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Abstract. Covert computation (of general functions) strengthens the
notion of secure computation, so that the computation hides not only
everything about the participants’ inputs except for what is revealed by
the function output, but it also hides the very fact that the computation
is taking place, by ensuring that protocol participants are indistinguish-
able from random beacons, except when the function output explicitly
reveals the fact that a computation took place. General covert computa-
tion protocols proposed before have non-constant round complexity [16,
4] and their efficiency is orders of magnitude away from known non-covert
secure computation protocols. Furthermore, [8] showed that constant-
round covert computation of non-trivial functionalities with black-box
simulation is impossible in the plain model.
However, the lower-bound of [8] does not disallow constant-round covert
computation given some relaxation in the computation model. Indeed, in
this work we propose the first constant-round protocol for covert Two-
Party Computation (2PC) of general functions, secure against malicious
adversaries under concurrent composition, assuming the Common Refer-
ence String (CRS) model. Our protocol is a covert variant of a well-known
paradigm in standard, i.e. non-covert, secure 2PC, using cut-and-choose
technique over O(security parameter) copies of Yao’s garbled circuit pro-
tocol, and its efficiency is only a constant factor away from non-covert
secure 2PC protocols that use cut-and-choose over garbled circuits.
An essential tool in the protocol is a concurrently secure covert simulation-
sound Conditional KEM (CKEM) for arithmetic languages in prime-
order groups. We show that the Implicit Zero-Knowledge arguments in
the CRS model of Benhamouda et al. [2] provide covert CKEM’s for all
languages needed in our covert 2PC protocol. We also show that in the
Random Oracle Model the covert CKEM’s of [11] also satisfy concurrent
security and simulation-soundness. The ROM-based covert CKEM’s of
[11] match the cost of known ROM-based NIZK’s for the same languages,
while the CRS-model CKEM’s of [2] are (only) 2-4 times more expensive.

1 Introduction

Covert computation addresses a security concern which is unusual for cryptog-
raphy, namely how to hide the very fact that a (secure) protocol executes. Such
hiding of a protocol instance is possible if the public channels connecting the
communicating parties are steganographic in the sense that they have intrinsic
entropy. A protocol is covert if its messages can be efficiently injected into such



channels in a way that the resulting communication cannot be distinguished
from the a priori behavior of these channels. A standard example of such chan-
nel is a random channel, a.k.a. a random beacon, which can be implemented e.g.
using protocol nonces, padding bits, time stamps, and various other communica-
tion (and cryptographic!) mechanisms which exhibit inherent (pseudo)entropy.
Given a random channel, if protocol messages are indistinguishable from ran-
dom bitstrings, such messages can be injected into the channel, and the protocol
counterparty can interpret the information received on the channel as a proto-
col message. The participants must agree on the time they use such channels
to run a protocol, so they know which bits to interpret as protocol messages,
but this can be public information because if the protocol is covert then the
exchanged messages cannot be distinguished from the a priori behavior of the
random channel.1

Covert computation was formalized for the two-party setting by Von Ahn,
Hopper and Langford in [16], and then generalized to the multi-party setting
(and re-formulated) by Chandran et al. in [4], as a protocol that lets the par-
ticipants securely compute the desired functionality on their joint inputs, with
the additional property that each participant cannot distinguish the others from
“random beacons”, i.e. entities that send out random bitstrings of fixed length
instead of prescribed protocol messages, unless the function output determines
that it should be revealed. In other words, in covert computation the computed
function outputs an additional reveal bit: If this bit is zero then each participant
remains indistinguishable from a random beacon to the others, but if the reveal
bit is one then the participants learn the function output, and in particular learn
that a computation took place, i.e. that they were interacting not with random
beacons but with counterparties executing the same protocol (whose inputs into
this protocol, moreover, made the reveal bit in the function output equal to 1).

Q & A on Covert Computation. Motivation: Who would care to compute
a function while hiding this very fact from other potential protocol participants
(unless the function output reveals it)? One example given by Chandran et al. [4]
is a company C that observes worrisome activity on its network: If C could deter-
mine that other companies observe similar activity, this information could help
all of them fight against a hacking attack, but the very fact of engaging in such
protocol reveals that company C observes some worrisome activity, and C might
have business reasons to hide this. In another example, a military or intelligence
agent A who detects some suspicious information could determine if similar in-
formation is detected by other agents, but no one, not even an active participant
interacting with A cannot even detect that A engages in this protocol unless they
have the information that “matches” A’s knowledge. In general, covert compu-
tation can be used for any form of authentication whose participants want to

1 Works on steganographic communication [9] imply that random messages can be
embedded into any non-uniform random channel with sufficient entropy, hence in
particular once we know how to communicate and/or compute covertly assuming
uniform random channels then we can also carry this communication/computation
over any (non-uniform) steganographic channel with sufficient entropy.
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remain undetectable except to counter-parties whose inputs (certificates, per-
missions, passwords, enviromental observersations, or what have you) matches
their authentication policy. For example, if two spies want to authenticate one
another in a foreign country, they would surely like to be able to do so in a way
that prevents anyone from detecting that this authentication protocol instance
is taking place. If the spies authenticated each other using covert computation,
the only way their presence can be detected is by an active attacker who is privy
to the authentication tokens that match their authentication policy.

Random Channels and Synchronization: But isn’t it always possible to detect
a presence of some party on a network by just observing whether this party sends
out some messages? Moreover, simple counting of the number and size of these
messages should suffice to conclude whether or not it follows a given protocol.
Indeed, this is why we must assume that protocol participants have access to ran-
dom channels: A network entity cannot hide the fact that it sends out messages,
but if the normal communication this entity emits exhibits some entropy (e.g.
in protocol nonces, timing, padding, audio and video signals) this entropy can
be used to create a steganographic channel which can be used for covert MPC
protocol messages. Another question concerns synchronization: Even if company
or agent A in the above examples is connected by a random channel to potential
counterparties in a covert MPC protocol, how would she know when to start the
protocol? One answer is that the protocol start should be a public convention,
e.g. the first message after time 12:00 on each day could contain a protocol in-
stance. Party P willing to participate would always interpret such messages as
protocol messages, and if their sender was not engaging in the protocol, or it
engaged but the reveal bit in the computation output is 0, party P would reject
in such instance.

Covert MPC vs. Steganography: Covert MPC does not trivially follow by
using steganography [9] to establish covert communication channels between
potential protocol participants and running standard MPC over them. First,
covert channels require prior key distribution which is not always possible, e.g.
in the general authentication application above. Second, even if potential par-
ticipants did have pre-shared keys, they still might want to hide whether or not
they actually engage in this protocol.

Covert MPC vs. Secure MPC: Secure computation is considered to be a
blueprint for every security task: Whatever security property we want some net-
work interaction to achieve, we can abstract it as a secure computation of an
idealized functionality, and we can achieve it by MPC for this functionality. How-
ever, secure computation does leak one additional “bit” of information, namely
it is not designed to hide whether or not some entity engages in the protocol,
which in many applications (see examples above) is a very essential informa-
tion. To give an extreme example: If CIA is the only organization whose agents
follow some secure authentication protocol then a man-in-the-middle attacker
will be trivially able to identify (potential) CIA agents. A covert computation
strenghtens secure computation to hide this one remaining bit, and allows proto-
col participation to be undetectable even to active protocol participants except
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(and this “escape clause” seems unavoidable) if the function output itself deter-
mines that the outputs, and hence also the fact of protocol participation, should
be revealed to the participants. What we show is that this strenghtening of se-
cure computation to covertness can be achieved in some sense “for free”, i.e. at
costs which are comparable to those born by known standard, i.e. non-covert,
secure computation protocols. Moreover, in the process we show general tools
for covert enforcement of honest protocol execution which can be re-used (and
further improved) in efficient covert protocols for specific functions of interest.

Previous Works on Covert Computation. Von Ahn et al. [16] proposed the
first covert two-party computation (2PC) protocol. Their protocol performed
O(τ) repetitions, for τ a security parameter, of Yao’s garbled circuit evaluation
(with the circuit extended to compute an additional hash function), but this
protocol guaranteed only secrecy against malicious participants, and not output
correctness. The covert multi-party computation protocol of [4] realized a covert
computation functionality against malicious participants (and in particular guar-
anteed output correctness), but it also used O(τ) rounds and its efficiency was
several orders of magnitude away from known non-covert MPC protocols: Each
party was covertly proving that it followed a GMW MPC protocol on commit-
ted input by casting it as an instance of a Hamiltonian Cycle problem, and that
proof internally used Yao’s garbled circuits for checking correctness of committed
values. Moreover, Goyal and Jain subsequently showed that [8] the non-constant
round protocol is necessary for achieving computation (with black-box simula-
tion) against malicious adversaries, at least in the standard MPC model, i.e.,
without access to trusted parameters or public keys.

On the plus side, some constant-round covert protocols secure against mali-
cious adversaries are known as well: Jarecki [10] showed a covert Authenticated
Key Exchange (AKE) with O(1) rounds and public key operations, but this pro-
tocol satisfied a game-based AKE definition, and in particular it was not a covert
secure computation of any function. Assuming a Random Oracle Model (ROM),
Cho et al. [5] exhibited practical constant-round covert computation protocols,
secure against active adversaries, for two non-trivial functionalities, namely for
string equality and set intersection. (Moroever, Cho et al. strengthen the defi-
nition of covert computation of [4] to include concurrent self-composition, and
we adopt this stronger notion of covert computation in this work.) However, in
addition to relying on ROM, their constructions are custom-made for function-
alities dealing with equality or set-membership checking, and it is not clear how
they can be extended to computation of general functions.

Our Result: Efficient Covert Concurrent 2PC. This leaves a natural open
question whether general two-party functions can be computed covertly by a
constant-round protocol, or even, better, by a protocol whose assumptions, the
security guarantees, and efficiency, are all comparable to those of the currently
known constant-round standard, i.e. non-covert, secure 2PC protocols. We an-
swer all these questions affirmatively with a construction of a constant-round
protocol for covert 2PC of general functions, secure against malicious adversaries.
Our protocol follows the well-known paradigm for standard, i.e. non-covert, se-
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cure 2PC, using the cut-and-choose technique over O(τ) copies of Yao’s garbled
circuit protocol, and its efficiency is asymptotically the same as non-covert se-
cure 2PC protocols based on cut-and-choose and Yao’s garbled circuits, except
that we do not handle OT extension. Concretely, for a function on n-bit inputs
computable by a Boolean circuit with c gates, the proposed protocol requires
9 rounds, O(nτ) exponentiations and O(cτ) symmetric cipher operations.2 The
protocol works in the Common Reference String (CRS) model, it maintains
covertness under concurrent composition, and it is secure under the Decisional
Diffie-Hellman (DDH) assumption in the standard model (i.e. without ROM).

Enabling Tool: Covert Zero-Knowledge. Assuming random channels, covert
communication is essentially as easy as secure communication: Since block ci-
phers are assumed to be pseudorandom functions many standard encryption (or
even authenticated encryption) modes have ciphertexts which in addition to pro-
tecting the plaintext are also indistinguishable from random bitstrings. Several
known public-key encryption schemes, e.g. Cramer-Shoup encryption [6], also
have ciphertexts that are indistinguishable from a tuple of random group ele-
ments (assuming DDH), and random group elements, e.g. in a prime-order sub-
group of modular residues, are easy to encode as random bitstrings. Assuming
honest-but-curious participants, Von Ahn et al. [16] showed that general covert
computation is also not more difficult than general secure computation: Given
block ciphers whose outputs are indstinguishable from random strings, Yao’s
garbled circuit construction can be adjusted so that a garbled circuit for c-gates
looks like 4c random ciphertexts even to the evaluator (except for whatever is
revealed by the output, but that can be set to a random string if the “reveal bit”
in the output evaluates to 0), and because ElGamal encryption is covert under
DDH, an honest-but-curious secure OT based on ElGamal encryption, like the
Naor-Pinkas OT [14], also remains covert.

However, it is difficult to achieve covert 2PC/MPC protocols secure against
malicious adversaries, and this is because of the lack of efficient covert coun-
terparts to standard mechanisms for enforcing honest behavior in protocols.
For example, the two chief tools used to enforce honest behavior in Yao’s gar-
bled circuit protocol are (1) Zero-Knowledge (ZK) proofs, e.g. to show that the
sender entered consistent inputs into the Oblivious Transfer (OT) and into mul-
tiple garbled circuit instances, and (2) opening a committment to show that
the committed value is correctly formed, which is the basis of the general “cut-
and-choose” method for enforcing honest behaviour. Either of these tools would
violate covertness because both are publicly verifiable, and in particular, the
first party who sends a ZK proof or an opening of a commitment becomes dis-
tinguishable from random noise by the counterparty.

The enabling tool we use to enforce honest behavior in protocol are efficient
realizations of a covert Conditional Key Encapsulation Mechanism (CKEM) for a

2 The cryptographic security parameter τ can be replaced by a statistical security
parameter k in both expressions, but the result would meet a reduced security goal,
where with probability 2−k the adversary can make an honest counterparty compute
some function of its choice on their joint inputs.
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wide class of discrete-log-based languages, including statements that the Cramer-
Shoup encryption [6] ciphertexts or a response in the Oblivious Transfer (OT)
of Aiello et al. [1], are computed correctly, or that an encrypted value is a bit, or
that a commitment decommits to a given plaintext (with the decommitment as
the prover’s witness). A CKEM can be thought of a language-based envelope, a
KEM-version of Conditional Oblivious Transfer [7], or an interactive counterpart
of Smooth Projective Hash Functions (SPHF): A CKEM for language L is a
protocol which allows a sender S with input x to transmit a random key K to
receiver R with input (x,w) if and only if w is a witness for x in L. A covert CKEM
additionally assures that an interaction with either S or R is indistinguishable
from an interaction with a random beacon. In particular, even knowing the
witness w for x a malicious receiver cannot distinguish S(x) from a random
beacon: It computes a key K which is the same as the key computed by the
sender, but since the key is random, it still does not know if the sender was
a real party or a source of randomness. A covert CKEM can thus provide a
counterpart to a zero-knowledge proofs: Instead of asking party A in a 2PC
protocol to explicitly prove that it creates its messages correctly, which makes
A’s presence publicly verifiable, parties B and A run a covert CKEM for the same
language as resp. S and R, and then use key K to (covertly) encrypt subsequent
protocol messages: If A’s messages were not formed correctly, A will not be able
to derive B’s key K, which will make B’s subsequent messages indistinguishable
from random in A’s view.

A Covert CKEM for language L was introduced as “Zero-Knowledge Send” by
Chandran et al. [4] and achieved for general languages, but their construction
reduced L to an NP-complete problem (Hamiltonian Cycle) and used garbled
circuit evaluation at each step of a ZK proof for this problem. By contrast,
we are looking for covert CKEM’s for a class of languages, which we call Linear
Map Image languages, which are discrete-log-based languages that have practical
(HV)ZK proofs (and efficient SPHF systems), and we want the CKEM costs to
be in a similar ballpark as the cost of these proofs. A natural starting point for a
CKEM for a discrete-log-based language are well-known efficient SPHF schemes
for such languages: If B uses an SPHF system on x and defines key K as the
SPHF hash value then A can derive the same key K using its witness w for x
in L. However, SPHF by itself cannot replace a zero-knowledge proof in a larger
protocol, because it does not offer a way for the simulator playing the role of
A and simulating A’s message x, e.g. with random noise, to recover B’s key K
and continue the simulation on A’s behalf in subsequent protocol rounds. Zero-
knowledge works because the simulator can send x 6∈ L on A’s behalf and then
simulate A’s ZK proof as if x was in L. By contrast, if x 6∈ L then an SPHF on
x will hide B’s key K in an information-theoretic sense.

This insufficiency of SPHF’s to replace zero-knowledge proofs in MPC proto-
cols was recognized by Benhamouda et al. [2] who added two essential properties
to SPHF’s for discrete-log-based languages: First, they added (concurrent) zero-
knowledge, i.e. the ability for the simulator in position of the global trapdoor
in the CRS to derive S’s key K even on the wrong statement x 6∈ L. Secondly,
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they added simulation-soundness, i.e. the assurance that a cheating receiver can-
not recover S’s key K for a protocol instance executing on a wrong statement
x 6∈ L even if the adversary concurrently engages with the simulator who re-
covers keys corresponding to multiple protocol instances running on any other
wrong statements x′ 6∈ L. These two properties, simulation-soundness and (con-
current) zero-knowledge are needed of zero-knowledge in the standard compiler
from (concurrent) 2PC secure against honest-but-curious adversaries to (con-
current) 2PC secure malicious parties. Benhamouda et al. called this class of
protocols (concurrent) simulation-sound Implicit Zero-Knowledge (IZK) Argu-
ments, and they showed an efficient construction for such IZK’s for a wide class
of discrete-log-based languages (including the those listed above). The notion
of IZK defined by [2] does not ask for the iZK protocol to be covert, because
the goal of the Implicit ZK Arguments of [2] was reduction of round complexity
in the honest-but-curious to malicious-security protocol compilation: The IZK
schemes they show take only 2 rounds in the CRS model under DDH, compared
to 3 rounds for zero-knowledge proofs of comparable efficiency for the same lan-
guage class. Here we extend the IZK notion of [2] to include covertness (and we
call the resulting notion Covert CKEM), and we observe that the simulation-
sound IZKs of [2] for several discrete-log-based languages of our interest already
satisfy this stronger notion without any changes (except for the trivial change
of encoding (pseudo)random group elements as (pseudo)random bitstrings).

In addition we show that assuming ROM the two-round CKEM’s of [11]
for any language with a special sigma-protocol (which includes all Linear Map
Image languages), which were shown to satisfy a weaker notion of covertness in
[11], also satisfy the covert simulation-sound and zero-knowledge CKEM notion.
This ROM-based covert CKEM realization is relevant for practical purposes
because it constructs covert CKEM’s with the same efficiency as NIZK’s for
these lanuages which are used in standard, i.e. non-covert, maliciously-secure
2PC protocols based on cut-and-choose and Yao’s garbled circuits.

Organization. In Section 3 we define concurrent covert 2PC for arbitrary func-
tions. In Section 4 we list some covert protocol building blocks. In Section 5
we define covert CKEM. In Section 6 we show covert CKEM’s for languages we
use in the covert 2PC protocol. Finally in Section 7 we describe the concurrent
covert 2PC protocol for arbitrary functions, and sketch the proof of its security.

Revision Notes. In a previous version of this paper we used too simplistic model
of CKEM covertness to deal with the standard-model CKEM’s of Benhamouda
et al. [2]: Specifically, the sender in these CKEM’s can be distinguished from a
random beacon given the CKEM simulation trapdoor. In this version we include
a relaxation of sender covertness to simulation-covertness, i.e. that sender is
indistinguishable from a random beacon given an oracle access to a simulator
on other CKEM instances. This notion suffices for CKEM applications in MPC
protocols like our covert 2PC protocol of Section 7, and it holds for the CKEM’s
of [2]. In the previous version we also did not point out the in ROM one can use
more efficient CKEM’s of [11] instead of the standard-model CKEM’s of [2]. In
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the next revision we plan to (1) give a more intuitive overview of the covert 2PC
protocol of Section 7, and (2) edit the proof sketches for this protocol.

2 Preliminaries

Notation. If a, b are bitstrings then |a| is the length of a, a|b is the concatenation
of stings a and b, and a[i] is the i-th bit of a. If n is an integer then [n] =
{1, ..., n}. We write y ← P(x) when y is an output of a (randomized) procedure
P on input x, and y ← S when y is sampled from uniform distribution over
set S. We write y ∈ P(x) if there is randomness r s.t. P(x; r) outputs y. We
say (a, b) ← [A(x), B(y)] if a, b are the local outputs of algorithms resp. A,B
interacting on local inputs resp. x, y. If L is a language in NP then R[L] is a
relation s.t. (x,w) ∈ R[L] if w is an efficiently verifiable witness for x ∈ L.

We call two-party protocol (A,B) regular if the number of rounds and length
of all messages is a function of the security parameter, and not the local inputs
of either party. If P is an interactive algorithm in a regular two-party protocol
then P$(τ) denotes a random beacon corresponding to P, which sends random
bitstrings of the same length as P’s messages in every protocol round. If P
is an interactive algorithm then P&Out(x) is a wrapper which runs P (x) and
includes P ’s final local output in its last message. For any algorithm Setup
and oracles P0, P1 we say that {AP0(x0)(z)} ≈ {AP1(x1)(z)} for (x0, x1, z) ←
Setup(1τ ) if for every efficient A quantity |p0

A − p1
A| is negligible where pbA =

Pr[1←A(z)Pb(xb) | (x0, x1, z)←Setup(1τ )], where the probability goes over the
coins of Setup, A, and Pb.

Covert Encodings. In all protocols we will use all communicated values are
either bitstrings or elements of a prime-order group G. In the latter case what
is sent on the wire is not a group element a ∈ G itself, but its covert encoding
EC(a). A covert encoding is a randomized function EC : G → {0, 1}p(τ) defined
for some polynomial p, s.t. a random variable {EC(a; r)}, induced by a random
choice of r and a sampled uniformly at random in G, is statistically close to
a random string of length p(τ). Moreover, there must exist a corresponding
decoding procedure DC s.t. DC(EC(a; r)) = a for all r and all a ∈ G. For example,
if G is a subgroup of prime p order of a group of residues modulo prime p′ s.t.
p′ = pr + 1 for gcd(p, r) = 1, then EC(a) can pick b ← Zp′ and i ← [2τ ] and
output v = (a · (b)p) mod p′ + i · p′, where · and + are operations on integers,
while DC(v) outputs ws mod p′ for w = vr mod p′ and s = r−1 mod p.

3 Concurrent Covert Two-Party Computation

We provide the definition of concurrent covert computation of two-party func-
tions, which is a close variant of the definition which appeared recently in [5].
Intuitively, the differences between the covert computation of a two-party func-
tionality F and the secure computation for F is that (1) F’s inputs and outputs
are extended to include a special sign ⊥ designating non-participation; (2) F is
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restricted to output a non-participation symbol ⊥ to each party if the input of
either party is ⊥; and (3) the real-world protocol of either party on the non-
participation input ⊥ is fixed as a “random beacon”, i.e. a protocol which sends
out random bitstrings of fixed length independently of the messages it receives.

The definition of concurrent covert computation of [5], which we recall (and
refine) below, follows the definition of stand-alone (i.e. “single-shot”) covert com-
putation given by Chandran et al. [4], here restricted to the two-party case. The
definition casts this notion in the framework of universal composability (UC) by
Canetti [3], but the composability guarantee it implies is restricted to concurrent
self-composition because it guarantees only self-composability of covert compu-
tation for functions, and not for general reactive functionalities as in the case
of UC definition [3]. The reason for this restriction is two-fold: First, concurrent
covert computation for arbitrary efficiently computable functions already pro-
vides a significant upgrade over the “single-shot” covert computation notion of
[4], and achieving it efficiently presents sufficient technical challenges that jus-
tify focusing on this restricted notion. Secondly, composing functionally distinct
covert protocols poses conceptual challenges: Consider a protocolΠ implemented
by a protocol Π1 which runs Π2 as a subroutine, and note that the outputs of
subroutine Π2 can reveal the participation of an honest party in Π before Π
completes. Here we focus on concurrent composition of covert computation of
two-party function, and leave development of a framework for fully composable
covert computation for future work.

On input (Input1, sid, B, x) from party A:
Record (Input1, sid, A,B, x) and send (Input1, sid, A,B) to A∗.

On input (Input2, sid, A, y) from party B:
Record (Input2, sid, A,B, y) and send (Input2, sid, A,B) to A∗.

Given records (Input1, sid, A,B, x) and (Input2, sid, A,B, y) compute

(z, v)←
{

(⊥,⊥) if x =⊥ ∨ y =⊥ ∨ g(x, y) = 0
f(x, y) otherwise

and record (Output, sid, A, z) and (Output, sid, B, v).
If A is corrupt, send (Output, sid, z) to A.
If B is corrupt, send (Output, sid, v) to B.

On input (Output, sid, P, release?) from A∗:
Retrieve record (Output, sid, P, w) (ignore if record does not exist).
If release? = T then send (Output, sid, w) to P .
If release? = F then send (Output, sid,⊥) to P .

Fig. 1. Covert 2-Party Function Computation Functionality FC(f |g)
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Ideal and Real Models. The definition of the ideal model is the UC analogue
of the ideal model of Chandran et al. [4], except that composability guarantees
are restricted to self-composition. Covert computation is defined by functionality
FC(f |g) shown in Figure 1, where f, g are functions defined on pairs of bitstrings.
We note that f and g can be randomized functions, in which case functionality
FC(f |g) picks the randomness which is appended to input (x, y) before computing
g and f . The ideal process involves functionality FC(f |g), an ideal process adver-
sary A∗, an environment Z with some auxiliary input z, and a set of dummy
parties, any number of which can be (statically) corrupted. Each party can spec-
ify its input to some instance of FC(f |g), which is either a bitstring or a special
symbol ⊥ indicating that there is no party which will participate in a given
role, e.g. a requester or responder in this protocol instance. The real model is
exactly as in the standard UC security model, except that the protocol of each
real-world uncorrupted party which runs on input ⊥ is a-priori specified as a
random beacon protocol, i.e. such party sends out random bitstrings of lengths
appropriate for a given protocol round.

Let IdealF,A∗,Z(τ, z, r) denote the output of environment Z after interacting
in the ideal world with adversary A∗ and functionality F = FC(f |g), on secu-
rity parameter τ , auxiliary input z, and random input r = (rZ , rA∗ , rF), as de-
scribed above. Let IdealF,A∗,Z (τ ; z) be the random variable IdealF,A∗,Z(τ, z, r)
when r is uniformly chosen. We denote the distribution ensemble of variable
IdealF,A∗,Z(τ ; z) by {IdealF,A∗,Z(τ, z)}τ∈N;z∈{0,1}∗ . In the corresponding way we
define RealΠ,Adv,Z(τ, z, r) as the output of Z after interacting with a real-world
adversary Adv and parties running protocol Π on security parameter τ , input z,
and random tapes r = (rZ , rAdv, rA, rB). In parallel to the ideal model, we define
the corresponding distribution ensemble {RealΠ,Adv,F(τ, z)}τ∈N;z∈{0,1}∗ .

Definition 1. Protocol Π realizes the concurrent two-party covert computation
functionality F = FC(f |g) if for any efficient adversary Adv there exists an effi-
cient ideal-world adversary A∗ such that for any efficient environment Z,

{IdealF,A∗,Z(τ, z)}τ∈N;z∈{0,1}∗
c
≈ {RealΠ,Adv,F(τ, z)}τ∈N;z∈{0,1}∗

Notes on Functionality FC(f |g). Functionality FC(f |g) in Figure 1 is realizable
only assuming secure channels. Without secure channels the adversary could hi-
jack a protocol session an honest player wants to execute with some intended
counterparty. However, the secure channel assumption does not substantially
change the complexity of the protocol problem because the intended counter-
party can itself be corrupted and follow an adversarial protocol. The second
point worth mentioning is that functionality FC(f |g) always delivers the output
first to a corrupted party, whether it is party A or B, and if this output is not
a non-participation symbol ⊥ then in both cases the corrupted party can decide
if the correct computation output should also be delivered to its (honest) coun-
terparty or the honest counterparty’s output will be modified to ⊥. (Note that
if an output of a corrupt party, say A, is ⊥ then B’s output is also ⊥, hence
it does not matter in this case whether the adversary sends (Output,T, sid) or
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(Output,F, sid) to FC(f |g).) It is necessarily the case that O(1)-round protocol
without a trusted party is unfair in the sense that the party which speaks last
gets its output but can prevent the delivery of an output to its counterparty.
However, functionality FC(f |g) affords this unfair advantage to both the corrupt
requester and the corrupt responder. Indeed, a concrete protocol ΠCOMP pre-
sented in Section 7 which realizes this functionality allows the corrupt party
A to learn its output z and stop B from learning anything about its output v
(simply by aborting before sending its last message to B). However, this pro-
tocol also allows the corrupt party B to prevent party A from being able to
decide if its output z (learned in step A2 in Figure 4) is an output of f(x, y) or
a random value induced from an interaction with a random beacon: Only B’s
final message can confirm which is the case for A, but a corrupt B can send this
message incorrectly, in which case an honest A will dismiss the tentative value
z it computed and output ⊥ instead.

4 Protocol Building Blocks for Covert 2PC

SPHF. A Smooth Projective Hash Function (SPHF) for a language family L
parametrized by parameter π, is a tuple (PG,KG,Hash,PHash) s.t. PG(1τ ) gen-
erates public parameters π and a trapdoor td which allows for efficient testing
of membership in L(π), KG(π) generates key hk together with a key projection
hp, Hash(π, x, hk) and PHash(π, x, w, hp) generate hash values denoted respec-
tively H and projH s.t. for all τ , all (π, td) generated by PG(1τ ), all (hk, hp)
generated by KG(π), and all (x,w) ∈ R[L(π)], we have that Hash(π, x, hk) =
PHash(π, x, w, hp). (We omit parameter π in the calls to Hash and PHash if it
is implicit.) This defines so-called KV-SPHF, named for Katz-Vaikuntanathan
[12], where the (key,projection) pair is generated given only the public parame-
ters, and smoothness holds even for wrong statements chosen as a function of the
key projection. This is in contrast to the GL-SPHF, named for Gennaro-Lindell
[15], where key generation can depend on the statement x.

CCA-Covert Public Key Encryption. Covertness of a public key encryption
scheme in a Chosen-Ciphertext Attack, or CCA covertness for short, is a gener-
alization of the standard notion of CCA security, where instead of requiring that
ciphertexts of two challenge messages are indistinguishable from each other, we
require that a ciphertext on any (single) challenge message is indistinguishable
from a random bitstring, even in the presence of a decryption oracle. For techni-
cal reasons it suffices if interaction with the real PKE scheme is indistinguishable
from an interaction with a simulator who not only replaces a challenge cipher-
text with a random string but also might follow an alternative key generation
and decryption strategy.

Formally, we call a (labeled) PKE scheme (Kg,E,D) CCA covert if there exist
polynomial n s.t. for any efficient algorithm A, quantity AdvA(τ) = |p0

A(τ) −
p1
A(τ)| is negligible, where pbA(τ) is the probability that b′ = 1 in the following

game: Generate (pk, sk) ← Kg(1τ ), and let AD(sk,·,·)(pk) output an encryption
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challenge (m∗, `∗). If b = 1 then set ct∗ ← E(pk,m∗, `∗), and if b = 0 then pick ct∗

as a random string of length n(τ). In either case set b′ ← AD(sk,·,·), while oracle
D(sk, ·, ·) returns D(sk, ct, `) on any ciphertext,label pair s.t. (ct, `) 6= (ct∗, `∗).

Notice that by transitivity of indistinguishability if PKE is CCA-covert then
it is also CCA-secure. The other direction does not hold in general, but many
known CCA-secure PKE’s are nevertheless also CCA-covert. One example is
RSA OAEP, but another is Cramer-Shoup PKE [6], and this is the one we will
use here because its arithmetic structure allows for efficient OT extension and
efficient covert CKEM’s on associated languages (e.g. that a ciphertext encrypts
a given plaintext). Recall that in Cramer-Shoup PKE Kg(1τ ) chooses generator g
of group G with prime order p of an appropriate length, sets a collision-resistant
hash function H, picks (x1, x2, y1, y2, z) ← (Z∗p)5, picks (g1, g2) ← (G\1)2, sets
(c, d, h) ← (gx1

1 gx2
2 , gy11 gy22 , gz1), and outputs sk = ((g,G, p,H), x1, x2, y1, y2, z)

and pk = ((g,G, p,H), g1, g2, c, d, h). Encryption Epk(m, `), assuming the message
space is G, picks r ← Zp, sets (u1, u2, e) ← (gr1, g

r
2,m · hr), ξ ← H(`, u1, u2, e),

v ← (cdξ)r, and outputs ct = (u1, u2, e, v). Decryption Dsk((u1, u2, e, v), `) re-

computes ξ, outputs ⊥ if v 6= ux1+ξy1
1 ux2+ξy2

2 , and outputs m = e · uz1 otherwise.
In Appendix A we show that the proof of CCA security of this PKE under the
DDH assumption [6] can be extended to imply its CCA covertness. For notational
convenience we will assume that the key generation Kg picks the group setting
(g,G, p) as a deterministic function of security parameter τ . The restriction of
the message space to group G is taken for convenience, since this is how we use
it in the covert 2PC protocol, but one can easily extend it to general message
spaces using covert symmetric encryption.

Covert Non-Malleable Commitments. It is well-known that CCA-secure
PKE implements non-malleable commitment. However, to stress that some-
times no one (including the simulator) needs to decrypt, we define commitment
Compk(m) as a syntactic sugar for Epk(H(m)) where H is a collision-resistant
hash onto G, but we will not define a covert commitment notion, relying instead
directly on the fact that Compk(m) stands for Epk(H(m)).

Covert Oblivious Transfer. Von Ahn et al. [16] used a covert version of
Naor-Pinkas OT [14] for their covert 2PC secure against honest-but-curious ad-
versaries. Here we will use a covert version of the OT of Aiello et al. [1] in-
stead because it is compatible with CCA-covert Cramer-Shoup encryption and
covert CKEM’s of Section 6. Let E be the Cramer-Shoup encryption and let
pk = ((g,G, p,H), g1, g2, c, d, h). Define a 2-message OT scheme (E,OTrsp,OTfin)
on Rec’s input b and Snd’s input m0,m1 ∈ G as follows:

(1) Rec picks r← Zp and sends ct = Epk(g
b; r) to Snd;

(2) Snd picks r′ = (α0, β0, α1, β1) ← Z4
p and sends back to Rec message otr =

(s0, t0, s1, t1) computed using OTrsppk(ct,m0,m1; r′) ct = (u1, u2, e, v), and ,

which sets si = gαi1 hβi and ti = u1
αi(e/gi)βimi for i = 0, 1;

(3) Rec runs OTfinpk(b, r, otr) which outputs m = tb · (sb)−r.
Covertness of E implies that Rec’s message is indistinguishable from random

even on access to the decryption oracle. It is also easily seen that Snd’s message
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is indisguishable from random if payloads (m0,m1) are random in G2. Otherwise

payload m recovered by Rec suffices to distinguish OTrsp and OTrsp$(τ).

Covert Garbled Circuit. Von Ahn et al. [16] shows a covert version of Yao’s
garbling procedure GCgenf for any f : {0, 1}n → {0, 1}m. The GCgenf procedure

outputs (1) a vector of input wire keys ks = {kw,b}w∈W,b∈{0,1} where W is the
set of the n input wires, and (2) a vector gc of 4|C| covert symmetric encryption
ciphertexts, where |C| is the number of gates in a Boolean circuit for f . If S =
{(mw,0,mw,1)}w∈[n],b∈{0,1} and x ∈ {0, 1}n then let S[:x] denote {mw,xw}w∈[n],
i.e. a selection of bistrings from the n pairs in S according to the n bits of x.
Let m′ = 4|C|τ + nτ . The notion of garbled circuit covertness which [16] define,
and which their Yao’s garbling variant satisfies, is that for any function f , any
distribution D over its inputs, and any efficient algorithm A, there is an efficient
algorithm A∗ s.t. |AdvA − AdvA∗ | is negligible, where:

AdvA = |Pr[1←A({gc, ks[:x]})]x←D,(gc,ks)←GCgenf
− Pr[1←A(r)]r←{0,1}m′ |

AdvA∗ = |Pr[1←A∗(f(x))]x←D − Pr[1←A∗(r)]r←{0,1}m |

In other words, for any function f and distribution D over its inputs, the garbled
circuit for f together with the wire keys corresponding to x sampled from D are
(in)distinguishable from a random string to the same degree as function outputs
f(x) for x←D. In particular, if f,D are such that {f(x)}x←D is indistinguishable
from random, then so is {gc, ks[:x]}x←D,(gc,ks)←GCgenf

.

5 Covert Simulation-Sound CKEM

A Conditional Key Encapsulation Mechanism (CKEM) [10] is a generalization
of SPHF to interactive protocols. A CKEM scheme for language L is a protocol
between two parties, a sender S and a receiver R, on S’s input a statement xS
and R’s input a (statement,witness) pair (xR, wR). The outputs of S and R are
respectively KS and KR s.t. KS is a random string of τ bits, and KR = KS if and
only if xS = xR and (xR, wR) ∈ R[L]. A CKEM scheme is an encryption coun-
terpart of a zero-knowledge proof, where rather than having the prover/receiver
use its witness wR to prove to the verifier/sender that xS ∈ L, here the prover
establishes a session key K with the verifier if and only if wR is a witness for
xS in L. Because of this relation to zero-knowledge proofs, we will follow [2] and
use proof-system terminology to define security properties of a CKEM scheme.
In particular, we will refer to the CKEM security property that if x 6∈ L then no
efficient algorithm can compute K output by S(x) as the soundness property.

A notion of CKEM was extended by Benhamouda et al. [2], who called it
Implicit Zero-Knowledge, to a trapdoor CKEM. Namely, consider a CRS gener-
ation procedure which together with parameters π generates a trapdoor td that
allows an efficient simulator algorithm to compute the session key KS output by
a sender S(x) for any x, including x 6∈ L. The ability to construct such simulator
makes CKEM into a more versatile protocol building block. For example, trap-
door CKEM implies a zero-knowledge proof for the same language, if R simply
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returns the key KR to S who accepts iff KR = KS . Indeed, following [2], we refer
to the property that the simulator computes the same key as the honest receiver
would in the case x ∈ L as the zero-knowledge of CKEM.

As in the case of zero-knowledge proofs, if multiple parties perform CKEM
instances concurrently then we need to strengthen CKEM security properties
to simulation-soundness, so that all instances executed by the corrupt players
remain sound even in the presence of a simulator S who uses its trapdoor to
simulate the instances performed on behalf of the honest players. Simulation-
soundness is closely related to non-malleability: If S simulates a CKEM instance
π on x 6∈ L then an efficient adversary must be unable to use protocol instance π
executed by S to successfully complete another instance π′ of CKEM executed
by a corrupt party for any x′ 6∈ L.

We define the above security properties formally, building on the definitions
given by Benhamouda et al. [2], and strengthening them to assure CKEM covert-
ness. Namely, for covert zero-knowledge we require not only that an interaction
with an honest receiver is indistinguishable from the interaction with a simula-
tor but also that both the receiver or the simulator are indistinguishable from
a random beacon. Similarly, for covert (simulation) soundness we require not
only that the sender’s session key K is indistinguishable from a random string
if the protocol proceeds on x 6∈ L (even in the presence of a multiple simulated
protocol instances), but that all messages the sender sends and the session key
it outputs, are together indistinguishable from a random beacon.

Since in the CKEM applications we need both protocol parties to be covert,
we add a requirement to covert zero-knowledge that an interaction with the
sender is also indistinguishable from an interaction with a random beacon. How-
ever, we note that since we want protocol parties to be covert on all statements
x, we can only require indistinguishability from a random beacon of the protocol
interaction, i.e. excluding the key (or rejection) which forms a local output of the
interacting party. (Otherwise an adversary running the counterparty’s protocol
on the same x and/or its witness w, can distinguish this party from a random
beacon by computing the same output key.)

To distinguish between different CKEM sessions the CKEM syntax must
also be amended by labels, which play similar role as labels in CCA encryp-
tion. Formally, a CKEM scheme for language family L is a tuple of algorithms
(PG,TPG,Snd,Rec,TRec) s.t. parameter generation PG(1τ ) generates CRS pa-
rameter π, trapdoor parameter generation TPG(1τ ) generates π together with
the simulation trapdoor td, and sender Snd, receiver Rec, and trapdoor receiver
TRec are interactive algorithms which run on local inputs respectively (π, x, `),
(π, x, `, w), and (π, x, `, td), and each of them outputs a session key K as its local
output. CKEM correctness requires that for all `:

∀(x,w) ∈ R[L], [KS ,KR]← [Snd(π, x, `),Rec(π, x, `, w)]⇒ KS = KR (1)

∀x, [KS ,KR]← [Snd(π, x, `),TRec(π, x, `, td)]⇒ KS = KR (2)

where (1) holds for all π generated by PG(1τ ) and (2) for all (π, td) generated
by TPG(1τ ). Crucially, property (2) holds for all x, and not just for x in L.
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Covert Zero-Knowledge. We say that a CKEM for language (family) L is
covert zero-knowledge if the following properties hold:

1. Setup Indistinguishability: Parameters π generated by PG(1τ ) and TPG(1τ )
are computationaly indistinguishable.

2. Zero Knowledge: For every efficient A = (A1,A2) we have

{ARec&Out(π,x,`,w)
2 (st)} ≈ {ATRec&Out(π,x,`,td)

2 (st)}

for (π, td)← TPG(1τ ) and (st, x, w, `)← A1(π, td) s.t. (x,w) ∈ R[L].3

3. Receiver Covertness: For every efficient A = (A1,A2) we have

{ARec(π,x,`,w)
2 (st)} ≈ {ARec$(τ)

2 (st)}

for π ← PG(1τ ) and (st, x, w, `)← A1(π, td) s.t. (x,w) ∈ R[L].

4. Trapdoor-Receiver Covertness: For every efficient A = (A1,A2) we have

{ATRec(π,x,`,td)
2 (st)} ≈ {ATRec$(τ)

2 (st)}

for (π, td)← TPG(1τ ) and (st, x, `)← A1(π, td).

5. Sender Covertness: For every efficient A = (A1,A2) we have

{ASnd(π,x,`)
2 (st)} ≈ {ASnd$(τ)

2 (st)}

for (π, td)← TPG(1τ ) and (st, x, `)← A1(π, td).

Discussion: Zero-knowledge means that an interaction with Rec on any x ∈ L
followed by seeing Rec’s local output KR, can be simulated by TRec without
knowledge of the witness for x. Receiver and Trapdoor-Receiver covertness mean
that in addition, the adversary A who interacts with resp. Rec and TRec but does
not see their local outputs cannot tell them from random beacons. In the case of
TRec we ask for this to hold for any x and not only for x ∈ L because a simulator
of a higher-level protocol will typically create incorrect statements and then it
will need to simulate the Receiver algorithm on them. Note that we cannot
include the output KR of either Rec or TRec in A’s view in the covertness game
because A can compute it by running Snd(x). Sender covertness means that an
intercation with the Snd is indistinguishabile from an interaction with a random
beacon for any x. Here too we cannot include Snd’s local output KS in A’s view
because if (x,w) ∈ R[L] then A who holds w can compute it running Rec(x,w).
Note that A’s view includes both the public parameters π and the simulator’s
trapdoor td, which implies that all the properties will hold in the presence of
multiple CKEM instances simulated by TRec using td.

Covert Soundness and Simulation-Soundness. A CKEM is covert sound
if interaction with Snd on x 6∈ L followed by Snd’s local output KS is indistin-
guishable from interaction with a random beacon. Recall that soundness requires

3 If A1 outputs (x,w) 6∈ R[L] we override A2’s output by an arbitrary constant.
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pseudorandomness of only Snd’s output KS on x 6∈ L while here we require it
also of all network messages Snd sends. Covert simulation-soundness requires
that this holds even if the adversary has access to the Trapdoor-Receiver for any
(x′, `′) which differs from the pair (x, `) that defines the soundness challenge. To
that end we use notation PBlock(x) for a wrapper over (interactive) algorithm P
which outputs ⊥ on input x′ = x and runs P (x′) for x′ 6= x:

CKEM is Covert Sound if for every efficient algorithm A = (A1,A2) we have:

{ASnd&Out(π,x,`)
2 (st)} ≈ {ASnd

$(τ)
&Out

2 (st)}

for (π, td)← TPG(1τ ) and (st, x, `)← A1(π) s.t. x 6∈ L.

CKEM is Covert Simulation-Sound if for every efficient algorithm A = (A1,A2)
we have:

{ASnd&Out(π,x,`),TRecBlock(x,`)(td,·)
2 (st)} ≈ {ASnd

$(τ)
&Out,TRecBlock(x,`)(td,·)

2 (st)}

for (π, td) ← TPG(1τ ) and (st, x, `) ← ATRec(td,·)
1 (π) s.t. x 6∈ L and TRec(td, ·)

was not queried on (x, `).

Covert ZK Relaxation. The standard-model CKEM systems we show in Sec-
tion 6.2 maintain a version of covertness which is relaxed in two ways. First,
receiver and trapdoor-receiver covertness hold only for language statements pa-
rameterized by a parameter randomly generated by a trusted third party. (For
all languages listed in Section 6.1 these parameters consist of a public key of the
Cramer-Shoup encryption scheme.) If the simulator of the higher-level protocol
that utilizes this CKEM system uses the trapdoor embedded in these param-
eters, i.e. the decryption key corresponding to this Cramer-Shoup public key,
we must assure covertness in the presence of such oracle. Looking ahead, the
simulator in the covert 2PC protocol of Section 7 uses the Cramer-Shoup de-
cryption key to decrypt the ciphertexts sent by the corrupt parties, and we need
the CKEM where the honest party A is a receiver to be receiver-covert even in
the presence of a simulator which uses the trapdoor to decrypt the ciphertexts
sent by the corrupt party B, and vice versa. If the higher-level protocol sepa-
rates the labels used in A’s ciphertexts and CKEM instances where A acts as a
prover/receiver from the corresponding labels used by B, then the relaxation of
covert zero-knowledge given below will suffice.

Let TPG′,O be a pair of algorithms s.t. TPG′(1τ ) generates (π′, td′) and
O(td′, ·) is an oracle. Let θ(x) be a predicate, and let OBlock(θ(x,·))(td′, ·) be a
wrapper which on input x′ outputs ⊥ if θ(x, x′) = 1 and otherwise outputs
O(td′, x′). Consider language L parametrized by π′. We say that CKEM for L
is Covert Zero-Knowledge Relative To (PG′,O, θ) if it satisfies Setup Indistin-
guishability, Zero-Knowledge, and Sender Covertness for L(π′) for any π′ output
by TPG′(1τ ), and it satisfies:

3’. Receiver Covertness Relative to (TPG′,O, θ): For every efficient algorithm
A = (A1,A2) we have:

{ARec(π,x,`,w),OBlock(θ(x,·))(td
′,·)

2 (st)} ≈ {ARec$(τ),OBlock(θ(x,·))(td
′,·)

2 (st)}
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for (π, td)←PG(1τ ), (π′, td′)←PG′(1τ ), (st, x, w, `) ← AO(td′,·)
1 (π, td, π′) s.t.

(x,w) ∈ R[L(π′)].

4’. Trapdoor-Receiver Covertness Relative to (TPG′,O, θ): For every efficient
algorithm A = (A1,A2) we have:

{ATRec(π,x,`,td),OBlock(θ(x,·))(td
′,·)

2 (st)} ≈ {ATRec$(τ),OBlock(θ(x,·))(td
′,·)

2 (st)}

for (π, td)←TPG(1τ ), (π′, td′)←PG′(1τ ), (st, x, `)← AO(td′,·)
1 (π, td, π′).

Secondly, the standard-model CKEM systems we show in Section 6.2 do not
assure sender covertness against an adversary who is given the simulation trap-
door td. However, sender covertness does hold for adversary who gets parameters
π generated by TPG and has access to the Trapdoor-Receiver simulation ora-
cle for any (x′, `′) which differs from (x, `) that defines the sender covertness
challenge. We say that CKEM for L is Sender Simulation-Covert if it satisfies:

5’. Sender Simulation-Covertness: For every efficient algorithm A = (A1,A2)
we have:

{ASnd(π,x,`),TRecBlock(x,`)(td,·)
2 (st)} ≈ {ASnd$(τ),TRecBlock(x,`)(td,·)

2 (st)}

for (π, td) ← TPG(1τ ) and (st, x, `) ← ATRec(td,·)
1 (π) s.t. TRec(td, ·) was not

queried on (x, `).

We say that a CKEM for L is Covert Zero-Knowledge (relative to (PG′,O))
with Sender Simulation-Covertness if CKEM satisfies all the properties required
by Covert Zero-Knowledge (relative to (PG′,O)), except with the Sender Covert-
ness property (5) replaced by the Sender Simulation-Covertness property (5’).

Notice that sender simulation-covertness together with standard, i.e. non-
covert, simulation-soundness, imply covert simulation-soundness of a CKEM.

Lemma 1. If a CKEM scheme for some language is simulation sound and
sender simulation-covert, then it is also covert simulation-sound.

Proof. Consider the simulation-soundness game where adversary A on input π
for (π, td)← TPG(1τ ) interacts with TRec(td, ·), generates (x, `) s.t. x 6∈ L, and
interacts with oracles Snd&Out(π, x, `) and TRecBlock(x,`)(td, ·). The standard (i.e.
non-covert) simulation soundness of this CKEM implies that this game is indis-
tinguishable from a modification in which key KS output by Snd&Out(π, x, `)
is chosen at random. Once KS is independently random, sender simulation-
covertness, which hods for all x, implies that this game is indstinguishable from
a modifcation where the messages sent by Snd are replaced with a random bea-

con. Since these two moves replace oracle Snd&Out(π, x, `) with Snd
$(τ)
&Out, it follows

that the CKEM is covert simulation-sound.
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6 Covert CKEM’s for Linear Map Image Languages

The Covert 2PC protocol in Section 7 relies on covert CKEM’s for what we call
Linear Map Image languages. A linear map image language LMIn,m for group G
of prime order p is defined as the language of pairs (C,M) ∈ Gn×Gn×m s.t. there
exists a vector w ∈ Zmp s.t. C = w ·M , where the vector dot product denotes
component-wise exponentiation, e.g. [w1, ..., wm] · [gi1, ..., gim] =

∏m
j=1(gij)

wj . In
other words, (C,M) ∈ LMIn,m if C is in the image of a linear map fM : Zmp →
Gn defined as fM (w) = w ·M , i.e. if C is in the subspace of Gn spanned by
the rows of M , which we denote span(M). We extend this notion to a class
of Linear Map Image languages, denoted LMI, consisting of all languages L for
which there are some integers n,m and a pair of efficiently computable functions
φ : Ux → (G×Gn×m) and γ : Uw → Zmp where Ux, Uw are the implicit universes
respectively of statements in L and of witnesses for these statements, s.t. for all
(x,w) ∈ Ux × Uw, w is a witness for x ∈ L if and only if γ(w) is a witness for
φ(x) ∈ LMIn,m. We will sometimes abuse notation by treating set {φ(x)}x∈L, i.e.
L mapped onto (a subset of) LMIn,m, replaceably with L itself.

It is well known that Linear Map Image languages have efficient SPHF’s:
KG picks the hashing key hk = (hk1, ..., hkn) at random in Znp , and computes

the key projection hp = (hp1, ..., hpm) as hp = M · hk, i.e. hpi =
∏n
j=1(gij)

hkj .

Hash((C,M), hk) outputs H = C·hk =
∏n
j=1(Cj)

hkj , while PHash((C,M), w, hp)

outputs projH = w · hp =
∏m
i=1(hpi)

wi . Correctness holds because if C = w·M
then H = C · hk = (w·M) · hk = w · (M ·hk) = w · hp = projH, and smoothness
holds because if C 6∈ span(M) then H = C · hk is independent from hp = M · hk.

We will show two types of covert CKEM’s for Linear Map Image languages.
In Section 6.2 we show that the zero-knowledge and simulation-sound CKEM
proposed by Benhamouda et al. [2] for any language L in LMI, satisfies sender
simulation-covertness and covert simulation soundness if M is full row rank for
all x in the implicit universe Ux of statements in L, which is the case for all LMI
languages used in our covert 2PC protocol – we list these languages in Section 6.1.
We also show that this CKEM is receiver and trapdoor-receiver covert relative to
the Cramer-Shoup decryption oracle for all these languages. Secondly, in Section
6.3 we show that covert CKEM proposed proposed in [11] for any language with
a sigma-protocol, i.e. 3-round public coin honest-verifier ZK proof system with
some additional properties, is also covert zero-knowledge and simulation-sound
in the Random Oracle Model (ROM). Since every Linear Map Image language
has such sigma-protocol, this implies a covert zero-knowledge and simulation-
sound CKEM for all such languages in ROM.

Note on CKEM Efficiency and Generality. Both CKEM systems are two-round
protocols, but the standard model CKEM of Section 6.2 uses at least twice
more computation and bandwidth than the random oracle model CKEM of
Section 6.3. For language L in LMIn,m, the first CKEM takes 2m+14 multi-
exponentiations with (up to) 2n+10 bases for S, 2n+12 multi-exp’s with (up
to) 2m+12 bases for R, and its bandwidth is (a covert encoding of) 2n+2m+22
group elements, while the second CKEM takes n multi-exp’s in (up to) m+1
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bases for both S and R, and its bandwidth is (a covert encoding of) m elements
in Zp and 3 group elements. Also, we show the standard model CKEM of Section
6.2 as covert ZK and SS (relative to the Cramer-Shoup decryption oracle, with
sender simulation covertness) only for Linear Map Image languages listed in
Section 6.1, while the CKEM of Section 6.3 is covert ZK and SS for any Linear
Map Image language, albeit only in ROM.

6.1 Linear Map Image Languages for Covert 2PC

We list the LMI languages used in the covert 2PC protocol of Section 7 for
which we need covert zero-knowledge and simulation-sound CKEM’s. We defer
to Appendix B for the full explanation why each of these languages is in class
LMI, and for the specifications of how language instances are mapped to (C,M)
instances of LMIn,m for some n,m. Let (Kg,E,D) be the CCA-covert Cramer-
Shoup PKE. All languages below are implicitely parametrized by the public key
pk output by Kg(1τ ), which also specifies the prime-order group setting (g,G, p).
(Formally, pk is part of a statement in each of the languages below.)

Language Le of correct (ciphertext,label,plaintext) tuples for plaintext m ∈ G:

Le(pk) = {(ct,m, `) s.t. ct ∈ Epk(m, `)}

(see Appendix B for a 1-to-1 mapping from Le to LMI4,1.)

Language Lbit of “shifted” encryptions of a bit:

Lbit(pk) = {(ct, `) s.t. ∃b (ct, gb, `) ∈ Le(pk) ∧ b ∈ {0, 1}}

(see Appendix B for a 1-to-1 mapping from Lbit(pk) to LMI6,3.)

Language Ldis is used for proving that a key corresponding to some sender’s
wire in Yao’s garbled circuit is consistent with the two key values the sender
committed in ck0, ck1 and with the bit the sender committed in ct. To cast this
language as a (simple) LMI language we use the “shifted” version of Cramer-
Shoup encryption in these statements, i.e. we encrypt gm ∈ G instead of m ∈ Zp.
In other words, Ldis(pk) consists of tuples (m, ct, ck0, ck1) s.t. either (ct encrypts
g0 and ck0 encrypts gm) or (ct encrypts g1 and ck1 encrypts gm):

Ldis(pk) = {(m, ct, ck0, ck1, `, `0, `1) s.t. ∃b (ct, gb, `), (ckb, g
m, `b) ∈ Le(pk)}

(see Appendix B for a 1-to-1 mapping from Ldis to LMI19,11.)

Language Ldis′ is a simplification of Ldis which omits checking the constraint
imposed by ciphertext ct.

Language Lotr is used for proving correctness of a response in an Oblivious
Transfer of Aiello et al. [1], formed using procedure OTrsp (see Section 4), which
the sender uses in Yao’s protocol to send keys corresponding to receiver’s wires:

Lotr(pk) = { (otr, ct, ck0, ck1, `0, `1) s.t. ∃k0, k1, r

(ck0, k0, `0) ∈ Le(pk) ∧ (ck1, k1, `1) ∈ Le(pk) ∧ otr = OTrsppk(ct, k0, k1; r) }
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(see Appendix B for a 1-to-1 mapping from Lotr to LMI10,6.)

Finally, observe that LMI is closed under conjunctions: (C1,M1) is in LMIn1,m1

and (C2,M2) is in LMIn2,m2 if and only if (C,M) is in LMIn1+n2,m1+m2 for
C = (C1, C2) and M formed from by placing M1 in the upper-left corner, M2 in
the lower-right corner, and all-one matrices in the remaining quadrants.

6.2 Covert CKEM for a subclass of LMI Languages

Benhamouda et al. [2] showed a simulation-sound and zero-knowledge CKEM
for any linear map image language L. We will argue that this CKEM is also
covert for all the linear map image languages listed in Section 6.1.

We start with a slightly simplified version of the CKEM construction of [2]
where points u′′, e′′ are globally set in π rather than determined per each (x, `)
pair. Let DH be the set of Diffie-Hellman tuples in G and let DH(g′, h′) be the
set of (u′, e′) pairs s.t. (g′, h′, u′, e′) ∈ DH. The (simplified) parameter genera-
tion PG(1τ ) defines a prime-order group (g,G, p), samples π = (g′, h′, u′, e′) uni-
formly inG4, and (u′′, e′′) uniformly in DH(g′′, h′′), while the trapdoor generation
TPG(1τ ) samples (g′, h′) in G2 and both (u′, e′) and (u′′, e′′) in DH(g′, h′), set-
ting trapdoor td s.t. (g′, h′)td = (u′, e′). Given statement (C,M) ∈ Gn ×Gn×m,
the construction expands matrix M in Gn×m into matrix M ′ in G(n+5)×(m+6)

and then “doubles” M ′ into M in G(2n+10)×(2m+12), as shown in equation (3).
The point of this expansion is to modify the original LMI language of pairs

(C,M) s.t. C ∈ span(M) into the language of triples (C,M, π) s.t. either M ∈
span(C) or elements of π have some (trapdoor) property. Moreover, matrix M ′

shows that this modification can be cast as another instance of LMI: Consider
C ′ = (g′−1, 1, ..., 1) ∈ Gn+5 and observe that C ′ ∈ span(M ′) if and only if

(c1) C ∈ span(M) or (c2) (u′, e′) ∈ DH(g′, h′) or (c3) (u′′, e′′) 6∈ DH(g′, h′)

Note that if condition (c1) fails then rows r1, ..., rm, e1 cannot be used in the
linear combination λ′ s.t. C ′ = λ′ ·M ′; If condition (c2) fails then rows e2, e3

must drop out too; And if condition (c3) fails then rows e4, e5, e6 must also
drop out. These additional conditions (c2) and (c3) allow PG to set π so that
to guarantee soundness, while TPG can set π to inject the trapdoors needed to
argue zero-knowledge and simulation-soundness, as we explain below.

M′ =



1 M 1

g′ 1 1

1 g′ h′

g′ u′ e′

1 1 1
1 1 1
g′ 1 1

C

1 · · · 1
1 · · · 1
1 · · · 1
1 · · · 1
1 · · · 1

1 1

1 1
1 1

g′ h′

u′′ e′′

g′ 1



(r1), ..., (rm)

(e1)

(e2)
(e3)

(e4)
(e5)
(e6)

M =

[
M′′ 1
1 M′′

]
(3)
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Note that if C = w · M then C ′ = λw · M ′ for λw = (w,−1, 0, 0, 0, 0, 0)
and if (u′, e′) ∈ DH(g′, h′) and td = DL(g′, u′) then C ′ = λtd · M ′ for λtd =
(0, ..., 0, td,−1, 0, 0, 0). Figure 2 shows the CKEM of [2] which specifies protocol
Rec for R and protocol Snd for S, on respective inputs M , C ′, λw derived as
above. The TRec protocol is exactly like Rec except it uses λtd instead of λw.

On inputs π and (C,M) = φ(x), and on R’s input λw derived from w s.t. C = w ·M :

R: Pick tk← Z2m+12
p and send tp = (M

T
) · tk to S;

S: Pick hk← Z2n+10
p and ψ ← Zp, set C = (C′, C′ · ψ), hp = M · hk, H = C · hk, and

tprojH = hkT · tp. Send (ψ, hp) to R and output KS = H · tprojH;

R: Set λ̄w = (λw, λw ·ψ), projH = λ̄w · hp, and tH = hpT · tk. Output KR = projH · tH.

Fig. 2. CKEM for Linear Map Image Language due to Benhamouda et al. [2]

Zero-Knowledge and Simulation-Soundness. We recall the Zero-Knowledge
and Simulation-Soundness arguments for this CKEM given by [2], since the
covertness arguments we supply next will rely on them.

Correctness: The CKEM of Figure 2 is correct because it composes two SPHF’s
for two LMI languages: In the first SPHF, S generates (hk, hp) to verify that R
holds λ s.t. C = λ̄·M . In the second SPHF, R generates (tk, tp) to verify whether
S forms hp correctly, i.e. if hp = M · hk = hkT ·MT for some hk.

Zero-Knowledge: The key observation is that if C = w·M and (u′, e′) ∈ DH(g′, h′)
(as set by TPG) then C is equal to both λ̄w·M and λ̄td·M . Therefore if hp = M ·hk
for some hk then λ̄w · hp = λ̄td · hp. Otherwise, i.e. if hpT 6∈ span(M)T , then
tH = hpT · tk (and hence also KR) is independent of hp = (M)T · tk in S’s
view. Note that this argument essentially shows that interaction with TRec (or
Rec) is (perfectly) witness-hiding, i.e. that interaction with oracles TRec(λ, ·)
and TRec(λ′, ·) is identical as long as C = λ̄ ·M = λ̄′ ·M .

Soundness: If C 6∈ span(M) and (u′, e′) 6∈ DH(g′, h′) and (u′′, e′′) ∈ DH(g′, h′)
(as is set by PG) then conditions (c1)-(c3) all fail and C ′ 6∈ span(M ′). The
point of the “matrix doubling” technique is that C ′ = λ · M ′ if and only if
(C,C ′ · ψ) = (λ, λ · ψ) ·M for every ψ 6= 0, and the key lemma of [2] shows
that if C ′ 6∈ span(M ′) then for any tp there exists at most one ψ value s.t.
C = (C ′, C ′ · ψ) ∈ span(M, tpT ), where span(M, tpT ) denotes the subspace
spanned by all the rows of M and vector tpT . Therefore, if C ′ 6∈ span(M ′)
then with overwhelming probability C 6∈ span(M, tpT ), in which case C+ tpT (a
component-wise product of C and tpT ) is not in span(M), hence KS = H·tprojH =
(C · hk) · (tpT · hk) = (C + tpT ) · hk is independent from hp = M · hk.

Simulation-Soundness: Note that soundness and zero-knowledge require opposite
property of CRS π: For soundness we need (u′, e′) 6∈ DH(g′, h′), because other-
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wise C ′ ∈ span(M ′) even if C 6∈ span(M), while for zero-knowledge we need
(u′, e′) ∈ DH(g′, h′) to let TRec compute projH even if C 6∈ span(M). This is a
problem for simulation-soundness because the set-up needed for the soundness
challenge (x, `) is different than the set-up for TRec queries (x′, `′). The CKEM
of Benhamouda et al. [2] handles this by defining pair (u′′, e′′) used in matrix M ′

separately per each (x, `) instance using the Waters [17] function W : {0, 1}2τ →
G2 and a collision–resistant hash H onto {0, 1}2τ . Namely, π contains 2τ+1 pairs
{ui, ei}2τi=0, all random in DH(g′, h′), and pair (u′′, e′′) for instance (x, `) is defined
as W (H(x, `)) where W (m) = (u0, e0) · π2τ

i=1(ui, ei)
mi . Simulation-soundness is

shown under the DDH assumption by a simulator which picks (u′, e′) in G2 and
samples (ui, ei)’s with knowledge of DL(g′, ui) and DL(h′, ei) in such a way that
with high-enough probability two facts hold: (1) If (u′′, e′′) = W (H(x, `)) for the
soundness challenge (x, `) then (u′′, e′′) ∈ DH(g′, h′), which means that if x 6∈ L
then none of the conditions (c1)-(c3) above are met, hence the same soundness
argument as above implies that Snd’s output KS is independent of the adver-
sary’s view; (2) For each (x′, `′) query to TRec, we have (u′′, e′′) = W (H(x′, `′)) 6∈
DH(g′, h′), and the simulator uses the knowledge of DL(g′, u′′) and DL(h′, e′′) to
compute (α, β) s.t. (g′)α(u′′)β = g′ and (h′)α(e′′)β = 1, hence TRec can use
λ′td = (0, ..., 0, α, β,−1) to compute projH = λ′td · hp because C ′ = λ′td ·M ′.

Sender Simulation-Covertness and Covert Simulation-Soundness. We
argue that under DDH assumption the above CKEM satisfies sender simulation
covertness and covert simulation soundness for every language L in class LMI
s.t. if φ is a mapping that defines L as a class LMI language maps the implicit
universe Ux of L statements to Gn×Gn×m then matrix M has the full row rank
m for each x ∈ Ux and (C,M) = φ(x). (This has to hold not just for x ∈ L
because sender covertness must hold regardless whether x is in L.) Note that
this condition holds for all languages listed in Section 6.1.

Theorem 1. Let L be a language with implicit universe Ux, and let φ : Ux →
Gn×Gn×m s.t. x ∈ L if and only if φ(x) ∈ LMIn,m. CKEM protocol in Figure 2
is sender simulation-covert under the DDH assumption for L if for each x ∈ Ux
and (C,M) = φ(x) matrix M has full row rank m.

Proof. We have to show that given parameters π, value hp = M̄ · hk sent by Snd
is indistinguishable from a random vector in G2(m+6) for all (x,, given access
to oracle TRecBlock(x,`)(td, ·), for (π, td)← TPG(1τ ). (Note that value ψ sent by

Snd is already uniformly random.) Since M is a diagonal matrix containing two
instances of M ′, the SPHF for M consists of two independent instances of an
SPHF for M ′. Therefore we need only consider how the SPHF acts on M ′, i.e.
consider hp = (hp1, ..., hpm+6) = M ′ · hk for hk ← Zn+5

p , and argue that it is
indistinguishable from random in Gm+6 (given access to the TRec oracle). Let
(C,M) = φ(x). Since by assumption M has rank m, and row e1 has g 6=1 in the
first column, space S1 = span(r1, ..., rm, e1) has dimension m+1, which implies
that hp[1,m+1] is random in Gm+1. Consider matrix M∗ made of the 2nd and
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3rd column of rows e2, e3 and the last two columns of rows e4, e5, e6, and the
entries in the first column of M ′ in the same rows, denoted F :

F =


1
g′

1
1
g′

 M∗ =


g′ h′ 1 1
u′ e′ 1 1

1 1 g′ h′

1 1 u′′ e′′

1 1 g′ 1


(e∗2)
(e∗3)

(e∗4)
(e∗5)
(e∗6)

(4)

Consider vector hp∗ = M∗ · hk∗ for hk∗ = (hk2,3, hkn+4,n+5). Observe by inspec-
tion of matrix M ′ in equation (3) that (1) hp[1,m+1] is a function only of elements
(hk1, hk[4,..,n+3]) of hk, and (2) hp[m+2,m+6] = F · hk1 +M∗ · hk∗ = F · hk1 + hp∗.
By fact (1) it follows that hp[1,m+1] is independent of hk∗, because hk∗ consists
of elements of hk which are disjoint from elements (hk1, hk[4,...,n+3]) used in com-
puting hp[1,m+1]. By fact (2) it follows that if we show that hp∗ = M∗ · hk∗ is

indistinguishable from random tuple in G5 for hk∗ ← G4 (given access to the
TRec oracle) then this will imply that hp[m+2,m+6] is also indistinguishable from

random in G5 because hp∗ acts like a one-time pad in the above equation for
hp[m+2,m+6]. Together with the fact that hp[1,m+1] is random in Gm+1, this will
complete the argument for sender simulation covertness.

It remains to argue that for (π, td) ← TPG(1τ ) and any (x, `) output by
adversary A given π and access to oracle TRec(td, ·), if M∗ is defined as above
by (u′′, e′′) = W (H(x, `)), then variable {hp∗ = M∗ ·hk∗}hk∗←G4 is indistinguish-
able from a random tuple in G5, given A’s access to oracle TRecBlock(x,`)(td, ·).
This argument uses similar game changes as the simulation-soundness argu-
ment of [2] for this CKEM recalled above. Similarly as in that proof, consider
the following modifications of TPG and TRec: The modified TPG picks sets
(ui, ei) = ((g′)δi , (h′)ζi) for random (δi, ζi) ← Z2

p for each i = 0, ..., 2τ , and sets
td = {δi, ζi}i=0,..,2τ . Note that for every TRec query (x′, `′), except for neg-
ligible probability it holds that (u′′, e′′) 6∈ DH(g′, h′) for (u′′, e′′) = W (m) =
(u0, e0) · π2τ

i=1(ui, ei)
mi where m = H(x′, `′). Therefore the modified TRec can

use (δi, ζi)’s to compute (α, β) s.t. (g′)α(u′′)β = g′ and (h′)α(e′′)β = 1, in which
case λ′td = (0, ..., 0, α, β,−1) satisfies that C ′ = λ′td ·M ′, and by argument that
TRec(td, ·) oracle is witness-hiding (see the zero-knowledge argument above), we
have that the modified TRec oracle acts identically as the original. Since the
modified TRec does not use the original trapdoor td = DL(g′, u′) = DL(h′, e′),
by reduction to DDH we can modify TPG further by picking (u′, e′) at random
G2 tuple instead of DH(g′, h′). After this change note that rows (e∗1, e

∗
2) of M∗

are now independent (except for neglgigible probability), hence hp∗1,2, which is
a function of only hk∗1,2, can be replaced by a random pair in G2.

It remains only to argue that hp∗[3−5] is indistinguishable from random in G3

for random hk∗3,4 ← Z2
p. Denote (r, s) = (hk∗3, hk∗4), and observe that hp∗3,4,5 =

((g′)r(h′)s, (u′′)r(e′′)s, (g′)r). Let us now move back from the above modifications
of TPG,TRec to the original TPG,TRec: First we change back (u′, e′) distribution
from G2 to DH(g′, h′), which is indistinguishable under DDH. Then we replace
the modified TPG,TRec with the original TPG,TRec, which use td = DL(g′, u′) =
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DL(h′, e′) instead of td = {δi, ζi}i=0,..,2τ for (δi, ζi) = (DL(g′, ui),DL(h′, ei)).
This does not change the view by the witness-hiding property of TRec(td, ·) used
above. At this point we can modify TPG to sample e0 at random from G and
pick each ei for i > 0 as ei = (h′)ζi for ζi ← Zp. Note that for any m = H(x, `),

e′′ = e0(h′)ζ for ζ =
∑2τ
i=1(ζi)

mi , and therefore (e′′)s = ((h′)s)ζ(e0)s. We can use
this relation to replace pair (h′)s, (e0)s used in computing hp∗3,4,5 with a random
pair in G, and by reduction to DDH the resulting view is insistinguishable. Note
that after this change hp∗3,4,5 = ((g′)rg1 , (u′′)r(g1)ζg2 , (g′)r for g1, g2 ← G2 and
r ← Zp, hence it is uniform in G3, which completes the proof.

By lemma 1, theorem 1 together with standard, i.e. non-covert, simulation-
soundness of this CKEM shown in [2] (and recalled above), imply that this
CKEM is also covert simulation-sound for the same language class:

Corollary 1. Let L be a language with implicit universe Ux, and let φ : Ux →
Gn×Gn×m s.t. x ∈ L if and only if φ(x) ∈ LMIn,m. CKEM protocol in Figure 2
is covert simulation-sound under the DDH assumption for L if for each x ∈ Ux
and (C,M) = φ(x) matrix M has full row rank m.

Receiver Covertness Relative to Cramer-Shoup Decryption. For re-
ceiver covertness and trapdoor receiver covertness we argue that each language
listed in Section 6.1 satisies their relaxed versions, namely, if (Kg,E,D) is the
(CCA-covert) Cramer-Shoup PKE then each of these languages is (trapdoor)
receiver covert relative to (Kg,D, θ), where θ will restrict the decryption oracle
from decrypting on a label corresponding to any ciphertexts contained in state-
ment x. We show that this holds for every language L in the LMI class that
satisfies a technical lemma about matrices M which define L (i.e. the matrices
M output by φ on the implicit language universe Ux), and we exemplify that this
lemma holds for Le(pk), while the corresponding arguments for the remaining
languages in Section 6.1 are relegated to Appendix B.

First, note that for the CKEM of Figure 2 the Threshold Receiver Covertness
implies Receiver Covertness. This is because if (x,w) ∈ R[L] then Rec(π, x, `, w)
and TRec(π, x, `, td) produce identical transcripts, because they both send out
tp = MT · tk for tk ← Z2m+12

p for M built from M s.t. (C,M) = φ(x). Since
in the Threshold Receiver Covertness game x is unconstrained and in Receiver
Covertness x ∈ L, it suffices to argue the first property. To that end, note that
as in the sender covertness argument, since M is made of two copies of M ′, it
suffices to argue that tp = (M ′)T · tk for tk← Zm+6

p is indistinguishable from a
random tuple in Gn+5. Note also that we can equivalently define tp as tk · (M ′)
where tp, tk treated as row vectors. We do not have a general characterization
of matrices M output by φ on the implicit universe Ux of L statements for
which we can argue that {tk · (M ′)}tk←Zm+6

p
is indistinguishable from a random

tuple in Gn+5. Note that in the languages of Section 6.1, as is expected, the
number of constraints n imposed by the language is always larger than the
number of variables m in a witness. (Moreover, sender covertness of this CKEM
relies on M having full row rank, which requires that m ≤ n.) Specifically,
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for all languages in Section 6.1 we have m ≤ n−3, so the rank of M ′ at most
m+6 ≤ n+3, which means that function fM ′ : Zm+6

p → Gn+5 s.t. fM ′(x) = x·M ′
is onto a subspace of dimension at most n+3 in Gn+5, hence there exist linear
relations that distinguish values tp = fM ′(tk) from random in Gn+5. However,
by the way matrix M ′ is constructed from M we can argue a technical lemma
which reduces pseudorandomness of random points in the image of fM ′ to the
pseudorandomness of random points in the image of fM : Zmp → Gn, fM (x) =
x ·M , and then we show that this condition is satisfied for each language in
Section 6.1.

For the purpose of the lemma below we define the following technical prop-
erty. Let φ : Ux → Gn ×Gn×m be a function which defines an LMI language L.
We say that a L is matrix-map receiver covert relative to (PG′,O, θ) if for every
efficient algorithm A = (A1,A2) we have:

{AOBlock(x)(td
′,·)

2 (st, fM (s)} ≈ {AOBlock(x)(td
′,·)

2 (st, r)}

for (π′, td′)←PG′(1τ ), (st, x) ← AOBlock(θ(x,·))(td
′,·)

1 (π′), (C,M) ← φ(x), s ← Zmp ,
and r ← Gn.

Lemma 2. If an LMI language L is matrix-map receiver covert relative to (PG′,O, θ)
then the CKEM of Figure 2 is (trapdoor) receiver covert relative to (PG′,O, θ)
for L.

Proof. Let MC denote the n-by-(m+1) matrix containing m rows of M and C as
the m+1-st row. Consider adversary A in the trapdoor receiver covertness game
interacting with oracle TRec(π, x, `, td) on (x, `) of its choice, given (π, td) output
by PG(1τ ) and π′ for (π′, td′) output by PG′(1τ ). Throughout the execution A
can query oracle OBlock(θ(x,·))(td′, ·). Note that in this CKEM interaction with

oracle TRec(π, x`, td) means simply receiving tp = (M)T · tk for tk ← Z2(m+6)
p .

We need to argue that A’s view in this game is indistinguishable from a view in
a modified game where tp is chosen at random in G2(n+5). By construction of M
this will follow if we show that tp = (M ′)T ·tk for tk← Zm+6

p is indistinguishable
from random in Gn+5. Denote the first m + 1 elements of tk as s = tk[1,m+1]

and the last 5 as r = (r1, r2, r3, r4, r5) = tk[m+2,m+5]. By inspection of matrix
M ′ in equation (3) and matrix M∗ in equation (3), note that tp4,n+3 = s ·MC ,
tp2,3,n+4,n+5 = r ·M∗, and tp1 = (g′)sm+1+r2+r5 for (s, r) ← Zm+1

p × Z5
p. By

inspection of M∗ note that tp1,2,3,n+4,n+5 is equal to

((g′)sm+1+r2+r5 , (g′)r1(u′)r2 , (h′)r1(e′)r2 , (g′)r3+r5(u′′)r4 , (h′)r3(e′′)r4)

Consider a modified distribution of tp1,2,3,n+4,n+5 where (g′)r1 , (h′)r1 are re-
placed by (g1, g2) random in G2. Since DL(g′, h′) is not part of td generated by
PG, a reduction which embeds a DDH challenge in tuple (g′, h′, g1, g2), shows
that this modification is indistinguishable from the original, assuming DDH. For
the same reason, incurring another indistinguishable change in the view assum-
ing DDH, we can also replace (g′)r3 , (h′)r3 by (g3, g4) random in G2. After this
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change tp1,2,3,n+4,n+5 looks like

((g′)sm+1+r2+r5 , g1(u′)r2 , g2(e′)r2 , g3(g′)r5(u′′)r4 , g4(e′′)r4)

which is random in G5 for every value of sm+1, over the choice of random
(r2, r4, r5) in Z3

p and (g1, g2, g3, g4) in G4. Therefore even though sm+1 partici-
pates in the equation for tp[4,n+3] = s ·M , we can replace tp1,2,3,n+4,n+5 with a

random tuple in G5 without changing the view. Note that tp[4,n+3] = s ·MC =
s[1,m] ·M + sm+1 · C. By the matrix-map receiver covertness property of this
language this view is indistinguishable from the one where s[1,m] ·M is replaced
with a random vector in Gn. By a one-time-pad argument it follows that tp[4,n+3]

is random in Gn, and hence tp random in Gn+5, which ends the proof.

Let (Kg,E,D) be the Cramer-Shoup encryption. Below we show that the
conditions of the above lemma hold relative to (Kg,D, θLe) for language Le(pk)
where θLe((ct,m, `), (ct′, `′) returns 1 if `′ = `, i.e. if the decryption oracle is
prevented from decrypting under the same label as the label of the ciphertext in
the language statement. Similar arguments for all the other languages in Section
6.1 are included in Section B.1 in Appendix B. In each case predicate θL(x, ·)
prevents the D(sk, cot) oracle from decrypting any ciphertext whose labels match
those contained in statement x of L. All of these arguments rely on the same
variant of the CCA-covertness property of Cramer-Shoup encryption, used also
in lemma 3 below, namely that assuming DDH and collision-resistance of H,
ciphertext ct∗ formed as {(g1, g2, h, cd

ξ)s}s←Zp is pseudorandom for ξ = H(`, z)
for any string z, given access to the decryption oracle Dsk(·, ·) which decrypts
ciphertext,label pairs (ct′, `′) as long as `′ 6= `.

Note that by lemma 2, the fact that each of the languages L in Section 6.1
is matrix-map receiver covert relative (Kg,D, θL) for a corresponding restriction
θL, as shown in lemma 3 below for Le(pk) and in lemma 4 in Section B.1 for the
remaining languages, implies that the CKEM in Figure 2 is (trapdoor) receiver
covert relative to the same tuple (Kg,D, θL) for each L.

Lemma 3. Under the DDH assumption language Le is matrix-map receiver
covert relative to (Kg,D, θLe(pk)).

Proof. Let (pk, sk)Kg(1τ ) and ADsk(·)(pk) outputs x = (ct,m, `). By inspection
of M defined by φ for Le, see equation (5) in Appendix B, we see that ct∗ =
fM (s) = s ·M = (g1, g2, h, cd

ξ)s for s ← Zp and ξ = H(`, u1, u2, e) where ct =
(u1, u2, e, v). Note that on input (ct′, `′), oracle DBlock(θLe(pk)(x,·))(sk, ·) returns
D(ct, `′) as long as `′ 6= `. Note that ct∗ is not a properly formed Cramer-Shoup
ciphertext, because ξ is computed on ct, not ct∗. However, the proof of CCA
covertness of Cramer-Shoup encryption can be extended to show that for any
(`, u1, u2, e), value ct∗ = (u∗1, u

∗
2, e
∗, v∗) = (g1, g2, h, cd

ξ)s for ξ = H(`, u1, u2, e)
is indistinguishable from a random tuple in G4, for s uniform in Zp, even given
access to DBlock(θLe(x,·))(sk, ·), i.e. an oracle which returns Dsk(ct′, `′) on input
(ct′, `′) as long as `′ 6= `. This extension follows from two facts: First, by collision-
resistance of H except for negligible probability the decryption oracle will use
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value ξ′ = H(`′, u′1, u
′
2, e
′), where ct′ = (u′1, u

′
2, e
′, v′), which satisfies ξ′ 6= ξ.

Secondly, in the proof of CCA-covertness of the Cramer-Shoup encryption in
Appendix A, the decryption oracle is shown to be “harmless” in two steps (as
in the CCA-security proof for this encryption in [6]): First, we argue that if
(u′1, u

′
2) ∈ DH(g1, g2) then the decryption oracle does not provide information

that would be useful in distinguishing ct∗ from a random tuple. Second, for the
argument that a ciphertext query s.t. (u′1, u

′
2) 6∈ DH(g1, g2) is rejected except for

negligible probability we referred to [6], and it is easy to see that this argument
holds whenever ξ′ defined by the decryption query satisfies ξ′ 6= ξ where ξ defines
the distribution of covertness challenge ct∗ as {(g1, g2, h, cd

ξ)s}s←Zp .

6.3 Covert CKEM for LMI Languages in ROM

An essential tool in a paper on efficient covert mutual authentication [11] was
a compiler which used a covert commitment with associated SPHF to convert
a Σ-protocol (a three-round public-coin HVZK system) with some additional
properties for a given language L into a CKEM for L which satisfied the no-
tion of covertness defined in [11]. The first thing we note is that the linear map
image languages have the sigma protocols required. The CKEM covertness prop-
erties of [11] are incomparable to the ones we define here: The CKEM notion of
[11] included receiver covertness and strong sender covertness, which is a covert
counterpart of strong soundness of ZK proofs, i.e. that an efficient extractor can
extract witness w from a receiver who distinguishes interacting with the sender
(including the resulting key) from interacting with a random beacon. (The simu-
lator in the covert 2PC protocol of section 7 extracts players’ inputs from covert
CCA ciphertexts, and does not need to extract any further witnesses used in
the proofs.) This strong covertness property of [2] implies covert soundness of
CKEM defined here, but not covert simulation-soundness or sender covertness.
However, it is easy to see that the RO-model variant of the CKEM of [11] satisfies
both properties as well, which we briefly argue below.

In Figure 3 we show the random oracle model version of the CKEM of [11],
with notation adapted to an LMI language L. Let Hi(·) be a short-cut for H(i, ·).
Assume that functions φ, γ map instance,witness pairs of language L into in-
stances x = (C,M) ∈ Gn × Gn×m and witnesses w ∈ Zmp of LMIn,m. Re-
call a sigma protocol for LMIn,m: The prover picks random w′ ← Zmp , sends
D = w′ · M to the verifier, and on verifier’s public coin challenge e chosen
uniformly in Zp, it outputs z = w′ + ew (multiplication by a scalar a vec-
tor addition in Zmp ). The verifier accepts if D = z · M − eC. Note that if
C = w · M then D = (w′ + ew) · M − ew · M = w′ · M . Special soundness
follows from the fact that two accepting transcipts (z, e) and (z′, e′) for e′ 6= e
imply that D = z ·M − eC = z′ ·M − e′C, which means that C = w ·M for
w = (e − e′)−1 · (z − z′). Special honest-verifier zero-knowledge simulator picks
random z in Zmp and e in Zp and computes D = z ·M − eC, which perfectly
matches the honest verifier’s view of the real prover. Consider a covert com-
mitment which simplifies the commitment of Section 4, namely Comg1,g2(m) =
((g1)r, (g2)r(g1)m). This commitment is perfectly binding for m ∈ Zp, and it
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is hiding and covert under the DDH assumption for random g2. Note that an
SPHF for language Lc = {(cmt,m) | cmt = Comg1,g2(m)} is a well-known SPHF
(KG,Hash,PHash) for the language of Diffie-Hellman tuples, i.e. KG(g1, g2) picks
hk ← Z2

p and hp = (g1)hk1(g2)hk2 , Hash((cmt,m), hk) = (cmt1)hk1(cmt2/m)hk2 ,
and PHash((cmt,m), r, hp) = (hp)r.

On inputs (g1, g2) and (C,M) = φ(x), and on R’s input w s.t. C = w ·M :

R: Pick w′ ← Zmp and r ← Zp, set D = w′ · M , cmt ← Comg1,g2(H2(D); r),
e = H1(x, cmt), z = w′ + ew, and send (cmt, z) to S.

S: Set D = z ·M − eC for e = H1(x, cmt), generate (hk, hp) ← KG(g1, g2), send
hp to R and output KS = Hash((cmt,H2(D)), hk).

R: Output KR = PHash((cmt,H2(D)), r, hp).

Fig. 3. ROM version of CKEM for Linear Map Image Language due to Jarecki [11]

Theorem 2. The CKEM of Figure 3 is covert zero-knowledge and simulation-
sound for any LMI language L, assuming the DDH assmumption in ROM.

Proof. The algorithm TRec uses the fact that H is a random oracle H as its
trapdoor as follows: TRec on input (C,M) = φ(x) picks z ← Zmp , e ← Zp, and
r ← Zp, computes D = z·M−eC and cmt← Comg1,g2(H2(D); r), sets H1(x, cmt)
to e, aborting if H1(x, cmt) was already set, and sends (cmt, z) to S. When TRec
gets hp from S, it can compute KR = PHash((cmt,H2(D)), r, hp) as in R, because
TRec holds the same witness r that Rec does, i.e. that m = H2(D) is committed
in cmt for D = z ·M − eC and e = H1(x, cmt).

Zero Knowledge: Since for every m, commitment Com(m) samples a ran-
dom element from space of size |G|, the probability that TRec aborts because
H1(x, cmt) was already queried is negligible. Hence, by the same argument as in
the case of the standard Fiat-Shamir NIZK (D, e, z), the distribution of tuples
(cmt, e, z) produced in this simulation is statistically close to that produced by
the real prover.

(Trapdoor) Receiver Covertness: Message (cmt, z) sent by either TRec or Rec
is indistinguishable from a random string because in both cases z is uniform in
Zmp and Com is a covert commitment under the DDH assumption.

Sender Covertness: S’s message hp = (g1)hk1(g2)hk2 is uniform in G.

Covert Simulation-Soundness: The strong (i.e. “proof-of-knowledge”) covert
soundness shown for this CKEM in [11] implies the standard covert soundness
of this CKEM in ROM, i.e. that no efficient adversary interacting with S (and
H) on x 6∈ L can distinguish S’s messages and its output KS from random, i.e.
specifcially that (hp,KS) pair is statistically close to uniform in G2. It is easy
to see that this remains true given access to a TRec simulator described above
simulating the ((cmt, z),KR) interactions with Rec for any x′ 6= x, and this is
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because the NIZK challenge is computed using H1(x, ·) on the soundness chal-
lenge x and using H1(x′, ·) on all instances simulated by TRec, and in ROM these
are all independent instances of random functions, hence simulation TRec(x′) on
any x′ 6= x does not affect the view of the interaction with S(x).

7 Covert Computation of General 2-Party Functions

We show a protocol ΠCOMP, in Figure 4, which realizes the concurrent 2-party
covert computation functionality FC(f |g) in the CRS model. The protocol we
show uses a covert variant of Yao’s garbled circuit protocol [16], with a variant
of the cut-and-choose approach to get security against malicious players, see
e.g. [13]. A standard way of implementing a cut-and-choose method involves
protocol tools which are inherently non-covert: The first tool is that the circuit
garbling party, B, sends commitments to n copies of the garbled circuit and
then follows up by decommitting a randomly chosen half of them, so that party
A can verify that the opened circuits are formed correctly and that they were
committed in B’s first message. However, if B sends a commitment followed
by a decommitment, this decommitment can be verified publicly, hence party
A can distinguish B from a random beacon regardless of the inputs which A
enters into the computation. Secondly, a cut-and-choose protocol can also use
zero-knowledge proofs, e.g. to prove that the OT’s are performed correctly or
that the keys opened for different circuit copies correspond to the same inputs,
and zero-knowledge proofs are also inherently non-covert. Here we show that
(concurrent and simulation-sound) covert CKEM’s can be effectively used in
both cases: First, we use CKEM’s in place of all zero-knowledge proofs. Secondly,
we replace a commit/decommit sequence with a commitment c, release of the
committed plaintext m, and a covert CKEM performed on a statement that
there exists decommitment d (the CKEM receiver’s witness) s.t. d decommits
c to m. We use a perfectly binding commitment so that the above language
is non-trivial. Specifically, we implement the commitment scheme using covert
Cramer-Shoup encryption, which assures non-malleability, allows for straight-
line extraction of player’s inputs via the decryption oracle, and its arithmetic
structure enables efficient CKEM on related statements.

The resulting protocol realizes the concurrent covert 2PC at the cost of
O(1) rounds, O(τ |C|τ) bandwidth, O(τ |C|) symmetric cipher operations, and
O(τ |W |) exponentiations τ is the security parameter, |C| is the number of circuit
gates and |W | is the number of input bits. This comes very close to the secure
(but not covert) cut-and-choose 2PC protocols which have the same asymp-
totic bandwidth and symmetric crypto costs, but require only O(τ2) rather than
O(τ |W |) exponentiations due to OT extension techniques (which we do not try
to implement here, although we see no inherent reasons why they should be
hard to adopt). Regarding the exact costs, the protocol exchanges 9 messages
when implemented with the CKEM’s of [2], and since it uses a simple variant of
cut-and-choose method, it requires transmission of n = 2.4 · τ copies of the gar-
bled circuit to upper-bound statistical cheating probability by 2−τ per protocol
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instance. Both of these parameters are a factor of about 2 worse than the most
efficient standard, i.e. non-covert, versions of cut-and-choose Yao’s 2PC protocol
[13]. Similarly the CKEM’s of [2] are about a factor of 2 worse than the known
ZK proofs for the same languages.

Covert Garbled Circuit. Before presenting the protocol, we specify how it
uses the tools of Section 4 and the CKEM’s of Section 6. Let f : {0, 1}nx ×
{0, 1}ny → {0, 1}nz × {0, 1}nv and g : {0, 1}nx × {0, 1}ny → {0, 1}. Let fz, fv
satisfy f(x, y) = (fz(x, y), fv(x, y)). Let x, y, c, d, t, u be bitstrings s.t. |x| = nx,
|y| = ny, |c| = |d| = nz + nvτ , |u| = 1, and t = t01|t11|...|t0nv |t

1
nv where |tbi | = τ for

all i, b. We will use covert Yao’s garbling procedure GCgen of [16] for function
f |g defined as follows:

f |g((x, c), (y, d, t, u)) =

{
c⊕ d if g(x, y) = 0 ∨ u = 0

fz(x, y)|tv[1]
1 |...|tv[nv ]

nv otherwise, where v = fv(x, y)

Let X = X ∪ C and Y = Y ∪ D ∪ T ∪ U . If s is any part of the circuit
inputs (x, c), (y, d, t, u) and w ∈ W then we overload notation by using s[w] to
denote the bit of s corresponding to input wire w. To enable efficient CKEM’s for
related languages we modify GCgen so it chooses wire keys kw,b corresponding
to A’s input wires, i.e. for w ∈ X, as random elements in G, but keys kw,b

corresponding to B’s input wires, i.e. for w ∈ Y , as random elements in Zp.
Note that either key type can be used to derive a standard symmetric key, e.g.
using a strong extractor with a seed specified in the CRS. We use encryption E
instead of commitment Com to commit to the wire keys, but we encrypt these

keys differently, namely as Epk(k
w,b) for w ∈ X and as Epk(g

kw,b) for w ∈ Y .

Covert CKEM’s. Protocol ΠCOMP uses CKEM’s for two languages in class
LMI, both formed as conjunctions of various LMI languages listed in Section 6.1:
Language LA of correctly formed wire-bit ciphertexts sent by A, and language
LB of correctly formed messages sent by B. LA consists of pair {ctw}w, {ctwi }i,w
s.t. all ciphertext,label pairs (ctw, (`A, w)) and (ctwi , (`A, i, w)) are in Lbit(pk).
Language LB, omitting labels, consists of the following statements:

(1) {(kwi , ctw, ckw,0i , ckw,1i )}i 6∈S,w∈Y \D which consists of statements in Ldis(pk),

(2) {(kwi , ckw,0i , ckw,1i )}i 6∈S,w∈D which consists of statements in Ldis(pk)′,
(3) {(gci, cgci)}i∈[n] s.t. each pair (cgci, H(gci)) is in Le(pk),

(4) {(kw,bi , ckw,bi )}i∈S,w∈X,b which consists of statements in Le(pk),

(5) {(kw,bi , ckw,bi )}i∈S,w∈Y ,b s.t. each pair (gk
w,b
i , ckw,bi ) is in Le(pk)

(6) {(otrwi , ctwi , ckw,0i , ckw,1i )}i 6∈S,w∈X which are statements in Lotr(pk).

Additional Tools and Notation. Let n = 2.4 · k where k is the statistical
security parameter (in Theorem 3 we assume k=τ). Let SG(n) be an algorithm
which generates a random subset of n/2 elements in [n]. Let F be a PRF with
τ -bit keys, arguments, and outputs. Let G` be a PRG with τ -bit inputs and
`-bit outputs. Let (SE,SD) be a covert symmetric encryption implemented as
SEsK(m) = G|m|(F(K, s))⊕m and SDs

K(ct) = G|ct|(F(K, s))⊕ct. By convention we
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PG(1τ ) picks (pk, sk)← Kg(1τ ) and sets πckem ← pk.

B1: on input (Input2, A, y, sid) and `B = (B,A, sid):

set (gci, {k
w,b
i }w∈W,b)← GCgenf,g(rgci ) and cgci ← Com

(`B ,i)
pk (gci; rcgci ) for i∈[n];

set ckw,bi to E
(`B ,w,b)
pk (kw,bi ; rcki,w,b) for w ∈ X and E

(`B ,w,b)
pk (gk

w,b
i ; rcki,w,b) for w ∈ Y , for all i, b;

send m1
B=({cgci}i∈[n], {ckw,bi }i∈[n],w∈W,b) to A.

A1: on input (Input1, B, x, sid) and m1
B , and `A = (A,B, sid):

sample rSG, set S ← SG(n; rSG), pick ci ← {0, 1}nz+nvτ for i∈[n];

set xA ← ({ctw = E
(`A,w)
pk (gx[w]; rctw)}w∈X , {ctwi = E

(`A,i,,w)
pk (gci[w]; rctw,i)}i∈[n],w∈C);

set wA ← ({x[w], rctw}w∈X , {ci[w], rctw,i}i∈[n],w∈C), send m1
A = (rSG, xA) to B.

A,B run CKEMLA on (xA, `A) and A’s input wA; let B output KB and A output K′B .

B2: on m1
A and KB :

generate S ← SG(n; rSG), set u← 1, pick t← {0, 1}2nvτ and di ← {0, 1}nz+nvτ for i∈[n];

set ctB←{ctw=E
(`B ,w)
pk (gy[w]; rctw)}w∈Y \D, ksBi ←{kwi =k

w,yi[w]
i }w∈Y for y = y|t|u, yi = y|di;

and otri ← {otrwi = OTrsppk(ctwi , k
w,0
i , kw,1i ; rotri,w)}w∈X for i6∈ S, where ctwi = ctw for w∈X;

send m2
B = SE0

KB [ctB, {rgci }i∈S , {gci, ksBi , otri}i 6∈S ] to A.

A2: on K′B and m2
B :

decrypt (ctB, {rgci }i∈S , {gci, ksBi , otri}i 6∈S) as SD0
K′B

(m2
B);

set ksAi ← {kwi = OTfinpk(xi[w], rctw,i, otrwi )}w∈X for i6∈S, xi = x|ci, and rctw,i = rctw for w∈X;

set (gci, {k
w,b
i }w,b)← GCgenf,g(rgci ) for i∈S and wi ← GCev(gci, (ksAi ∪ ksBi )) for i6∈S.

A,B run CKEMLB on (xB , `B) and B’s input wB for xB = ({kwi , ctw, ckw,0i , ckw,1i }i 6∈S,w∈Y \D,
{kwi , ckw,0i , ckw,1i }i 6∈S,w∈D, {gci, cgci}i∈[n], {kw,bi , ckw,bi }i∈S,w∈W,b, {otrwi , ctwi , ckw,bi }i6∈S,w∈X,b),
and wB contains input y and randomness of B. Let A output KA and B output K′A.

A3: If ∃R⊂[n] s.t. |R|=n/4 and ∃w s.t. ∀i∈R wi = w then set (z|t1|...|tnv ):=w and m2
A ←

SE0
KA(F(K′B , 1), t1, ..., tnv ); otherwise set z:=⊥ and m2

A ← {0, 1}τ(nv+1). Send m2
A to B.

B3: Set τ |t1|...|tnv ← SD0
K′A

(m2
A). Parse t as t01|t11|...|t0nv |t

1
nv . If τ=F(KB , 1) and tj ∈ {t0j , t1j}

for all j∈[nv] then set m3
B ← F(KB , 2) ⊕ F(K′A, 1) and ∀j set v[j] := b s.t. tj = tbj ; otherwise

pick m3
B at random in {0, 1}τ and set v:=⊥. Send m3

B to A and output (Output, v).

A4: If m3
B 6= F(K′B , 2)⊕ F(KA, 1) then set (overwrite) z:=⊥. Output (Output, z).

Fig. 4. UC Covert Protocol ΠCOMP for 2-Party Function Computation FC(f |g)
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will use rP to denote the randomness to either run procedure P or generate object
P. Letter b always stands for a bit, and expressions {...}b stand for {...}b∈{0,1}.

Theorem 3. Protocol ΠCOMP in Figure 4 realizes the concurrent 2-party covert
computation functionality FC(f |g) in the CRS model, assuming cPKE is a covert
CCA public key encryption, F is a PRF, G is a PRG, (GCgen,GCev) is a covert
version of Yao’s garbling circuit algorithm, (OTreq,OTrsp,OTfin) is a covert
OT, and CKEMLA and CKEMLB are covert zero-knowledge and simulation-sound
CKEM’s for languages resp. LA and LB.

Proof. Figures 5 and 6 together contain the code of an ideal-model adversary
A∗, i.e. a simulator, which interacts with functionality FC(f |g) and the real-world
adversary Adv in such a way that for every efficient Adv and environment Z,
the environment’s view of an interaction with Adv and honest players perform-
ing protocol ΠCOMP is indistinguishable from Z’s view of an interaction with
Adv,A∗,FC(f |g). We split A∗’s into two figures for presentation convenience, but
these are two parts of the same algorithm: Figure 5 describes how A∗ handles an
interaction with FC(f |g) which pertain to any honest ideal-world party B, while
Figure 6 describes how A∗ handles an interaction with FC(f |g) which pertain to
any honest ideal-world party A. The A∗ code we provide in these figures as-
sumes that the CRS is chosen by setting (pk, sk) ← Kg(1τ ), R ← {0, 1}τ , and
π ← (pk, R), and that value sk is given to A∗ as the simulation trapdoor.

We will split the argument that Z’s (for any Adv) interaction with real-world
honest players is indistinguishable from an interaction with A∗, FC(f |g), and
dummy ideal-world honest players, into four parts, distinguishing by two types
of honest parties, A and B, and breaking each of these cases into two subcases
depending on whether their inputs, resp. x and y, are bitstrings in {0, 1}nx
resp. {0, 1}ny , or the non-participation signals ⊥. In each case we will show that
the interaction between Adv and an honest party following protocol ΠCOMP on
a session with identifier sid is indistinguishable from the corresponding session
executed by A∗ interacting with FC(f |g) and a dummy (ideal-world) honest party.
We will call an interaction of Z (for fixed Adv) with the algorithms we specify a
security game, denoted Gi, and we will write Gi ≈ Gj to denote that Z’s output
in Gi is indistinguishable of Z’s output in Gj .

Case 1A, honest B on input y∗ ∈ {0, 1}ny : Let G0 be the interaction of Z
and Adv in the real world where player B gets input (Input2, A, y∗, sid) from Z
for y∗ 6=⊥. Let G1 be a modification of G0, which uses the private key sk corre-
sponding to the key pk in the CRS, to decrypt wire-input ciphertexts {ctw}w∈X ,
{ctwi }i∈[n],w∈C which Adv sends in message m1

A to B on this session, and if any
of these ciphertexts does not decrypt to a bit then G1 sets x:= ⊥, at the end
of CKEMLA it picks KB as an independent random string, and then it continues
computation as B in protocol ΠCOMP. G1 ≈ G0 by the simulation soundness
of CKEMLA: The reduction uses sk, in particular to test whether xA defined by
m1
A on this session is in LA. If xA 6∈ LA, which is the only case G1 differs from

G0, then if Z distinguishes between G0 and G1 then the reduction distinguishes
between the real and the random key KB = KS output by Snd(π, (xA, `A)).
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On behalf of honest B, on trapdoor sk and input (Input2, sid, A,B) from FC(f |g):

(1) compute {cgci, {ckw,bi }w,b}i∈[n] and send to A as B does in step B1;

(2) on m1
A = (rSG, xA) for xA = ({ctw}w∈X , {ctwi }i,w∈C) from A in A1, decrypt all ct’s

using sk to obtain x, c1, ..., cn, overwrite x:= ⊥ if any decryption returns ⊥ or not a
bit, and send (Input1, B, x, sid) to FC(f |g) and receive (Output, z, sid) from FC(f |g);

If x =⊥ then in steps (4,6) below pick m2
B ,m

3
B at random and in step (5) run Rec$(τ).

(3) run Snd(π, (xA, `A)) in CKEMLA interacting with A, let KB be Snd’s output;

(4) set y:=0ny , u:=0, t ← {0, 1}2nvτ ; if z =⊥ then ∀i pick di ← {0, 1}nz+nvτ ; o/w
set t′ ← {0, 1}nvτ and di ← ci ⊕ (z|t′) ∀i; compute ctB and {ksBi , otri}i6∈S as in step
B2, and encrypt them under KB to A with {rgci }i∈S and {gci}i6∈S from step (1);

(5) run Rec(π, (xB , `B),wB) in CKEMLB on inputs computed as in ΠCOMP, output K′A;

(6) on m2
A from A, decrypt it as τ |t1|...|tnv using K′A; if τ = F(KB , 1) and t1|...|tnv = t′

then send m3
B = F(KB , 2) ⊕ F(K′A, 1) to A and (Output, sid, B,T) to FC(f |g), and

otherwise send random m3
B in {0, 1}τ to A and (Output, sid, B,F) to FC(f |g).

Fig. 5. Simulator A∗ (part 1) showing that ΠCOMP UC-realizes covert 2PC funct. FC(f |g)

Let G2 modify G1 s.t. B acts like a random beacon on a session where x =⊥
as above, i.e. it sends random strings as messages m2

B ,m
3
B and runs Rec$(τ) in

CKEMLB. G2 ≈ G1 because, (1) by the PRF property of F, the key used in
encryption SE in m2

B is indistinguishable from value F(KB , 2) which is used as
a one-time pad in m3

B , so we can replace them by independent random strings,
which in particular means that m3

B can be a random string, (2) by the PRG
property of G, m2

B can be replaced by a random string, and (3) since G2 doesn’t
use Rec’s output K′A from CKEMLB, by covert zero-knowledge of this CKEM we

can replace Rec with Rec$(τ). Note that G2 acts like A∗ if x= ⊥.

We will consider a modification which changes values y, {di}, t, v which B
inputs into garbled circuit computation. Let D denotes the distribution of the
circuit inputs (x, y) = ((x, {ci}), (y, {di}, t, v)) in G2 as a function of the random-
ness of Z, Adv and G2: The (Adv, env) together specify x, {ci}, y∗, we assume
that x 6=⊥, and G2 sets y:=y∗, v:=1, and t and all di’s are random strings. Let
D′ be an alternative distribution defined as follows: Given (x, {ci}) decrypted
from m1

A and y∗ specified by Z (and assuming x 6=⊥), set y:=0ny , v:=0, pick
t at random in {0, 1}2nvτ , and if g(x, y∗) = 0 then pick each di at random in

{0, 1}nz+nvτ , but if g(x, y∗) = 1 then let (z, v):=f(x, y∗), define t′j :=t
v[j]
j for

each j∈[nv] where t = t01|t11|...|t0nv |t
1
nv (in other words t′j ’s are chosen to encode

the bits of B’s output v given the authenticator values B chose in t), and let
di = ci ⊕ (z|t′1|...|t′nv ) for each i.

Consider game G3 which is like G2 except the ciphertexts ctB = {ctw}w∈Y \D
are computed as encryptions of (y, t, v) chosen according to D′ instead of D, but
the keys in ksBi are still chosen according to y chosen as in G2. Since B in G3

will not have correct witnesses in CKEMLB, it will run TRec using trapdoor sk

33



in that step. G3 ≈ G2 because, (1) by the simulation soundness of CKEMLB, we
can replace Rec by TRec in game G2, at which point the game does not use the
randomness in ciphertexts in ctB, and (2) by the CCA security of cPKE, we can
change the domain in which the plaintexts (y, t, v) in these ciphertexts are drawn,
from D to D′: The reduction will use the decryption oracle to decrypt ciphertexts
sent by Adv in m1

A, but these have different labels than the ciphertexts in ctB,
and it will also use this decryption oracle to implement TRec, but again on
ciphertexts with different labels. (The reduction will also use sk to implement
the code of A∗ on protocol sessions with other sid’s, but these ciphertexts will
therefore also pertain to different labels.)

Consider G4 in which not only the plaintexts in ctB are chosen according
to D′, but also B picks the key sets ksBi = {kwi }w∈Y using values (y, {di}, t, v)
chosen in D′ instead of in D. G4 ≈ G3 by reduction to B’s security in Yao’s
garbled circuit procedure GCgen, because the distribution of outputs of the n
copies of circuit f |g on inputs defined by x, y (conditioned on x 6=⊥) is the same
for x, y sourced in D and in D′: Let wi = f |g(x, ci, y, di, t, v) for i∈[n]. In the
case case g(x, y∗) = 0 in G3 (i.e. circuit inputs are drown from D) we have
wi = ci⊕di for each i, but in the same case in G4 we have wi = ci⊕di for each i
as well because v is set to 0. (Note that it does not matter if g(x, 0ny ) = 0, hence
we can set y:=0ny in G4: This is why we add the “simulation bit” v to circuit
f |g.) In the case g(x, y∗) = 1, in G3 we have wi = (z|t1|...|tnv ) for each i where
t1|...|tnv is a random string which encodes B’s output v for (z, v) = f(x, y∗).
But the same happens in G′′ in this case: Since v = 0, we have wi = ci ⊕ di for
each i, but since di = ci⊕ (z|t′1|...|t′nv ), we have wi = z|t′1|...|t′nv for each i, where
t′1|...|t′nv are also random strings which encode v for (z, v) = f(x, y∗).

Let G5 be like G4 except it runs Rec instead of TRec in CKEMLB. Note that
G5 has all the witnesses it needs because G5 forms ciphertexts ctB and key sets
ksBi in a consistent way, but using values y chosen from D2 rather than D1.
G5 ≈ G4 because of covert zero-knowledge of CKEMLB.

Consider G6 which modifies G5 by changing how B computes its output in
step B3 as follows: If m2

A decrypts under KA to τ |t′1|...|t′nv for τ = F(KB , 1) then
output v, otherwise output ⊥. G6 ≈ G5 by security of the Yao’s garbled circuit
procedure GCgen and the OT scheme (OTreq,OTrsp,OTfin), because garbled
circuit evaluation hides everything about B’s inputs except the circuit output,
and that contains only values t′1, ..., t

′
nv in t. In particular Adv cannot return any

other value in t, except for negligible probability, and thus B’s output is either
v or ⊥ except for negligible probability

Finally, note that G6 proceeds like the simulator A∗ interacting with FC(f |g)
and ideal-world honest B who receives (Input2, A, y∗, sid) from Z: The only dif-
ference is that G5 evaluates g(x, y∗) and f(x, y∗) locally, while in the simulation
A∗ sends x to FC(f |g) and both functions are evaluated by FC(f |g). However, note
that FC(f |g) replies to A∗ with z =⊥ if and only if g(x, y∗) = 0, and that (1)
A∗ follows the same procedure on z =⊥ as G6 does if g(x, y∗) = 0, and (2) A∗
follows the same procedure on z = fz(x, y

∗) 6=⊥ as G6 does using z = fz(x, y
∗)

when g(x, y) = 1. Moreover, in both cases B can output only v = fv(x, y
∗) or
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⊥, and the condition which controls which is the case is the same in both in-
teractions, i.e. B outputs v if and only m3

A decrypts to F(KB , 1)|t′1|...|t′nv . Hence
we conclude that Z’s view of an interaction with honest B on input y∗ 6=⊥ is
indistinguishable from its view of an interaction with A∗ and an ideal dummy
player B communicating through FC(f |g).

Case 1B, honest B on input y∗ =⊥: Let G0 be the interaction of Z and Adv
in the real world where player B gets input (Input2, A,⊥, sid) from Z. Note that
in this case B is a random beacon, i.e. its messages m1

B ,m
2
B ,m

3
B are random

strings of the appropriate length, and we will assume for notational convenience
that B follows Snd$(τ) in CKEMLA and TRec$(τ) in CKEMLB. Also B always sends
⊥ back to Z as its computation “output”.

Let G1 be a modification of G0 in which B forms m1
B as in the case y∗ 6=⊥,

i.e. it forms {gci, {k
w,b
i }w,b}i using GCgenf,g and forms commitments {cgci}

and wire-key encryptions {ckw,bi } correctly. G1 ≈ G0 because the rest of G1’s
computation does not involve these values, this follows from the covertness of the
symmetric encryption used in ciphertexts tables by GCgen and by the covertness
of encryption E (commitment Com is an instance of E).

Let G2 be a further modification that runs Snd on statement in m1
A instead

of Snd$(τ) in CKEMLA. G2 ≈ G1 by covert soundness of CKEMLA.

Let G3 be a further modification which in step B2 sets y:=0ny , v:=0, and
picks t and each di as random bitstrings and forms ctB in m2

B as encryptions of
y, t, u instead of as random strings. G3 ≈ G2 by covertness of encryption cPKE.

Let G4 be a modification where m2
B includes the correct sets {rgci }i∈S and

{ksBi , otri}i6∈S . G4 ≈ G3 because rgci ’s and the wire keys in ksBi ’s are random
(given commitments cgci and ciphertexts cki), and because OT is sender-covert,
given that the OTrsp payloads kw,0i , kw1

i for w ∈ X are random in G.

The next modification, G5, computes everything in m2
B correctly, including

the garbled circuits {gci}i6∈S . By covertness of Yao’s garbled circuit generation
GCgen (and sender-security of the OT scheme), each circuit gci and a set of keys
ksBi , ksAi where ksAi is implied by otri, adversary’s advantage in distinguishing
(gci, ksBi , ksAi ) from random is at most negligibly greater than an advantage
in distinguishing the circuit output f |g(x, ci, y, di, t, u) from random. However,
f |g(x, ci, y, di, t, u) = ci⊕di because u = 0, and since each di is chosen at random
by G5, these outputs are random strings, hence it follows that G5 ≈ G4.

In the next modification, G6, we replace TRec$(τ) with TRec in CKEMLA, and
G6 ≈ G5 by covert zero-knowledge of CKEMLA.

Next, in G7 we will follow algorithm B in step B3 (note that at this point
we have all the inputs used in this step, including key K′A output by TRec in
CKEMLA), except that G7 always outputs m3

B chosen at random, i.e. even if
the ti’s decrypted from m2

A satisfy the constraint tj ∈ {t0j , t1j} where t0j , t
1
j are

parts of t which was chosen in step B2 (note that this is the only case where
B would output a non-rejection and form m3

B in a non-random way). We have
that G7 ≈ G6 by security of the Yao’s garbling circuit procedure, because the
outputs of f |g(x, ci, y, di, t, u) in the case u = 0 contain no information about t
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(and neither is t used in any other computation of G7), the probability that this
non-rejection constraint is satisfied is negligible.

In modification, G8, we replace TRec in CKEMLB with Rec running on wit-
nesses created in steps B1 and B2: Note that at this point B computes all the
values in m1

B ,m
2
B correctly, except that it picks its circuit inputs y, {di}, t, u as

the simulator A∗ does in the case FC(f |g) returns z =⊥. We have G8 ≈ G7 by
covert zero-knowledge of CKEMLB, since covert zero-knowledge implies indistin-
guishability of an interaction with TRec and Rec and the keys K they output.

Next, let G9 be a modification of G8 where in step B3 we remove the clause
introduced in game G7 i.e. in game G9 message m3

B is formed as in protocol
ΠCOMP in case ti’s decrypted from m2

A satisfy the constraint tj ∈ {t0j , t1j} where

pairs t0j , t
1
j form string t. However, by the same argument from the security of

Yao’s garbling procedure, we have that t is indistinguishable to Adv, hence the
probability of this clause acting is negligible, and consequently G9 ≈ G8.

Note that G9 proceeds like the simulator A∗ interacting with FC(f |g) and
ideal-world honest B who receives (Input2, A,⊥, sid) from Z: Game G9 simply
assumes that z =⊥, but FC(f |g) sends z =⊥ to A∗ in case the input of the ideal-
world player B is ⊥. Also, in G9 player B always outputs ⊥, but this is also the
output that the ideal-world player B outputs in interaction with FC(f |g) if its
computation input is ⊥.

On behalf of honest A, on trapdoor sk and input (Input1, sid, A,B) from FC(f |g):

(1) on m1
B = {cgci, {ckw,bi }w,b}i∈[n] from B, set x:=0nx and ci ← {0, 1}nz+nvτ ∀i,

compute xA:=({ctw}w∈X , {ctwi }i,w∈C), wA and message m1
A as A does in step A1;

(2) run Rec(π, (xA,wA, `A)) in CKEMLA interacting with B, let K′B be Rec’s output;

(3) on m2
B from B, decrypt it using K′B to get ctB, {rgci }i∈S , {gci, ksBi , otri}i 6∈S ; de-

crypt each ctw in ctB using sk to obtain each bit of y, t, u, overwrite y:= ⊥ if any
decryption output is not a bit or u = 0; and send (Input2, A, y, sid) to FC(f |g) and
receive (Output, v, sid) back;

(4) compute (gci, {k
w,b
i }) ← GCgenf,g(rgci ) for i ∈ S to complete statement xB , and

run Snd(π, (xB , `B)) in CKEMLB on xB , `B formed as in ΠCOMP, let KA be Snd’s output;

(5) if v =⊥ then set release?:=F and set m2
A as a random string, otherwise set

release?:=T and m2
A ← SE0

KA
(F(K′B , 1), t1, ..., tnv ) where ti’s encode v received from

FC(f |g) given t decrypted from ctB above; send m2
A to B.

(6) given m3
B , if m3

B 6= F(KB , 2) ⊕ F(K′A, 1) then (re)set release?:=F; send
(Output, sid, A, release?)to FC(f |g).

Fig. 6. Simulator A∗ (part 2) showing that ΠCOMP UC-realizes covert 2PC funct. FC(f |g)

Case 2A, honest A on input x∗ ∈ {0, 1}nx : Let G0 be the interaction of Z
and Adv in the real world where A gets input (Input1, B, x∗, sid) for x∗ 6=⊥.
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Let G1 be a modification of G0, which in step A2 executes as follows: Use sk
corresponding to pk in the CRS to decrypt each wire-input ciphertext ctw in ctB

sent by Adv in m2
B , and to obtain each bit of values y, t, u which Adv effectively

inputs into each garbled circuit computation. Overwrite y:= ⊥ if any decryption
output is not a bit or if u = 0. Also, do not use GCev to compute {wi}i 6∈S , but
instead, pick each wi at random if g(x∗, y) = 0 or u = 0, and otherwise set each wi
to w = z|t1|...|tnv where z = fz(x

∗, y) and t1, ..., tnv are the authenticator values
in t which encode v = fv(x

∗, y). Otherwise G1 performs all other steps as G0.
G1 ≈ G0 by the security of the Yao’s garbling circuit procedure and by the covert
simulation-soundness of CKEMLB: To see this consider first Adv which implants
errors in at least n/4 of the circuits, i.e. in (gci, {k

w,b
i }w,b) committed in m1

B for
all i ∈ S′ for S′ ⊂ [n] s.t. |S′| ≥ n/4. By the simulation soundness of CKEMLB

(note that the reduction testing the soundness of CKEMLB must have access to
the trapdoor sk corresponding to the public parameters π = (pk, R)) and by
binding of commitment Com, we have that except for negligible probability key
KA output by this CKEM is indistinguishable for Adv, and therefore in this case
G1 ≈ G0 because m2

A is pseudorandom to Adv and m3
B can satisfy A’s non-abort

constraint with at most negligible probability. We are left with the case that
there are errors in fewer than n/4 garbled circuits, in which case for every S the
majority of circuits evaluated in step A2 are correct. By a similar argument as
above we can discount the case that B forms any ciphertext in ctB incorrectly
or cheats in any other part of messages m1

B ,m
2
B , because otherwise G1 ≈ G0

because KA would be pseudorandom to Adv. We are left with the case that
keys ksBi and OT response vectors otri encrypted in m2

B are formed correctly
for i 6∈ S, in which case for at least n/4 indexes i 6∈ S we have that value wi
which A computes in G0 is equal to f |g(x∗, ci, y, di, t, u) for some di and y, t, u
encrypted in ctB. Now, note that if g(x∗, y) = 0 or u = 0 then wi = ci⊕di. Since
each ci is random and visible to Adv only in ciphertexts in {ctwi }w∈C , which are
non-malleable, hence in particular encryption of y in ctB cannot be related to
ci’s, values wi are indistinguishable from random in this case. If, on the other
hand, g(x∗, y) = 1 and u = 1 then wi = (z|t1|...|tnv ) for ti’s which encode v
(given t encrypted in ctB) for (z, v) = f(x∗, y). Finally, note that G2 forms wi’s
exactly the same way in both cases.

Consider a modification G2 of G1 which replaces Rec in CKEMLA with TRec,
and uses K′A it outputs in the subsequent steps. We have that G2 ≈ G1 by covert
zero-knowledge of CKEMLA.

Consider a modification G3 of G2 where ciphertexts {ctw}w∈X in m1
A are

formed by encrypting x = 0nx . Since G2 doesn’t use witnesses in this encryption
in CKEMLA, it follows that G3 ≈ G2 by the reduction to CCA security of en-
cryption cPKE. (Note that this reduction needs to decrypt the ciphertexts sent
by Adv in m2

B , but that these ciphertexts pertain to different labels than those in
m1
A, as well as the ciphertexts pertaining to sessions with other sid’s, but these

ciphertexts will also have different labels.)

Note that gameG3 proceeds like the simulatorA∗ interacting with FC(f |g) and
ideal-world honest A who receives (Input1, B, x∗, sid) from Z for x∗ ∈ {0, 1}nx .
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The difference between G3 and A∗ are only syntactic: G3 evaluates g(x∗, y) and
f(x∗, y) locally (setting y to ⊥ if u = 0 beforehand), while in the simulation
A∗ performs the same y := 0 overwrite if u = 0, sends y to FC(f |g), and FC(f |g)
evaluates both functions and sends v = fv(x

∗, y) to A∗, but in the end both
processes set pair z, v on inputs (x∗, {ci},y, {di},t, u) in the same way. Secondly,
G3, case v 6=⊥, sets all wi’s for i 6∈ S as (z|t1|...|tnv ) for ti’s which encode v,
but this means that message m2

A in G3 is set to a random string if v =⊥ and
to encryption under KA of max |t1|...|tnv for τ = F(K′B , 1) if v 6=⊥. Note that
A∗ sets m2

A in exactly the same way. Finally, game G3 outputs z determined by
f |g or ⊥ based on the same condition, i.e. whether m3

B = F(K′B , 2) ⊕ F(KA, 1),
which decides whether FC(f |g) outputs z or ⊥ to the dummy ideal-world player
A in interaction with A∗.

Case 2B, honest A on input x∗ =⊥: Let G0 be the interaction of Z and Adv
in the real world where player A gets input (Input1, B,⊥, sid) from Z. Note that
in this case A is a random beacon, i.e. its messages m1

A,m
2
A are random strings

of the appropriate length, and we will assume for notational convenience that
A follows TRec$(τ) in CKEMLA and Snd$(τ) in CKEMLB. Also A always sends ⊥
back to Z as its computation “output”.

Let G1 be a modification of G0 in which A sets x:=0nx and ci ← {0, 1}nz+nvτ

for all i and then forms ciphertexts {ctw}w∈X and {ctwi }i,w∈C in m1
A by encrypt-

ing the bits of x and ci’s as in step (1) of A∗. We have that G1 ≈ G0 by the
reduction to CCA security of encryption cPKE. (Note that this reduction will
need to decrypt ciphertexts on sessions with other sid’s, but these ciphertexts
will pertain to different labels.)

Let G2 be like G1 but in CKEMLA it runs TRec (but G2 ignores TRec’s local
output K′B). G2 ≈ G1 by covert zero-knowledge of CKEMLA.

Let G3 be a modification of G2 which in step A2 uses K′B output by TRec in

CKEMLA to decrypt ctB, {rgci }i∈S , {gci, ksBi , otri}i6∈S from m2
B , and completes xB

by computing (gci, {k
w,b
i })← GCgenf,g(rgci ) for i ∈ S. This creates no difference

in Adv’s view.

Let G4 replace TRec with Rec in TCKEMCorA, and uses K′B it outputs in
step A2. G4 ≈ G3 by covert zero-knowledge of CKEMLA.

Let G5 be like G4 but in CKEMLB it runs Snd(π, (xB , `B)) on statement xB
computed in step A2. G5 ≈ G4 by covert zero-knowledge of CKEMLB.

Note that G5 proceeds like the simulator A∗ interacting with FC(f |g) and
ideal-world honest A who receives (Input1, B,⊥, sid) from Z: Game G5 is like
A∗ simplified by the assumption that FC(f |g) returns (Output, v, sid) to A∗ for
v =⊥, in which case m3

A is set as random. However, this is indeed the case for
A’s session which was started by Z on input x∗ =⊥. Also, note that in G5 player
A always outputs ⊥, but this is also the output of the ideal-world player A in
interaction with FC(f |g) if x∗ =⊥.
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A Covertness of Cramer-Shoup Encryption

Proof of CCA-Covertness of Cramer-Shoup PKE. Recall the Cramer-
Shoup encryption in Section 4, and recall its proof of CCA security given in
[6]. Consider a (purely syntactic) restriction on an attacker A in the stan-
dard CCA-security game which specifies only one challenge message m∗ and
the encryption challenge pair is formed as m1 ← m∗ and m0 ← G. Recall the
CCA-security proof of [6]: It shows a simulator S which on input a four-tuple
T = (g1, g2, u1, u2) of G elements interacts with attacker A in such a way that
if T ← DH, i.e. if (g1, g2, u1, u2) is a random Diffie-Hellman tuple, then for any
choice of challengers bit b, A’s view of real execution (denoted R(b)) is statisti-
cally indistinguishable from A’s view of an interaction with S (denoted S(b, T )).
Simulator S on input (b, T ) for T = (g1, g2, u1, u2), uses a different representa-
tion of the private key by picking sk′ = (x1, x2, y1, y2, z1, z2) ← Z6

p and setting
(c, d, h)← (gx1

1 gx2
2 , gy11 gy22 , gz11 g

z2
2 ), (note that h is set differently from the real ex-

ecution). Furthermore, S forms the challenge ciphertext ct∗ = (u1, u2, e, v) using

(u1, u2) from its input 4-tuple, and setting e = uz11 u
z2
2 mb and v = ux1+y1ξ

1 ux2+y2ξ
2

for ξ = H(`, u1, u2, e). Furthermore, S(b, T ) decrypts A’s ciphertext queries
(c̄t, ¯̀) for c̄t = (ū1, ū2, ē, v̄) slightly differently than in R(b): It decrypts only

if v̄ = ūx1+y1ξ̄
1 ūx2+y2ξ̄

2 for ξ̄ = H(¯̀, ū1, ū2, ē), as in Rb, but it forms the decrypted
plaintext as ē·ūz11 ū

z2
2 . The proof in [6] shows that A’s view of S(1, T ) and S(0, T )

are statistically close if T ← G4. Moreover DDH implies that A’s view of S(b, T )
for T ← DH is indistinguishale from A’s view of S(b, T ) for T ← G4.

In particular it follows that A’s view of R(1), where ct∗ = E(pk,m∗, `∗), is
indistinguishable from A’s view of S(0, T ) for T ← G4. Note that if b = 0 then
S can pick e← G and the view does not change because m0 ← G in the original
game. Consider Sim1 which picks g1, u1, u2 ← G3 and w ← Zp, sets g2 ← (g1)w,
and then runs S(g1, g2, u1, u2). Clearly, the view of S1 is identical to the view of
S(b = 0, T ) for T ← G4. Consider S2 which proceeds as S1 except the decryption
oracle is modified to decrypt (c̄t, ¯̀) query, for c̄ = (ū1, ū2, ē, v̄), only if (1) ū2 =

(ū1)w and (2) v̄ = ūx1+y1ξ̄
1 ūx2+y2ξ̄

2 for ξ̄ = H(¯̀, ū1, ū2, ē). The CCA-security proof
in [6] uses a crucial technical lemma that, except for a negligible probability, the
simulator S (as well as the real decryptor) rejects a decryption query unless
(g1, g2, ū1, ū2) ∈ DH. It follows that view presented by S2 is statistically close to
that of S1, and hence also indistinguishable from the view of the real interaction
on A’s challenge plaintext m∗.

Note that values (u1, u2, e) in the challenge ciphertext ct∗ in produced by S2

are three random elements of G. To see that the value v in ct∗ is also random in
G, examine the information which an all-powerful observer (who can compute
discrete logs) sees about values (x1, x2, y1, y2) used by S2. Let r1, r2 be such that
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that (u1, u2) = (gr11 , g
r2
2 ). Note that values (g1, g2, u1, u2) determine (w, r1, r2),

values c, d detemine x̄ = x1 + wx2 and ȳ = y1 + wy2, value v determines α =
r1(x1 + ξy1) + wr2(x2 + ξy2), and the values which the decryption oracle uses
are w and (since ū2 = (ū2)w) β = (x1 + ξ̄y1) +w(x2 + ξ̄y2). However, note that
β = (x1 +wx2) + ξ̄(y1 +wy2) = x̄+ ξ̄ȳ, which means that β does not reveal any
more information than x̄, ȳ. Note that (x̄, ȳ, α) are computed as follows:

 x̄ȳ
α

 =

 1 w 0 0
0 0 1 w
r1 wr2 r1ξ wr2ξ

 ·

x1

x2

y1

y2


If r1 6= r2 then the rows in the above matrix are linearly independent, and in
that case (x̄, ȳ, α) are uniform in Z3

p for (x1, x2, y1, y2)← Z4
p. It follows that ct∗

produced by S2 is statitistically close to uniform in Z4
p (over the choice of r1, r2

determined by u1, u2).
Now we can “move backwards” and modify simulation S2 so that it looks

like the real execution except ct∗ ← Z4
p. Consider S3 which chooses z ← Zp

instead of (z1, z2) sets h = gz1 and decrypts as ē/(ū1)z. By equation (1) in the
decryption test, and since z = z1 +wz2, we can see that S3 presents an identical
view to S2. Finally, consider S4 which picks (g1, g2, u1, u2, e, v) at random in
G6, and therefore does not know w, and uses only condition (2) above in the
decryption test, as in the real Cramer-Shoup decryption. By the same technical
lemma above the view produced by S4 is statistically close to that of S3. Since S4

now acts like the CCA challenger except the ciphertext challenge ct∗ is sampled
uniformly in G4, this concludes the proof.

B Linear Map Image Languages for Covert 2PC.

We list the LMI languages used in the covert 2PC protocol of Section 7, we explain
why these languages are in the LMI class, specifying the mapping between the
language instance x and the (C,M) pair which defines the instance of LMI.
Let (Kg,E,D) be the CCA-covert Cramer-Shoup PKE. All languages below are
implicitely parametrized by the public key pk output by Kg(1τ ), which also
specifies the prime-order group setting (g,G, p). (Formally, the public key pk will
be part of the language statement in each language below.) For each language
below, it will be the case that the decryption key sk generated together with pk by
Kg(1τ ) is a trapdoor that allows for efficient verification of language membership.

In section B.1 we show the arguments that each language L below is matrix-
map receiver covert relative (Kg,D, θL) for θL which restricts the adversary from
decrypting ciphertexts whose labels are the same as the ciphertexts pertaining
to the language statement.

Encryption Correctness. Let Le(pk) contain correct (ciphertext, label, plain-
text) tuples, i.e.

Le(pk) = {(ct,m, `) s.t. ct ∈ Epk(m, `)}

41



Le statements can be mapped onto statements in LMI4,1, because ((ct,m, `), r) ∈
R[Le(pk)] for pk = ((g,G, p,H), g1, g2, c, d, h) and ct = (u1, u2, e, v) if and only if
ct = Epk(m; r) for some r ∈ Zp, which holds iff C = M ·r for C = (u1, u2, e/m, v),
M = (g1, g2, h, cd

ξ), and ξ = H(`, u1, u2, e).
Instance (ct,m, `) of Le(pk) implies the following matrix M ′ (compare eq. 3

in Section 6) which contains 4-by-1 matrix M in its first row and vector C in
the second row:

M′ =



1 1 1
g′ 1 1

1 g′ h′

g′ u′ e′

1 1 1
1 1 1
g′ 1 1

g1 g2 h (cdξ)
u1 u2 e/m v

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1
1 1

1 1
1 1

g′ h′

u′′ e′′

g′ 1


(5)

Encryption of a Bit. Another example is language Lbit(pk) of (shifted) en-
cryptions of a bit, i.e.

Lbit(pk) = {(ct, `) s.t. ∃b (ct, gb, `) ∈ Le(pk) ∧ b ∈ {0, 1}}

This language can be expressed using only arithmetic constraints, i.e. with-
out resorting to general disjunctions. The above constraints can be restated
as (u1, u2, e, v) = ((g1)r, (g2)r, hrgb, (cdξ)r) and b(b − 1) = 0 for some r, b ∈ Zp.
However, the second constraint can be expressed as the constraint that 1 =
(u1)b(g1)λ and 1 = (e/g)bhλ for some λ ∈ Zp. This is because if u1 = (g1)r

then (u1)b(g1)λ = grb+λ1 so the first one of these constraints is equivalent to
rb + λ = 0, and if e = hrgb then (e/g)bhλ = hrb+λg(b−1)b, hence the two con-
straints imply that (b − 1)b = 0. Therefore Lbit(pk) statements can be mapped
onto statements (C,M) of LMI6,3, where C = (u1, u2, e, v, 1, 1), matrix M con-
sists of columns (g1, 1, 1), (g2, 1, 1), (h, g, 1), (cdξ, 1, 1), (1, u1, g1), and (1, e/g, h),
where ξ = H(`, u1, u2, e), with witness set as w = (r, b, λ) for λ = −rb.

Instance (ct, `) of Lbit(pk) therefore implies the following matrix M ′ (compare
eq. 3 in Section 6) which contains 6-by-3 matrix M in rows 1-3 and vector C in
row 4:

M′ =



1 1 1
1 1 1
1 1 1
g′ 1 1

1 g′ h′

g′ u′ e′

1 1 1
1 1 1
g′ 1 1

g1 g2 h (cdξ) 1 1
1 1 g 1 u1 e/g
1 1 1 1 g1 h
u1 u2 e v 1 1

1 . . . 1
1 . . . 1

1 . . . 1
1 . . . 1
1 . . . 1

1 1
1 1
1 1
1 1

1 1
1 1

g′ h′

u′′ e′′

g′ 1


(6)
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Disjunction of Encryptions. In the covert 2PC protocol of Section 7 we
consider language Ldis(pk) of tuples (m, ct, ck0, ck1) s.t. (1) ct encrypts bit b and
(2) either ck0 encrypts gm and b = 0 or ck1 encrypts gm and b = 1.

Ldis(pk) = {(m, ct, ck0, ck1, `, `0, `1) s.t. ∃b (ct, b, `), (ckb, g
m, `b) ∈ Le(pk)}

One can define this language using a disjunction but it can also be expressed
using a set of arithmetic constraints. First we have the encryption constraints,
i.e. that there exists b,m0,m1, r, r0, r1 s.t.

ct = (u1, u2, e, v) = ((g1)r, (g2)r, hrgb, (cdξ)r)

ck0 = (u0
1, u

0
2, e

0, v0) = ((g1)r0 , (g2)r0 , hr0gm0 , (cdξ0)r0)

ck1 = (u1
1, u

1
2, e

1, v1) = ((g1)r1 , (g2)r1 , hr1gm1 , (cdξ1)r1)

for appropriately computed hash values ξ, ξ0, ξ1. Secondly, we have a constraint
that 0 = b(b − 1), which can be expressed as above, with constraints that 1 =
(u1)b(g1)λ and 1 = (e/g)bhλ for some λ. Third, we have a constraint that there
exists m′ s.t. m0 = m − b · (m − m′) and m1 = m′ + b · (m − m′), which
guarantees that m = mb. This can be re-stated that there exist s, δ,m′ s.t.
s = b · δ, δ = m−m′, m0 = m− s, and m1 = m′ + s. The last three constraints
can be expressed as gm = gδgm

′
, gm = gm0gs, and 1 = gm1(g−1)m

′
(g−1)s,

while the multiplicative constraint s = b · δ can be expressed using the same
indirection as in the case of constraint 0 = b(b− 1), namely that 1 = eδhγ(g−1)s

and 1 = (u1)δ(g1)γ for some γ. Summing up we have 19 linear constraints on a
witness containing 11 values in Zp.

Specifically, instance (m, ct, ck0, ck1, `, `0, `1) of Ldis(pk) gives the following
matrix M ′ (compare eq. 3 in Section 6) with 19-by-11 matrix M in rows 1-11
and vector C in row 8. To reduce space let f = cdξ, f0 = cdξ0 , f1 = cdξ1 :

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
g′ 1 1

1 g′ h′

g′ u′ e′

1 1 1
1 1 1
g′ 1 1

1 1 1 1 1 1 1 g1 g2 h f 1 1 1 1 1 1 1 1
1 1 1 1 1 u1 e/g 1 1 g 1 1 1 1 1 1 1 1 1
1 1 1 1 1 g1 h 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 g1 g2 h f0 1 1 1 1
1 1 1 g 1 1 1 1 1 1 1 1 1 g 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 g1 g2 h f1

1 1 g−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 g 1
1 1 g 1 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 g−1 g g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
u1 e 1 1 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g1 h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 gm gm 1 1 u1 u2 e v u0

1 u
0
2 e

0 v0 u1
1 u

1
2 e

1 v1

1 . . . 1
1 . . . 1

1 . . . 1
1 . . . 1
1 . . . 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1

g′ h′

u′′ e′′

g′ 1


(7)
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Correct OT Reponse. Another LMI-type language in covert 2PC of Section 7
is Lotr(pk), which involves verification that the response message OTrsp in the OT
of Aiello et al. [1] (see Section 4) was computed on m0,m1 committed in ck0, ck1,
i.e. that (1) otr = (s0, t0, s1, t1) where (s0, t0) = (gα0

1 hβ0 , u1
α0(e)β0m0) (s1, t1) =

(gα1
1 hβ1 , u1

α1(e/g)β1m1) for some (α0, β0, α1, β1) ∈ Z4
p, where the receiver’s OT

message was ct = (u1, u2, e, v) for some u2, v; and (2) that m0,m1 in the two
equations above are encrypted respectively in ck0, ck1. In other words:

Lotr(pk) = { (otr, ct, ck0, ck1, `0, `1) s.t. ∃m0,m1, r

(ck0,m0, `0) ∈ Le(pk) ∧ (ck1,m1, `1) ∈ Le(pk) ∧ otr = OTrsppk(ct,m0,m1; r) }

If ciphertexts ck0, ck1 are formed using the basic, i.e. not “shifted”, version of
the encryption then the plaintexts mi (for i = 0, 1) is in the base in both ti and
in the ei component of cki = (ui1, u

i
2, e

i, vi), so we can cancel these plaintexts out
by replacing (for i = 0, 1) constraints ei = hrmi implied by (cki,mi, `i) ∈ Le(pk)
with constraints ti/ei = u1

αi(e/gi)βi(h−1)r. This results in 10 linear constraints
with 6 variables, which means that statements in Lotr(pk) can be mapped onto
statements in LMI10,6.

Instance (otr, ct, ck0, ck1, `0, `1) of Lotr(pk) results in the following matrix M ′

(compare eq. 3 in Section 6) which contains 10-by-6 matrix M in rows 1-6 and
vector C in row 7, where ξi = H(`i, ui1, u

i
2, e

i) for i = 0, 1:

M′ =



1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
g′ 1 1

1 g′ h′

g′ u′ e′

1 1 1
1 1 1
g′ 1 1

g1 g2 (cdξ0) 1 1 1 1 h−1 1 1
1 1 1 g1 g2 (cdξ1) 1 1 1 h−1

1 1 1 1 1 1 g1 u1 1 1
1 1 1 1 1 1 h e 1 1
1 1 1 1 1 1 1 1 g1 u1

1 1 1 1 1 1 1 1 h e/g
u0

1 u
0
2 v0 u1

1 u
1
2 v1 s0 t0/e

0 s1 t1/e
1

1 . . . 1
1 . . . 1

1 . . . 1
1 . . . 1
1 . . . 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1

g′ h′

u′′ e′′

g′ 1



(8)

B.1 Proofs of matrix-map receiver covertness

We show that languages Lbit(pk), Ldis(pk), and Lotr(pk) above are matrix-map
receiver covert relative (Kg,D, θ) for condition θ that restricts decryption of
ciphertexts whose labels are the same as those in the language statement:

θLbit(x, (ct′, `′)) returns 1 for x = (ct, `) s.t. `′ = `;
θLdis(x, (ct′, `′)) returns 1 for x = (m, ct, ck0, ck1, `, `0, `1) s.t. `′ ∈ {`, `0, `1};
θLotr(x, (ct′, `′)) returns 1 for x = (otr, ct, ck0, ck1, `0, `1) s.t. `′ ∈ {`0, `1};

Lemma 4. Under the DDH assumption each language L among Lbit, Ldis, and
Lotr is matrix-map receiver covert relative to (Kg,D, θL).

44



Proof. As in the proof of matrix-map receiver covertness of Le(pk) (lemma 3,
section 6.2) we will use a technical property which is used in the proof of CCA-
covertness (and security) of Cramer-Shoup encryption. Namely, assuming DDH
and collision-resistance of H, tuple ct∗ formed as (g1, g2, h, cd

ξ)s, for random
s ← Zp and ξ = H(`, z) for any string z, is inditsinguishable from a random
tuple in G4, even on access to the oracle Dsk(·, ·) which decrypts ciphertext,label
pairs (ct′, `′) as long as `′ 6= `.

(1) In the case of Lbit, consider statement x = (ct, `). Condition θLbit(x, ·)
allows decryption of any (ct′, `′)) as long as `′ 6= `. See matrix M in equation
(6). Value r = s ·M for s = (s1, s2, s3) random in Z3

p can be written as r =

(g1, g2, h, cd
ξ, 1, 1)s1 · (r2)s2 · (1, 1, 1, 1, g1, h)s3 where r2 is the second row of M .

Since ξ = H(`, ...), by the technical lemma above r is indistinguishable from a
modification which replaces the first component by (b1, b2, b3, b4, 1, 1) for random
(b1, b2, b3, b4) in G4. By the same token the view remains indinstinguishable if we
replace (1, 1, 1, 1, g1, h)s3 by (1, 1, 1, 1, b5, b6) for random b5, b6 in G2. (The last
transformation holds by the same technical property because g1, h is a selection
of two elements in tuple (g1, g2, h, cd

ξ).) At this point r is uniform in G6, which
proves the lemma.

(2) In the case of Ldis, consider statement x = (m, ct, ck0, ck1, `, `0, `1). Condi-
tion θLdis(x, ·) allows decryption of any (ct′, `′)) as long as `′ 6∈ {`, `0, `1}. See ma-
trix M in equation (7), and let r = s ·M for s ∈ Z11

p . Note that row one contains

tuple (g1, g2, h, cd
ξ) in columns 8-11, row four contains tuple (g1, g2, h, cd

ξ0) in
columns 12-15, and row six contains tuple (g1, g2, h, cd

ξ1) in columns 16-19. (Note
also that all these rows contain no other non-one elements.) Since ξ = H(`, ...)
ξ0 = H(`0, ...), and ξ1 = H(`1, ...), and the decryption oracle does not decrypt
ciphertexts accompanied by any of these three labels, the technical lemma above
applies to all three tuples, which means that elements r[8,19] in r can be replaced
by 12 random group elements, given random s1,4,6 in Z3

p. It remains to argue that
r[1,7] is indistinguishable from a random tuple in G7 over random s2,3,5,[7−11] in
Z8
p. Note that row 11 contains (g1, h) in columns 1-2, so a similar argument as

used for Lbit in point (1) above implies that, given random s11, elements r1,2

can be replaced by random elements of G. Similarly row 3 contains (g1, h) in
columns 6-7, hence by the same argument elements r6,7 can also be replaced by
random in G. Finally, we can “use” elements g on the diagonal in rows 8-10 and
columns 3-5 to see that for random s8,9,10 ← Z3

p, values r3,4,5 are random in G.
At this point r is uniform in G11, which proves the lemma.

(3) In the case of Lotr, consider statement x = (otr, ct, ck0, ck1, `0, `1). Con-
dition θLotr(x, ·) allows decryption of any (ct′, `′)) as long as `′ 6∈ {`0, `1}. See
matrix M in equation (8), and let r = s ·M for s ∈ Z6

p. Note that row one

contains tuple (g1, g2, cd
ξ0) in columns 1-3 and then h−1 in column 8, and row

two contains tuple (g1, g2, cd
ξ1) in columns 4-6 and then h−1 in column 10,

for ξ0 = H(`0, ...) and ξ1 = H(`1, ...). Since this is equivalent to having tuples
(g1, g2, h, cd

ξ0) and (g1, g2, h, cd
ξ1) in these columns, the technical lemma above

applies to these tuples, which means that elements r1,2,3,4,5,6,8,10 in r can be
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replaced by 8 random group elements, given random s1,2 in Z2
p. For columns 7

and 9 we can see by the presence of g1 in rows respectively 3 and 5 that r7 and
r9 are both random for random s3, s5, which shows that r is indistinguishable
from random in G10, and proves the lemma.
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