
Novel Inner Product Encryption Resistant to Partial

Collusion Attacks

Yuqiao Denga, Ge Songb

aSchool of Mathematics And Statistics, Guangdong University of Finance and
Economics, Guangzhou, China

bCollege of Mathematics And Informatics, South China Agricultural University,
Guangzhou, China

Abstract

Inner product encryption (IPE) is a new cryptographic primitive initially
proposed by Abdalla et al. in 2015. IPE can be classified into public-key
IPE and secret-key IPE. The currently proposed PK-IPE schemes can-not
resist the following collusion attack: an invalid user that holds no private
key can ”buy” a combined key generated from multiple collusion adversaries,
and the user can use this private key to decrypt a ciphertext. Furthermore,
the user should not let the collusion adversaries know the ciphertext, and
the collusion adversaries should not let the user learn their private keys.
We present a new PK-IPE to resist such collusion attack. Our PK-IPE is
proven secure under the selective-vector chosen-plaintext attack model. We
formalize a selective vector collusion attack model to prove that our scheme
is secure under this model.

Keywords:
Inner Product Encryption, Selective Security, Bilinear Paring, TCA, PCA

1. Introduction

Functional encryption (FE) is a versatile cryptographic primitive first for-
malized by Boneh et al [1]. Since the emergence of FE, an increasing number
of studies have considered the construction of generic FE that implements
universal circuits [2] [3][4][5].

However, these works have introduced the need for heavy-duty tools,
such as indistinguishable obfuscation (IO) and multilinear maps; therefore,
the practicality of these works remains questionable. In PKC 2015, Abdalla

Preprint submitted to Elsevier October 26, 2016



et al. [6] proposed a new primitive: inner product encryption (IPE). IPE
is a special case of FE that executes the computation for the inner product
of vectors; it is remarkably useful in applications, such as privacy-preserving
statistical analysis and conjunctive normal form / disjunctive normal form
formulas.

IPE can be classified into two categories, namely, public key IPE (PK-
IPE) [6][7] and secret key IPE (SK-IPE) [8] [9] [10]. In PK-IPE, one vector
(i.e., ~x) is encrypted by the public key PK, whereas the other vector (i.e.,
~y) is encoded by the private key SK. A user holds the private key SK as
well as the ciphertext of vector ~x, the inner product of 〈~x, ~y〉 can be derived
without knowing any information of vector ~x. In SK-IPE, the situation is
similar, however, a master secret key (MSK) (i.e., a secret key maintained
by the authority) should be used within the generation of the ciphertext and
the private key. Thus, ciphertext cannot be independently formed by an en-
cryptor without an interaction with authority in SK-IPE. Therefore, SK-IPE
is impractical for applications where many users need to generate ciphertext
at the same time, i.e., SK-IPE can inevitably influence the performance of
the authority.

We believe that only two works are presently focused on PK-IPE [6][7].
Nevertheless, the security built by these two works is insufficient to prevent
collusion attacks from malicious users. To demonstrate the collusion attacks
that may be realized by adversaries, we provide the following examples.

1.1. Motivation

We briefly review the KeyDer algorithm of the simple PK-IPE scheme
proposed by Abdalla et al. [6]. (A detailed description of the entire scheme
is available in Section 3 of [6]). The algorithm uses a MSK, i.e., a vector
~s = (s1, · · · , sn) to encode the vector ~y = (y1, · · · , yn) into the private key
by forming the private key SK as follows: SK~y = 〈~y,~s〉.

We argue that the aforementioned scheme is vulnerable to trivial collude
attacks (TCAs). If ` malicious users exist and each of them holds a private
key SK~yi = 〈~yi, ~s〉, then they can collude to generate a new private key

with respect to arbitrary vector ~y′ as long as ~y′ is the linear combination of
~y1, · · · , ~y`. The attack can be described as follows. Given a private key set

{SK~yi = 〈~yi, ~s〉}i=1,··· ,`

and ` integers k1, · · · , k`, will form a new private key associated with a new
vector

2



~y′ = k1 ~y1 + · · ·+ k`~y`,

the malicious users can simply compute and output the private key

SK~y′ =
∑̀
i=1

kiSK~yi =
∑̀
i=1

ki〈~yi, ~s〉 = 〈
∑̀
i=1

ki~yi, ~s〉 = 〈~y′, ~s〉,

as desired.
We emphasize that a similar attack can be applied to the two schemes

proposed in Section 4 of [7]. Abdalla et al. proposed two IPEs with the same
technique for generating private keys to strengthen security. Their KeyDer
algorithms can be simplified as follows.

Given a vector ~y = (y1, · · · , yn) to generate the private key, the algorithm
adopts two MSKs, i.e., ~s = (s1, · · · , sn) and ~t = (t1, · · · , tn) to form the
private key SK. The algorithm computes and generates

SK~y = (SK~y,1, SK~y,2) = (〈~y,~s〉, 〈~y,~t〉).

However, nearly the same collusion attack can be realized to obtain a new
private key. For instance, given a private key set

SK~yi = (SK~yi,1, SK~yi,2) = (〈~yi, ~s〉, 〈~yi,~t〉)

for i = 1, · · · , l, and ` integers k1, · · · , k` as previously described, malicious
users form a new private key associated with a new vector

~y′ = k1 ~y1 + · · ·+ k`~y`

and simply compute and output the private key

SK~y′ = (
∑̀
i=1

kiSK~yi,1,
∑̀
i=1

kiSK~yi,2)

=
∑̀
i=1

(ki〈~yi, ~s〉, ki〈~yi,~t〉)

= (〈~y′, ~s〉, 〈~y′,~t〉).

as desired.

3



1.2. TCA versus Partial Collusion Attack (PCA)

One may argue that, PK-IPE inherently can-not resist multiple adver-
saries to collude the decryption of a given ciphertext using a new key that is
a linear combination of the keys they hold. The reason may be that suppos-
ing collusion users A1, · · · , A` hold ` private keys, i.e., ~y1, · · · , ~y`, and they
need to decrypt a ciphertext ~x using a new private key ~y′ = k1 ~y1 + · · ·+k`~y`,
they do not actually need to generate the private key of the vector ~y′ be-
cause they can run the decrypt algorithm for ` times and achieves ` results
z1, · · · , z`, i.e.,

z1 = 〈~y1, ~x〉, · · · , z` = 〈~y`, ~x〉.

They then compute

z = k1z1 + · · ·+ k`z`
= k1〈~y1, ~x〉+ · · ·+ k`〈~y`, ~x〉
= 〈k1 ~y1, ~x〉+ · · ·+ 〈k`~y`, ~x〉
= 〈k1 ~y1 + · · ·+ k`~y`, ~x〉.
= 〈~y′, ~x〉.

According to the preceding analysis, it seems that PK-IPE is vulnerable
to the collusion attack. We call the above collusion attack as ”TCA” in this
study. Although TCA is difficult to prevent, it may not be a ”satisfactory
collusion attack” for ”hybrid adversaries” in some scenario. The following
scene is provided for example.

We assume that two types of adversaries exist (we call them ”hybrid
adversaries” in this study); the first type is collusion adversaries A1, · · · , A`
who hold multiple private keys, and the second type is a solo invalid adversary
A′ who obtains a ciphertext but holds no private key. A′ needs to decrypt
the ciphertext, and the ciphertext is so confidential that A′ does not like to
make it accessible to anyone else. If A1, · · · , A` can generate a private key
using its own private keys and ”sell” this private key to A′, then invalid user
A′ recovers the message, and collusion users A1, · · · , A` take the profit. We
call this collusion attack PCA.

If A′ and A1, · · · , A` utilize TCA to collude the decryption of ciphertext,
then it is not satisfactory for both of them. The reason is that either A′

needs to send the ciphertext to A1, · · · , A`, and then the message is opened
to A1, · · · , A`; or A1, · · · , A` sends all their private keys to A′, and then
A′ may learn the private keys of A1, · · · , A`. However, if A1, · · · , A` can
generate a new key, then A′ can decrypt the ciphertext without leaking their

4



privacy to the other party. Thus, PCA may be a serious security issue in this
scenario .

Therefore, it is still necessary to keep a generic PK-IPE away from PCA
although TCA is inevitable. In this study, we establish a security model
to capture the behavior of adversary and to construct a new PCA-resistant
PK-IPE.

1.3. Our Technique and Contribution

We initially analyze our technique in this study. Intuitively, PCA origi-
nates from the homomorphism property of an underlying private key struc-
ture. Therefore, how to ”break” this homomorphism is a question of both
foundational and technical interests. To address this problem, we introduce
a new technique for encoding private key vectors.

In the preparation phase, we omit some details and roughly describe the
core technique used in our KeyGen algorithm. Given a n-dimensional vector
such as ~y = (y1, · · · , yn), and public key components, (h1, · · · , hn, h,H) from
group G, the algorithm samples an integer t and then generates private keys

as follows: Kt = gt, Kh = (
n∏
j=1

h
yj
j h)tHb, where the integer b is an MSK of

authority. This private key structure is no longer homomorphic, because of
the fresh random element t, the public key components h,H and the MSK b.

1.4. Related Work

In PKC 2015, Abdalla et al. [6] proposed a new cryptographic primi-
tive, i.e., IPE. IPE was defined to as an encryption that reveals nothing else
except 〈x, y〉 when decrypting an encrypted vector x with a private key in
respond to a vector y. Further more, Abdalla et al. constructed a new PK-
IPE and proved its indistinguishability-based security. However, the PK-IPE
scheme proposed by [6] was only proven to be selectively secure, and there-
fore, can-not resist adaptive adversaries. Abdalla et al. further proposed
a new methodology to generate PK-IPE against adaptive adversaries in [7].
Moreover, they showed three instantiations generated by this methodology.
Although the PK-IPE described in [7] can be proved adaptively secure, it is
still vulnerable as the PCA mentioned above.

Another research interest on IPE is the SK-IPE trend. Bishop et al.
proposed an IPE providing function-hiding; unlike PK-IPE, their scheme
needs to introduce a secret vector during the encrypt procedure [8]. The
scheme was proven fully secure in the use of the hybrid argument technique.

5



Nonetheless, the proof in [8] was insufficient because it introduced a special
restriction for the attacker (we refer readers to Section 2.1 in [8] for detailed
description). Datta et al. proposed a new SK-IPE to improve the security
and eliminate the aforementioned restriction. They employed the technique
from [11] and renewed the restriction for attackers (see Formula (2) in [9]).
Compared with the restriction by Bishop et al., the restriction by Datta et
al. was more practical.

2. Preliminaries

2.1. Bilinear Maps

Assuming G,GT are multiplication cyclic groups with prime order p and
e is a map having the following property

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, the following equation holds
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 6= 1.

2.2. Assumptions

Definition 1(Computation Diffie-Hellman Assumption)[12]Let G
be a group of prime order p. Let x, y ∈ Zp be selected randomly and g be a
generator of G. The adversary is given as gx, gy and should compute gxy.

Definition 2(Decisional Diffie-Hellman Assumption (DDH))[12]Let
G be a group of prime order p. Let x, y ∈ Zp be selected randomly and g be a
generator of G. The adversary is given as {g, gx, gy} and needs to determine
if T = gxy or T = R, where R denotes a random element in G.

A slight variant of DDH (sv-DDH) is defined and described as follows
Definition 3 (sv-DDH Assumption)Let G be a group of prime order

p. Let x, y, z ∈ Zp be chosen randomly and g be a generator of G. The
adversary is given g, gx, gy, gz and should determine T = gxy or T = R,
where R denotes a random element in G.

sv-DDH adds a new known term, gz, to the DDH assumption. However,
this new term cannot help the challenger achieve any useful information with
respect to T , because z is not related to x and y (or the inherent relations
among x, y and z are not revealed). Thus, the term gz cannot provide any
advantage for the challenger to address the assumption. The formal proof
for the equivalence between DDH and sv-DDH is straightforward, and it is
omitted in this paper.

6



3. PK-IPE Resistant to PCA

We define a security model to capture the behavior of the partial collusion
attackers. We prove that no polynomial adversary can selectively collude to
generate even one new private key in this model. We validate the security
of the entire scheme against the selective-vector chosen-plaintext attack (sv-
CPA). We provide the formal definition of IPE and our concrete construction.

3.1. New PK-IPE And Security Model

Definition 4 [PK-IPE [6]]A PK-IPE scheme, denoted as IPE=(Setup,
Encrypt, KeyGen, Decrypt), is described as follows.

Setup(1λ, n). The Setup algorithm takes the security parameter λ and
the desired length n for the vector as inputs. The output of this algorithm
are the public key PK and master secret key MSK.

Encrypt(PK,~x). The Encrypt algorithm takes the public key PK, a
vector ~x as inputs. This algorithm outputs a ciphertext CT.

KeyGen(MSK, ~y). The KeyGen algorithm takes MSK and a vector ~y
as inputs. This algorithm outputs the private key SK.

Decrypt(CT,SK). The Decrypt algorithm takes ciphertexts CT that cor-
responds to vector ~x and private key SK associated with ~y as inputs. This
algorithm outputs the inner product 〈~x, ~y〉.

Our IPE scheme is secure against the sv-CPA. Unlike the CPA security,
our security model requires the adversary to issue its challenge vectors before
the public key is set by the challenger. The formal definition of security
against sv-CPA is presented as follows.

Definition 5 [Security Against sv-CPA [6]]A PK-IPE scheme is se-
cure against sv-CPA if for any polynomial adversary A, the advantage ε
defined as follows is negligible.

Init. A issues two challenge vectors −→x0,−→x1 that it attempts to attack.
Setup. The challenger generates and issues public parameters and then

sends these parameters to A.
Query phase. A can query the arbitrary private key associated with

vector ~y, but with the limitation that 〈−→x0, ~y〉 = 〈−→x1, ~y〉 must hold. Without
this limitation, i.e., existence of some ~y whose private key is queried by the
adversary and satisfies 〈−→x0, ~y〉 6= 〈−→x1, ~y〉, the adversary can simply distinguish
one encrypted vector from the other by decrypting the challenge ciphertext
with a private key with respect to ~y. Then, this adversary can easily confirm
which vector is encrypted.

7



Guess. The challenger flips a coin and encrypts the challenge vector −→xβ
where β = (0, 1). This challenger sends this ciphertext to A. A outputs a
guess β′ of β.

The advantage of A in winning the preceding game is defined as Pr[β′ =
β]− 1/2.

We initially formalize the security against a Selective Vector Collusion
Attack (sv-CA) as follows to guarantee IPE security during attacks from a
PCA. Recall that, PCA is such an attack that the collusion adversaries can
generate a new private key according to the keys they hold. Hence, the
security against sv-CA guarantees that multiple collusion adversaries cannot
derive new private key from the keys they hold.

Definition 6 [sv-CA] A PK-IPE scheme is secure against sv-CA, if for
any polynomial adversary A, the probability that it successfully generates a
challenge private key by interacting with the challenger with the following
phases is negligible.

Init. A issues a challenge vector ~y∗ that it attempts to attack (that is,
the task of A is to forge the private key as that for vector ~y∗).

Setup. The challenger generates and issues public parameters and then
sends them to A.

Query phase. A can query an arbitrary private key that is associated

with vector ~y, with the only limitation that ~y 6= ~y∗.
Forge. After querying for as many private keys as it needs, A outputs

the resulting challenge private key with respect to challenge vector ~y∗.

3.2. Our PK-IPE construction

We now present our PK-IPE construction.
Setup(1λ, n). The Setup algorithm takes the security parameter λ, and

the desired length n for the vector as inputs. It chooses asymmetric bilinear
groups G,GT , both with prime order p. It also samples random elements
α, a, b ∈ Zp, group elements h,H ∈ G and hi ∈ G for i = {1, · · · , n}. The
algorithm outputs the public key as

PK = (G,GT , g, p, e(g, g)α, ga, gb, h,H, {hi}i=1,··· ,n).

Integers α, a, b are set to be MSK.
Encrypt(PK,~x). The encrypt algorithm takes the public key PK, and a

vector ~x whose length is n (i.e. ~x = {x1, x2, · · · , xn}) as inputs. The algo-
rithm then samples two random elements, namely, r, s ∈ Zp, and generates
the following ciphertexts

8



Cr = gr, Ch = hr, CH = Hr,
Cx,i = gaxihri : (i = 1, · · · , n).

The algorithm outputs ciphertext CT as C = {(Cx,1, · · · , Cx,n), Cr, Ch, CH}.
KeyGen(MSK, ~y). KeyGen algorithm takes MSK α, a, b and a vector ~y

as inputs. It selects an element t ∈ Zp and for j = 1, · · · , n, and it generates
private key SK associated with vector ~y as follows

Kα = gαgat, Kt = gt,

Kh = (
n∏
j=1

h
yj
j h)tHb.

This algorithm outputs private key SK={Kα, ~y, Kh, Kt}.
Decrypt(CT,SK). The Decrypt algorithm takes public key PK, cipher-

text CT and private key SK as inputs. We note that SK includes the vector
~y = (y1, · · · , yn). Then, the algorithm computes the following

n∏
i=1

e(Cx,i, Kt)
yi = e(g, g)at〈x·y〉

n∏
i=1

e(g, hi)
rtyi .

The algorithm computes the following to cancel the term
n∏
i=1

e(g, hi)
rtyi

e(Cr, Kh) =
n∏
i=1

e(g, hi)
rtyie(g, h)rte(g,H)rb,

e(Ch, Kt) = e(g, h)rt,
e(gb, CH) = e(g,H)rb.

The algorithm finally derives the term e(g, g)at〈x·y〉 through the following
computation

e(g, g)at〈x·y〉 =
n∏
i=1

e(Cx,i, Kt)
yie(Cr, Kh)

−1e(gb, CH)e(CH, Kt).

This algorithm also evaluates

e(g,Kα)(e(g, g)α)−1 = e(g, g)at,

Then, it computes M to satisfy e(g, g)atM = e(g, g)at〈x·y〉. It outputs M
as the plaintext. We can ensure that Decrypt algorithm runs in polynomial
time when the algorithm is restricted to check a fixed, polynomial size range
of possible values forM [8], and that it outputs ⊥ when none ofM satisfies
the equation e(g, g)atM = e(g, g)at〈x·y〉.

9



4. Security Analysis

4.1. Proof for sv-CPA security

In this section, we prove that our scheme is secure against sv-CPA attacks.
Theorem 1 If the sv-DDH assumption holds true, then our scheme is

secure against sv-CPA attacks.
The challenger C takes a given tuple {g, gx, gy, gz} and a challenge pa-

rameter T as inputs. The task of the challenger is to distinguish two terms:
T = gxy or T = R, where R is a random element in group G.

Init. The adversary A chooses two challenge vectors, i.e.,

−→x0 = (x0,1, x0,2, · · · , x0,n),−→x1 = (x1,1, x1,2, · · · , x1,n),

and these challenger are sent to the challenger C.
Setup. The challenger C is provided with the security parameter λ and

the desired length n for the vector, and it chooses asymmetric bilinear groups
G,GT , both with prime order p. It sets PK as follows: it chooses a generator
g of group G, and it implicitly sets α = xz, a = x, b = −z. Then, it forms
e(g, g)α = e(gx, gz), ga = gx, gb = g−z. The challenger then chooses two
random elements, namely, h′, H ′ ← Zp and generates h = gh

′
,H = gH

′
.

For every hi where i = 1, · · · , n, the challenger samples a random element
h′i and sets

hi = gx(x0,i−x1,i)+h
′
i = gh

′
i(gx)(x0,i−x1,i)

The challenger publishes the public parameter:

PK = (G,GT , g, p, e(g, g)α, ga, gb, h,H, {hi}i=1,··· ,n).

Query Phase 1,2. The challenger is required to generate private keys
corresponding to the arbitrary vector, namely, ~y = (y1, y2, · · · , yn), with the
restriction that 〈−→x0, ~y〉 = 〈−→x1, ~y〉. The preceding equation is equivalent to
〈(−→x0 −−→x1), ~y〉 = 0.

The challenger chooses t′ ∈ Zp and implicitly sets t = −z + t′. Then, it
generates Kt = g−zgt

′
, Kα = gαgat = gxzgx(−z+t

′) = (gx)t
′
.

Generating Kh is complicated because the parameter hi includes a term
gx and t = −z + t′. If we ”place” these two components together, then the
term gxz which the challenger does not know appears. However, the term gxz

is canceled out as follows through the setting of the simulation (recall that
we have 〈(−→x0 −−→x1), ~y〉 = 0).

10



Kh = (
n∏
j=1

h
yj
j h)tHb

= (g

n∑
j=1

((x0,j−x1,j)x+h′j)yj
gh
′
)(−z+t

′)g−zH
′

= g

n∑
j=1

(x0,j−x1,j)yjx(−z+t′)
g

n∑
j=1

h′jyj(−z+t′)
g−h

′z+h′t′g−H
′z

= g〈(
−→x0−−→x1),~y〉(−z+t′)xg

n∑
j=1
−h′jyjz+h′jyjt′

g−h
′z+h′t′−H′z

= (gz)
−

n∑
j=1

h′jyj
(gz)−h

′−H′g

n∑
j=1

h′jyjt
′

gh
′t′ .

The challenger outputs private key SK={Kt, Kα, ~y, Kh}.
Challenge Ciphertext. The challenger flips a coin β ← {0, 1} and

encrypts the challenge vector −→xβ = (xβ,1, xβ,2, · · · , xβ,n), as described in the
following.

The challenger implicitly sets the parameter r = y, then it generates
Cr = gr = gy. It also forms CH = (H)r = (gy)H

′
and Ch = hr = (gy)h

′
.

Finally, for i = 1, · · · , n, let 4xi = x0,i − x1,i; then, the challenger com-
putes

Cx,i = (gx)xβ,iT4xi(gy)h
′
i .

We assume T = g(xy+r̃) to explain why the preceding computation is valid.
We have

Cx,i = (gx)xβ,iT4xi(gy)h
′
i

= (gx)xβ,i(gxy+r̃)4xi(gy)h
′
i

= (gx)xβ,i(gx4xi+h
′
i)ygr̃4xi

= (gx)(xβ,i+r̃4xi/x)(gx4xi+h
′
i)y

= ga(xβ,i+r̃4xi/a)(hi)
r.

1) If r̃ = 0, then T = gxy, and we have Cx,i = gaxβ,ihi
r. This finding indi-

cates that the encrypted vector is −→xβ. Therefore, the challenger successfully
simulates the security game with the adversary A.

2) If r̃ 6= 0, then the encrypted vector is unrelated to the challenge vectors
−→x0 and −→x1: the encrypted vector is actually

−→
x′ = (xβ,1 +

r̃4x1
a

, xβ,2 +
r̃4x2
a

, · · · , xβ,n +
r̃4xn
a

).

The adversary cannot obtain any useful information from this challenge ci-
phertext. Thus, in this situation, the adversary can just ”guess” which vector
is encrypted.

11



Finally, the adversary A outputs a guess β′ of β. If β′ = β, then the
challenger outputs a bit 1 to indicate that T = gxy; otherwise, the challenger
outputs a bit 0 to claim that T = R.

Apparently, if the adversary has a non-negligible advantage to win the
preceding game, then the challenger is also has a non-negligible advantage
to solve the sv-DDH assumption. Theorem 1 holds.

4.2. Resist PCA

We prove the following theorem to claim that our scheme can resist PCA.
Theorem 2 If the CDH assumption holds true, then our scheme is secure

against sv-CA.
Proof The challenger C takes a tuple {g, gx, gy} as input. Its task is to

evaluate gxy by interacting with the adversary.

Init. The adversaryA chooses a challenge vector, i.e.,
−→
y∗ = (y∗1, y

∗
2, · · · , y∗n),

for which it proves to the challenger that it can generate keys for this vec-
tor. Then A sends the vector to C. If the adversary colludes with multiple
users and can achieve as many private key as it needs, then it is subjected
to the only limitation that it cannot directly obtain the private keys for the
challenge vector.

Setup. The challenger C is given the security parameter λ and the desired
length n for the vector. It chooses asymmetric bilinear map G,GT , both with
prime order p. It sets the PK as follows. It chooses a generator g of group G,
elements α′, a′ ∈ Zp and sets α = α′. Then, it forms e(g, g)α = e(g, g)α

′
, ga =

ga
′
, gb = gy.
For every hi, where i = 1, · · · , n, the challenger samples two random

elements, namely, ki, h
′
i and sets:

hi = (gx)kigh
′
i .

Furthermore, the challenger sets H = gx and

h = (gx)−k1y
∗
1 (gx)−k2y

∗
2 · · · (gx)−kny∗n .

Notice that, h is encoded with the challenge vector
−→
y∗ . The challenger

publishes the public parameter as:

PK = (G,GT , g, p, e(g, g)α, ga, gb, h,H, {hi}i=1,··· ,n).

12



Querying Phase. The challenger is required to answer the private key
queries corresponding to the arbitrary vector, namely ~y = (y1, y2, · · · , yn)
from the adversary, with the only restriction that ~y 6= ~y∗.

Let F (~y, ~y∗) =
n∑
i=1

ki(yi − y∗i ) mod q. If F (~y, ~y∗) = 0, then challenger

outputs ⊥ and aborts; otherwise, the challenger sets Kt = gt = (gy)
− 1

F (~y, ~y∗)

and Kh =
n∏
i=1

(gy)
− h′iyi
F (~y, ~y∗) .

Notice that k1, · · · , kn are chosen randomly and independently from ~y
and ~y∗. Thus, F (~y, ~y∗) is distributed randomly as for inputs ~y and ~y∗.
Therefore, Pr[F (~y, ~y∗) = 0] = 1/q, which is negligible, i.e., the challenger
aborts the game with a negligible probability.

Then, we show that the challenger successfully generates the keys of
Kt, Kh. If F (~y, ~y∗) 6= 0, then the challenger indeed implicitly sets t =
− 1
F (~y, ~y∗)

y. Thus, we have:

Kh = (
n∏
i=1

hyii h)tHb

= (
n∏
i=1

(gkiyixgh
′
iyi)(gx)

n∑
j=1
−kjy∗j

)
− 1

F (~y, ~y∗)
y · (gx)y

= ((gx)F (~y, ~y∗)
n∏
i=1

gh
′
iyi)
− 1

F (~y, ~y∗)
y · (gx)y

=
n∏
i=1

(gy)
− h′iyi
F (~y, ~y∗) ,

as desired.
The challenger outputs private key SK={Kt, Kα, ~y, Kh}.
Challenge Key.
At some point, the adversary outputs the key {K∗α, K∗h, K∗t } with respect

to the challenge vector ~y∗ with non-negligible probability. The challenger
then outputs

gxy = K∗h(K∗t )−h
′
iyi .

This observation holds true as shown follows (assume K∗t = gt
∗

for some

13



t∗ ∈ Zp that the challenger will not know):

K∗h = (
n∏
i=1

h
y∗i
i h)t

∗Hb

= (
n∏
i=1

(gkiy
∗
i xgh

′
iy
∗
i )(gx)

n∑
j=1
−kjy∗j

)t
∗ · (gx)y

= (gt
∗
)h
′
iyigxy

= (K∗t )h
′
iyigxy.

Therefore, if the adversary can selectively collude to forge a valid private
key, then the challenger can solve the CDH assumption with non-negligible
advantage. Theorem 2 holds true.

5. Conclusion

In this paper, we propose a novel IPE against PCA. Our scheme is con-
structed with bilinear map and is proven secure under the sv-CPA security
model. Furthermore, our scheme remains secure when multiple corrupted
users still fail to form a new private key even when given as many private
keys as they need. Our proof is adapted to the selective security framework;
however, one can simply modify our construction to achieve the fully security
by introducing the dual system encryption technique [13] [14].

References

[1] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In TCC, volume 6597 of Lecture Notes in
Computer Science, pages 253–273. Springer, 2011.

[2] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova 0001, Amit
Sahai, and Brent Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In FOCS, pages 40–49. IEEE
Computer Society, 2013.

[3] Nuttapong Attrapadung. Dual system encryption via doubly selective
security: Framework, fully secure functional encryption for regular lan-
guages, and more. In EUROCRYPT, volume 8441 of Lecture Notes in
Computer Science, pages 557–577. Springer, 2014.

14



[4] Brent Waters. A punctured programming approach to adaptively secure
functional encryption. In CRYPTO, volume 9216 of Lecture Notes in
Computer Science, pages 678–697. Springer, 2015.

[5] Gilad Asharov and Gil Segev. Limits on the power of indistinguishabil-
ity obfuscation and functional encryption. In Venkatesan Guruswami,
editor, FOCS, pages 191–209. IEEE Computer Society, 2015.

[6] Michel Abdalla, Florian Bourse, Angelo De Caro, and David
Pointcheval. Simple functional encryption schemes for inner product-
s. In Jonathan Katz, editor, Public Key Cryptography, volume 9020 of
Lecture Notes in Computer Science, pages 733–751. Springer, 2015.

[7] Michel Abdalla, Florian Bourse, Angelo De Caro, and David
Pointcheval. Better security for functional encryption for inner prod-
uct evaluations. Cryptology ePrint Archive, Report 2016/011, 2016.

[8] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding
inner product encryption. In ASIACRYPT, volume 9452 of Lecture
Notes in Computer Science, pages 470–491. Springer, 2015.

[9] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional
encryption for inner product with full function privacy. In Public Key
Cryptography, volume 9614 of Lecture Notes in Computer Science, pages
164–195. Springer, 2016.

[10] Somindu C. Ramanna. More efficient constructions for inner-product en-
cryption. In ACNS, volume 9696 of Lecture Notes in Computer Science,
pages 231–248. Springer, 2016.

[11] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional
encryption with general relations from the decisional linear assumption.
IACR Cryptology ePrint Archive, 2010:563, 2010.

[12] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(5):644–654, November 1976.

[13] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuk-
i Takashima, and Brent Waters. Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption.

15



In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 62–91. Springer, 2010.

[14] Brent Waters. Dual system encryption: Realizing fully secure IBE and
HIBE under simple assumptions. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 619–636. Springer, 2009.

16


