functionality models not only the trusted hardware platform per se, but the full “trusted computing
base” (TCB) used by honest parties. However, we allow the adversary to invoke G,.install on
any idz that may not correspond to the current session identifier.

24

3.3 A Few Useful Observations

At this point, we make a few useful observations about our G,¢; functionality.

Warmup: client-server outsourcing. First, observe that the enclave program prog and all
inputs inp are observable by the platform P that owns the secure processor, since P must be an
intermediary in all interactions with its local secure processor.

Although at first glance, it might seem that the enclave program does not retain any secrets
from P, we point out that this is not true: specifically the enclave program prog may be randomized.
It can generate a random key and perform a key exchange with a remote client. In this way, a
remote client can establish a secure channel with the enclave such that the intermediary P cannot
eavesdrop on or tamper with the communication. In fact, in Appendix B} as a warmup exercise,
we formalize this simple application referred to as outsourcing, where an honest client outsources
data and computation to a remote server equipped with a secure processor.

Gatt does not give authenticated channels. Although G, allows remote parties to check an
attestation an be convinced that it was produced by a program running in an installed enclave, it
does not allow remote parties to authenticate each other.

Fact 1. The functionality F ., cannot be realized in the Gqy-hybrid model, for networks of at least
two parties.

It is known that the ideal authenticated channels functionality JF, . is impossible to realize in
the “plain” UC model [21]. This impossibility result, and its proof, remain valid in the G,-hybrid
model, as an adversary that corrupts a party P € reg can simulate any messages issued by another

party.

4 Stateful Obfuscation from G

As is well-known by the cryptography community, trusted hardware can allow us to circumvent
known theoretical impossibilities |15,[31136137,45,48]. For example, virtual blackbox obfuscation is
known to be impossible in a plain model with standard assumptions [11]. However, prior work show
that virtual blackbox obfuscation may be realized from even stateless trusted hardware tokens [48].

We show that a trusted hardware functionality such as G, allows us to realize powerful primi-
tives that would otherwise not be possible with stateless trusted hardware (and thus would not be
possible to realize with program obfuscation).

Stateful obfuscation and motivating application. To do this, we will formally define a
primitive called stateful obfuscation. The best way to understand stateful obfuscation is to imagine
the following application: suppose that a hospital has a differentially private data analytics program
that makes queries over a medical database consisting of many users’ records. The medical data is
privacy sensitive, and moreover the data analytics algorithm is proprietary. Therefore the hospital
obfuscates the program as well as the data prior to distribution (in this case, consider the union
of the program and the data as the program to be obfuscated). As users make queries to the
program, the privacy budget gets consumed. Therefore, the program should keep track of the
remaining privacy budget and when the budget depletes, the program should output L upon any

25

fstatefulobf[s/[;d’a Ca S]

// obfuscate a function f:

On receive (“obfuscate”, f) from C:
notify S, A of |f| and store (f,st:= 1)
send a public delayed output “okay” to C

// evaluate with input x:
On receive® (“compute”, z) from S:
assert that (f,st) is stored
let (y,st’) := f(z,st), let st := st’ and send y to S

Figure 5: The ideal stateful obfuscation functionality.

new queries. Traditional notions of program obfuscation, even simulation-secure definitions, are
unable to support this application since the obfuscated program cannot keep state, and thus is
always vulnerable to a rewinding attack.

Summary of results. Informally, in this section, we will show two results:

1. Stateful obfuscation cannot be realized from stateless hardware. Since previous works have shown
that one can build program obfuscation from stateless hardware, this also rules out building
stateful obfuscation from standard notions of program obfuscation.

2. We show that there exists a protocol that realizes stateful obfuscation from G,i.

4.1 Formal Definitions

We now formally define stateful obfuscation — see Figure Our formal definition of stateful
obfuscation involves a client C and a server S. The client and the server may perform an interactive
setup at the end of which the server S obtains an obfuscated version of the program. Only the
setup phase can be interactive: later during the evaluation phase, the server & should be able to
evaluate the obfuscated program on its own without the client’s help — a property referred to as
“non-interactive evaluation”. Our notion of stateful obfuscation is also designated-receiver (in this
case the server is the receiver), in the sense that the server S cannot pass the obfuscated program
around such that they can be evaluated by other parties. The choice of designated-receiver is in
some sense inevitable for stateful obfuscation, since if the obfuscated program can be passed around
in an unrestricted manner, a rewinding attack is always possible.

Definition 1 (Stateful obfuscation). A G-hybrid protocol between a client C and a server S is
said to be a stateful obfuscation scheme if the following holds:

o Security. m securely realizes Fgiaefulonrs When the client C is honest and the server S is possibly
corrupt.

e Non-interactive evaluation. On input inp from the environment Z, the protocol for S to evaluate
outp may only invoke S and G but not C.

26

A functionality G possibly representing hardware tokens is said to be stateless, if there is a
probabilistic polynomial-time function g, such that whenever party P sends message m to G, G
replies with g(m,P). In other words, G evaluates a fixed probabilistic polynomial-time function
and does not store state.

4.2 Impossibility in the Standard Model or with Stateless Tokens

Theorem 9 (Impossibility of stateful obfuscation from stateless trusted hardware). If G is stateless,
then no G-hybrid protocol (absent other functionalities) can realize stateful obfuscation.

On the other hand, it is not hard to see that (designated-receiver) virtual-blackbox obfuscation
can be realized from stateless trusted hardware.

Proof. Imagine that st is a counter initialized to 0 by the honest client. Let s(in be a randomly
chosen secret where p is a 2(A)-bit prime. Let F; denote a (n,t)-Shamir secret sharing polynomial
with the threshold ¢ and encoding the secret s. In other words, Fs € Fp[z] is a random polynomial
of degree t — 1 whose 0O-th coefficient encodes the secret s. Suppose prog, is the stateful program
that outputs Fs(inp) upon the i-th invocation if ¢ < ¢; and outputs L upon further invocations.
More formally, prog,(st,inp) computes the following stateful function:

If st > ¢, output (st + 1, L); else output (st + 1, Fs(inp))

For the sake of contradiction, suppose there exists a stateful obfuscation scheme 7 in the G-
hybrid world (that does not call other functionalities). By definition, 7 is a G-hybrid world protocol,
such that when the environment Z inputs inp to S, § interacts only with G but not C before
outputting an answer. Suppose that in some real-world execution of 7, C receives input prog, from

the environment Z, where sﬁZp is chosen at random by Z. For 7 to securely realize Fitatefulobf,
when S first receives any input inp € Z, from Z, it performs some interactions with G, and except
with negligible probability, it outputs Fs(inp) to Z. Now the adversary S can simply rewind and
rerun the honest evaluation protocol using ¢+1 different inputs inp,...,inp, ;. Since the evaluation
protocol interacts only with G and G is stateless, it is not hard to see that with all but negligible
probability, .4 must output to Z the correct Fy(inp;) upon the i-th evaluation. Clearly in the
real-world execution, A can output the secret s with all but negligible probability, whereas in an
ideal-world execution, A cannot output s except with negligible probability. Hence the protocol «
cannot realize Fiatefulobf-]

4.3 Construction from Attested Execution Processors

We construct a protocol Protgatetulobs that securely realizes Fypatefulobt (Figure @ Here we make
the simplifying assumption (which does not impact our previous impossibility result) that the
lengths of the computed function f, its input x, and output y are of fixed and publicly known.

For concreteness and ease of exposition, we will leverage Diffie-Hellman for key exchange and an
authenticated encryption scheme. It is not hard to modify our scheme for any secure key exchange
protocol (possibly with more rounds). Since the existence of secure key exchange protocols imply the
existence of authenticated encryption, it would suffice to assume secure key exchange for theoretical
feasibility.

27

Progstatefulobf
On input (“keyex”, g%): b<—sZ,, store sk := (g%)°, return (g%, g*)
On input (“obfuscate”, ct):
let f := AE.Decg(ct), assert decryption success
store (f,st == 1) and return “okay”

On input* (“compute”, z,y):
assert that (f,st) is stored
if 4/ # 1 return ¢/
else let (y,st’) = f(z,st), let st :== st’ and return y

Protgatetulobt|sid, C, S|

Server S:
On receive (“keyex”, g%) from C:
let eid := Gatt.install(sid, proggatefulobt)
let ((9%, ¢%),0) = Gatr.resume(eid, (“keyex”, g%)) and send (eid, g%, o) to C

On receive (“obfuscate”, ct) from C: Gupe.resume(eid, (“obfuscate”, ct))

On receive” (“compute”, z) from Z: let (y,) := Gags.resume(eid, (“compute” z, 1)), output y

Client C:
On input (“obfuscate”, f) from Z:
let a <—sZjy,, mpk := Gui.getpk()
send (“keyex”, g%) to S, await (eid, g°, o) from S
assert Z'mepk((Sida eid, Progstatefulobf> (ga7 gb))v U) and let sk := (gb)

let ct := AE.Encg(f) and send (“obfuscate”, ct) to S

a

Figure 6: A protocol Protg.ictulobs that realizes the stateful obfuscation functionality Fgiatefulobt-
The public group parameters (g, p) are hardcoded into proggatefulobs-

Most of the protocol is quite natural, namely, the client establishes a secure channel with the
server’s enclave, and sends the function f to be obfuscated to the server’s enclave. Afterwards,
the server is allowed to supply inputs to the enclave program to perform evaluation. We point
out one technical subtlety: the enclave program’s “compute” entry point has a backdoor 3. If the
input ¢y # L, the enclave will simply output 3y and its attestation. Otherwise, the enclave will
output the true outcome of the evaluation along with its attestation. In the real-world protocol,
an honest server will always supply a value 3/ = L; if a malicious server supplies ¢/ = L, it does
not learn anything more than an attestation on 3. In the simulation, however, the simulator will
pick a canonical function fy, and simulate an authenticated ciphertext for fy;. Therefore, in the
simulation, the enclave program learns the function fy (unless simulation is aborted prematurely).
Then, at some later point, the simulator will learn the outcome gy from the ideal functionality
Fstatefulobf- At this moment, the simulator must have a way to program the enclave to output the
desired value y rather than fo(z). This backdoor in the enclave program’s “compute” entry point
provides the simulator the ability to perform such programming.

28

Theorem 10 (Stateful obfuscation from G,i(). Assume that the signature scheme ¥ is existentially
unforgeable under chosen message attacks, the Decisional Diffie-Hellman assumption holds in the
algebraic group adopted, the authenticated encryption scheme AE is perfectly correct and satisfies the
standard notions of INT-CTXT and semantic security. Then, the G,i-hybrid protocol Prot satefuions
UC-realizes Fiatefuloby when the client C is honest, and that the server S is corrupt.

Proof. We focus on the case where the server is corrupt; the case where both parties are honest is
trivial as all communications occur over secret channels.

Ideal-world simulator Sim. We first describe an ideal-world simulator Sim, and then show that
no p.p.t. environment Z can distinguish the ideal-world and real-world executions.

e Unless noted otherwise below, any communication between Z and A or between A and G is
simply forwarded by Sim.

e The simulator Sim starts by emulating the setup of a secure channel between C and G,tt. Sim
sends ¢g* to A (that controls the corrupted S) for a randomly chosen a.

e When Sim receives a tuple (eid, g%, o) from A, Sim aborts outputting sig-failure if o would be
validated by an honest C, and yet Sim has not recorded the following A < G.¢t communication:

— eid := Guyy.install(sid, proggatefulobt);

— (9% ¢°),) := Gast.resume(eid, (“keyex”, g%))
Else, Sim computes sk = ¢g.

e The simulator Sim chooses a canonical function fp and sends (“obfuscate”, ct :== AE.Ence(fo))

to A.

o If A makes a G,y.resume(eid,(“compute”,)) call and Sim has not observed a
Gatt-resume(eid, (“obfuscate”, ct)) call, where ct was the ciphertext sent previously to A, Sim
forwards the message to G,i¢ and aborts with output authenc-failure if G,i; returns an output
other than L.

o If A makes a G.resume(eid, (“compute”, z, 1)) call and a correct “obfuscate” call was pre-
viously observed, Sim sends (“compute”, x) to Fyatefulobf and receives y. It then replaces the
message to Gaiy by (“compute”; 1, y), and forwards the response (y, o) to A.

o If A makes a G,.resume(eid, (“compute”, _ y')) call (where 3’ # 1) and a correct “obfuscate”
call was previously observed, Sim simply forwards the message to Gait and returns the response
(y/,0) to A.

We now prove the indistinguishability of the real-world and ideal-world executions through a
sequence of hybrids.

Claim 1. Assume that the signature scheme Y is secure, except with negligible probability, the
stmulated execution does not abort outputting sig-failure.

Proof. Straightforward reduction to the security of the digital signature scheme 3. O

29

Hybrid 1. Identical to the simulated execution, but the secret key sk = g% shared between C
and G, is replaced with a random element from the appropriate domain.

Claim 2. Assume that the DDH assumption holds, then Hybrid 1 is computationally indistinguish-
able from the simulated execution.

Proof. Straightforward by reduction to the DDH assumption. O

Claim 3. Assume that AE satisfies INT-CTXT security. It holds that in Hybrid 1, authenc-failure
does not happen except with negligible probability.

Proof. Straightforward by reduction to the INT-CTXT security of authenticated encryption. If A
never makes a G.resume(eid, (“obfuscate”, ct)) call where ct is the ciphertext previously sent by
Sim, then with all but negligible probability, proggiefuionb Will not have stored some (f,st) and will
return | on any “compute” call. O

Hybrid 2. Instead of sending ct := AE.Encg(fo) to A, we now send ct := AE.Encg(f) where f
is the honest client’s true input.

Claim 4. Assume that AE is semantically secure, Hybrid 2 is computationally indistinguishable
from Hybrid 1.

Proof. Straightforward reduction to the semantic security of authenticated encryption. O

Hybrid 3. Now instead of injecting the true output y into the “compute” message sent by A to
Gatt, the message is simply forwarded to G.i; and the output returned to A.

Claim 5. Hybrid 3 is identically distributed as Hybrid 2.

Hybrid 4. Now instead of using a random key between C and G.it, we switch back to using the
real key g®.

Claim 6. Assume that the DDH assumption holds, then Hybrid 4 is computationally indistinguish-
able from Hybrid 3.

Proof. Straightforward by reduction to the DDH assumption. O

Finally, observe that conditioned on the simulator not aborting and AE being perfectly correct,
Hybrid 4 is identically distributed as the real execution.
O

30

5 Composable 2-Party Computation

5.1 Lower Bound

We first consider the feasibility of realizing universally composable multi-party computation when
not all parties have a secure processor. We show a negative result.

Theorem 11 (Impossibility of UC-secure MPC when not all parties have a secure processor).
If at least one party P is not equipped with trusted hardware (i.e., P ¢ reg), it is impossible to
UC-realize MPC' in the Guu-hybrid model, even with pairwise authenticated channels.

Proof. To show that it is impossible to realize general MPC, we show that one particular func-
tionality, namely two-party commitments, cannot be realized. We follow the same ideas as in the
proof of impossibility of realizing commitments in the plain authenticated model (i.e., without Gay)
from [23]. We consider a commitment between two parties, the committer 7; and the receiver P;,
using some protocol m. Without loss of generality, we will assume that P; # reg, i.e., that the
committer is not equipped with trusted hardware.

The proof now proceeds identically to the one in [23]: Consider a real-world adversary A that
corrupts the committer P;. This adversary is a “dummy adversary” that simply forwards messages
between P; and the environment Z.

Now, Z picks a bit b at random and honestly follows P;’s part of the protocol 7 to commit to
b. If the protocol 7w requires P; to make any “install” or “resume” calls to Gatt, £ simply ignores
those calls (as P; ¢ reg). Once P; acknowledges receipt of the commitment, Z instructs A to
perform P;’s part of the protocol 7 to decommit to b. Again, A ignores any (unsuccessful) calls to
Gatt proscribed by 7. Finally, when P; outputs (“open”, V'), Z outputs 1 if b = " and 0 otherwise.

As P; outputs a receipt before the decommitment phase starts, an ideal-world simulator Sim for
the pair (A, Z) must send some value b’ to Feom, before learning the value of the bit b. However,
for the simulation to be faithful, Sim’s value b’ should be equal to the value b chosen by Z, which
contradicts commitment secrecy. O

Note that this lower bound proof would fail assuming all nodes have access to trusted hardware.
In this case, the simulator will be able to trivially extract any communication between a corrupt
party and Gatt, as this communication cannot be emulated by the environment. This extraction
capability is what gives the simulator “extra-power” over the real-world adversary. The above
lower bound proof would fail since the simulator is in some sense more powerful than the real-world
receiver.

5.2 Composable 2-Party Computation When Both Have Secure Processors

As a warmup exercise, we present in Figure [7] a protocol for realizing composable 2-party computa-
tion assuming that both parties have a secure processor. For concreteness and ease of exposition,
our protocol makes use of Decisional Diffie-Hellman (DDH) and authenticated encryption. It is
easy to see that our construction and proofs extend in the most natural manner to any secure
key exchange protocol (possibly with more rounds). Further, since the existence of authenticated
encryption and digital signatures is implied by that of key exchange, it suffices to assume key
exchange for theoretical feasibility. For simplicity, we also assume that parties’ inputs and the
function output are of a fixed (a-priori known) length.

31

Progapc [f7 Po, P1, b]

On input (“keyex”): y(izp, return g¥

On input (“send”, g%, inpy):
assert that “keyex” has been called
sk := (g*)Y, ct := AE.Encg(inpy), return ct

On input (“compute”, ct,v):
assert that “send” has been called and ct not seen
inp;_p := AE.Decg(ct), assert that decryption succeeds
if v # L, return v; else return outp := f(inpg,inp;)

PI‘Otng[S?:d, fa Po, P1, b]

On input inp, from Z:
eid = Gagt-install(sid, progy,cLf, Po, P1,b])
henceforth denote G,ii.resume(-) := G,y .resume(eid, -)
(9¥,0) := Gag.resume(keyex)
send (eid, g¥,0) to Pi_yp, await (eid’, g*,0’)
assert ¥.Vermpk((sid, eid’, progapc[f; Po, P1,1 = b],g%),0')
(ct,) := Gagr.resume(“send”, g%, inp,), send ct to Py, await ct’
(outp,) := Gagt.resume(“‘compute”, ct/, L), output outp

Figure 7: Composable 2-party computation: both parties have secure processors.
(Copy of Figure |2 reproduced here for the reader’s convenience.) The group parameters (g, p) are
hardcoded into progg.

Most parts of the protocol in Figure [7] are natural. Basically, both parties’ enclaves establish a
secure channel and send the parties’ respective inputs to the other enclave. The two enclaves then
each perform evaluation, and each party queries its local enclave for the outcome.

However, we point out a few technicalities that arise in the construction or proof. First, the
enclave program’s “compute’ entry point has a backdoor v. A real-world honest party always
supplies a value v = L, in which case the enclave will sign the true outcome and return the attested
output. However, the simulator will make use of this backdoor v program the enclave to sign
outputs of its choice, when it has learned the outcome from the ideal functionality Fo,.. Note that
extraction is easy since the protocol requires that both parties send their respective inputs to Gy,
and therefore the simulator can capture the adversary’s communication with G, and extract the
adversary’s input. Finally, as mentioned earlier in Section [2.4] in the simulation, the simulator
needs to effectively simulate the honest enclave on the adversary’s secure processor — and this is
possible here since the attesation is anonymous.

Theorem 12 (2-party computation from G, when both have secure processors). Assume that the
DDH assumption holds, the authenticated encryption scheme is perfectly correct, semantically se-
cure, and INT-CTXT secure, and ¥ is a secure signature scheme, the protocol described in Figure[7

UC-realizes]:chpc.

Proof. Both the protocol in Figure [7] and the proof are in some sense a subset of those for fair

32

gacrs

On initialize: (epk,esk)(iPKE.Gen(lA), (ssk,vk)ﬁE.Gen(l)‘), crs < NIWI.Gen(1%)
On receive” “crs” from P: return Guers.mpk := (epk, vk, crs)
On receive” “idk” from P: assert P is corrupt, and return X.Signg (P)

Figure 8: Global augmented common reference string. Generates a public encryption key
pair, a signing key pair, and a common reference string for the witness indistinguishable proof
system. Upon query from a (corrupt) party, returns a signature on the party’s identifier henceforth
called the identity key.

2-party computation when both parties have secure processors (Section Theorem . We
therefore simply omit the proof here and refer the reader to the proof of Theorem]

6 Composable Multi-Party Computation with a Single Secure
Processor and an Augmented Global CRS

Earlier we showed that even when a single party does not have a secure processor, universally
composable MPC is unfortunately not possible in the G, hybrid world. In this section, we explore
how to introduce minimal global setup assumptions to circumvent this impossibility.

For concreteness and ease of exposition, our protocols in this section will make use of a public-
key encryption scheme (for key exchange), a non-interactive witness indistinguishable proof system,
a digital signature scheme, and authenticated encryption. It is not hard to observe that our proto-
col and proofs extend naturally to any secure key exchange protocol (possibly with more rounds),
and any interactive witness indistinguishable proof system. Since the existence of secure key ex-
change implies the existence of interactive witness indistinguishable proof systems, authenticated
encryption, and digital signatures, secure key exchange protocols suffice for theoretical feasibility.

6.1 Augmented Global CRS

We will leverage the G,qs global functionality described in Figure Gacrs Was first proposed by
Canetti et al. [22].

We briefly explain G,qs, also referred to as an augmented global common reference string. In
particular, G..s provides a public common reference string that is honestly generated. Honest
parties never have to query G for any additional information — in this sense G, requires
only minimal additions atop a standard global common reference string. On the other hand, Gacs
leaves a backdoor for the adversary, such that the adversary can obtain identity keys pertaining
to their party identifiers. Later, our protocol will demonstrate how the simulator can leverage
corrupt parties’ identity keys to perform extraction and equivocation, two key elements of protocol
composition proofs.

More concretely, a party’s identity key is a signature of its party identifier under a master
signing key. This signature can be verified with G,..s.vk. Henceforth we use the following notation

check(Gacrs-mpk, P, idk)

33

to denote the following: first, parse Gacrs.mpk := (-, vk, _); next call ¥.Very (P, idk). In other words,
use the signature verification key inside Gacs-mpk to verify whether idk is a valid signature on the
party identifier P.

Additionally, G.cs also generates a public encryption key denoted epk, and a global common
reference string crs for the proof system that we will adopt.

6.2 NP Languages Adopted in the Protocol

Our protocol relies on witness indistinguishable proofs whose formal definitions are presented in Ap-
pendix For ease of exposition, we define non-interactive witness indistinguishable proofs with
a global common reference string — but it is not hard to see that our protocol and proofs naturally
extend to interactive witness indistinguishable proofs (without a common reference string).

We define the NP language we will rely on and related shorthands.

Language for proving signatures from secure processors. Let a statement be of the form
stmt := (sid, eid, C, mpk, Gacrs.mpk, P, msg) where G,..s.mpk := (epk, vk, crs) and a witness be of the
form w := (r, o,idk[P]). The NP relation is defined as below:

J(msg, 7, 0,idk[P]) s.t. C = PKE.Encepk((o,idk[P]),r) and
(Vermpk(sid, eid, progypclfs Gacrs-mpk, S, P1, ..., Pul, msg, o) or check(Gacrs-mpk, P, idk[P]) = 1)

More informally, the statement basically asserts that the plaintext encrypted under C either
contains a valid signature o for the message msg signed by a secure processor, or it contains P’s
identity key idk[P].

Abbreviated notations for zero-knowledge proofs. Henceforth we will use the following

shorthand, omitting public parameters that are implicit from the context. We define

NIWI.Prove((P, msg, C), (r, o,idk[P])) :=
NIWI.Prove(crs, (sid, eid, C, mpk, Gacrs-mpk, P, msg), (r, o, idk[P]))

Further, given (P, msg, o), we define the subroutine ¥(P, msg, o) as follows:
e Generate r at random, let C':= PKE.Encepk((0, L), 7).
e Let m := NIWI.Prove((P, msg,C), (r,0,L1)).

e We now define
(P, msg, o) := (msg, C,)

In other words, (P, msg, o) transforms an attestation o to a witness-indistinguishable proof,
under appropriate public parameters, of the fact that either C' encrypts a valid signature on msg,
or it encrypts P’s identity key.

34

progmpc[f? Gacrs-mpk, S, Py, >7DTL]
On input (“init"): for i € [n]: (pk;,sk;) +— PKE.Gen(1}); return {pky, ..., pk,}

On input (“input”, {ct;}iep)):

for i € [n]: (inp;, k;) := PKE.Decg, (ct;); return Q := {ct; };c[n]
On input (“extract”, {idk; }igpn)):

for i € [n]: if check(Gacrs-mpk, P;, idk) = 1, v; 1= sk;, else v; := L; return {v; };c]
On input (“program”, {idk;, u; }iepn)):

for i € [n]: if check(Gacrs-mpk, P;,idk) = 1, outp; := u;
On input (“proceed”, {ct{}icin)):

for i € [n]: assert AE.Decy,(ct}) = “ok”

outp* := f(inpy,...,inp,), return “done”
On input* (“output”, P;):

assert outp® has been stored

if outp; has been stored, ct := Ency, (outp;), else ct := Ency, (outp*)
return ct

PrOtmpc[Sidv Gacrs-mpk, [, S, Py, .., Pn]
Server S:

let eid := Gats.install(sid, progype[f; Gacrs-mpk, S, P1,. .., Pp))
henceforth let G,ii.resume(-) := G,y.resume(eid, -)
let ({pk;}icpn)s 0) := Gat-resume(“init”), send (eid, 9 (P;, {pk; }icpn); 0)) to each P

for each P;: await (“input”, ct;) from P;
(Q2,0) := Gae-resume(“input”, {ct; }icpy), send P(P;, 2, 0) to each P

for each P;: await (“proceed”, ct]) from P;
Gatt-resume(“proceed”, {Ct;}ie[n})
for each P;: (cty, 0;) := Gagg.resume(“output”, P;), send ct; to P;

Remote Party P;: On input inp from Z:

await (eid,) from S

// Henceforth for)= (msg, C,), let Ver((_w') := Ver(crs, (sid, eid, C, mpk, Gaers.-mpk, P;, msg),)
assert Ver (1), parse v := ({pk; }ig[n]> - -)

k «+ {0,1}*, ct = PKE.Encpk(inp, k) where pk := pk;

send (“input”,ct) to S, await ¢ from S, assert Ver(1), parse ¢ := (9, _, _)

assert 2[i] = ct, send eid to all parties, wait for all parties to ack the same eid

let ct’ := AE.Enci(“0k”), send (“proceed”, ct’) to S, await ct, assert ct not seen

outp := Decy(ct), assert ct decryption successful, return outp

Figure 9: Composable multi-party computation with a single secure processor. (Copy
of Figure 3| reproduced here for convenience.) (P, msg,o) outputs a tuple (msg,C,), where «
is a witness-indistinguishable proof that the ciphertext C either encrypts a valid attestation o on
msg, or encrypts P’s identity key. PKE and AE denote public-key encryption and authenticated
encryption respectively. The notation send denotes messages sent over a secure channel.

35

6.3 Detailed Protocol

We present our detailed protocol in Figure [0} The key insight behind the protocol is that the
enclave program is parametrized by G,cs.mpk. In the simulation, the simulator will obtain corrupt
parties’ identity keys from G,.s.mpk. We embed backdoors in the enclave program named “extract”
and “program”, such that when the simulator provides corrupt parties’ identity keys, the enclave
program will 1) leak to the simulator corrupt parties’ secret keys for their respective secure channel
with the enclave, allowing the simulator to extract corrupt parties’ inputs; and 2) let the simulator
program corrupt parties’ outputs. We stress that these backdoors do not harm honest parties’
security because honest parties never even query G,..s for their identity keys.

Otherwise, the protocol proceeds in the a natural manner (but with subtleties), where each
party encrypts its input to the server’s enclave, additionally each party encrypts a a secret session
key later used to form a secure channel with the enclave. Through an attestation sent in the
response, each party verifies that the enclave has correctly registered their respective input. If this
is indeed the case, all parties acknowledge the enclave’s eid to each other over a pairwise secure
channel. If all parties confirm that they are talking to the same enclave, they then send “ok” to the
enclave over a secure channel. Upon collecting “ok” messages from all parties, the enclave proceeds
with the evaluation, and finally, signs and returns the output. One subtlety is that all parties must
acknowledge that they are talking to the same enclave over pairwise secure channels before the
enclave can proceed with the evaluation — since otherwise the adversary can simply impersonate
one of the parties and supply a malicious input on behalf of the victim.

Again, for sake of simplicity, we will assume that all parties’ inputs as well as the computed
output are of some fixed predetermined length.

Theorem 13 (MPC from G, when a single party has a secure processor). Assume that the
stgnature scheme is secure, the public-key encryption is semantically secure and perfectly correct,
the proof system satisfies computational soundness and witness indistinguishability, and that the
authenticated encryption scheme is perfectly correct, semantically secure, and INT-CTXT secure,
then the protocol described in F' igure@ UC-realizes F fnpc.

Proof. We now prove the above theorem. Henceforth, we say that the tuple ¢ := (msg, C,) verifies
w.r.t. P and eid, iff the following holds (where other parameters in the statement, such as sid,
Gacrs-mpk, mpk are clear from the context)

NIWI.Ver(crs, (sid, eid, C, mpk, Gaers-mpk, P, msg)) = 1

Server and some remote parties are corrupt. We construct a simulator as below.

e Unless otherwise noted, Sim passes through interactions between A and G.i, between A and
Gacrs, and interactions between A and Z.

e Sim requests G, for all corrupt parties’ identity keys.

e For each honest P;, do the following: Sim awaits (eid;,) from A. At this moment eid; is
referred to as the challenge eid w.r.t. P;. Note that at this moment, different honest parties
may perceive a different challenge eid. If 1 := ({pk;}ic[n), C,) verifies w.r.t. P; and eid; but
Gatt did not return ({pk;}iepn), -) earlier upon a Gay.resume(eid;, “init”) call, either from Z or
A, abort outputting sig-failure.

36

For each honest party P;, the simulator Sim uses the input inp = 0, chooses k; at random, and
honestly computes the ciphertext ct; := Encpki(ﬁ, k;), and sends the tuple ct; to A (acting as the
corrupt server), where pk; is extracted from the {pk; };c[, set that the simulator has received on
behalf of honest P; earlier.

When A sends ¢ := (2, C, 7) for each honest P;: if ¢ verifies w.r.t. P; and eid;, but Sim did not
observe (£2,_) as the outcome of a prior G,i.resume(eid;, “input”,) call by either Z or A, where
eid; denotes the challenge eid from i’s perspective, abort outputting sig-failure. Also abort if
Q[i] # ct;, where ct; was what Sim sent to A earlier on behalf of P;.

Once an honest party P; receives such a valid message ¢ := (2, C,m) from A, Sim acks eid; on
behalf of P; to each corrupt party (sent to A).

Sim awaits acks on eid from every corrupt party. Abort if the acks are different or if earlier,
honest parties perceived different eids.

Now the challenge eid is uniquely defined if the simulator did not abort. Henceforth whenever
we write eid it refers to the unique challenge eid unless otherwise noted.

Now, we know that (€2, _) is the outcome of a previous G,.resume(eid, “input”,) call observed
by Sim. Note that since the enclave program’s “input” entry is non-reentrant, if the simulation
did not abort, it must be the case that all honest parties received the same).

Sim now calls Gt.resume(eid, “extract”, {idk,-}ie[n]) where for each corrupt party P;, idk; is set
to the identity key Sim obtained from G, earlier, and for each honest party, it is set to 1. Sim
now obtains from G,tt the secret key sk; for each corrupt P;. The simulator Sim can therefore
decrypt the input inp; and the session key k; for each corrupt party P;. Sim sends all corrupt
parties’ inputs to F f;pc if it has not already done so. Sim obtains the output outp* from ffilpc.

Sim now calls Gag.resume(eid, “program”, {idk;, u; };c,)) where for each corrupt party P, idk;
is set to the identity key Sim obtained from G, earlier, and u; := outp*; and for each honest
party, the pair is set to (L, L).

On behalf of each honest party P;, the simulator Sim encrypts ct, := Ency, (“ok”) and sends
(“proceed”, ct}) to A (acting as the corrupt server S).

If A or Z ever sends Gyi.resume(eid, “proceed”, Q) for the challenge eid, the simulator checks to
see for every honest P;, where the ct, the simulator has sent A is correctly contained in €. If not
correctly contained but the G.it.resume call did not return 1, abort outputting authenc-failure.
Else return the result of the G,ii.resume call.

The simulator passes through any call from A of the form Gt.resume(eid, “output”,i). No-
tice that if the simulation did not abort and assuming & is perfectly correct, then whenever A
calls G,¢.resume(eid, “output”, i) for an honest P;, the returned (attested) result corresponds
to an encryption of a wrong result where honest parties’ inputs are 0. Whenever A calls
Gatt-resume(eid, “output”, i) for a corrupt part P;, the returned (attested) result corresponds to
an encryption of outp® which was returned by the ideal functionality F fnpc.

For each honest P;, Sim awaits ct from A and aborts if ct was seen before. If ct successfully
decrypts but Sim did not observe (ct,_) as the outcome of a prior G,.resume(eid, “output”,)

37

query for the challenge eid, abort outputting authenc-failure. Otherwise, Sim requests that F f;pc
sends output to party P;.

e Any time during the simulation, if A or Z calls Gu.resume(eid, “program”,) or
Gatt-resume(eid, “extract”,) and provided a valid idk; for an honest P;, abort outputting idk-
failure.

Lemma 1. Assume that the signature scheme is secure, the PKE encryption is perfectly correct,
and that NIWI is computationally sound. Then, the simulation does not abort with sig-failure except
with negligible probability.

Proof. If the simulation aborted with sig-failure with non-negligible probability, we can leverage
the union of A, Z,Sim, Gatt, Gacrs to build a reduction Re that breaks either the computational
soundness of NIWI, or the security of the signature scheme, assuming that PKE is perfectly correct.

The idea is for Re to generate epk and store esk which is part of the global common reference
string. Now Re runs the experiment with (A, Z), and waits till sig-failure happens — suppose it
happens on the tuple (msg, C, 7). At this moment, Re decrypts C' with esk, and obtains a witness
(0,idk[P;]) where P; denotes some honest party. Now there are the following cases:

o If the witness (o, idk[P;]) is not a valid witness, Re has broken the computational soundness of
NIWI.

e Else if (o,idk[P;]) is a valid witness, then we know that either o is a valid signature on msg, or
idk[P;] is a valid identity key for honest party idk[P;]. In either case, the reduction can forge a
new signature on a new message.

O

Claim 7. Assume that the signature scheme is secure, then, the simulation does not abort with
idk-failure except with negligible probability.

Proof. By straightforward reduction to signature security. O

We prove computational indistinguishability of the real-world and simulated executions through
a sequence of hybrids. By repartitioning of algorithms, let us now start treating the union of the
honest parties, the ideal functionality F ﬁlpc, the global functionalities G.tt, Gacrs, and the simulator
Sim together as one Turing Machine.

Hybrid 1. Almost identical to the simulated execution except the following modifications:

Every time the simulator Sim needs to compute a PKE ciphertext ct; on behalf of an honest
party P;, instead of encrypting the real authenticated encryption key k, Sim instead encrypts
the authenticated encryption key 0. However, note that the real authenticated encryption key
is still used elsewhere by the simulator and the enclave program.

Claim 8. Assume that the public-key encryption scheme PKE is semantically secure, then Hybrid
1 is computationally indistinguishable from the simulated execution.

38

Proof. By straightforward reduction to the semantic security of PKE. More specifically, we can have
a sequence of internal hybrids, where the simulator replaces the each honest party’s ct; (referred to
as the challenge ciphertext) one by one with the ciphertext obtained from a PKE challenger. For the
challenge coordinate i, the simulator also uses the public key returned by the PKE challenger. For
any non-challenge ciphertext ct;, the simulator simply picks the encryption key pair itself without
interacting with the PKE challenger. O

Claim 9. Assume that AE satisfies INT-CTXT security. Then, in Hybrid 2, authenc-failure does
not happen except with negligible probability.

Proof. By straightforward reduction to the INT-CTXT game of AE. Observe that earlier in the
hybrid sequence, the public-key ciphertext no longer encrypts the authenticated encryption keys,

therefore no information is leaked to (A, Z) about the honest parties’ authenticated encryption
keys. O

Hybrid 2. Hybrid 2 is almost identical to Hybrid 1, except the following change:

During a “proceed” call, if all parties authenticated encryption ciphertexts successfully de-
crypt to “ok”, the enclave program will set outp* to be the value returned earlier by F ﬂlpc.

Notice that in Hybrid 2, whenever A calls G,i.resume(eid, (“output”,i)) for an honest party P;,
the returned result will be an encryption of outp* instead of the wrong result computed by assuming
honest parties’ inputs are 0 that earlier hybrid used.

Claim 10. Assume that AE is semantically secure. Then Hybrid 1 and Hybrid 2 are computationally
indistinguishable.

Proof. Recall that honest parties’ authenticated encryption keys are not leaked to the adversary
since earlier we replaced the PKE to encrypt a 0 key instead. Therefore, the claim holds by a
straightforward reduction to the semantic security of AE.

O]

Hybrid 3. Almost identical to Hybrid 2 except the following changes: for each honest party,
instead of encrypting (6, 6) with PKE, where the first 0 corresponds to the honest party’s input,
and the second 0 corresponds to the honest party’s authenticated encryption key, the simulator
Sim now encrypts the honest parties’ true inputs, and real authenticated encryption keys (that are
chosen at random by the simulator).

Claim 11. Assume that PKE is semantically secure. Then Hybrid 3 and Hybrid 2 are computa-
tionally indistinguishable.

Proof. By straightforward reduction to the semantic security of PKE. More specifically, we can
build a sequence of internal hybrids where the simulator replaces honest parties’ PKE ciphertexts
ct; one by one. The challenge ciphertext to be replaced is obtained from a PKE semantic security
challenger. The challenge coordinate’s public key pk; also comes from the PKE challenger. All
other non-challenge coordinate’s public keys are generated by the simulator itself. O

Claim 12. Assume that PKE is perfectly correct. Then, conditioned on simulation not aborting,
Hybrid 3 is identically distributed as the real-world execution.

39

Proof. Conditioned on the simulation not aborting, observe that the only difference between Hybrid
3 and the real-world execution is that in Hybrid 3, the outp* sent to A is computed by .7-'Ifnpc by
evaluating f over honest parties’ true inputs and what Sim extracted of corrupt parties’ inputs
which are decrypted from PKE ciphertexts by the enclave. In the real-world execution, the output
sent to A is computed by the enclave program through evaluting f on the honest parties’ decrypted
inputs and corrupt parties’ decrypted inputs (both through decryption PKE ciphertexts). It is not
hard to see that if PKE is perfectly correct, then the two methods result in the same output. [

Some remote parties are corrupt but server is honest. We construct the following sim-
ulation. Throughout the simulation Sim simulates G.t, except for the signing since Sim does not
have G.it’s signing key. However, since Sim knows the identity keys of corrupt parties, it can use
the identity keys as an alternative witness when replying to A with a zero-knowledge proof.

e Unless otherwise noted, Sim passes through interactions between A and G,.s, and interactions
between A and Z. In this case, since the corrupt parties do not have a secure processor, we do
not have to consider interactions between A and Gaiy.

e Sim requests Gacrs for all corrupt parties’ identity keys.

e Sim generates a random eid. Sim simulates the enclave program’s “init” entry point, and gen-
erates {pki,ski}ie[n}. For every corrupt party P;, Sim now constructs a ciphertext C' and a
zero-knowledge proof denoted 7 vouching for {pki}ie[n], but using P;’s identity key as the wit-
ness. Sim now sends (eid, {pk; }ic[n), C,) to A.

e Sim now waits to receive a tuple (“input”,ct) from each corrupt party P; controlled by A. Sim
simulates the enclave program’s “input” function, as well as the honest parties’ inputs to the
“input” function.

Since Sim knows sk;, it can decrypt all corrupt parties’ inputs and send them to]—]élpc. Sim
obtains the outcome outp* from F f;pc.

Again, Sim now constructs a ciphertext C' and a zero-knowledge proof 7 vouching for the outcome
of this computation denoted €2, but using P;’s identity key as the witness. Sim now sends (€2, C,)

to A.

e Sim acts as each honest party and acks eid to each corrupt party. Sim waits to collect corrupt
parties’ eid acks, and aborts if the acks are inconsistent.

e Sim now awaits (“proceed”, ct}) from each corrupt party P;. Sim now simulates the enclave
program’s “proceed” function, as well as the honest parties’ inputs to the “proceed” function.
If the “proceed” function did not abort, Sim encrypts ct := Ency, (outp™) and sends ct to A.

o If A allows S’s messages to be delivered to an honest party P; (recall that communication
channels are UC-secure channels), Sim tells f;pc to release outcome to P;.

We now show that the simulated execution and the real execution are computationally indis-
tinguishable. During the hybrid sequences, it helps to think of the union of Sim, G.i, Gacrs as a
single Turing Machine (equivalent w.r.t. repartioning of algorithm boundaries).

40

Hybrid 0. Instead of using the corrupt parties’ identity keys to construct NIWI proofs, Sim now
uses the G,it’s signing key to sign a signature, and then use the signature as the witness.

Claim 13. Assume that NIWI is computationally witness indistinguishable, then Hybrid 0 is com-
putationally indistinguishable from the simulated execution.

Proof. By straightforward reduction to witness indistinguishability of the NIWI. O

Claim 14. Assume that PKE is perfectly correct, then Hybrid 0 is computationally indistinguishable
from the real execution.

Proof. For every execution trace view, the real-world exeuction and Hybrid 0 can only differ if PKE
decryption did not decrypt to an honest party’s plaintext in which case F ﬁlpc has a different view of
honest parties’ inputs than the enclave program. This cannot happen due to the perfect correctness
of PKE. O

O]

7 Fair 2-Party Computation

Attested execution processors often provide a trusted clock to applications. In this section, we
explore the expressive power of such a trusted clock in the context of fair multi-party computation.
Throughout this section, we adopt the following conventions:

e Whenever stating lower bound results, we assume that a sequential composition [20] notion
of security is adopted (rather than universally composable [21}22]26]). Note that assuming a
weaker security notion in the lower bound context makes the lower bound stronger.

e When describing our new fairness constructions, we will adopt the stronger, universally com-
posable notion of security [21].

We formally define these notions in Appendix [A.2]

7.1 Background on Fair 2-Party Computation

We first quickly review the known results about fairness in the standard model:

e A well-known lower bound by Cleve [32] shows that it is impossible to achieve fair 2-party coin
flipping in the standard model. Cleve [32] also extends his impossibility result to the multi-party
case, showing that fair coin toss is impossible if at least half of the parties are corrupt. Cleve’s
result implies that fair multi-party computation is impossible for general functionalities when
half of the parties may be corrupt.

e A sequence of recent works [9,46,/47] show that the prior folklore interpretation of Cleve’s
impossibility is incorrect. Specifically, the general fairness impossibility does not imply that
fairness is impossible for every function. These works then make an effort at characterizing
exactly which class of functions can be computed fairly [9,46,47].

We will now explore how a trusted clock in an attested execution processor can help with
fairness.

41

7.2 Modeling a Trusted Clock

We assume a synchronous execution model, where protocol execution proceeds in atomic time steps
called rounds. We assume that the trusted clocks of attested execution processors and the network
rounds advance at the same rate. It is easy to adapt our model and results if the processors’ trusted
clocks and the network rounds do not advance at the same rate.

Execution model. For clarity, we explicitly state the execution model.

e In each round, the environment Z must activate each party one by one, and therefore, all parties
can naturally keep track of the current round number.

e A party can perform any fixed polynomial (in A\) amount of computation when activated, and
send messages.

e We consider a synchronous communication model where messages sent by an honest party will
be delivered at the beginning of the next round. Whenever a party is activated in a round, it
can read a buffer of incoming messages to receive messages sent to itself in the previous round.

Clock-aware functionalities. To model trusted clocks in attested execution processors, we will
provide a special instruction such that enclave programs as well as ideal functionalities can query
the current round number.

We say that a functionality F is clock-aware if the functionality queries the local time; otherwise
we say that the functionality F is clock-oblivious.

Henceforth in this section, all our upper bound results require only relative clocks — in other
words, all enclaves’ trusted clocks need not be synchronized, since our protocol will only make
use of the number of rounds that have elapsed since initialization. Therefore, we will assume the
following notational conventions:

e When a functionality reads the clock, a relative round number since the first invocation of the
functionality is returned;

e When an enclave program reads the clock, a relative round number since the first invocation of
the enclave program is returned.

7.3 Definition: Protocols and Fairness in the Clock Model

We now give a few basic definitions for secure multi-party computation in the clock model of
execution. Most importantly, we will define a notion of A-fairness in the clock model: roughly
speaking we say that a protocol A-realizes some functionality, if there exists a fixed polynomial
A(-), such that if the adversary receives outputs by round 7, then the honest parties must receive
outputs by round A(-).

Henceforth in this section, when we say efficient protocols, we mean the following:

e There exists a fixed polynomial g(-) such that if all parties behave honestly, the protocol will
terminate in g(\) rounds and all parties output the correct outcome except with negligible
probability.

42

A-fair 2-PC functionality F/2[sid, Py, P1]

On receive (“compute”,inp;) from P; where i € {0,1}:
if P1_; has sent (“compute”,inp;_;): let (outpg,outp;) := f(inpy,inp;)
On receive (“output”, §*) from A:
0 :=min(0*, A(r)) where r is the current round counter
assert (outpg,outp;) has been stored
send outp, to A immediately where b corresponds to the corrupt party
delay send outp;_; to the honest party in exactly J rounds

Figure 10: The ideal fair two-party computation functionality. Depending on the protocol,
the “delay send” operation may optionally require the honest party to poll before sending the
output.

e If at least one party is corrupt, we do not require that honest parties terminate in a fixed
polynomial number of rounds. For example, for any fixed polynomial g(-), the adversary can
cause a longer delay such that the adversary receives outputs in round r := g(\) + 1 — and if
the protocol A-realizes the intended functionality, then honest parties are then guaranteed to
receive outputs by round A(r). In other words, in the presence of corrupt parties, the running
time of the protocol may depend on the running time of the adversary (and hence not bounded
by any fixed polynomial).

We now define the notion of A-fairness. Specifically, we define a functionality /2 which is
parametrized by a function f that it computes and the fairness parameter A. Below we define it
for 2-party protocols, and extensions to multiple parties is in the most natural manner.

Henceforth, we say that a protocol II realizes F/ with A-fairness if II securely realizes F/2
by Definition |2 of Appendix We say that a protocol II UC-realizes F/ with A-fairness if II
UC-realizes F/2 by Definition [3|of Appendix We use the notation F/ to denote the standard,
fair multi-party computation functionality that computes the function f.

As noted earlier, all of our lower bound results are stated for the weaker notion of sequentially
composable multi-party computation (Definition [2)) — and this makes our lower bounds stronger.
By contrast, all of our upper bound results will adopt the stronger, universally composable security.

7.4 Lower Bounds for Fair 2-Party Computation

In this section, we will present two lower bounds that show the following:

1. Fairness for general functionalities is impossible if G, is not clock-aware, even when both parties
are equipped with a secure processor, and even when the adversary is only fail-stop. Although
Cleve’s lower bound proof [32] can easily be adapted to this setting, we instead prove it for a
contract signing functionality, since we use this as a warmup to prove the impossibility result
stated next.

2. Fairness for general functionalities is impossible if G, is indeed clock-aware; however, only one
of the two parties is equipped with a secure processor. Similarly, this lower bound holds even
when the adversary is only fail-stop.

43

As a warmup, we first prove why fairness is impossible for general functions if our G, function-
ality is not clock-aware — even when both parties have secure processors. As mentioned earlier,
although Cleve’s lower bound [32] can easily be adapted to this setting, we prove it instead for
contract signing as a warmup exercise — since we will later modify such a proof to show the
impossibility of fairness for general functions in the presence of a single secure processor.

Theorem 14 (Fairness impossiblity without trusted clock.). If Gu; is not clock-aware, and assume
that one-way function exists, then there exists a polynomial-time function f such that no two-party,
Ga-hybrid protocol can securely realize FI even when both parties are in the registry of Ga, and
even against a fail-stop adversary.

Proof intuition. We describe the proof intuition assuming G, is the functionality. The same
proof works for Guit too. To prove the above theorem, we consider a specific contract signing
functionality, i.e., the function f.ontract takes as input two parties’ public and secret keys henceforth
denoted (pkg, sko) and (pk;,ski), and outputs P,’s signature on the message 0 to party P;_;, where
b € {0,1}. Henceforth we let Fronract 1= F/eontract,

The proof is similar to the folklore proof that demonstrates the impossibility of contract signing
in the plain setting. The idea is the following: consider a G.:-hybrid protocol II that fairly realizes
Feontract, and without loss of generality, assume that P; sends the last message in protocol II. We
now show that if P; is the corrupt party and aborts prior to sending the last message, then the
ideal-world simulator Sim must send sky to Feontract in within fixed polynomially many rounds
during the simulation — otherwise one could leverage Sim and G, to break the signature scheme.
Since Feontract Will immediately output to the honest party Py in the ideal-world execution, this
means that in the real-world execution (against the fail-stop adversary P;), Py must output the
correct signature within a fixed polynomial number of rounds too. We therefore conclude that 11_4
must fairly realize Feontract t00 where I1_1 is the same as II but with the last message removed,
and where Py always assumes that the last message is dropped and directly outputs. In this way,
we can one by one remove the messages in the protocol II, until we obtain a degenerate protocol
that does not send any messages. In such a protocol, the only possible interactions are between the
two parties and Ga¢. It is not hard to see that since there is no direct information flow between
enclaves inside G.;, the degenerate protocol cannot securely realize Feontract Since otherwise we
can leverage either party to build a reduction that breaks the signature scheme. We thus reach a
contradition, and conclude that such a A-fair protocol II cannot exist in the first place.

Proof. Consider a signature scheme with the additional following properties:

e There exists an algorithm called check(:,) such that
Pr (pk,sk)ﬁGen(lA) : check(pk,sk)] =1

e For each pk in the range of Gen, there is only one sk such that check(pk,sk) = 1.

e For each sk in the range of Gen, there is only one valid signature for every message m € {0, 1}*.

Consider a G.t-hybrid protocol II that realizes a contract signing functionality Feontract : =
Fleontract with fairness, against any p.p.t. fail-stop adversary.

44

Contract signing function feontract

On receive ((sko, pko, PK1)s (sk1, pko, pk}))
assert pky, = pk(, pk; = pk}; for i € {0,1}: assert check(pk;,sk;) =1
output (outpg,outp;) where outp; := Sign(sko, 0), outpy := Sign(sky, 0)

For convenience, we only consider protocols that are non-degenerate, i.e., when we say that
protocol II realizes a functionality F, we mean that II not only satisfies the security definition as in
Definition |2 moreover, if neither party aborts, both parties must output the correct answer with
probability 1 — negl(\) if randomly chosen keys are used as the parties inputs. More formally, we
require that there exists a negligible function negl(\) such that for any A,

Po and Pi
: output correct| > 1 — negl(\)
sigs in view

(pk0>5k0) — Gen(l)\)v (pkakl) — Gen(l)\)a

Pr view < EXECLP0P1(12 (skg, pkg, pky), (sk1, pko, pk))

Suppose that EXEC!(xz, 5, \) completes within R()\) rounds with probability 1 (for any inputs).
Without loss of generality, assume that the protocol always completes in exactly R rounds and that
P1 sends the last message.

Now imagine that Py executes the protocol with an adversary P; that aborts in the last round,
but otherwise follows the honest algorithm and outputs whatever the honest algorithm outputs.
Notice there is a P; that can succeed in outputting a valid o1 with probability 1 — negl(X).

Since II securely realizes Feontract, there exists a simulator S such that

llle

I1,Po, Py (1

{ipEAL conracS (14 gy)}, . = {BEXEC Ay, 2) Yay.e

For this to happen, it must be the case that there exists a negligible function negl(\) such that
for every A, for every non-uniform polynomially bounded z,

(pko,sko) <— Gen(1*), (pky,sk1) « Gen(1%), S sends sk; to

P . : .
"1 view IDEALZ contract-S (1A (skg, pko, pk;), (ski, pkg, pky), 2) Feontract 11 View

> 1—negl(\)
In other words, if randomly chosen keys are used as the parties’ inputs, then S must send sk; to
Feontract €xcept with negligible probability. Since if S does not send sky to Feontract, then we can
leverage the combination of S and G, to construct a signature adversary that breaks the signature
scheme. However, if S sends skq to Feontract, then in the ideal execution, the honest Py will output
the correct o1 with probability 1. This means that with randomly chosen keys as the parties’
inputs, in the real execution EXECY (P (1%, (sko, pko, Pk1)), P; (17, (ski, pkg, pky), 2)), the honest Py
will output the correct o7 with probability 1 — negl(\). More formally, there exists a negligible
function negl(A) such that for every A, for every non-uniform polynomially bounded z,

(ko sko) < Gen(1%), (pky, ski) < Gen(1%), Po outputs

* : o i >1-
view < EXECTPoPE (12, (sko, pko, pky), (sk1, pkg, PKy), 2) C.OI“I“eCt sig in| > 1 — negl(X)
view

Pr

This means that the last (i.e., R-th) message is superfluous. In other words, consider a protocol
II_; which is identical as II except with the last message removed. We claim that if IT realizes

45

Feontract With fairness against any p.p.t. fail-stop adversary, then so does II_;. First, observe that
IT_; clearly is non-degenerate as argued above. For any (z,v, z), for any p.p.t. fail-stop adversary
A for the protocol II_; — note that A can also be regarded as an adversary for the protocol 1T —
we have that

Hfl,A(

{EXEC A,y 2) Yo = {BXECTAN, 2,4, 2) Yoy

Since II realizes Feontract With fairness against fail-stop adversaries, there exists a p.p.t. S, such
that

{EXECH’A()\,:E,y,z)}x,W

{IDEAL contract:S (X 1z, 2)) ey,

{EXECH_17A()\7 x? y’ Z)}x’yzz

C
C

Now we can prove by induction: one at a time, we remove the rounds of the protocol II, until
we have the empty protocol Il that does not send any messages; and we conclude that Iy securely
realizes Feontract @s well (and is non-degenerate) — but this clearly is impossible since otherwise
we can leverage either party to break the signature scheme.

O]

Theorem 15 (Fairness impossibility with trusted clocks, but when one party does not have a
secure processor). Assume that one-way functions exist. Even when Guy is indeed clock-aware,
there exists a polynomial-time function f such that no Gau-hybrid protocol can securely realize Ff
with A fairness for any polynomial function A, even when the adversary is only fail-stop — if only
one of the parties is in the registry of Gau.

Proof intuition. Although the proof of this theorem bears a superficial resemblance to that of
Theorem here the proof is more subtle. Following the proof of Theorem we use the same
strategy of removing the protocol messages one by one starting from the last round. Assume that
a Gati-hybrid protocol II securely realizes Feontract With A-fairness, and let g(-) denote the running
time of IT when both parties are honest. Without loss of generality, assume that Py is the party to
send the last message in II. Further, assume that Py is equipped with a secure processor but P; is
not.

1. Now consider a fail-stop adversary Py that aborts prior to sending the last message. Clearly, Py
can output the correct outcome in g(\) rounds. This means that in the simulation, by round
g(\) the simulator Sim must send (skg,0*) to the ideal functionality Feontract (Without loss of
generality, we assume that the adversary Py does not wait extra rounds to output after dropping
the last message), since otherwise it is not difficult to construct a reduction that leverages Sim
and G,y to break the signature scheme. This means that in the ideal execution, the honest
party P; must output to Z the correct output within A(g(A)) rounds — and therefore in the
real execution, this must hold as well. Since P; does not have a secure processor, it is not hard
to see that if P; can correctly output to Z in A(g(\)) rounds, it can correctly output to Z
in g(\) rounds — more specifically, since it did not receive any additional message after round
g(\), it can simply complete the remaining (polynomial amount) of the computation by fast
forwarding its clock.

2. Now, consider the protocol II_; that is defined in the same way as II, but with the last message
removed, and with P; simply assuming that there is no last message and directly outputting

46

without waiting to receive the last message. Using the observation from before, we know that
P1 can output in g(A\) rounds. Now consider a fail-stop P; that aborts prior to sending the last
message of II_; This means that in the simulation, the simulator Sim must send (ski,d*) to
Feontract by round g(A). And therefore, both the ideal-world and real-world Py must correctly
output to Z by round A(g(})).

3. Now consider the protocol II_s with one additional message removed. If a fail-stop Py aborts
prior to sending the last message, we know that can output correctly to Z in A(g(\)) rounds.
This means that Sim must send (skg, 0*) to Feontract by round A(g(\)). Therefore, in both the
real- and ideal-world executions, P; must output correctly to Z by round A(A(g(\))) However,
since P; does not have a secure processor, without loss of generality, P; can actually output
correctly to Z by round g(\).

4. Now consider the protocol II_3, and so on so forth.

Eventually we will arrive at a degenerate protocol that does not send messages between Py
and Pp, and we conclude that this degenerate protocol securely realizes Feontract With A-fairness.
The only interactions left in this degenerate protocol are between G.i+ and the parties. Now, since
Gatt ensures non-interference between enclaves, such a degenerate protocol clearly cannot securely
realize Feontract Since otherwise we can leverage either party to break the signature scheme. We
thus reach a contradition, and conclude that such a A-fair protocol II cannot exist in the first place.

Why the proof breaks when both parties have a secure processor. We point out why
this proof would break when both parties are equipped with a secure processor with trusted clock
— indeed, we will later show a construction that lets us achieve A-fairness for securely computing
general functions where A(r) = 2r.

Notice that in the above proof sketch, we repeatedly make use of the fact that when the party
without a secure processor P; is the honest party, when the other party aborts, in both the ideal-
and real-world executions, P; can output correctly within g(\) number of rounds — since nothing
prevents P; from finishing the remainder of the computation immediately and outputting. If this
were not the case, e.g., if P; also has a secure processor, then it would no longer be true that P;
can immediately output if Py aborted prior to sending the last message — since G,y could now
withhold messages from P; for some number of rounds before outputting them to P;. This would
cause the simulator’s runtime to blow up by a polynomial factor every time we remove a message,
and therefore depending on what the A function is, after polynomially many such removals, the
simulator would no longer be polynomial time.

Proof. Imagine that f is a contract signing functionality as defined earlier. f checks that both
parties provide the same public keys as input, and checks that the secret key each party provides
agrees with one of the public keys. If so, f will allow two parties to exchange signatures on the
message 0.

Without loss of generality, assume that Py has a secure processor, and P; does not.

Now consider a protocol II that securely realize F2 Consider an adversary controlling
one of the parties that aborts prior to sending the last message, but otherwise obeys the honest

protocol and outputs the final answer. There are two cases:

47

Case 1: Party who sends last message has a secure processor. Consider an adversary P that
aborts prior to sending the last message. P is otherwise honest and after aborting, it follows the
honest algorithm (possibly for multiple rounds, sending more inputs to G,), and finally outputs
what the honest algorithm outputs (that is, the correct signature oy).

Since II securely realizes Feontract, there exists a simulator Sim such that

é ILPg,P1 (1

{IDEAL]:contrachsim(l)\’ z,v, Z)}z,y,z {EXEC)\, z, 9, z)}m,y,z

Notice that in the real-world execution, Pj outputs the correct signature in g(A) number of rounds
where ¢ is a fixed polynomial. For the ideal-world execution to be computationally indistinguish-
able, in some round Sim must send (sko, 6*) to F iract fOr some 6* within ¢g(\) number of rounds.
Since if Sim does not send skg to Feontract, then we can leverage the combination of Sim and Gyt
to construct a signature adversary that breaks the signature scheme. We know that 6 < A(g(\)) is
bounded by a fixed polynomial. This means that in the real-world execution, P; must output the
correct signature within a fixed polynomial number of rounds if P; aborted before sending the last
message.

Now we consider the protocol II_; that is almost identical to II, but with the last message
removed. Further, P; outputs the outcome pretending that Py aborted before sending the last
message in II1. We can easily show that if IT securely realizes Fg, .o against any fail-stop adversary,
so must II_1.

Case 2: Party who sends the last message does not have a secure processor. Consider an adversary
P that aborts prior to sending the last message, but is otherwise honest — however, once it aborts,
it immediately outputs what the honest algorithm would have output without waiting for more
rounds. We note that since P} does not have a secure processor, without loss of generality, it
can always immediately finish all remaining computation after aborting even if the honest protocol
may stipulate that the party waits for more rounds — it turns out that this is important for the
induction steps in the proof to work, since otherwise the simulator’s runtime will blow up by a
polynomial factor with each step of the induction, and after polynomially many induction steps,
the simulator’s runtime may no longer be polynomial.

There exists a p.p.t. simulator Sim such that the ideal- and real-world executions are com-
putationally indistinguishable. Further, in g(A) number of rounds Sim must send (ski, §*) to the
ideal functionality, since otherwise we can leverage Sim to break the signature scheme. We know
that now the honest Py will receive output by round A(g(A)). This means that in the real-world
execution, Py will output the correct signature by round A(g(A)) too if P; aborted before sending
its last message.

Now consider the protocol I1_1 which is II but with the last message removed. Further, at the
end Py will compute the output as if P; aborted before sending the last message in protocol II. We
can easily show that if IT securely realizes F3 i act 2gainst fail-stop adversaries, so must IT_.
Induction. Based on the above, we can do an induction, removing the protocol messages one by
one from the last message till the first. In each step of the induction, we have a protocol with the
guarantee that if both parties are honest, both parties will output the correct signature within a
fixed polynomial number of rounds — note that whenever the reduction comes to a step when the
corrupt party does not have a secure processor, without loss of generality, the corrupt party can
always finish all remainding computation and output immediately. By leveraging this property, in

48

any step of the induction, the protocol’s running time is bounded by A(g(\)) when both parties are
honest. At the end of the induction, we conclude that one party can output the correct signature
in a fixed polynomial number of rounds, without receiving any messages from the other party. This
clearly is impossible with G,it or Gait, since no information flow exists between the two parties’
enclaves within G,y or Gt itself. O

7.5 Fair 2-Party Coin Toss with a Single Secure Processor

Although we cannot A-fairly compute general functionalities when only one party has an attested
execution processor, we show that interestingly, even with only one attested execution processor
(that has a trusted clock), we can already A-fairly compute more functions than what is known
to be possible in the plain setting. Specifically, we show how to realize a A-fair 2-party coin toss
protocol. Due to a well-known result by Cleve [32], we know that fair 2-party coin toss is impossible
in the standard setting even against a fail-stop adversary.

A two-party coin toss function is defined as below, and henceforth we define the functionality
Feoin 1= Fleoin,

Coin toss function feoin

On receive (inpg,inp;):
if inpy = inp; = “okay”: let coinﬁ{O, 1}, outpy = outp; := coin

else if one input # “okay”: for b € {0, 1}, let outpbi{O, 1}
output (outpg,outp;)

More specifically, the fair coin toss functionality Feoin tosses a fair coin between two parties,
such that 1) if both parties are honest, they receive the same uniform random coin as output; and
2) if one of the parties is corrupt and deviates from the protocol (including aborting), the other
honest party outputs a fresh, independent random coin.

We now describe a G.i-hybrid protocol that UC-realizes the Feoi, functionality with A fairness
where where A(r) :=r + 1. The formal description of the protocol is presented in Figure Here
we explain the intuition. Imagine that a server S has a secure processor (modeled as G,¢) but the
client C does not. First, the client C establishes a secure channel with an G, enclave. Then, Gait
flips a random coin and sends it over the secure channel to C — note that S is the intermediary
forwarding the message, but S cannot see the contents of this encrypted message nor modify it.
At this moment, however, G,i; still withholds the coin from S, such that S cannot decide whether
to drop this message based on the value of the coin — only in the next round will G, reveal the
outcome of the coin to §. Now if S fails to forward the message in time, C simply treats S as
having aborted, flips an independent random coin on its own, and outputs its value.

In comparison, in standard coin flipping without Gu, the party who sees the outcome of the
coin flip first can decide whether to abort based on whether he likes the outcome. Even though the
other party can generate a fresh random coin at this moment, the outcome will already be biased.
Our protocol circumvents this problem because a corrupt server S effectively must decide whether
to abort before seeing the outcome of the coin toss.

Theorem 16 (Fair 2-party coin toss with a single clock-aware attested execution processor). As-
sume that the encryption scheme is a perfectly correct and satisfies semantic security, assume that

49

Progcoin [C7 S}

On input (“toss”, g%):
let bﬁZp, sk := (g)°, coini{O7 1}, ct := Encg(coin), return (ct, g%, g°)

On input (“output”,v):
ifv+# L, return v
assert at least 1 round has been skipped since “toss”, return coin

PrOtcoin[Sida Gacrs-mpk, C, S]

Server S:

let eid := Gagt.install(sid, prog..,[C,S]), await (“toss”, g%) from C
(ct, g% g°,0) := Gus.resume(eid, (“toss”, g%)), send (eid,¥(C,ct, g%, ¢°,) to C
skip a round

(coin,) := Gagt.resume(eid, “output”)

except: if C aborted, coinﬁ{o, 1}

output coin

Client C:

let a(izp, send (“toss”, g%) to S, await (eid,) from S

parse ¢ := (msg, C,), assert NIZK.Ver(crs, (sid, eid, C, mpk, Gacrs.-mpk, C, msg),)
parse msg := (ct, g%, _), if parse succeeds: let coin := Decg(ct)

except: if S aborted or no coin was decrypted: coin(i{O, 1}

output coin

Figure 11: Fair 2-party coin toss when only S has a secure processor. 1 produces a witness
indistinguishable proof that either a ciphertext encrypts a valid attestation for the message, or it
encrypts the receiver’s identity key — see Section [6] for detailed definitions. Assertion failures are
caught by the exception handler except. The await instruction waits to receive the message at the
beginning of the next round, and treats the other party as having aborted if such a message was not
received in time. If the other party aborted during the protocol, control is immediately passed to line
marked except.

50

the DDH assumption holds in the relevant group, and that the signature scheme ¥ is existentially
unforgeable under chosen message attacks, then the Gqu-hybrid protocol defined in Figure UC-
realizes F oin with A fairness where A(r) :=r + 1.

Proof. We now prove the above theorem.

When § is corrupt. We can construct the following simulator Sim.

e Sim randomly generates a and sends S the tuple (“toss”, g%).

e Sim directly passes through any communication between S and G.y, except if the call is
Gatt-resume(eid, “output”) where eid is the challenge eid — this case will be treated later.

e If S sends the tuple (eid,) in time where v := (ct,¢% ¢°,_,m) — at this time eid is called
the challenge eid — Sim checks to see if S ever made an Gi.install(sid, progg.,[C,S])
query that returned the challenge eid. Sim also checks to see if & ever made an
Gat.resume(eid, (““toss””, g%)) query that returned (ct, (g%, g°), _) where the terms eid, ct, g, g°
correspond to either the term contained in the message from S or what Sim sent earlier. If either
check fails, Sim sends (“compute”, L) to Feoin, and then it sends (“output”, now) where now is
the identity function that indicates to output to the honest party in this very round.

Otherwise, if the checks pass, Sim sends (“compute”, “okay”) to Feoin, followed by
(“output”, now). At this moment Sim receives an output coin from Fui, and remembers it.

e If Sim did not receive such a tuple from S in time, S is treated as having aborted. In this case,
Sim also sends (“compute”, L) to Feoin, and then it sends (“output”, now) to Feoin where now is
the identity function.

o If S queries G,y.resume(eid, “output”, v), if v # L, simply pass through the call. If v = L
and Sim has received coin from Fioin, let (coin, o) := Guip.resume(eid, “output”, coin), return
(coin, o). Otherwise, return L.

e Finally, Sim passes through any communication between Z and S.

Hybrid 0. Hybrid 0 is the same as the simulation, except that whenever S sends any query of the
form G,.resume(_, (“toss”, g%)) pertaining to the challenge g* that Sim sent to S, G, now chooses
sk at random rather than by computing (¢%)?. Further, if S queries G,;.resume(eid, (“toss”, g%)) on
the challenge eid, then the simulated honest client will also use the same random sk G,y generates
to decrypt.

Claim 15. Assume that the DDH assumption holds, then Hybrid 0 is computationally indistin-
guishable from the simulated execution.

Proof. Through a straightforward reduction to DDH — a hybrid argument can be applied for over
each query of the form G, .resume(_, (“toss”, g%)). O

51

Hybrid 1. Hybrid 1 is almost the same as Hybrid 0, except that when Sim sends (“compute”, 1)
to Feoin and the real-world client did not trigger the exception handler, we modify the simulation
to simply abort.

Claim 16. Assume that the with proof system is computationally sound, that PKE is perfectly
correct, and that signature scheme is secure, then the probability that Hybrid 1 aborts is negligible.

Proof. Similar to that of Lemma [I] of Section [6] O

We now consider two cases, and in both cases, we show why Hybrid 1 is computationally
indistinguishable from the real execution.

e Case (a): the random coin Fu, generated for the corrupt party is the same as coin Gyt
generated; and

e Case (b): the random coin Feui, generated for the corrupt party differs from the coin Gyt

generated

Hybrid 2(a). Almost the same as Hybrid 1, except that we switch the random keys sks back to
real keys again.

Claim 17. Given that the DDH assumption holds, Hybrid 2(a) is computationally indistinguishable
from Hybrid 1.

Proof. Similar to the indistinguishability of Hybrid 0 and the simulated execution. O

Claim 18. Conditioned on Case (a) happening and that the simulation did not abort, it holds that
Hybrid 2(a) is identically distributed as the real execution.

Proof. Straightforward to observe. O

Henceforth, we focus on Case (b).

Hybrid 2(b). Hybrid 2(b) is almost identical as Hybrid 1, except that G, now encrypts 1 — coin
instead of coin.

Claim 19. Assume that the encryption scheme is semantically secure, then Hybrid 2(b) is compu-
tationally indistinguishable from Hybrid 1.

Proof. Through a straightforward reduction to encryption security. O

Hybrid 3(b). Hybrid 3(b) is almost identical as Hybrid 2(b), except that now we switch back
to real sks rather than random sks.

Claim 20. Assume that the DDH assumption holds, then Hybrid 3(b) is computationally indistin-
guishable from Hybrid 2(b).

Proof. Symmetric to the indistinguishability of Hybrid 2(a) and Hybrid 1. O

Claim 21. Conditioned on Case (b) happening and that the simulation did not abort, Hybrid 3(b)
1s identically distributed from the real execution.

Proof. Straightforward to verify. O

52

When C is corrupt. We can construct the following simulator Sim. Sim receives a tuple
(“toss”, g%) from C. If C aborted without sending a well-formed message, Sim sends (“compute”, 1)
to Feoin followed by (“output”, now).

Otherwise, Sim sends (“compute”, “okay”) to Feoin followed by (“output”, now+1), and receives
an outcome coin from Foin. Now Sim uses the witness indistinguishable proof, but uses C’s identity
key as the alternative witness, to compose an appropriate answer back to C, and it will embed the
coin it received from F.oi, into this answer.

Sim passes through any communication between C and Z.

It is not hard to see that given that the proof system is witness indistinguishable and that
PKE is perfectly correct, the simulated execution and the real-world execution are computationally
indistinguishable. The formal proof is straightforward and is similar to the honest-server case of
our (Gaers, Gatt)-hybrid protocol that achieves MPC with a single secure processor (see Section @

When both parties are honest. It is not hard to see that this case can be simulated easily

given our usage of secure and authenticated channels in the protocol.
O]

7.6 Fair Generic 2-Party Computation When Both Have Secure Processors

We now show that if both parties have a clock-aware attested execution processor, we can securely
compute any polynomial-time function with A fairness. The formal protocol description is presented
in Figure We explain the intuition below. The idea is to have a quid pro quo style protocol, where
the two parties’ secure processors bargain with each other as to when to release the computation
result. The protocol works as follows:

e In the beginning of the protocol, the two parties’ secure processors establish secure channels
with each other, such that both secure processors learn the outcome. At this time, both secure
processors set § := 2*, which is the intended time to release the result to the platform that owns
the secure processor.

e Now, in every turn, each secure processor halves § and promises the other secure processor that
it will release the outcome in § g time instead.

e If both parties are honest, then after O(\) rounds, both parties learn the outcome. If one of
the parties (say, Py) aborts, then it is not hard to see that if Py learns the outcome by round r,
then P; learns the outcome by round 2r.

Figure describes the full protocol. Most of the protocol is quite natural, but there are a
couple technicalities to point out. First, because each party sends their respective input to its local
enclave, the simulator can observe this communication and perform extraction. Second, we note
that the enclave program’s “output” entry point offers a backdoor v for programming the output.
In this protocol, however, since both parties simply query their local enclave for the output, the
backdoor for programming is simpler than the non-fair counterpart in Section[5.2] Particularly, here
a (corrupt) party can always choose not to learn its own output and ask the enclave to instead sign
any value v of its choice, and this does not harm the security of the honest party in the protocol.
By contrast, in the non-fair counterpart in Section [5.2] one party obtains the signed attestation

53

Proggairapclf> Po, P1,i] where i € {0,1} // for party P

On initialize: § := 2*
On input (“keyex”): let a(in, and return g¢
On input (“send”, gb, inp;):
assert “keyex” has been called
let sk := (g%)?, ct := AE.Encg(inp;), return ct
On input (“receive”, ct):
assert “keyex” and “send” have been called, assert ct not seen
let z1_; := AE.Decg(ct), ct’ := AE.Encg (), return ct’
On input* (“ack”, ct):
assert ct not seen, assert AE.Decg(ct) = 4§
let 6 := [§/2], ct’ :== AE.Encg(d), return ct’
On input (“output”,v):
if v 1, return v
assert “receive” has been called, assert current round > 0, return f(inpg,inp;)

Protgiope[sid, f,Po, P1,4) where i € {0,1} //for party P;

On input inp; from Z:

let eid := Gayi.install(sid, proggopne[f, Po, P1, 1))

let (g%, 0) := Gagi.resume(eid, “keyex”)

send (eid, g%, o) to P1_;, await (eid’, g°,0") from P;_;

assert X.Vermpk((sid, eid’, progfairQPC[f, Po, P1,1 — 1], gb), a’)

let (ct,) := Gati.resume(eid, (“send”, gb,inp;)), send ct to P;_;, await ct’

let (ct,_) := Gat.resume(eid, (“receive” ct’)), send ct to P;_;, await ct’

repeat A times: let (ct,_) := Ga.resume(eid, (“ack”, ct’)), send ct to P;_;, await ct’
On input “output” from Z:

return G,.resume(eid, “output”, L)

Figure 12: Fair 2-party computation when both parties have secure processors. Upon
assertion failure, control is yielded back to the environment Z. Await instructions yield control
back to the environment Z if no message is received at the end of a round.

54

and sends it to the other (in the efficient variant where only one party’s enclave performs program-
dependent computation). Therefore, in that protocol the honest party must protect itself against
a corrupt party who might aribtrarily program its enclave’s output.

Theorem 17 (Fair 2-party computation when both have clock-aware attested execution proces-
sors). Assume that DDH holds in the relevant group, AE is perfectly correct, and satisfies semantic
security and INT-CTXT security, and that the signature scheme X is existentially unforgeable un-
der chosen message attacks, it holds that the protocol described in Figure UC-realizes F! with
A fairness, where A(r) := 2r.

Proof. We now prove the above theorem. When both parties are honest, it is not difficult to
construct a simulation. We focus on the more interesting case when one party is corrupt. Without
loss of generality, we consider the case when Py is honest and P; is corrupt — the other case is
symmetric.

We can now construct a simulator Sim as described below.

e Unless otherwise noted later, Sim passes through messages between P; and G,.¢. Sim also passes
through communications between P; and Z.

e Sim calls eid = Gatt-install(sid, progeiapc[f, Po, P1,0]), and (g°,0)
Gatp-resume(eid’, “keyex”) and sends (eid’, g%, 0') to Py.
Sim waits to receive the first message (eid, g%, o) from P; — if this tuple was not the answer

to a previous Gait query, jump to the exception handler denoted except. At this point, eid is
called the challenge eid.

e The first time P; calls G,.resume(eid, (“send”, g%, inp;)) for some input inp; where eid is the
challenge eid, and g® is what Sim has sent, the simulator Sim extracts and sends inp; to F/»2.
Note that this message may be received before Sim receives (eid, g%, o) from P;. If this is the
case, the extraction actually happens when Sim receives (eid, g% o) from P; — this can be
achieved if Sim simply remembers every G.i; call P; has made.

e Sim calls (cty,_) := Gayi.resume(eid’, (“send”, g%, 0)) and sends ct; to P;.

Sim waits to receive ct from Pj. If (ct,.) is the not the result of the first
Gats.resume(eid, (“send”, g%, 1)) call where eid is the challenge eid, and g® was what Sim previ-
ously sent to Py, or if no such call has taken place, then go to the exception handler except.

e Sim calls (ctg, -) := Gayt.resume(eid’, (“receive”, ct)) and sends cty to Py.

Sim waits to receive ct from Pj. If (ct,.) is the not result of the first
gatt.resume(eid,("1'(\('(\1V<"',gb,ctl)) call where eid is the challenge eid, and gb,ct1 are what
Sim previously sent to P1, or if no such call has taken place, then go to the exception handler
except.

e Now repeat A\ times with i starting at 3 and incrementing each turn: Sim calls (ct;,-) :=
Gatt-resume(eid’, (“ack”, ct)), and sends ct; to P;. Sim waits to receive ct from P;. If ct is the
not result of the first Guti.resume(eid, (“ack”, ct;—1) call where eid is the challenge eid, and ct;—;
is what Sim just sent P, then go to the exception handler except.

95

e Sim simulates the current value of d: every time it receives an acknowledgement from P;, and
the exception handler is not triggered, it halves 4.

e If P ever sends any message late, it is treated as having aborted. In this case, jump to the
exception handler denoted except.

e If the execution completes without triggering the exception handler, then send (“output”, now)
to F/2. At this time Sim receives the outcome of the computation from F7* henceforth denoted
outp;.

e except: If any exception was triggered: in round g, send (“output”, A) where A(r) := 2r to
FIA At this time Sim receives the outcome of the computation from F/*2 henceforth denoted

outp;.

e When Sim receives Guii.resume(eid, “output”,v) from Py, if v # L, pass through the call. Else

if current round < %, return L. Else, call (outpy, o) := Gait.resume(eid’, “output”, outp;) return
(OUtp17 U)'

Hybrid 0. Identical to the simulation, except that every occurrence of the challenge sk = ¢ is
replaced with a random key.

Claim 22. Assume that DDH holds, then Hybrid 0 is computationally indistinguishable from the

simulation.

Proof. Straightforward reduction to DDH security. O

Hybrid 1. Identical to Hybrid 0, except that every time the exception handler is triggered in the
simulation, if the real-world Py would not have had an assertion failure or awaited a message that
did not arrive at the end of a round, abort the simulation.

Claim 23. Assume that the signature scheme X is secure and that AE has INT-CTXT security, it
holds that Hybrid 1 aborts with negligible probability.

Proof. 1f the exception handler is triggered in the simulation, and the real-world Py did not have a
signature verification failure or a ct-related failure (that is, either ct was seen before or decryption of
ct did not succeed or yield the expected result), then one can easily leverage P; to build a reduction
that either breaks the signature scheme or the INT-CTXT security of the AE scheme. O

Hybrid 2. Identical to Hybrid 1, except that encryption of the 0 vector is replaced with encryption
of the honest client’s true input.

Claim 24. Assume that AE is semantically secure, Hybrid 2 is computationally indistinguishable
from Hybrid 1.

Proof. Straightforward reduction to the semantic security of AE. O

56

Hybrid 3. Identical to Hybrid 2, except that the challenge sk is now replaced with the true g%
again.

Claim 25. Assume that DDH is hard, Hybrid 3 is computationally indistinguishable from Hybrid
2.

Proof. By straightforward reduction to DDH security. O

Claim 26. Conditioned on simulation not aborting, Hybrid 3 is identically distributed as the real
execution.

Proof. Straightforward to observe.

8 Variant Models and Additional Results

8.1 Side-Channel Attacks and Transparent Enclaves

Many secure processors are known to be vulnerable to certain side-channel attacks such as cache-
timing or differential power analysis. Complete defense against such side channels remains an area
of active research [39-42,57.79].

Recently, Tramer et al. [77] ask the question, what kind of interesting applications can we
realize assuming that such side-channels are unavoidable in secure processors? Tramer et al. [77]
then propose a new model which they call the transparent enclave model. The transparent enclave
model is almost the same as our G,i, except that the enclave program leaks all internal states to
the adversary A. Nonetheless, Gty still keeps its master signing key msk secret. In practice, this
model requires us to only spend effort to protect the secure processor’s attestation algorithm from
side channels, and we consider the entire user-defined enclave program to be transparent to the
adversary.

Tramer et al. [77] then show how to realize interesting security tasks such as cryptographic
commitments and zero-knowledge proofs with only transparent enclaves, albeit in a model where
the secure processor setup is assumed to be local to each protocol. In other words, Tramer et
al. prove security of their protocols only when each protocol instance freshly rekeys the secure
processor’s master key pair (mpk, msk). In practice, however, the secure processor’s master key
pair is globally shared across multiple users and applications — in fact, such reusability is an
important desideratum as we point out in Section

We will now show how to design a class of useful protocols when the secure processor’s enclave
is assumed to be transparent to the adversary. Further, we will prove security under a model when
the secure processor is shared across users and applications (i.e., modeled as a global functionality).
Before doing so, we first clarify the formal abstraction for transparent enclaves.

The transparent enclave functionality G\att. We define the transparent enclave functionality
gﬁm to be almost identical to G,, except that besides outputting the pair (outp, o) to the caller
upon the resume entry point, it also leaks to the caller all random bits internally generated during
the computation.

57

We also point out that if an enclave program is deterministic, it is naturally transparent (even
for Gait), since the only source of secrets was randomness internally generated inside an enclave
program (recall that this was needed for an enclave to perform key exchange with a remote client
and establish a secure channel).

8.2 Composable Commitments with Transparent Enclaves

We show how to realize UC-secure commitments when both parties have a secure processor since
otherwise the task would have been impossible as noted earlier. Although intuition is quite simple
— the committer could commit the value to its local enclave, and later ask the enclave to sign the
opening — it turns out that this natural protocol candidate is not known to have provable security.
Our actual protocol involves non-trivial techniques to achieve equivocation when the receiver is
corrupt, a technical issue that arises commonly in UC proofs.

Challenge in achieving equivocation. We note that because the committer must commit its
value b to its local enclave, extraction is trivial when the committer is corrupt. The challenge is
how to equivocate when the receiver is corrupt. In this case, the simulator must first simulate for
the corrupt receiver a commitment-phase message which contains a valid attestation. To do so,
the simulator needs to ask its enclave to sign a dummy value — note that at this moment, the
simulator does not know the committed value yet. Later, during the opening phase, the simulator
learns the opening from the commitment ideal functionality Feom. At this moment, the simulator
must simulate a valid opening-phase message. The simulator cannot achieve this through the
normal execution path of the enclave program, and therefore we must provide a special backdoor
for the simulator to program the enclave’s attestation on the opened value. Furthermore, it is
important that a real-world committer who is potentially corrupt cannot make use of this backdoor
to equivocate on the opening.

Our idea is therefore the following: the committer’s enclave program must accept a special value
¢ for which the receiver knows a trapdoor x such that owf(z) = ¢, where owf denotes a one-way
function. Further, the committer’s enclave must produce an attestation on the value ¢ such that the
receiver can be sure that the correct ¢ has been accepted by the committer’s enclave. Now, if the
committer produces the correct trapdoor x, then the committer’s enclave will allow it to equivocate
on the opening. Note that in the real-world execution, the honest receiver should never disclose
x, and therefore this backdoor does not harm the security for an honest receiver. However, in the
simulation when the receiver is corrupt, the simulator can capture the receiver’s communication
with Q\att and extract the trapdoor x. Thus the simulator is now able to program the enclave’s
opening after it learns the opening from the F,,n, ideal functionality.

The protocol works as follows:

e First, the receiver selects a random trapdoor x, and sends it to its local enclave. The local
enclave computes ¢ := owf(z) where owf denotes a one-way function, and returns (¢, o) where o
is an attestation for c.

e Next, the committer receives (¢, o) from the receiver. If the attestation verifies, it then sends to
its enclave the bit b to be committed, along with the value ¢ that is the outcome of the one-way
function over the receiver’s trapdoor x. The committer’s secure processor now signs the ¢ value
received in acknowledgment, and the receiver must check this attestation to make sure that the
committer did send the correct ¢ to its own enclave.

58

Progows Progcom

On input (“commit”, b, c): store (b, c), return ¢
On input (“trapdoor”, z):

On input (“open”, z,b'):
return owf(x) put (“open &)

assert a tuple (b, c) has been stored
if owf(z) = ¢ return b’ else return b

Protcom[sid, R,C]
Receiver R:

On input “commit” from Z:
let eidp := Gats.install(sid, progays)
let xﬁ{(], 1}, let (¢, 0) := Gay.resume(eid g, (“trapdoor”, z))
send (eidp, ¢, o) to C and wait to receive (eid¢,o’) from C
assert X.Vfmpk((sid, eidc, progeom, ¢),0’) and store eidc and output “receipt

On input “open” from Z:
assert “commit” has been called and wait to receive (b,0) from C
assert X.Vfmpk((sid, eidc, progeem, b), o) and output b

Committer C:

On input (“commit”,b) from Z:
wait to receive (eidp,c, o) from R and assert X.Vfno((sid, eid g, progeus, ¢), o)
let eide := Gayi.install(sid, progeym)
let (¢,0) := Gap.resume(eide, (“commit”™, b, c))
send (eido, o) to R, output “okay”
On input “open” from Z:

assert “commit” has been called, let (b, o) := Gayi.resume(eide, (“open”, L, 1))
send (b, o) to R, output “okay”

Figure 13: Composable commitment: both committer and receiver have secure pro-
cessors.

e Next, during the opening phase, the committer can ask its local enclave to sign the opening of
the committed value, and demonstrate the attestation to the receiver to convince him of the
opening. Due to a technicality commonly referred to as “equivocation” that arises in UC proofs,
the enclave’s “open” entry point provides the following backdoor: if the caller provides a pair of
values (z,b') such that owf(z) = ¢ where ¢ was stored earlier by the enclave, then the enclave
will sign ¢’ instead of the previously committed value b.

Theorem 18 (Composable commitment with transparent enclaves). Assume that owf is a secure
one-way function, and X is secure, the protocol described in Figure UC-realizes Foomlsid,C, R]
where R denotes the receiver, and C denotes the committer.

Proof. We consider three cases, where either the receiver R, the committer C, or both are honest.
In all cases, we consider an ideal-world adversary (the simulator Sim) that internally runs a copy

59

of a real-world adversary .4 and emulates an interaction between .4 and honest parties running
Proteom.-

Sim forwards any messages sent between Z and A. When A wants to call @m, Sim records the
message, forwards it to G\att, and records the response.

Committer is corrupt: We first describe the ideal-world simulator Sim. Sim runs a copy of the
real-world adversary A and simulates an execution of Protc,, with an honest R. In particular,
Sim emulates R’s calls to Q\att- Observe that the responses sent by Q\m are anonymous, and since
both the committer and receiver are in the registry (i.e., have secure processors), the responses are
identically distributed no matter who the caller is.

Specifically, Sim installs an enclave with id eidp running prog,,s in Q:m, obtains (c,0) by
resuming the enclave with a random input x, and sends (eidpg,c,0) to the corrupted committer.
Then, when A sends (eidc, o) to R, let ¢ be the challenge that Sim sent to A on behalf of R. Then,
the simulator aborts and outputs sig-failurel in the following cases:

e A never invoked G,i.install(sid, prog.,,) with eidc as response; or

e (c,0) was never output by Q\m on a valid call G\att.resmne(eidc, (“commit”, b, c)) from A.

If Sim does not abort, it looks up this value b and sends (“commit”,b) to Feom on C’s behalf.
Note that such a b must exist (as otherwise Sim aborts) and it must be unique (as prog.,, has
non-reentrant entry points, i.e., it outputs L if queried more than once). Finally, when A sends
(t/,0) to R, Sim aborts and outputs sig-failure2, if (/,0) was not a response of G, on a call by
A of the form éatt.resume(eidc, (“open”, _,). Otherwise, if b/ # b, where b is the value that Sim
sent to Feom, Sim aborts and outputs owf-failure. In all other cases, Sim continues the simulation
and sends “open” to Feom on C’s behalf.

Indistinguishability: As the simulator emulates the honest receiver R perfectly for A, conditioned
on Sim not aborting, the views of A in a real execution and in the ideal-world execution above are
identically distributed. Furthermore, conditioned on Sim not aborting in the simulation, it is
immediate that A eventually opens the value b that Sim “extracted” and sent to Fcom. Thus, if
Sim does not abort, the output of the honest receiver R are identical in the real and ideal worlds,
and so are the outputs of the environment Z.

It remains to argue that if Sim aborts, then with all but negligible probability so would an
honest R running Prot.om:

e Note that although the environment Z can query gﬁm through any dummy honest party, the
sid" in the query must be different from the challenge sid. Therefore Z is not able to obtain
any signatures pertaining to the challenge sid from gAatt through an honest dummy party. Z can
query QAatt with any forged sid through the adversary A — however these queries are observable
to Sim, and with all but negligible probability a different eid¢c is generated on each enclave
installation. Thus, if the signature scheme is secure, it is easy to see that the probability of R’s
first verification succeeding, yet Sim aborting with a sig-failurel, is negligible.

e By a similar argument, conditioned on Sim not aborting with output sig-failurel, the probabil-
ity of R’s second signature verification succeeding but Sim aborting with output sig-failure2 is
negligible.

60

e Conditioned on Sim not aborting with a sig-failure, the only way for A to open to a different value
b’ than the one extracted by Sim is by calling prog.,,, with an input x satisfying owf(z) = ¢,
where c is the challenge sent by R to A. By the security of the one-way function, the probability
of this event is negligible.

Receiver is corrupt: When A sends (eidp, ¢, o) to C, the simulator aborts and outputs sig-failure
in the following cases:

e A never invoked Ga.install(sid, progy,s) with cidp as response.
e (¢,0) was never output by G.g; on a valid call Guy.resume(cidg, (“trapdoor”, z)) from A.

Otherwise, Sim performs a reverse lookup of the value x submitted by A during a previous
gAatt.resume(eidR,x) query where the response was (¢,0). The simulator Sim records that z.
Again, note that this must exist and be unique, conditioned on Sim not aborting. When Feom
notifies Sim that C committed in the ideal world, Sim calls eido = éatt.install(sid,progcom)
followed by (c,0") := Guy.resume(eide, (“commit”,0,c)) where ¢ is from the message received
earlier from A. Sim sends (eid¢c, ¢, 0') to A on behalf of the simulated C. Finally, upon receiving
the opening of the committed bit b* from F o, the simulator equivocates the commitment by
calling (b*,0*) := Gags.Tesume(eidc, (“open”, 2*,b%)). It now sends (eidc, b*,0*) to A on behalf of
the simulated C.

Indistinguishability: Consider the following sequence of hybrids from the real-world to the ideal-
world executions.

e Real execution. Here Z interacts with A and an honest committer in the real-world protocol,
with Sim perfectly emulating C, while observing and forwarding messages between A and G-

e Hybrid 1. This is the same as the real execution, except that Sim aborts if the sig-failure event
defined above occurs but C’s signature verification for the obtained (eidg, ¢, o) would succeed.
Otherwise, Sim records the pre-image x sent by A to prog,-

Similarly to previous cases, the probability of a successful signature verification if Sim aborts
with sig-failure can trivially be shown to be negligible under the assumption that the signature
scheme is secure. Thus, no p.p.t. algorithms (A, Z) can distinguish Hybrid 1 from the real
execution.

e Hybrid 2. The same as Hybrid 1, except that Sim always sends (“commit”, 0, ¢) to the installed
enclave in G,ir. When later asked to decommit to b, Sim sends (“open”, z,b) to the prog.om,
where x is the pre-image recorded by Sim in Hybrid 1.

As the output of prog..,, and the attestation o produced by gAau are independent of the commit-
ted value b (given that the caller knows a pre-image of ¢ under owf), the view of A is identically
distributed in Hybrid 2 and Hybrid 1.

Finally, it remains to observe that Hybrid 2 is indistinguishable from an ideal world execution
with Sim and Feom-

Committer and receiver are honest: As(C and R communicate over secure channels, simulating
the view of the adversary A is trivial: when Sim is notified by Fcopn, that C committed, Sim emulates

61

Progows progzkp [R]

. . On input (“prove”, stmt, w, ¢, 7):
On input (“trapdoor”, 7): return owf(7) if owf (1) = ¢, return (stmt, c)
- K)
else if R(stmt,w) = 1, return (stmt, c)
Prot,ip[sid, P,V, R]
Verifier V:

On input “verify” from Z:
let eidy = Gag.install(sid, progy,)
let 7'<i{07 1}, let (c,0) := QAatt.resume(eidv, (“trapdoor”, 7))
send (eidy,c,0) to P, await (eid p,stmt,¢’) from P
assert 3.Vermpk((sid, eid p, prog,,[R],stmt, c), o”)
output stmt

Prover P:

On input (“prove”, stmt, w) from Z:
await (eidy,c,o) from V and assert X.Vermpi((sid, eidy, proga.s, ¢), o)
let eidp := Gat-install(sid, prog,,[R]), let (o, ., o) := Gag.resume(eidp, (“prove”, stmt,w, ¢, 1))
send (eid p,stmt, o) to V, output “okay”

Figure 14: Composable zero-knowledge proofs: both prover and verifier have secure
processors. R denotes the NP relation.

an interaction between R and C over a secure channel in the presence of A (note that the transmitted
messages are of fixed length). If A drops any message sent between C and R, Sim aborts. Sim
simply forwards any messages between A and Gy.

O

8.3 Composable Zero-Knowledge Proofs with Transparent Enclaves

Using similar techniques, we can also realize UC-secure zero-knowledge proofs with transparent
enclaves, assuming that the prover P and the verifier)V both have secure processors. We present
the formal protocol in Figure [14] and briefly describe the intuition below.

Informally speaking, the protocol works as follows.

1. First, the verifier V will choose a high-entropy trapdoor 7 and submit 7 to its enclave. The
enclave will compute ¢ := owf(7) and return an attestation ¢ on c¢. As we shall see, this
trapdoor 7 will allow the simulator to program the enclave and equivocate when the verifier VV
is corrupt.

2. Now, the verifier V will send (¢, o) to the prover.

3. The prover P verifies the attestation, and then sends the tuple (stmt,w,c, L) to its enclave.
In the real-world execution, P’s enclave program (denoted prog,,,) checks to see if w is a valid
witness for the statement stmt. If so, P’s enclave will return (stmt, ¢, 0’) where ¢’ is an attestation
on the pair (stmt, ¢). The prover P now sends (stmt,¢’) to the verifier V.

62

4. The verifier V verifies the attestation ¢’ using the value ¢ it has sent the prover P earlier —
note that this ensures that P has passed the correct ¢ value to its enclave. If the verification
succeeds,)V accepts the statement stmt.

Extraction. When the prover P is corrupt, the simulator must extract the witness w. This is
easy since for the the corrupt prover P to convince the honest verifier V, P must submit a valid
tuple (“prove”,stmt,w,¢c,T) to éam and the simulator can capture this message. We stress that
when the corrupt prover P submits this message (“prove”,stmt,w, ¢, 7), if ¢ is the correct value
that the simulator has sent P earlier, it cannot be the case that 7 is a correct trapdoor for ¢, since
otherwise we would be able to leverage P to break the one-way function owf.

Equivocation. We now explain a backdoor in the prover P’s enclave program (denoted progzkp),
and explain how to make use of this to allow the simulator to equivocate.

This backdoor works as follows: if P supplies a valid trapdoor 7 such that owf(7) = ¢, then
the enclave program will sign any statement stmt provided by P regardless of whether the witness
w is valid. In the real-world execution, if the verifier V is honest, it will check that 7P has passed
the correct value c to its enclave. Since V never discloses its private trapdoor to anyone and that
the one-way function is secure, the real-world prover P should never be able to come up with the
correct trapdoor; and thus the real-world prover P must supply a correct witness to get its enclave
to sign the statement stmt. This ensures soundness in the real world.

In the simulation, however, if the verifier V is corrupt, the simulator must be able to get _C’;att
to sign the statement stmt without knowning the witness. This is where the simulator must invoke
this backdoor. More specifically, when the corrupt verifier V submits the trapdoor 7 to its enclave,
the simulator can capture this message and extract the trapdoor 7. This enables the simulator to
later invoke the backdoor and program the enclave.

Theorem 19 (Composable zero-knowledge proofs with transparent enclaves). Assume that owf is
a secure one-way function, and that 3 is secure, the protocol described in Figure UC-realizes
Faplsid, P, V] where P denotes the prover, and V denotes the verifier.

Proof. Notice that the zero-knowledge proof protocol (Figure[14]) is very similar to the commitment
protocol (Figure . The most notable difference is that commitment has two phases, namely
“commit” and “open”; but a zero-knowledge proof only has a single phase. The proof of this
theorem is thus very similar to that of Theorem [I§ — we omit the full proofs here to avoid being
repetitive. O

8.4 Non-Anonymous Attestation

While some secure processors such as Intel SGX rely on anonymous attestation, others such as older
versions of TPM rely on non-anonymous attestation. One typical realization is for the manufacturer
to sign a certificate for the secure processor’s long-term public key, and the corresponding secret
key is embedded in non-volatile memory inside the secure processor, such that the secure processor
can sign attestations with it. In general, such a signature chain can be thought of as using the
manufacturer’s public key mpk to sign messages prefixed by the platform’s identity.

It is not hard to see that our protocols for a single secure processor that leverage G..s and
witness indistinguishable proofs (see Sections |§| and can easily be adapted to work with non-
anonymous attestation — the only modification needed is to add the platform’s identity (denoted

63

P) as an extra witness in the witness-indistinguishable proof, and prove that either the encrypted
witness is the pair (P, o) such that o is a valid attestation on P||msg; or the encrypted witness is
the receiver’s identity key.

However, note that our protocols that rely on all parties to have a secure processor no longer
work in the case of non-anonymous attestation. Specifically, these protocols (see Sections
and send attestations around in the clear. In the case of anonymous attestation and when
secure processors are omnipresent, sending attestations around cannot implicate an honest party of
participation; however, in the case of non-anonymous attestation, since the attestation now binds
to the party’s identifier, sending signatures around in the clear would lead to non-deniability.

Acknowledgments

We thank Elette Boyle, Kai-Min Chung, Victor Costan, Srini Devadas, Ari Juels, Andrew Miller,
Dawn Song, and Fan Zhang for helpful and supportive discussions. This work is supported in part
by NSF grants CNS-1217821, CNS-1314857, CNS-1514261, CNS-1544613, CNS-1561209, CNS-
1601879, CNS-1617676, AFOSR Award FA9550-15-1-0262, an Office of Naval Research Young
Investigator Program Award, a Microsoft Faculty Fellowship, a Packard Fellowship, a Sloan Fel-
lowship, Google Faculty Research Awards, and a VM Ware Research Award. This work was done in
part while a subset of the authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptogra-
phy through NSF grant CNS-1523467. The second author would like to thank Adrian Perrig and
Leendert van Doorn for many helpful discussions on trusted hardware earlier in her research.

References

[1] Intel SGX for dummies (intel SGX design objectives). https://software.intel.com/en-us/
blogs/2013/09/26/protecting-application-secrets-with-intel-sgx.

[2] Trusted computing group. http://www.trustedcomputinggroup.org/.

[3] Martin Abadi and Jan Jiirjens. Formal eavesdropping and its computational interpretation.
In Theoretical Aspects of Computer Software, 4th International Symposium (TACS), pages
82-94, 2001.

[4] Martin Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptology, 20(3):395, 2007.

[5] Pedro Adao, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of formal en-
cryption in the presence of key-cycles. In Computer Security - ESORICS 2005, 10th European
Symposium on Research in Computer Security, Milan, Italy, September 12-14, 2005, Proceed-
ings, pages 374-396, 2005.

[6] Tiago Alves and Don Felton. Trustzone: Integrated hardware and software security. Informa-
tion Quarterly, 3(4):18-24, 2004.

[7] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innovative technology
for cpu based attestation and sealing. In HASP, 2013.

64

https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
http://www.trustedcomputinggroup.org/

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

22]

[23]

[24]

ARM Limited. ARM Security Technology Building a Secure System using TrustZone® Tech-
nology, Apr 2009. Reference no. PRD29-GENC-009492C.

Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete characteriza-
tion of fairness in secure two-party computation of boolean functions. In Theory of Cryptog-
raphy Conference (TCC), pages 199-228, 2015.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally composable crypto-
graphic library. TACR Cryptology ePrint Archive, 2003:15, 2003.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi. Foundations of
hardware-based attested computation and application to SGX. In IEEE Furopean Symposium
on Security and Privacy, EuroS€&P 2016, Saarbricken, Germany, March 21-24, 2016, pages
245-260, 2016.

Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an untrusted
cloud with haven. In OSDI, 2014.

Stefan Berger, Ramén Céceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer, and Leen-
dert van Doorn. vI'PM: virtualizing the trusted platform module. In USENIX Security, 2006.

Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and Guy N.
Rothblum. Program obfuscation with leaky hardware. In ASIACRYPT, 2011.

Florian Bohl and Dominique Unruh. Symbolic universal composability. In Proceedings of the
2013 IEEE 26th Computer Security Foundations Symposium, CSF 13, pages 257-271, 2013.

Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, 2000.
Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In C'CS, 2004.

Ernie Brickell and Jiangtao Li. Enhanced privacy id from bilinear pairing. IACR Cryptology
ePrint Archive, 2009:95, 2009.

Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 2000.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, 2001.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable secu-
rity with global setup. In TCC. 2007.

Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances in Cryp-
tology (CRYPTO), pages 19-40, 2001.

Ran Canetti and Jonathan Herzog. Universally composable symbolic security analysis. J.
Cryptology, 24(1):83-147, 2011.

65

[25]

[26]
[27]

[28]

Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical uc security with a global
random oracle. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 14, pages 597-608, 2014.

Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, 2003.

Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authentication and
key-exchange with global pki. In IACR International Workshop on Public Key Cryptography,
pages 265-296. Springer, 2016.

David Champagne and Ruby B Lee. Scalable architectural support for trusted software. In
HPCA, 2010.

Chen Chen, Himanshu Raj, Stefan Saroiu, and Alec Wolman. ¢TPM: A cloud TPM for cross-
device trusted applications. In NSDI, 2014.

Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption from (small)
hardware tokens. In Asiacrypt, 2013.

Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption from (small)
hardware tokens. In ASTACRYPT, 2013.

Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pages 364—
369, 1986.

Victor Costan and Srini Devadas. Intel SGX explained. Manuscript, 2015.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions
for strong software isolation. Cryptology ePrint Archive, Report 2015/564, 2015. http:
//eprint.iacr.org/.

Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chunwang Zhang.
M2R: Enabling stronger privacy in MapReduce computation. In USENIX Security, 2015.

Nico Déttling, Thilo Mie, Jorn Miiller-Quade, and Tobias Nilges. Basing obfuscation on simple
tamper-proof hardware assumptions. JACR Cryptology ePrint Archive, 2011:675, 2011.

Nico Déttling, Thilo Mie, Jorn Miiller-Quade, and Tobias Nilges. Implementing resettable
uc-functionalities with untrusted tamper-proof hardware-tokens. In T'CC, 2013.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. Commun. ACM, 28(6), June 1985.

Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew Myers, and G. Edward Suh.
Full-processor timing channel protection with applications to secure hardware compartments.
2015.

Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A secure processor architec-
ture for encrypted computation on untrusted programs. In STC, 2012.

66

http://eprint.iacr.org/
http://eprint.iacr.org/

[41]

[42]

Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, and Srini-
vas Devadas. RAW Path ORAM: A low-latency, low-area hardware ORAM controller with
integrity verification. TACR Cryptology ePrint Archive, 2014:431, 2014.

Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan, and Srinivas
Devadas. Suppressing the oblivious RAM timing channel while making information leakage
and program efficiency trade-offs. In HPCA, pages 213-224, 2014.

Juan Garay, Philip MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fairness and
composability of cryptographic protocols. In T'CC, 2006.

Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and Eran Tromer. Physical key
extraction attacks on pcs. Commun. ACM, 59(6):70-79, May 2016.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In
CRYPTO, 2008.

Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation without an
honest majority. In TCC; 20009.

S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in
secure two-party computation. J. ACM, 58(6):24:1-24:37, December 2011.

Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Found-
ing cryptography on tamper-proof hardware tokens. In T'CC, 2010.

Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin R. B. Butler, and Patrick Traynor.
Using intel software guard extensions for efficient two-party secure function evaluation. In FC,
2016.

Omer Horvitz and Virgil D. Gligor. Weak key authenticity and the computational completeness
of formal encryption. In CRYPTO, pages 530-547, 2003.

Intel Corporation. Intel® Software Guard Extensions (Intel® SGX), Jun 2015. Reference no.
332680-002.

Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the picture: Soundness
of formal encryption in the presence of active adversaries. In Programming Languages and
Systems, 14th European Symposium on Programming, ESOP 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software (ETAPS), pages 172-185, 2005.

Jonathan Katz. Universally composable multi-party computation using tamper-proof hard-
ware. In FUROCRYPT, 2007.

Bernhard Kauer. Tpm reset attack. http://www.cs.dartmouth.edu/ pkilab/sparks/.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances in
Cryptology—CRYPTO’99, pages 388-397. Springer, 1999.

David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, and Mark Horowitz. Architectural support for copy and tamper resistant software.
ACM SIGPLAN Notices, 35(11):168-177, 2000.

67

http://www.cs.dartmouth.edu/~pkilab/sparks/

[57]

[58]

[59]

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic, John
Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a secure processor.
In CCS, 2013.

Lorenzo Martignoni, Pongsin Poosankam, Matei Zaharia, Jun Han, Stephen McCamant, Dawn
Song, Vern Paxson, Adrian Perrig, Scott Shenker, and Ion Stoica. Cloud terminal: Secure
access to sensitive applications from untrusted systems. In USENIX ATC, 2012.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software model for isolated
execution. HASP, 13:10, 2013.

Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-Rogaway
language of encrypted expressions. J. Comput. Secur., 12(1):99-129, January 2004.

Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the presence of
active adversaries. In Theory of Cryptography Conference (TCC), 2004.

Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil
Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted processors. In
25th USENIX Security Symposium (USENIX Security 16), August 2016.

Adam Petcher and Greg Morrisett. The foundational cryptography framework. In Principles of
Security and Trust - 4th International Conference, POST 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, pages 53-72, 2015.

Adam Petcher and Greg Morrisett. A mechanized proof of security for searchable symmetric
encryption. In CSF, 2015.

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and implemen-
tation of a TCG-based integrity measurement architecture. In USENIX Security, 2004.

Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using arm trustzone to build a
trusted language runtime for mobile applications. SIGARCH Comput. Archit. News, 42(1):67—
80, February 2014.

Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. Policy-sealed data:
A new abstraction for building trusted cloud services. In 21st USENIX Security Symposium,
pages 175188, 2012.

Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria
Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data analytics in the cloud. In IEFE
S€ P, 2015.

Elaine Shi, Adrian Perrig, and Leendert Van Doorn. BIND: A fine-grained attestation service
for secure distributed systems. In S&P, 2005.

Elaine Shi, Fan Zhang, Rafael Pass, Srini Devadas, Dawn Song, and Chang Liu. System-
atization of knowledge: Trusted hardware: Life, the composable universe, and everything.
Manuscript, 2015.

68

[71]

[72]

[73]

Sean W. Smith and Vernon Austel. Trusting trusted hardware: Towards a formal model for
programmable secure coprocessors. In Proceedings of the 3rd Conference on USENIX Workshop
on Electronic Commerce - Volume 3, WOEC’98, 1998.

G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas Devadas.
Aegis: architecture for tamper-evident and tamper-resistant processing. In Proceedings of the
17th annual international conference on Supercomputing, pages 160-171. ACM, 2003.

G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas. Aegis:
architecture for tamper-evident and tamper-resistant processing. In International conference
on Supercomputing, ICS ’03, pages 160-171, 2003.

Mike Szczys. TPM crytography cracked. http://hackaday.com/2010/02/09/
tpm-crytography-cracked/.

David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, and Mark Horowitz. Architectural support for copy and tamper resistant software.
SIGOPS Oper. Syst. Rev., 34(5):168-177, November 2000.

Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761-763, August 1984.

Florian Trameér, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine Shi. Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge. Cryptology ePrint
Archive, Report 2016/635, 2016. http://eprint.iacr.org/2016/635.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In IEEFE Symposium on Security and Privacy,
2015.

Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware design
language for timing-sensitive information-flow security. In ASPLOS, 2015.

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An au-
thenticated data feed for smart contracts. In ACM CCS, 2016.

Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: an infrastructure for efficiently
protecting information leakage on the address bus. SIGARCH Comput. Archit. News, 32(5):72—
84, October 2004.

69

http://hackaday.com/2010/02/09/tpm-crytography-cracked/
http://hackaday.com/2010/02/09/tpm-crytography-cracked/
http://eprint.iacr.org/2016/635

Appendices

A Universal Composition Background and Conventions

In this section, we first give a brief background on the universal composition framework [21},22,26].
We then introduce some new UC conventions we will adopt throughout this paper.

A.1 Brief Background on the Universal Composition Framework

The UC framework allows for modular analysis of large programs: various subroutines can be
analyzed as separate entities, the security of which is assessed independently by means of realizing
some ideal functionality F. The universal composabilitiy theorem then states, informally, that the
security properties of a protocol that makes subroutine calls to F are retained if F is replaced by
the actual program or protocol that realizes it.

At a high level, security in the UC framework consists in showing that whatever information
can be learned by some network adversary A in a real world execution of some protocol 7, could
also have been obtained by a simulator Sim attacking an ideal world protocol execution, where all
parties privately interact with an idealized trusted functionality F.

The presence of arbitrary other protocols running alongside m is modeled via an environment
Z, which determines the inputs to all parties participating in a protocol and sees all the parties’
outputs. The environment interacts with the adversary (A or Sim) to coordinate party corruptions.
The protocol 7 is said to UC realize some ideal functionality F, if for any real-world adversary A,
there exists a simulator Sim, such that no p.p.t. environment Z can distinguish an interaction with
A and parties running 7 from an interaction with Sim and F.

By the composition theorem [21], any protocol that makes subroutine calls to F retains its
security properties if all calls to F are appropriately replaced by instances of a protocol 7 that UC
realizes F.

Setup functionalities. Many functionalities of interest cannot be realized in the “plain” UC
framework. It is thus customary to consider hybrid models, in which parties get access to some
ideal setup functionality.

In the basic UC framework, these setup functionalities are “local” to a particular protocol
execution. The environment Z (which we recall models arbitrary other protocols running in the
network) can only interact with the setup functionality F through the adversary. In this sense, the
basic UC framework fails to capture composable security in the presence of globally available setup
functionalities such as PKIs or trusted hardware platforms.

UC with global setup. To remedy the shortcoming of the plain UC framework, Canetti et
al. [22] propose a Generalized UC model (GUC), which enables proofs of secure composition in the
presence of global setup functionalities, that can be accessed by any party in any protocol instance
in the system.

The main technical difference compared to the original UC framework, is that the environment
Z is now allowed to interact with the setup functionality “directly”, i.e., without going through A
or Sim. The setup functionality must thus be non-programmable, meaning that the simulator Sim
cannot select the secret state that makes up the setup functionality, as this would be detectable by
the environment.

70

As a concrete example, if we were to model trusted hardware in the UC framework, the simulator
could select the secret key used for signing attestation, and communicate the corresponding public
key to Z. In the GUC framework however, Z need not interact with Sim to obtain the trusted
platform’s public key. Any simulation must then be consistent with this global key pair, with Sim
having no knowledge of the secret key.

Previous works |22} 25] have noticed that achieving security in the GUC model is remarkably
non-trivial: although the global setup has to be publicly available, it must also provide some kind
of hidden “trapdoor” information, that the simulator can exploit to “cheat” in a simulation.

A.2 UC Notational Conventions

In this paper, we use the term UC and GUC indistinguishably. Let G denote a global functionality.
When we say that a G-hybrid protocol UC-realizes a functionality, we mean that the standard UC
simulation definition holds in light of the fact that Z can interact with G.

Session conventions. UC assumes that the environment Z invokes each protocol instance with
a unique session identifier sid. While earlier UC papers adopt the convention that I'TIs include
sid and often the party identifiers in messages, in this paper, we use a simplified notation where
we simply parametrize the functionality or protocol instance with the session identifier as well
as identifiers of parties involved. For example, Foutsrc[sid,C, S| denotes an Foutsre instance with
session identifier sid, and involving a client C and a server S. Similarly, Protoysrc[sid,C, S] denotes
a protocol instance with session identifier sid, and involving a client C and a server S. In this way,
both the sid and the party identifiers can be referenced by the code of the ITIs. Note that this
convention only works when the sid and party identifiers can be statically determined (as opposed
to dynamically or at run-time), which is the case throughout this paper.

Reentrant and non-reentrant activation points. In this paper, all reentrant activation points
for ITIs are colored blue and followed by an asterisk”, and all non-reentrant activation points for
ITIs are colored green. A reentrant activation point can be invoked multiple times. A non-reentrant
activation point can only be invoked once; and for all future invocations the ITI would do nothing
and immediately return L.

Assertions. When we write the code for ITIs, we often use assertions. When assertions fail, the
ITT immediately returns L. When enclave programs have an assertion failure, we assume that Gy
simply returns L.

Secure channels. In our paper, we use the notation send to denote a UC-secure secure channel,
realized with the standard secure channel functionality denoted Fy.. The secure channel func-
tionality can be realized from a global PKI using Diffie-Hellman key exchange and authenticated
encryption for instance [27].

A.3 Multi-Party Computation

Useful functionalities. We define a few well-known ideal functionalities, including multi-party
computation, commitment, and zero-knowledge proofs. The definitions are given in Figure [I5]

71

]:mpc[szld7 fa Pla .- "Pn]

notify A of P;, store x; and ignore further messages from P;
cey Tp)
ey Pr

On receive”™ z; from P;:

if an x; was received from all P;, let y := f(x1,
generate delayed private outputs y for each party Py,
Figure 15: Ideal multiparty computation functionality.

fcom[sléda Ca R]

On receive (“commit”, z) from C:

store x, generate a public delayed message “receipt” to R.
assert some x was stored, generate a private delayed message (“open”, x) to R
Figure 16: Ideal two-party commitment functionality.

On receive “open” from C:

Faxplsid, P, V, R]

On receive (“prove”, stmt, w) from P:
if R(stmt,w) = 1, generate a private delayed message stmt to V
Figure 17: Ideal zero-knowledge proof functionality.

We define two no-

Figure and Figure respectively. Whenever applicable, we assume for simplicity that the
input and output lengths are fixed and known publicly in advance.
Sequentially and universally composable multi-party computation.
tions of multi-party computation: sequentially composable MPC and UC-secure MPC. If a protocol
is UC-secure, then it is sequentially composable. We will use the weaker notion of security, i.e., se-
quentially composable MPC for our lower bounds (and this makes our lower bound results stronger),

realizes F, if for any p.p.t. adversary A, there exists a p.p.t. simulator S,
{ExEC AN, 21, ...

[llo

but the stronger security notion for our constructions.
Definition 2 (Sequentially composable multi-party computation [20]). We say that protocol 11
) :Cn, Z)}xlw"’m’fh

{IDEALT S (A, 21, . .

* x?’u Z)}Q?1,...,:En,
., Ty denotes the n parties’ respective inputs, and z denotes an auxiliary advice string
In the above, the notations IDEAL and EXEC denote the random variable consisting of the honest

H,A,Z(A)

where x1, .
provided to the adversary.
parties’ outputs as well as the protocol transcripts as viewed by the corrupt parties.
&
= EXEC

Definition 3 (Universally composable MPC [21]). We say that protocol II UC-realizes F, if for
any p.p.t. adversary A, there exists a p.p.t. simulator S, such that for any p.p.t. environment Z,

IDEALT 5% (\)
72

In the above, the environment Z is allowed to adaptively choose inputs for all parties, and
communicate with the adversary in arbitrary manners. The notations IDEAL and EXEC denote the
views of the environment Z in the executions, including all parties’ inputs and outputs, as well as
any protocol transcript as viewed by the adversary.

Note that the main difference between the two definitions is the following: for sequential com-
position, the simulator S can depend on the adversary A; whereas in universal composable security,
the simulator & must work for all environment Z (and the adversary A can be considered dummy,
i.e., only pass messages between Z and the honest parties).

A.4 Preliminaries on Zero-Knowledge Proofs

In the remainder of this section, f(\) &~ g(\) means that there exists a negligible function v(\)
such that [f(A) — g(A\)| < v(A).

A non-interactive proof system henceforth denoted NIWI for an NP language £ consists of the
following algorithms:

e crs < Gen(1*, L), also written as crs < KeyGenpuy (17, £): Takes in a security parameter \,
a description of the language £, and generates a common reference string crs. In this paper,
we use a global crs, which is part of our global setup Gacrs-

e 7 < Prove(crs,stmt, w): Takes in crs, a statement stmt, a witness w such that (stmt,w) € L,
and produces a proof .

e b « Ver(crs,stmt, m): Takes in a crs, a statement stmt, and a proof 7, and outputs 0 or 1,
denoting accept or reject.

Perfect completeness. A non-interactive proof system is said to be perfectly complete, if an
honest prover with a valid witness can always convince an honest verifier. More formally, for any
(stmt,w) € R, we have that

Pr[crs + Gen(1*, £), 7 + Prove(crs, stmt, w) : Ver(crs,stmt,) =1 | =1

Computational soundness. A non-interactive proof system for the language £ is said to be
computationally sound, if for all p.p.t. adversaries A,

Pr [crs < Gen(1*, L), (stmt,) < A(crs) : (Ver(crs,stmt,) = 1) A (stmt & £) | ~ 0

Witness indistinguishability. A non-interactive proof system for the language £ is said to be
computationally sound, if for all p.p.t. adversaries A,

crs + Gen(1, L), crs + Gen(1, L),
Pr (stmt, wo, wy) + A(crs), ~ Pr (stmt, wo, wy) < A(crs),
7 <+ Prove(crs, stmt, wy) : 7 + Prove(crs, stmt, wy) :
(stmt,wg) € LA (stmt,wy) € LA A(m) =1 (stmt,wg) € LA (stmt,wy) € LA A7) =1

73

foutsrc [Sida Ca S]

On receive™ (“compute”, f,) from C:
let y := f(x)
send (|f| + |zl,]y|) to S and A
generate a delayed private output y to C

Figure 18: The ideal secure outsourcing functionality. The server and adversary learn
nothing more than the size of the client’s inputs and outputs

Note that although we define non-interactive witness indistinguishable proofs in the global
common reference string model for ease of exposition, our protocol and proof (for when only a
single party has a secure processor) still work if we instead adopted interactive versions that do not
require a global common reference string — nonetheless our protocols for a single secure processor
would require the use of G, elsewhere to circumvent a theoretical impossibility that we show.

B Warmup: Secure Outsourcing from G

To illustrate the usage of the G, setup assumption to achieve formal composable security, we begin
by considering a very simple outsourcing application. The ideal functionality we wish to achieve is
denoted Foutsre and described in Figure

In Figure 19| we show a simple protocol between a client C and a server S to realize Foyutsrc. The
server is in possession of a trusted hardware platform and initializes an enclave running the public

program progg,tsre-

Theorem 20 (Secure outsourcing from Gy). Assume that the signature scheme X is existentially
unforgeable under chosen message attacks, the Decisional Diffie-Hellman assumption holds in the
algebraic group adopted, the authenticated encryption scheme AE is perfectly correct and satisfies the
standard notions of INT-CTXT and semantic security. Then, the G — hybrid protocol Prot s
UC-realizes Fouisre when the client C is honest, and the server S is a static, malicious adversary.

Proof. We now prove Theorem i.e., that Protyusc securely realizes Foutsre. We consider two
cases: when the client is honest and server is corrupt; and when both the client and server are
honest.

Honest client and corrupt server. We first describe an ideal-world simulator Sim, and then
show that no p.p.t. environment Z can distinguish the ideal-world and real-world executions.

e Unless noted otherwise below, any communication between Z and A or between A and G is
simply forwarded by Sim.

e The simulator Sim starts by emulating the setup of a secure channel between C and G,. Sim
sends (“keyex”, ¢g%) to A (that controls the corrupted S) for a randomly chosen a.

e When Sim receives a tuple (eid, g°,0) from A, Sim aborts outputting sig-failure if o would be
validated by a honest C, yet Sim has not recorded the following A < G, communication:

74

Progoutsre
On input (“keyex”, g%): let b<—sZ,, store sk := (g%)°; return (g%, g*)
On input* (“compute”, ct):
let (f,x) := AE.Decg(ct)
assert decryption success, ct not seen before
let y := f(x) and return ctoy := AE.Ence(y)

Protoytsec|sid, C, S]
Server S:

On receive (“keyex”, g%) from C:
let eid := Gay.install(sid, proggyisec)
let ((9%, %), 0) = Gats.resume(eid, (“keyex”, g%)) and send (eid, g°, o) to C

On receive™ (“compute”, ct) from C:
let (Ctout, o) = Gart.resume(eid, (“compute”, ct)) and send ctoyt to C

Client C:

On initialize:
let a <—sZ,, mpk := G,.getpk()
send (“keyex”, g%) to S, await (eid, ¢°, o) from S
assert 2.V mpk((sid, eid, progeusre, (9% g°)), o)
let sk := (g*)®

On receive® (“compute”, f, z) from Z:
let ct := AE.Encg(f, z) and send (“compute”, ct) to S, await Ctoyt
let y := AE.Decg(ctout) and assert decryption success and Ctoy, not seen before
output y

Figure 19: A protocol Protguisc that UC-realizes the secure outsourcing functionality Foutsre-
The public group parameters (g, p) are hardcoded into prog, src-

— eid := Guyy.install(sid, proggyisre);
— (9%, ¢%),0) := Gart.resume(eid, (“keyex”, g%))

Else, Sim computes sk = ¢g?.

e When Sim receives a message (|f + z|,|y|) from Foutsre, it proceeds as follows: Sim sends
(“compute”, ct := AE.Encg((fo,x0))) to A where fy is some canonical function and xy some
canonical input. For simplicity, we assume that functions, inputs and outputs computed by
Foutsre are of fixed size.

e Then, Sim waits to receive ctoy from A. If ctoyr was not the result of a previous
Gatt-resume(eid, (“compute”, ct)) call but ctoy successfully decrypts under sk, the simulator
aborts outputting authenc-failure. Otherwise, Sim allows Foutsre to deliver y to C in the ideal
world.

75

We now prove the indistinguishability of the real-world and ideal-world executions through a
sequence of hybrids.

Claim 27. Assume that the signature scheme ¥ is secure, except with negligible probability, the
stmulated execution does not abort outputting sig-failure.

Proof. Straightforward reduction to the security of the digital signature scheme 3. O

Hybrid 1. Identical to the simulated execution, but the secret key sk = ¢? shared between C
and G, is replaced with a random element from the appropriate domain.

Claim 28. Assume that the DDH assumption holds, then Hybrid 1 is computationally indistin-
guishable from the simulated execution.

Proof. Straightforward by reduction to the DDH assumption. O

Claim 29. Assume that AE satisfies INT-CTXT security. It holds that in Hybrid 1, authenc-failure
does not happen except with negligible probability.

Proof. Straightforward by reduction to the INT-CTXT security of authenticated encryption. If A
makes a Gy resume(eid, (“compute”, ct’)) call where ct’ is not the ciphertext previously sent by
Sim, either ct’ is a previously seen ciphertext (causing prog,, e t0 abort, or the decryption of ct’
in prog,,isre fails with overwhelming probability.

Similarly, is the output ctoy sent by A to Sim does not come from a correct
Gatt-resume(eid, (“compute”, ct)) call, then either ctoy is a previously seen ciphertext, or C’s de-
cryption would fails with overwhelming probability. O

Hybrid 2. Instead of sending ct := AE.Ence(fo,2z0) to A, the simulator now sends ct :=
AE.Ence(f, z) where f and x are the honest client’s true inputs.

Claim 30. Assume that AE is semantically secure, Hybrid 2 is computationally indistinguishable
from Hybrid 1.

Proof. Straightforward reduction to the semantic security of authenticated encryption. O

Hybrid 3. Now instead of using a random key between C and G,, we switch back to using the
real key .

Claim 31. Assume that the DDH assumption holds, then Hybrid 3 is computationally indistin-
guishable from Hybrid 2.

Proof. Straightforward by reduction to the DDH assumption. O

Finally, observe that conditioned on the simulator not aborting and AE being perfectly correct,
Hybrid 3 is identically distributed as the real execution.

76

Honest client and server. The setting where both parties are honest is trivial, as all commu-
nication between S and C is assumed to occur over secure channels.

While most of the information sent between S and C could be easily simulated in the presence
of authenticated channels, the attestations o produced by G.it are more problematic: If both
parties are honest, the simulator cannot obtain valid signatures from G, (assuming the adversary
has corrupted no party P € reg). If the protocol was using authenticated channels, it would be
necessary to model the fact that protocol execution can “leak” valid signatures from Gui to the
adversary. This is a deniability issue. The signature is proof that some party P € reg was involved
in the protocol.

When introducing protocols for general two-party computation where a single party has access

to trusted hardware, we show how to relax our G,y assumption to resolve this deniability issue.
O

77

	Introduction
	Attested Execution Secure Processors
	Why Formal Abstractions for Secure Processors?
	Summary of Our Contributions
	Non-Goals and Frequently Asked Questions

	Technical Roadmap
	Formal Modeling
	Power of Attested Execution: Stateful Obfuscation
	Impossibility of Composable 2-Party Computation with a Single Secure Processor
	Composable 2-Party Computation When Both Have Secure Processors
	Circumventing the Impossibility with Minimal Global Setup
	Fairness
	Additional Results
	Related Work

	Formal Abstractions for Attested Execution Processors
	Overview
	Modeling Choices and Discussions
	A Few Useful Observations

	Stateful Obfuscation from darkredGatt
	Formal Definitions
	Impossibility in the Standard Model or with Stateless Tokens
	Construction from Attested Execution Processors

	Composable 2-Party Computation
	Lower Bound
	Composable 2-Party Computation When Both Have Secure Processors

	Composable Multi-Party Computation with a Single Secure Processor and an Augmented Global CRS
	Augmented Global CRS
	NP Languages Adopted in the Protocol
	Detailed Protocol

	Fair 2-Party Computation
	Background on Fair 2-Party Computation
	Modeling a Trusted Clock
	Definition: Protocols and Fairness in the Clock Model
	Lower Bounds for Fair 2-Party Computation
	Fair 2-Party Coin Toss with a Single Secure Processor
	Fair Generic 2-Party Computation When Both Have Secure Processors

	Variant Models and Additional Results
	Side-Channel Attacks and Transparent Enclaves
	Composable Commitments with Transparent Enclaves
	Composable Zero-Knowledge Proofs with Transparent Enclaves
	Non-Anonymous Attestation

	Universal Composition Background and Conventions
	Brief Background on the Universal Composition Framework
	UC Notational Conventions
	Multi-Party Computation
	Preliminaries on Zero-Knowledge Proofs

	Warmup: Secure Outsourcing from darkredGatt

