
Decentralized Anonymous Micropayments

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Matthew Green
mgreen@cs.jhu.edu

Johns Hopkins University

Jingcheng Liu
liuexp@berkeley.edu

UC Berkeley

Peihan Miao
peihan@berkeley.edu

UC Berkeley

Ian Miers
imiers@cs.jhu.edu

Johns Hopkins University

Pratyush Mishra
pratyush@berkeley.edu

UC Berkeley

October 31, 2016

Abstract

Micropayments (payments worth a few pennies) have numerous potential applications. A challenge in achieving
them is that payment networks charge fees that are high compared to “micro” sums of money.

Wheeler (1996) and Rivest (1997) proposed probabilistic payments as a technique to achieve micropayments: a
merchant receives a macro-value payment with a given probability so that, in expectation, he receives a micro-value
payment. Despite much research and trial deployment, micropayment schemes have not seen adoption, partly because
a trusted party is required to process payments and resolve disputes.

The widespread adoption of decentralized currencies such as Bitcoin (2009) suggests that decentralized micropay-
ment schemes are easier to deploy. Pass and Shelat (2015) proposed several micropayment schemes for Bitcoin, but
their schemes provide no more privacy guarantees than Bitcoin itself, whose transactions are recorded in plaintext in a
public ledger.

We formulate and construct decentralized anonymous micropayment (DAM) schemes, which enable parties with
access to a ledger to conduct offline probabilistic payments with one another, directly and privately. Our techniques
extend those of Zerocash (2014) with a new privacy-preserving probabilistic payment protocol. One of the key
ingredients of our construction is fractional message transfer (FMT), a primitive that enables probabilistic message
transmission between two parties, and for which we give an efficient instantiation.

Double spending in our setting cannot be prevented. Our second contribution is an economic analysis that bounds
the additional utility gain of any cheating strategy, and applies to virtually any probabilistic payment scheme with
offline validation. In our construction, this bound allows us to deter double spending by way of advance deposits that
are revoked when cheating is detected.

Keywords: decentralized currencies; micropayments; probabilistic payments; anonymity; Bitcoin

1

mailto:alexch@berkeley.edu
mailto:mgreen@cs.jhu.edu
mailto:liuexp@berkeley.edu
mailto:peihan@berkeley.edu
mailto:imiers@cs.jhu.edu
mailto:pratyush@berkeley.edu

Contents
1 Introduction 3

1.1 Our contributions . 4
1.2 Prior work on micropayment channels . 7
1.3 Roadmap . 8

2 Techniques 9
2.1 Constructing decentralized anonymous payments . 9
2.2 Intuition for our economic analysis of double spending . 11

3 Economic analysis of double spending for offline probabilistic payments 13
3.1 Informal description of payment dynamics . 13
3.2 The game and its analysis . 15
3.3 Interpreting the payment value rates . 17

4 Efficient fractional message transfer 20

5 Recalling decentralized anonymous payments 22
5.1 Data structures . 22
5.2 Algorithms . 23
5.3 Merkle trees on all coin commitments and all serial numbers . 24
5.4 Extension of the DAP interface . 25

6 Definition of a decentralized anonymous micropayment scheme 26
6.1 Data structures . 26
6.2 Algorithms . 27
6.3 Guidelines for usage . 29
6.4 Security . 31

7 Construction of a decentralized anonymous micropayment scheme 35
7.1 Informal description . 35
7.2 Building blocks . 38
7.3 Construction . 44
7.4 Security of the construction . 46

A Fractional message transfer 47
A.1 Definition of a fractional message transfer scheme . 47
A.2 Construction of a fractional message transfer scheme . 49
A.3 Definition of a fractional message transfer protocol . 54
A.4 Construction of a fractional message transfer protocol . 54

B Security of decentralized anonymous payment systems 57
B.1 Auxiliary algorithms and notions . 57
B.2 Security definition . 58
B.3 Security of existing DAP constructions . 60

C Security of our DAM construction 61
C.1 Ideal-world adversary S . 61
C.2 Proof of security by hybrid argument . 66

References 70

2

1 Introduction
We formulate and construct decentralized anonymous micropayments, by way of probabilistic payments.
Micropayments. A micropayment is a payment of a small amount, e.g., a fraction of a penny [Whe96, Riv97].
Micropayments have many potential applications, including advertisement-free content delivery, spam protection,
rewarding nodes of P2P networks, and others. Achieving micropayments involves at least two main challenges. First,
payment processing fees dwarf “micro” payment values. Second, micropayment applications often require fast merchant
responses, which, in many settings, are achieved via offline payments, which are vulnerable to double spending.
Probabilistic payments. A technique to reduce processing fees is to amortize them over multiple payments by way
of probabilistic payments [Whe96, Riv97].1 These are protocols that enable a customer to pay V units of currency
to a merchant with probability p: with probability 1 − p the merchant receives a nullpayment that is not processed,
and with probability p the merchant receives a macropayment that is processed. In expectation, the merchant receives
pV units per micropayment, but the overhead and processing fees of these “lottery tickets” is p times smaller as only
the infrequently generated macropayments are actually handled by the payment network. Constructing probabilistic
payments is an area of ongoing interest in cryptography.
Centralized vs. decentralized systems. Despite extensive research and trial deployments [Whe96, Riv97, LO98,
MR02, Riv04, Mic14], micropayment schemes have not seen widespread usage. This is perhaps due to them being
centralized systems: a trusted third party is tasked with processing payments and punishing cheaters. Appointing such a
party raises deployment costs, requires establishing complex business relationships between all involved (the trusted
party, merchants, and customers), and makes participation conditional on certain requirements being met [vOR+03].

Recent work in digital currencies has focused on decentralized systems, as the cost of entry and deployment appears
to be lower. The most notable such currency is Bitcoin [Nak09], a widely adopted peer-to-peer payment system. Unlike
traditional banking and e-cash schemes [Cha82, CHL05, ST99] where transactions are processed by a trusted party,
Bitcoin utilizes a distributed public ledger known as the blockchain to store all transactions; these transactions are
verified by network nodes in a peer-to-peer fashion.

Decentralized systems are thus potentially attractive for micropayments, because the overhead involving trusted
parties is no longer a factor. However, Bitcoin processing fees are still relatively high (as of May 2016 the fee for
a 1kB-transaction is ≈ $0.20), with present fees believed to be well below the cost of performing a transaction on
the Bitcoin network [MB15]. Thus, fee amortization is still necessary. Caldwell [Cal12] first sketched probabilistic
payments for Bitcoin. Recently, Pass and Shelat [PS15, PS16] also proposed three probabilistic payment schemes for
Bitcoin, where, informally, the customer first puts V bitcoins in escrow, and then the customer and merchant engage in
a coin-flipping protocol that allows the merchant to retrieve the escrow with probability p. Their three schemes differ in
how payments are processed and how disputes are resolved.
Our privacy goal and limitations of prior work. We study the question of how to construct decentralized anonymous
micropayments via the technique of (offline) probabilistic payments. The aforementioned prior work [PS15, PS16]
provides no more privacy than the underlying Bitcoin protocol. And Bitcoin itself provides little to no privacy because
every transaction is publicly broadcast and contains a payment’s origin, destination, and amount; a user’s payment
history is thus readily available to any passive observer who can can link pseudonyms together or to real world
identities.2 This lack of privacy is particularly dangerous for micropayment applications because they typically involve
high-volume pattern-rich payments (e.g., per-click payments while surfing the web), and sometimes necessitate user
anonymity (e.g., bandwidth payments for Tor relays [BP15]).

Privacy is not merely an issue of individual users: if each coin’s history is public, a customer may not be able to
spend a coin at its ‘declared’ value due to its past. For example, a merchant may not accept coins whose past owners
include certain political organizations. Privacy thus ensures a fundamental property of the currency: fungibility, which
means that any two sets of coins with the same ‘declared’ total value are interchangeable, regardless of their provenance.

Prior work on privacy-preserving analogues of Bitcoin [MGGR13, DFKP13, BCG+14] does not achieve probabilis-
tic payments, and merely “plugging” these schemes into [PS15, PS16]’s approach results in subtle problems. Consider
the following natural modification to Pass and Shelat’s coin-flipping protocol: instead of a Bitcoin transaction, the

1Another technique is micropayment channels, which we discuss in Section 1.2.
2This is not merely a theoretical concern: extracting information from Bitcoin transactions is the subject of applied research [RH11, BBSU12,

RS13, MPJ+13] and commercial ventures [Ell13, Blo14, Cha15].

3

sender probabilistically transmits to the merchant a Zerocash transaction [BCG+14]. Despite the strong anonymity
guarantees provided by Zerocash, merchants still learn information about their customers’ spending habits, because
each Zerocash transaction includes a unique serial number corresponding to the spent “coin”. Since the customer sends
to the merchant information about the escrow, this serial number is revealed in each micropayment. Since the same
escrow is used across multiple probabilistic payments (to amortize fees), privacy of the customer is compromised
because the merchant learns (1) which (macro or null) payments to him were made with the same escrow; and (2) which
macropayments to other merchants were made with an escrow used for payments to him. This breach of privacy worsens
if merchants share information with one another. In sum, while the above natural approach achieves “macropayment
unlinkability”, micropayments are still linkable, and thus customers have little privacy.
Double spending in offline probabilistic payments. Micropayment applications often require fast responses. In
many settings, these in turn require offline validation: a merchant responds to a payment after only a local “offline”
check, because he cannot wait for the payment network to validate the payment (this validation instead completes after
the merchant’s response). For example, validation takes a few minutes in Bitcoin, while responding to unconfirmed
zero-conf transactions takes only a few seconds. We thus focus on offline probabilistic payments.

However, such payments are vulnerable to double spending, as we now explain. First, double spending cannot be
prevented for offline payments, because, to prevent it, a merchant would have to refrain from responding to any payment
before all payments up to, and including, this payment have been validated. One fallback is to detect and punish all
double-spending customers. However, for offline probabilistic payments, not all double spending can even be detected.

Indeed, there are two types of double spending when using the same lottery ticket in two probabilistic payments:
(1) both payments result in macropayments; or (2) the first payment results in a macropayment (thereby ‘consuming’ the
ticket) while the second payment results in a nullpayment. While detecting the first type is easy, detecting the second
type requires the payment network to ‘know’ the temporal order of all payments, because whether the nullpayment or the
macropayment occurred first determines whether the two payments correspond to honest behavior (nullpayment first) or
not (macropayment first). But knowing the global order of all payments (with high precision) is a strong synchronization
property that is unrealistic in many decentralized settings, including that of Bitcoin, because information does not
instantly reach everyone in the network.

Given that not all double spending can be detected, the “detect-and-punish” approach is effective only if the
disadvantages of being punished (upon detection) outweigh the advantages of double spending. This may be plausible
in the centralized setting, where customers have registered with a trusted party that can permanently ban and legally
prosecute them. In the decentralized setting, however, banning has few consequences, if any: anyone can abandon old
identities and use fresh new identities in their place.

Ruffing, Kate, and Schröder [RKS15] introduce “accountable assertions”, which enable timelocked deposits in
Bitcoin that are revoked upon evidence of double spending. Pass and Shelat [PS16] also suggest a Bitcoin-specific
penalty mechanism to deter rational customers and merchants from cheating.3 Unfortunately, both of these works do
not provide an economic analysis to indicate how large a penalty should be to deter double spending. Such an analysis
is crucial: how could detect-and-punish be a deterrent if double spending were to yield unbounded additional utility?

1.1 Our contributions
We overcome the aforementioned limitations via a combination of cryptographic and economic techniques. We adopt a
“detect-and-punish” approach in which cryptography is used to retroactively detect and economically punish double
spending and, separately, an economic analysis clarifies how much to punish so as to deter double spending in the first
place. More precisely, we present the following three contributions.

1.1.1 Economic analysis of double spending for offline probabilistic payments

We characterize the additional utility that can be gained by double spending via offline probabilistic payments. We
suppose that: (i) every probabilistic payment is backed by an advance deposit;4 (ii) all macropayment double spends

3We also note that two of the three schemes in [PS15] do not support offline payments, and the remaining one only provides “fast online payments”
where an online (publicly verifiable) trusted party assists the ledger by processing macropayments faster.

4One deposit may back multiple payments; in particular, an honest customer may use a single deposit to back all of his payments.

4

can be detected; and (iii) if a merchant detects a double spend then he reports it, and doing so results in the revocation
of the cheating customer’s deposit. (Our cryptographic constructions will provide suitable mechanisms for these tasks.)
We then ask: how large must the deposit be in order to deter double spending?

We provide a simple yet powerful analysis that answers this question under reasonable network behavior. Namely,
let T denote the time it takes to catch a macropayment double spend (e.g., in Bitcoin one could take T to be the
network’s broadcast time). Within any period of time T , let A denote the maximum cumulative value of probabilistic
payments and W the maximum cumulative value of macropayments; our analysis will show that imposing bounds
on these quantities is necessary. To simplify discussions, we make the assumption that only macropayment (and not
nullpayment) double spends are detectable; our analysis extends to the case where nullpayment double spends may also
be detected eventually (see Remark 3.5).

Below we informally state our theorem, for simplicity in the special case where the macropayment value V and the
payment probability p are fixed across all probabilistic payments, and all merchants share the same detection time T .
The formal statement that we prove is in fact more general, because it applies even when these quantities are chosen
dynamically and arbitrarily across different payments.

Theorem 1.1 (informal statement of Thm. 3.4).
(a) If the deposit is at least W , then there is no worst-case utility gain in double spending.
(b) If the deposit is at least (1− p)V + A, then there is no average-case utility gain in double spending.
(c) Both bounds above are tight.

Our theorem has a simple interpretation: the required deposit amount equals the maximum financial activity that
can happen within any time period of T . Namely, if macropayments have maximum total worth W within time T , the
deposit must be at least W (w.r.t. worst-case utility); and if probabilistic payments have maximum total worth A within
time T , the deposit must be at least ≈ A (w.r.t. average-case utility). Note that it is unsurprising that the two statements
in the theorem depend on the two different quantities W and A, because they target different notions of utility; also
note that, while one can take pW ≤ A without loss of generality, a bound on W does not always imply a bound on A
(there could still be arbitrarily many probabilistic payments, though with extremely small probability).

But which of the two bounds should one use in practice? Naturally, the worst-case bound is safer than the average-
case bound; however, an appropriate setting of W will be Ω(1/p) larger than A, which implies a substantial increase in
the required deposit. The choice between the two depends on whether one cares about malicious customers that are
lucky with even very small probability (as opposed to focusing on their average gains possibly across many deposits).

As already mentioned, bounding the value of probabilistic payments (via A) or macropayments (via W) within
time T is necessary because our bounds are tight (i.e., there exist double-spending strategies that achieve them). In the
“real world” these bounds may be imposed by the environment (e.g., limited network throughput), or the merchants
(e.g., they accept up to a given number of payments within time T).

In terms of analysis, our proof shows that any additional utility gained via double spending must come from
macropayment double spending. This may be surprising because, superficially, one may think that nullpayment double
spending also contributes to additional utility; e.g., one may think that a malicious customer gains pV for every
nullpayment double spend. This proposition is alarming: in the worst case there could be infinitely-many nullpayment
double spends (which imply infinite additional utility); and in the average case there could be clever strategies that
leverage double spends across multiple merchants to lower the probability of detection. We prove that this is not the
case: we use a simulation argument to show that the naive strategy of double spending as much as possible is the best
strategy (i.e., maximizes additional utility), both in the worst case and in the average case. In particular, we learn that
the best strategy always leads to detection (after a time period of T) and that additional utility is finite even in the worst
case (if W is finite). Details of our analysis are in Section 3.

We believe our theorem to be of independent interest because it applies to virtually any (centralized or decentralized)
setting that enforces a deposit mechanism for offline payments. One such setting could be probabilistic smart contracts
(an application suggested by [PS15, PS16]). A thorough understanding of the economic benefits of double spending is
necessary to ensure that such smart contracts, as well as other applications, function as intended.
Example. As a demonstration, we invoke our theorem on parameters that could fit the application of advertisement-free
content delivery, to see what conclusions our economic analysis gives us. Suppose that we consider a Bitcoin-like
setting, where (i) transaction fees are typically a few cents; and (ii) we could take the detection time T to be, e.g., 20

5

minutes, which is typically two blocks (ideal block generation follows an exponential distribution with a mean of 10
minutes). Suppose further that we fix the deposit to be D := $200 and the expected value of the probabilistic payment
to be $0.1 (similar size as a transaction fee); concentration bounds then suggest that, subject to the condition pV = $0.1,
good choices are V := $10 and p := 1%. Note that these settings imply that we can take W up to D = $200 and A
up to D − (1 − p)V = $190.1. Then our theorem implies that: (1) Even the luckiest double spending user has no
extra utility gain if the cumulative value of macropayments every 20 minutes is less than $200 (that is, the number
of macropayments every 20 minutes is less than 20), regardless of how much nullpayment double spending occurred.
(2) A double spending user has no extra utility gain on average if the cumulative value of probabilistic payments every
20 minutes is less than $190.1 (that is, the number of probabilistic payments every 20 minutes is less than 1901).

1.1.2 Decentralized anonymous micropayments

We formulate the notion of a decentralized anonymous micropayment (DAM) scheme. This notion formalizes the
functionality and security properties of an offline probabilistic payment scheme that enables parties with access to a
ledger to conduct transactions with one another, directly and privately. To realize the requirements of our economic
analysis, a DAM scheme enables parties to set up deposits, which are revoked when macropayments reveal that double
spending has occurred. Crucially, the security guarantees of a DAM scheme guarantee anonymity not only across
macropayments but also across nullpayments, so that even the “offline stream of payments” remains unlinkable.

We construct a DAM scheme and prove its security under specific cryptographic assumptions. Our two main
building blocks are decentralized anonymous payment (DAP) schemes [BCG+14] and fractional message transfer
schemes (see below).

Theorem 1.2 (informal statement of Thm. 7.1). Given a decentralized anonymous payment scheme and a fractional
message transfer scheme (and other standard cryptographic primitives) there exists a DAM scheme.

Formally capturing the notion of a DAM scheme and proving security of our construction was quite challenging due
to the combination of rich functionality and strong anonymity guarantees. Parties can mint standard coins, deposits, or
lottery tickets; they can withdraw deposits; they can pay each other with deterministic payments, switch coin types; they
can also pay each other with probabilistic payments; they can revoke deposits of cheating parties — all of this while
essentially revealing no information about origins, destinations, and amounts of money transfers. In particular, two
features of our construction required particular attention: (1) revocation of an unknown cheating party’s deposit when
two macropayments with the same ticket are detected; and (2) monitoring of payment value rates (as required by our
economic analysis) despite deposits being anonymous. Deterministic payments in our construction are non-interactive,
while probabilistic payments consist of a 3-message protocol between a sender and a receiver; it is an interesting open
question whether these can be made non-interactive as well.

We express the security of a DAM scheme via the ideal-world/real-world paradigm, specifying a suitable ideal
functionality, and we prove our construction’s security via a simulator against non-adaptive corruptions of parties. We
consider security in the standalone setting, and leave security under composition to future work (that perhaps can build
upon the work of [KMS+16]).

1.1.3 Fractional message transfer

A key ingredient in our construction of DAM schemes is fractional message transfer (FMT): a primitive that enables
probabilistic message transmission between two parties, called the ‘sender’ and the ‘receiver’. Informally, FMT works
as follows: (i) the receiver samples a one-time key pair based on a transfer probability p; (ii) the sender uses the
receiver’s public key to encrypt a message m into a ciphertext c; (iii) the receiver uses the secret key to decrypt c,
thereby learning m, but only with the pre-defined probability p (and otherwise learns no information about m).

We thus (1) formulate the notion of an FMT scheme, which formally captures the functionality and security of
probabilistic message transmission, and (2) present an efficient construction that works for probabilities that are inverses
of positive integers.

Theorem 1.3 (informal statement of Thm. A.3). In the random oracle model and assuming the hardness of DDH in
prime-order groups, there exists an FMT scheme that works for transfer probabilities p = 1/n with n ∈ N. Moreover,
the number of group elements and scalars in the public key and ciphertext is constant (independent of n); see Table 1.

6

Our definition of FMT is closely related to non-interactive fractional oblivious transfer (NFOT), which was studied
in the context of ‘translucent cryptography’ as an alternative to key escrow [BM89, BR99]. Namely, prior definitions
target one-way security, which protects random messages. While one-way security suffices to encapsulate random
secret keys (the setting of translucent cryptography), it does not suffice for probabilistically transmitting non-random
messages (as needed in our construction). Therefore, our definition of an FMT scheme targets a fractional variant
of semantic security, which we express via two properties: fractional hiding and fractional binding. Furthermore,
since in our system any party can act as both sender and receiver, we require the FMT scheme to be composable. Our
construction achieves this via simulation-extractability.

Our construction of FMT is loosely related to the constructions in [BM89, BR99], which (like our construction)
build on the Elgamal encryption scheme [Elg85]. In fact, such constructions, if analyzed under the hardness of DDH
rather than CDH, are likely to yield FMT according to our stronger definition. We did not carry out such an analysis, but
instead chose to construct a scheme that is more efficient than prior work for the case of p = 1/n (these probabilities
suffice for our application); we assume hardness of DDH and work in the random oracle model in order to take
advantage of certain Σ-protocols. See Table 1 for a comparison of our construction with prior work.

See Section 4 and Appendix A for more details.

scheme security assumption transfer
probability

size of public key size of ciphertext # exponentiations
group elts. scalars group elts. scalars to encrypt to decrypt

[BM89] one-way CDH 1/2 2 — 2 — 2 1

[BR99, § 5.1] one-way CDH 1/n n — 2 — 2 1

[BR99, § 5.1] one-way CDH (n− 1)/n n — 2 — 2 1

[BR99, § 5.2] one-way CDH a/n * 2 log2 n — 2 log2 n — 4 log2 n 2 log2 n

[BR99, § 5.3] one-way CDH a/n a+ n — 2 — 2 1

our FMT semantic DDH + RO 1/n 2 3 2 2 4 4

∗ n is restricted to be a power of 2.

Table 1: Comparison of prior NFOT schemes vs. our FMT scheme. All constructions assume a common random string.

1.2 Prior work on micropayment channels
Micropayment channels were introduced by Hearn and Spilman [HS12, Bit13], and further studied by Poon and Dryja
[PD16] and Decker and Wattenhofer [DW15]. Roughly, a micropayment channel enables a sender and a receiver
to set up a contract by way of an online (slow) transaction that escrows funds, after which the sender and receiver
can update the contract, and thus the relative split of the escrowed funds, without recording the new contract on the
blockchain. Thus payments can be made instantaneously. These can be dynamically combined to obtain multi-hop
“payment channel networks” that go through several intermediaries, by using hashed timelock contracts; this technique
amortizes the cost of setting up a new channel for new receivers. From the perspective of our work, micropayment
channels have several limitations in terms of economics, functionality, and privacy.
Economic limitations of payment channels. First, payment channels in general require a channel to be established in
advance with a party: payments are only instantaneous with advanced preparation. To alleviate this constraint, payment
channel networks allow transactions with arbitrary new parties provided there exists a path of existing channels between
the payer and payee.

Such networks have limitations. First, considerable capital is escrowed in the many pairwise channels forming
the network. The capital requirements may exceed those required for deposits in probabilistic micropayments. Both
settings require escrowed funds proportional to a user’s economic activity (either for the double spend deposit or the
“last mile” channel between the user and the payment network), but payment channel networks escrow similar amounts
in each edge of the network. Second, a variety of pressures, including minimizing the capital escrowed, may centralize
such networks into a hub-and-spoke model.
Privacy limitations of payment channels. Payment channels reveal to the world that a given pair of parties have a
channel between them, the opening value of that channel, and the final closing value. More importantly, especially for

7

applications like advertisement-free content delivery, payment channels provide no privacy between the parties on the
channel: if Alice pays say Wikipedia every time she views a page, then each of those views is linked to the channel she
established just as effectively as if she had a tracking cookie in her browser.

Attempts to add privacy, either from intermediate nodes in the network [HAB+16] or from recipients and intermedi-
aries [GM16], to payment channels hit some seemingly fundamental limitations of the payment channel setting. First,
the anonymity set when paying a given receiver is composed only of those users who have opened channels with the
receiver. This is likely far smaller than the global anonymity set provided by probabilistic payments. Moreover, the
receiving party can arbitrarily reduce the anonymity set further by closing channels. This leaves open a range of attacks
that are not present in a system with a global anonymity set.

Finally it is unclear if non-hub-and-spoke private payment networks are scalable or can provide privacy for
payment values from intermediary nodes in the network. When a payment is made via two intermediaries (i.e.
A → I1 → I2 → B), some combination of I1 and I2 must know the balance of their pairwise channel at any given
time or they could not close the channel. Thus the value of any payment relayed through multiple parties cannot be
completely private. Moreover, discovering a multi-hop route between two parties in a diverse and large network without
leaking any identifying information seems costly at scale. While [GM16] extend their point-to-point channel protocol
to a hub-and-spoke model that alleviates both these concerns, such a network is inherently centralized.

1.3 Roadmap
The remainder of the paper is organized as follows. In Section 2 we describe the intuition and techniques behind our
results. In Section 3 we present our economic analysis of double spending. In Section 4 we present our result on
fractional message transfer. In Section 5 we recall the notion of a DAP scheme from [BCG+14]. In Section 6 we
present our definition of a DAM scheme. In Section 7 we present our construction of a DAM scheme.

8

2 Techniques
We discuss the intuition and techniques behind our results, first for our cryptographic construction (Section 2.1) and
then for our economic analysis of double spending (Section 2.2).

2.1 Constructing decentralized anonymous payments
We discuss our design of a decentralized anonymous micropayment (DAM) scheme via a sequence of candidate
constructions, each fixing problems of the previous one; the last one is a sketch of our construction.

2.1.1 Attempt 1: non-anonymous probabilistic payments + DAP

We begin with a natural candidate construction for a DAM scheme. The idea is to combine two primitives, one providing
probabilistic payments and the other anonymity. For example, consider: (1) the scheme MICROPAY1 of [PS15], which
provides probabilistic payments for Bitcoin;5 and (2) a decentralized anonymous payment (DAP) scheme [BCG+14],
which provides privacy-preserving payments for Bitcoin-like currencies.

To make MICROPAY1 privacy-preserving, we could try to replace its Bitcoin payments with DAP payments,
which hide the payment’s origin, destination, and amount. Thus, when a probabilistic payment goes through, and the
corresponding DAP (macro-)payment is broadcast, others cannot learn this information about the payment. However,
this idea does not provide the strong anonymity guarantees that we seek, as we now explain.
Problem: not fully anonymous. Despite the anonymity guarantees provided by the DAP scheme, merchants still learn
information about their customers’ spending habits. Each DAP payment includes a unique serial number corresponding
to the underlying “coin” that was spent by that payment; this is used to prevent double spending of DAP coins. In
the above proposal, the customer sends the merchant this serial number regardless of whether the payment becomes a
nullpayment or a macropayment. Since the same underlying DAP payment and serial number are used across multiple
probabilistic payments (to amortize fees), this compromises customer anonymity because a merchant learns (1) which
(macro or null) payments to him were made with the same escrow; and (2) which macropayments to other merchants
were made with an escrow used for payments to him. This compromise in anonymity gets even worse if merchants
share such information with one another.

Moreover, recall (from Section 1.1) that it is not possible to prevent double spending in the setting of offline
probabilistic payments. Pass and Shelat note this in the full version of their paper [PS16], and propose adding a
‘penalty escrow’ to the scheme MICROPAY1; the escrow is burned upon evidence of double spending. But observe that
anonymity for penalty escrows poses a similar challenge: to prove that a penalty escrow is unspent, a merchant reveals
its serial number, once again enabling merchants to link probabilistic payments by learning about their escrows.

Overall, while the above ideas do achieve unlinkability of macropayments, customers have little meaningful privacy
until nullpayments and escrows are also unlinkable.

2.1.2 Attempt 2: commit to DAP payment + probabilistic opening + private deposit coins

One way to address the anonymity problems of the previous attempt is to ensure that the merchant learns the serial
number only when the payment turns into a macropayment (and, conversely, learns nothing otherwise). Then, to enable
the aforementioned penalty escrow mechanism, a customer creates a special ‘deposit’ coin.

Then, the modified protocol works as follows: (1) the customer sends to the merchant a commitment to a DAP
payment and to a 2-out-of-n share of the deposit serial number; (2) the customer and merchant engage in a protocol that
opens the commitment with probability p (opening thus corresponds to a macropayment, and not opening corresponds
to a nullpayment); (3) when publishing a macropayment to the ledger, the merchant also publishes the secret share.

The probabilistic opening hides the serial number of the coin in the DAP payment until a macropayment occurs,
and the secret share hides the deposit serial number until a macropayment double spend occurs. To punish a double
spending customer, the merchant obtains (from the network or from the ledger) two secret shares of the deposit serial

5The other two schemes of [PS15] rely on a trusted third party for assisting the ledger in processing payments or resolving disputes, which makes
it harder to achieve strong anonymity guarantees.

9

number from two macropayments and reconstructs the serial number. He then publishes this to the ledger, thereby
blacklisting the deposit.

One issue that must be addressed is ensuring that the secret shared deposit serial number corresponds to a valid
deposit. To do this, first notice that there are two kinds of blacklisted deposits: those whose serial number appears on
the ledger (in previous ‘punish’ transactions), and those that have been revoked in the current epoch. The serial numbers
of the latter kind are broadcast across the network, but have not yet appeared on the ledger.

To prevent users from using blacklisted deposits of the first kind, a customer must prove to the merchant that his
deposit’s serial number does not appear on the ledger (this can be done efficiently [MRK03]). To prevent use of deposits
of the second kind, customers must also send to the merchant a tag derived from the deposit’s serial number. Since
anyone with access to this serial number can compute this tag, merchants can deduce if a deposit has been revoked by
checking if this tag has been computed with a blacklisted deposit’s serial number. The customer accompanies the tag
with a zero-knowledge proof that the deposit used for this tag is consistent with the share inside the commitment.

The aforementioned proposal, however, is still vulnerable to attacks.
Problem: front-running deposit revocation. While deposits are intended to deter double spending, customers may
try to withdraw a deposit before it is blacklisted, thereby rendering punishment ineffective.
Problem: merchant aborts. At the end of the commitment opening protocol, the merchant can refuse to inform
the customer of whether or not the commitment was opened. This poses a problem for the customer because if the
commitment was in fact opened, the merchant has learned the serial number and a share of the deposit, enabling him to:
(i) track the customer and learn when they spend the coin with another merchant, and (ii) revoke the customer’s deposit
after the (honest) customer next spends the coin, with another merchant or the same one.

2.1.3 Outline of our construction

The deposit mechanism described so far is insufficient to deter double spending. The problem is that there is no
restriction on how and when coins used for probabilistic payments and for deposits can be transferred; in particular, a
cheating customer can double spend these back to himself while at the same time engaging in a probabilistic payment
with a merchant. We address this problem by (i) partitioning coins into different types depending on their different
uses, and (ii) restricting transfers between coins depending on their types. We now outline how we carry out this plan.

First, we extend the notion of a DAP scheme to allow users to associate public and private information strings when
minting a coin. Users can now store a coin’s type in its public information string, and we allow three types of coins: in
addition to the “standard” coin type, we introduce deposits and tickets. A ticket is bound to a deposit by storing the
deposit inside the ticket’s private information string. We thus have the following semantics:
• Coins are used for deterministic DAP payments (whose processing fees are not amortized).
• Deposits are used to back tickets and are revoked when two macropayments using the same ticket are detected.
• Tickets are used for probabilistic payments; every ticket is bound to a single deposit at minting time, and can be spent

provided that the associated deposit is valid (i.e., has not be transferred to a coin, or revoked).
We also restrict the set of possible transactions depending on the types of coins involved, as follows.
• Transactions with coins: Coins can be used to create other coins, deposits, or tickets. In particular, coin-to-coin

transactions preserve the deterministic payment functionality of the underlying DAP scheme.
• Transactions with deposits: Deposit-to-coin transactions let customers withdraw deposits, though not immediately,

since these transactions become active only after an activation delay ∆w that is a parameter of the system.
• Transactions with tickets: Ticket-to-coin transactions enable probabilistic payments; they are associated with a secret

share of the ticket’s deposit and with a deposit-derived tag that allows merchants to detect the validity of the ticket’s
deposit. Ticket-to-ticket transactions omit the secret share and tag and (like deposit-to-coin transactions) become
active only after an activation delay ∆r that is a parameter of the system.

Restrictions on inter-type transactions are achieved via a pour predicate that checks that input and output coin types
satisfy the above restrictions. Having made these modifications, we can now resolve the issues of the previous proposal.
Preventing deposit theft. Deposit-to-coin transactions now have a delayed activation, so customers can no longer
withdraw deposits before they are blacklisted, as merchants have enough time to post deposit revocations to the ledger.
Recovering from merchant aborts. Since we cannot know what is the utility gain of a merchant for learning about
the spending patterns of a customer, we cannot effectively deter merchant aborts by economic means. Instead, at the end

10

of our commitment opening protocol, we require the merchant to prove to the customer whether or not he could open the
commitment. If the merchant fails to do so, we allow customers to “refresh” their tickets by creating a ticket-to-ticket
payment to themselves. Since the new ticket has a different serial number that merchants have not yet seen, they cannot
track the new ticket’s transaction history. Finally, since ticket-to-ticket transactions become active only after a delay, the
new tickets cannot be spent immediately, thus allowing merchants to post macropayments over the old ticket.

The above sketch omits many technical details, including how a DAM scheme interacts with the economic analysis.
See Section 6 for the definition of a DAM scheme, Section 7 for our construction of a DAM scheme, and Appendix C
for its security proof.

2.2 Intuition for our economic analysis of double spending
Our economic analysis characterizes the additional utility that customers can gain by double spending in offline
probabilistic payments. We discuss the intuition for the analysis via an example; details of the analysis are in Section 3
(the formal statement is Theorem 3.4). Recall that we assume that: (i) every probabilistic payment is backed by an
advance deposit, and (ii) macropayment double spends are detected within time T , and result in deposit revocation.

At a high level, the deposit must be at least as large as the additional utility that a malicious customer gains by double
spending until that deposit is revoked; additional utility occurs when the customer double spends, and accumulates until
cheating is detected and every merchant has blacklisted the customer. If we can bound the value of payments in this
period of time, then we can derive a corresponding bound on the additional utility gained, and thus bound the deposit.

A naive analysis, however, yields an impractically large bound, because the natural definition of “additional utility”
is too coarse. We illustrate this issue via an example: a malicious customer C̃ selects two merchants M1,M2, and uses
the same “lottery ticket” to conduct parallel probabilistic payments p̃ay1, p̃ay2 to M1,M2 respectively. The merchants
cannot immediately detect that C̃ is cheating because C̃ is indistinguishable from an honest user so far. If both p̃ay1 and
p̃ay2 become macropayments, which happens with probability p2, then the merchants (eventually) catch C̃ cheating,
and revoke C̃’s deposit of value D. Consider the following two analyses.

(i) A naive analysis. The malicious customer C̃ earns an additional utility of pV compared to an honest customer,
and is caught and punished by D with probability p2. Hence, to deter C̃ from cheating, the deposit amount should be
such that p2D > pV , which is equivalent to D > V/p.

(ii) A better analysis. The average-case utility E[U(C)] of an honest customer C for any probabilistic payment is
zero: C gains pV with probability 1 − p, and pV − V with probability p. Instead, the utility U(C̃) of the malicious
customer C̃ has four cases, as given in Table 2; also, C̃ is caught and punished by D with probability p2. Thus, the
deposit amount should be such that p2D > E[U(C̃)] = 2pV − (1− (1− p)2)V , which is equivalent to D > V .

aaaaa
p̃ay1

p̃ay2 null macro

null 2pV 2pV − V
macro 2pV − V 2pV − V

Table 2: Utility U(C̃) of the malicious customer C̃.

aaaaa
pay1

pay2 null macro

null 2pV 2pV − V
macro 2pV − V 2pV − 2V

Table 3: Utility U(C) of the honest customer C.

How do the two analyses differ? The first analysis states that the deposit amount D must be greater than V/p while
the second states that it must be greater than V , which is a much smaller lower bound. This is because the first analysis
adopted an intuitive, but coarse, definition of additional utility, which did not consider the fact that a malicious customer
does not gain additional utility unless two macropayments with the same ticket occur. Indeed, the utility U(C) of an
honest user C that uses two different tickets to make two parallel probabilistic payments pay1, pay2 is in Table 3. By
comparing U(C̃) and U(C), one can see that the utility function differs only when two macropayments occur, where, if
there is no deposit/punishment, C̃ gains extra utility of V by paying only one macropayment instead of paying two as C
does. In sum, any additional utility gained via double spending must come from macropayment double spends.
Towards a general analysis. The above discussion suggests that the additional utility of C̃, which we denote by

11

U ′(C̃), should be defined as follows:

U ′(C̃) :=

{
V if p̃ay1, p̃ay2 are macropayments
0 otherwise .

More generally, the additional utility of any malicious customer C̃ is the extra gain compared to an honest customer
achieving the same outcome. This can be computed by considering an honest customer C that simulates the behavior
of C̃ while only using unspent tickets; the extra gain arises from the fact that C has “paid” for these other unspent
tickets while C̃ has not. By understanding the maximum of this refined notion of additional utility we can derive the
minimum amount of deposit needed such that, for any double spending attack, there is a non-double-spending strategy
that achieves better utility, in the worst-case and in the average-case respectively. See Section 3 for a formal argument
of this intuition, as well as a discussion of the implications of our economic analysis.

12

3 Economic analysis of double spending for offline probabilistic payments
We provide the economic analysis that characterizes the additional utility that can be gained by double spending via
offline probabilistic payments. This section is organized as follows. First, we informally describe dynamics that model
offline probabilistic payments (Section 3.1). Then, we define a formal game that captures these dynamics and analyze
this game (Section 3.2). Finally, we discuss the interpretation and consequences of our economic analysis (Section 3.3).

3.1 Informal description of payment dynamics
We informally describe the dynamics of arbitrary probabilistic payments from customers to merchants. A concrete
example is the setting of advertisement-free Internet: a customer is a user surfing the Internet; a merchant is a web
server; every HTTP request by a user to a web server is accompanied by a probabilistic payment from that user to the
web server (to buy an ad-free HTTP response).
Abstraction of probabilistic payments. A probabilistic payment is an interactive protocol between a customer and a
merchant. The customer’s input is a ticket t = (t, p, V,d) where t ∈ {0, 1}∗ is the unique ticket identifier, p ∈ [0, 1]
is the payment probability, V ∈ R≥0 is the macropayment value, and d = (d, D) is the deposit, which consists of
a unique deposit identifier d ∈ {0, 1}∗ and a deposit value D ∈ R≥0. Informally, the customer first convinces the
merchant that the deposit is not “invalid”, and then the customer pays V to the merchant with probability p. The two
outcomes are called a nullpayment and a macropayment, and involve different protocol outputs.
Detectable double spends. At any moment in time, a deposit is in one of two states: valid or invalid. Each deposit is
initially valid. When two macropayments occur on the same ticket t, the associated deposit d becomes invalid, once and
for all. We call this event a macropayment double spend, and we assume that, in this case, the underlying probabilistic
payment protocol enables merchants to eventually learn that d (more precisely, its identifier) has become invalid;6 we
denote by TM the time for merchant M to learn this from the moment the macropayment double spend occurred. The
fact that maxM TM > 0 is the fundamental reason that allows a malicious customer to gain any additional utility.

Finally, we make the simplifying assumption that, while macropayment double spends are detectable, nullpayment
double spends are undetectable. Our analysis does extend to the case where (not necessarily all) nullpayment double
spends are also detectable; see Remark 3.5.
Honesty of merchants. We assume that merchants behave honestly. Thus, every merchant (a) rejects aborted
payments (e.g., due to invalid deposits); (b) honors successful payments (e.g., replies with an ad-free HTTP response)
regardless of whether the payment resulted in a nullpayment or macropayment; (c) reports detected double spends;
more generally, (d) follows the probabilistic payment protocol (e.g., uses fresh randomness in each instance of the
protocol, broadcasts any messages to all other merchants as instructed, and so on).

In principle, merchants may deviate from the aforementioned honest behavior in a variety of ways. For instance, a
merchant may “honor” an aborted payment (e.g., regardless of the validity of the customer’s deposit); or the merchant
may not honor a successful payment (e.g., does not reply to the HTTP request); or the merchant may abort and prevent
the customer from learning the payment’s outcome; or the merchant may not report a detected double spend.

However, we assume that all merchants behave honestly because the only incentive for a merchant to deviate comes
from colluding with malicious customers, and we cannot prevent such collusions. Indeed, if a merchant does not collude
with any malicious customer, then for the merchant it is individually rational to behave honestly, because: (i) some
malicious merchant behavior (e.g., “honoring” an aborted payment, or using correlated randomness across payments)
does not increase the merchant’s utility; (ii) other malicious merchant behavior (e.g., not honoring a successful payment)
decreases the customer’s utility, but taking into account this possibility does not affect a customer’s maximum additional
utility (the quantity we study) and ruling it out significantly simplifies the analysis. However, a malicious customer
could convince a merchant to not report a double spend by offering side payments as compensation; if the merchant has
already replied to the customer’s payment then this collusion may indeed be economically attractive, but we cannot

6Exactly how merchants learn d’s identifier depends on the details of a construction, and is orthogonal to our economic analysis; ditto for exactly
how the monetary funds escrowed in d are revoked after d becomes invalid. (See Section 7 for how we do so in the particular case of our construction;
informally, we rely on the fact that a macropayment to a merchant reveals a ticket’s identifier, and two macropayments on the same ticket allow a
merchant to deduce the identifier of the ticket’s deposit.)

13

systematically prevent such side payments in all applications. (In the setting of micropayments, V is small so a merchant
may prefer to see the malicious customer punished, after losing V , rather than receiving compensation.)
Honest vs. malicious customers. Our goal is to characterize the additional utility obtained by any malicious customer,
when compared to what is possible by honest customers. We now discuss both kinds of customers.

Honest customers. For an honest customer, a ticket t is in one of three states: it is spent if a probabilistic payment
on it has resulted in a macropayment; otherwise, it is occupied if it is being used in a probabilistic payment; otherwise,
it is unspent (i.e., it never resulted in a macropayment, nor is it being used in a probabilistic payment).

At any moment in time, an honest customer may select any number of merchants, and initiate any number of
probabilistic payments in parallel to every one of them. Each probabilistic payment uses a distinct unspent ticket, which
immediately becomes occupied, and at the end of the payment protocol becomes either unspent or spent. The selected
tickets may or may not have different deposits that back them; deposits are never invalidated for honest customers. In
sum, an honest customer maintains the invariant that an occupied ticket does not participate in more than one payment
at a time, and a spent ticket does not participate in future payments.

Malicious customers. A malicious customer may deviate from the aforementioned honest behavior in a variety of
ways, as we now describe. Like an honest customer, a malicious customer owns an arbitrary number of tickets and
deposits; unlike an honest customer, a malicious customer may use an occupied ticket in multiple payments, or may use
a spent ticket in future payments (hence, a ticket of a malicious customer could be in both spent and occupied states at
the same time). We give some examples of malicious behavior.

• One-ticket-one-merchant attack. A malicious customer C̃ has a ticket t and selects a merchant M; then C̃ initiates
multiple probabilistic payments to M in parallel, and continues using the same ticket t even after it is spent. The
merchant M cannot detect that C̃ is cheating until M receives two macropayments relative to the same ticket t.

• One-ticket-multiple-merchant attack. A malicious customer C̃ has a ticket t and selects two merchants M1,M2;
then C̃ conducts a sequence of probabilistic payments to M1, using t until it is spent to M1. In parallel, C̃ adopts the
same strategy with M2, until t is spent to M2. Observe that C̃ acts like an honest customer to M1 and M2 individually;
hence, the two merchants cannot detect that C̃ is cheating until they communicate.

• Multiple-ticket-multiple-merchant attack. More generally, a malicious customer C̃ has multiple tickets t1, t2, . . .
and selects multiple merchants M1,M2, . . . ; then C̃ conducts a sequence of probabilistic payments to M1, using t1

until it is spent to M1. Then C̃ switches to t2 and continues making probabilistic payments to M1 until t2 is spent.
The customer C̃ continues in this way until all the tickets are spent to M1. In parallel, C̃ adopts the same strategy
with every other merchant. Observe again that C̃ acts like an honest customer to each merchant individually; hence,
the merchants cannot detect that C̃ is cheating until they communicate.

Recall that, no matter what a malicious customer does, whenever two macropayments relative to the same ticket t occur,
the deposit of t becomes invalid, and eventually (after at most time maxM TM) all merchants learn about this.
Towards a formal game. The above discussion leads us to the following informal description of arbitrary dynamics
of probabilistic payments from a potentially-malicious customer to honest merchants; this description is only an
intermediate step that we provide for intuition, because we formally define an abstract game in Section 3.2 below.

For each time t, let I(t) denote the set of deposit identifiers of invalid deposits at time t. This set is not maintained
by anyone: by definition it contains the correct identifiers at any time. It is public and, hence, known to the customer.

Suppose that a customer initiates a probabilistic payment with merchant M at time t, using a ticket t = (t, V, p, (d, D)).
If d ∈ I(t− TM) (the deposit identifier belongs to an invalid deposit) then the payment aborts. Otherwise, (i) with
probability 1− p, both parties receive the output null; (ii) with probability p, both parties receive the output macro.

Crucially, the decision of whether a payment aborts depends only on the global information from TM units of
time “into the past”, because, in the worst case, there is a delay of TM for merchant M to learn that a deposit has been
invalidated. Of course, the merchant M may happen to learn this information faster than that; though modeling this
fact does not ultimately change the maximum additional utility, so we ignore this for simplicity. This means that all
merchants “behave the same” and thus we replace them with a single abstract player, ‘Nature’, in the next section.

Note that a construction of a probabilistic payment should also involve a check of whether the deposit value D is
“large enough” to back the payment (as informed by our economic analysis). We ignore this check (and how it can be
performed) because it is irrelevant to the economic analysis. (But see Section 7 for how our construction does it.)

14

3.2 The game and its analysis
We define a single-player game against Nature that captures the dynamics described in Section 3.1, namely, the dynamics
of a customer C̃ conducting arbitrary probabilistic payments with all merchants. We prove tight bounds on C̃’s additional
utility, in the worst case and in the average case. Note that, due to the additive nature of utility, we only need to analyze
C̃’s additional utility per deposit; hence, we restrict C̃ to backing all his probabilistic payments with a single deposit.

As mentioned in Section 1.1.1, our analysis involves two parameters A and W , which denote the (per-deposit)
maximum value of probabilistic payments and of macropayments, within any “detection time period”. More precisely,
let TM denote the time for a merchant M to detect a detectable double spend, and let aM(t) be the (cumulative) value
of probabilistic payments accepted by M within the time period [t, t+ TM]; similarly, let wM(t) be the (cumulative)
value of macropayments accepted by M within the time period [t, t+ TM]. The parameters A and W are defined as
maxt

∑
M aM(t) and maxt

∑
MwM(t) respectively. We defer to Section 3.3 a discussion of the interpretation of these

parameters, and for now we focus on analyzing the additional utility in terms of these.
We argue that it suffices to study C̃’s additional utility across merchants within a certain time period, and to consider

only probabilistic payments that use spent tickets.

• Starting point. It suffices to analyze C̃’s additional utility from the first time when two macropayments occur relative
to the same ticket; denote by p̃ay the payment among these that terminates later (if they terminate simultaneously
then break ties arbitrarily). Indeed, recall that C̃’s additional utility is the extra gain compared to any honest customer
achieving the same outcome. So consider the honest customer C that uses unspent tickets for every probabilistic
payment that terminates before p̃ay does: the utilities up to then for C̃ and C are the same. Thus, we only need to
consider C̃’s additional utility from when p̃ay terminates.

• Ending point. It suffices to analyze C̃’s additional utility from when p̃ay terminates until when every merchant M has
detected C̃’s cheating. Indeed, p̃ay is a detectable double spend, so within time TM merchant M detects C̃’s cheating
(i.e., has learned that C̃’s deposit is invalid) and will not accept C̃’s probabilistic payment anymore. Moreover, C̃’s
deposit is eventually revoked.

• Which payments. It suffices to consider every probabilistic payment that terminates within the aforementioned
time period and uses a ticket that is spent before the termination of that payment (if multiple payments terminate
simultaneously then pick an arbitrary termination order for them). Throughout this section we say that these
probabilistic payments use spent tickets, and say that the other probabilistic payments use unspent tickets. Indeed,
consider again the honest customer C that uses unspent tickets for every probabilistic payment: the utilities for C̃ and
C are the same on probabilistic payments that use unspent tickets.

In conclusion, we only need to worry about C̃’s additional utility from when p̃ay terminates until when every merchant
has detected C̃’s cheating, and it suffices to consider only probabilistic payments that use spent tickets.

Suppose that during this time period C̃ has finished C + 1 probabilistic payments, including p̃ay, using spent tickets:
p̃ay is fixed to be a macropayment, while the remaining C payments are probabilistic (i.e., turn into nullpayments or
macropayments with the appropriate probability). Perhaps C̃ only made C + 1 payments, or perhaps the merchants
accepted only the first C + 1 and rejected the rest due to invalid or insufficient deposit. (We assume C <∞ for ease of
exposition, but we could replace C with∞ and our analysis would still hold.) Either way, note that C̃ may select the
payment probability and macropayment value of a probabilistic payment based on the outcomes of prior probabilistic
payments. Below we define a game that captures these payments.

Definition 3.1. Consider the following single-player game against Nature.

• The set of randomness choices is [0, 1]
C ; Nature samples λ uniformly at random from [0, 1]

C . We denote by λ<i the
first (i− 1) coordinates of λ (and define λ<0 and λ<1 to be the empty string).

• The player strategies Σ consist of tuples σ = (pi, Vi)
C
i=0 consisting of computable functions that, based on Nature’s

randomness choice, output parameters for all the probabilistic payments. More precisely, for each i, pi(λ<i) ∈ [0, 1]
is the payment probability of the i-th probabilistic payment, and Vi(λ<i) ∈ R≥0 is its macropayment value.

15

The game proceeds as follows. The player selects a strategy σ ∈ Σ; afterwards, Nature samples λ, whose coordinates
are revealed to the player round by round. More precisely, the game is played in rounds, as follows: in round i, the
player learns λ<i, and conducts a probabilistic payment (using a spent ticket) with payment probability pi(λ<i) and
macropayment value Vi(λ<i). The outcome of the i-th round is given by the indicator I [λi ≤ pi(λ<i)], stating whether
the payment resulting in a macropayment (the indicator equals 1) or nullpayment (the indicator equals 0).

Observe that all strategies in the above game are double-spending strategies: as discussed, it suffices to consider only
probabilistic payments that use spent tickets. We now turn to define additional utility. Comparing an honest customer
with a malicious one, we observe that any additional utility comes only from macropayments that involve spent tickets.
More precisely, the first such macropayment (which is p̃ay) contributes additional utility V0 and, after that, if the i-th
probabilistic payment results in a macropayment then additional utility increases by Vi(λ<i). As for nullpayments,
neither an honest nor a malicious customer loses tickets, hence additional utility does not increase. Therefore, we define
additional utility as follows.

Definition 3.2. The additional utility of a strategy σ ∈ Σ on randomness λ ∈ [0, 1]
C is

U ′λ(σ) := V0 +

C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i) .

(Additional utility is a random variable, as it depends on Nature’s randomness λ, which is a random variable.)

We analyze the maximum additional utility achievable by any strategy, in the worst case and in the average case, for
the game from Definition 3.1; these maximum values bound from below the required deposit value D (for the goal
of deterring double spending). Below we define two subsets of strategies in which the bounds A or W are respected.
(Note that if C <∞, then (min{pi}Ci=0) ·W ≤ A so that if A is bounded then so is W .)

Definition 3.3. We define the following two sets of strategies, which respectively capture the condition that the total
worth of probabilistic payments is at most A and the total worth of macropayments is most W :

Σpp
A :=

{
σ ∈ Σ : ∀λ, p0V0 +

C∑
i=1

pi(λ<i)Vi(λ<i) ≤ A
}
,

Σmp
W :=

{
σ ∈ Σ : ∀λ, V0 +

C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i) ≤W
}
.

We now state and prove our worst-case and average-case bounds on additional utility. (Recall that, by Yao’s minimax
principle, it suffices to consider only deterministic strategies [Yao77], and thus we ignore randomized ones.)

Theorem 3.4 (formal statement of Thm. 1.1). For the game described above, the following holds.

(a) WORST CASE: for every randomness choice λ ∈ [0, 1]
C and strategy σ ∈ Σmp

W , it holds that U ′λ(σ) ≤W .

(b) AVERAGE CASE: for every strategy σ ∈ Σpp
A , it holds that Eλ

[
U ′λ(σ)

]
≤ (1− p0)V0 + A.

(c) Both bounds are tight.

Proof. We prove the three statements in order.
Part (a). By definition of Σpp

A (see Definition 3.3), for every randomness choice λ ∈ [0, 1]
C and strategy σ ∈ Σmp

W , it
holds that V0 +

∑C
i=1 I [λi ≤ pi(λ<i)]Vi(λ<i) ≤W ; but the quantity on the left-hand side of the inequality is U ′λ(σ)

(see Definition 3.2), and the claimed statement follows.
Part (b). Recall that Nature samples λ uniformly at random from [0, 1]

C , so the coordinates of λ are independent
from one another. Therefore, for every strategy σ ∈ Σpp

A ,

Eλ

[
U ′λ(σ)

]
= V0 + Eλ

[
C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i)

]

16

= V0 + Eλ1
· · ·EλC

[
C∑
i=1

I [λi ≤ pi(λ<i)]Vi(λ<i)

]
(by independence)

= V0 +

C∑
i=1

Eλ<i [pi(λ<i)Vi(λ<i)]

≤ (1− p0)V0 + A. (by definition of Σpp
A)

as claimed.
Part (c). Consider the following two strategies consisting of a single probabilistic payment after p̃ay (of value V0):

• Choose σ such that C := 1, p1 := 1, and V1 := W − V0. Note that σ ∈ Σmp
W and, for every randomness choice

λ ∈ [0, 1]
C , it holds that U ′λ(σ) = W .

• Choose σ such that C := 1, p1 := 1, and V1 := A− p0V0. Note that σ ∈ Σpp
A and Eλ

[
U ′λ(σ)

]
= (1− p0)V0 + A.

In sum, the first strategy shows that our worst-case bound is tight, while the second strategy shows that our average-case
bound is tight.

Remark 3.5 (detectable nullpayment double spends). So far our analysis assumes that macropayment double spends
are detectable, but nullpayment double spends are not. What if some nullpayment double spends are detectable? For
example, merchants could maintain a partial order of all payments via a synchronous clock that ticks every second,
even if the broadcast time is 10 seconds; this partial order would give chronological information on some nullpayment
vs. macropayment pairs. But does such a stronger detection guarantee improve the economic bounds?

Our analysis does extend to this setting, and the answer is yes, but not by much. First, if some nullpayment double
spends are also detectable, the additional utility of a malicious customer can only go down, so the upper bounds of our
theorem continue to hold. However, the upper bounds are not tight; nevertheless, below we sketch modifications to our
analysis that do recover a tight result.
• Starting point: the first time a detectable double spend occurs, i.e., a macropayment or detectable nullpayment occurs

after another macropayment on the same ticket.
• Ending point: every merchant has detected that double spend.
• Additional utility: if the starting point is a macropayment double spend, the additional utility is the same, but if the

starting point is a detectable nullpayment double spend, the additional utility goes down by V0.
The rest of the analysis follows, for parameters A and W that are now defined for this new time interval. The only
difference is in the initial cost of detection, due to different detection guarantees. Afterwards, only macropayment
double spends provide additional utility, which are detectable in both settings. Overall, even if we had the stronger
guarantee of detecting all nullpayment double spends, it would only save V0 in the average-case bound.

3.3 Interpreting the payment value rates
Our analysis in Section 3.2 can be viewed as a reduction from the required deposit amount to certain per-deposit
payment value rates: A (for the average case analysis), which is the maximum cumulative value of probabilistic
payments across merchants within any detection time period; or W (for the worst case analysis), which is the maximum
cumulative value of macropayments across merchants within the same period. Our analysis is tight, so leaving these
parameters unbounded enables a malicious customer to gain unbounded additional utility (and rules out the possibility
of deterring malicious behavior via economic means such as advance deposits). The purpose of this section is to discuss
the meaning of bounding payment value rates, and what are the implications of such bounds. Throughout, recall that
our analysis is per deposit, so we fix a single deposit d that backs all the probabilistic payments discussed below.
Interpretation of the parameters. We first discuss the detection time (used to define the rate), and then discuss how
W and A may arise as a sum, across all merchants, of corresponding payment value rates.

• Detection time. We denote by TM the time for a merchant M to detect a detectable double spend. For example, TM

can be the network’s broadcast time, that is, the time for a message sent by a merchant to reach all other merchants

17

(this is true, e.g., if the network contains enough honest nodes to provide reliable and timely broadcast, or if merchants
have the same view of the ledger). In a Bitcoin-like system the broadcast time is much smaller than the validation
time (the time for a broadcast transaction to appear in the ledger): a few seconds as opposed to a few minutes.

• Merchants (per deposit). We denote by N the number of merchants that accept probabilistic payments (backed by
the deposit d). For example, N could be the number of all merchants. (Though this need not be the case, see below.)

• Payment value rates (per deposit). For every merchant M, aM := maxt aM(t) is the maximum (cumulative)
value of probabilistic payments (backed by the deposit d) accepted by M within any time period of TM; similarly,
wM := maxtwM(t) is the maximum (cumulative) value of macropayments accepted by M within any time period of
TM. Then one sets A equal to

∑
M aM, and W equal to

∑
MwM (or consider these as upper bounds to A and W).

Necessity of bounds. We now explain why simultaneous bounds on the aforementioned parameters are necessary.
First, if there is no bound on the number N of merchants that accept probabilistic payments backed by d, a malicious
customer can use d to gain unbounded additional utility via a one-ticket-multiple-merchant attack (see Section 3.1),
even in the average case. Second, even if N is bounded (and greater than 1) but maxM TM is unbounded (e.g., a
large-scale eclipse attack is underway [HKZG15]), a malicious customer can gain unbounded additional utility via a
multiple-ticket-multiple-merchant attack (see Section 3.1), even in the average case. Third, even if N and maxM TM

are bounded but some aM is unbounded, our analysis implies that a malicious customer can again gain unbounded
additional utility in the average case; similarly, if some wM is unbounded, our analysis implies that a malicious customer
can again gain unbounded additional utility in the worst case. In sum, if either maxM TM or N are unbounded, then
A =

∑
M aM and W =

∑
MwM are also unbounded; but even if maxM TM and N are bounded, either A or W could

still be unbounded, and so we must explicitly bound A or W (depending if we target average or worst case, or both).
Finally, observe that the above discussion assumes that there is no a-priori bound on how many tickets a single

deposit can back; see Remark 3.6 below for a discussion of what happens if a deposit is restricted to only back
macropayments up to a certain maximum total value.
Respecting the bounds. Whose responsibility is it to ensure that the bounds A or W are respected? One answer
to this question could be that there are exogenous reasons (e.g., spending patterns, network behavior, and so on) that
justify this statement. Another answer to this question is to say that every merchant M is responsible “for his own
share”: he needs to monitor that aM and wM are locally respected for him (and if they are about to be exceeded, he
defers further payments to the next period of time TM). This second answer raises an interesting technical problem:
how does M know which payments are backed by the same deposit? If a payment’s deposit is not private (as in [PS16])
this is not a problem. But if a payment’s deposit is private, this could be tricky. In our DAM scheme construction, when
engaging in a probabilistic payment, a merchant does not learn any information about the deposit that backs it, beyond
the bit of whether the deposit is valid or not. Nevertheless, we still enable a merchant to get around this problem, by
leveraging the notion of a rate limit tag within a probabilistic payment; see Section 7.2.3 for details.
Implications: good news and bad news. The good news about our economic analysis is that it gives a tight
characterization of the additional utility that can be gained via double spending. The bad news is that bounding A or W
may impact usability. (Perhaps this is not surprising because offline probabilistic payments are a “tough” setting since
double spending cannot be fully prevented.) Namely, if all aM (resp., wM) are large, then A (resp., W) is even larger; but
this impacts usability because the required deposit is large. Conversely, if many aM (resp., wM) are small then A (resp.,
W), and thus the required deposit, is not as large; but the amount of value transacted with many merchants is limited,
and this impacts usability because a user may not be able to transact large amounts with his “favorite” merchants.
Mitigations. A way to mitigate the above problem is to associate to each deposit a subset R of allowed “receiver
merchants” so that the sum is taken only over this subset: A =

∑
M∈R aM and W =

∑
M∈RwM. Then, any particular

user would only have to cover his spending habits with one (or more) deposits that cover one (or more) not-too-large
subsets of merchants. The subset R can even be private and chosen by the user; in fact, we take this approach both
when defining and constructing a DAM scheme (see Section 6 and Section 7).

Another way to mitigate the above problem is for merchants to group together into micropayment agencies. Such an
agency acts as a proxy to the subset of merchants it serves, and its only task is to “monitor” the cumulative values of aM

and wM for merchants in the agency. This approach does not affect any privacy guarantees from the perspective of the
customer (since every probabilistic payment is anonymous from the perspective of a single merchant or any coalition of

18

merchants). In the extreme, one could even think of a single micropayment agency, and the only obstacle would be
coordinating and keeping track of A and W across the network.

Remark 3.6 (bounded macropayments per deposit). So far we have assumed that there is no a-priori bound on how
many tickets a single deposit can back. Suppose instead that a deposit d can only back tickets with total macropayment
value up to Vtot. To analyze this other setting, we can reuse ideas from our economic analysis: again, one can define
additional utility by comparing the utilities of a malicious merchant and a corresponding honest merchant. We omit the
analysis and simply state that the additional utility is bounded by (2N−1)Vtot, whereN is the number of merchants that
accept probabilistic payments backed by d (note that in this case maxM TM,A,W could all be unbounded). Moreover,
the bound is tight; intuitively, the maximum additional utility is achieved via a multiple-ticket-multiple-merchant attack
until two macropayments with the same ticket occur for each of the N merchants.

19

4 Efficient fractional message transfer
A key ingredient in our construction of a DAM scheme is fractional message transfer (FMT): a primitive that enables
probabilistic message transmission between two parties, called the ‘sender’ and the ‘receiver’. Informally, the receiver
samples a one-time key pair based on a transfer probability p; then, the sender uses the receiver’s public key to encrypt a
message m into a ciphertext c; finally, the receiver uses the secret key to decrypt c, thereby learning m, but only with the
pre-defined probability p (and learns no information about m with probability 1− p). Our definition and construction
of FMT are closely related to non-interactive fractional oblivious transfer (NFOT), which was studied in the context of
‘translucent cryptography’ as an alternative to key escrow [BM89, BR99]; see Section 1.1.3 for a discussion.

In this work we formulate the notion of an FMT scheme, which formally captures the functionality and security of
probabilistic message transmission; we rely on this tool (and others) in our construction of a DAM scheme in Section 7.
Moreover, we give an efficient construction of an FMT scheme that works for transfer probabilities p = 1/n with
n ∈ N; this construction is in the random oracle model and assumes the hardness of the DDH problem in prime-order
groups. Finally, since probabilistic message transmission is of independent interest, we also define the notion of an
FMT protocol via an ideal functionality, and show that the security definition of FMT schemes does imply security
relative to that ideal functionality. (Our DAM scheme relies on an FMT scheme, rather than an FMT protocol, because
we interleave the FMT scheme with other building blocks.)

We defer the definitions, constructions, and proofs about FMT to Appendix A. In the rest of this section, we
informally describe the syntax, correctness, and security of FMT schemes, and then sketch our FMT construction.
Syntax. An FMT scheme is a quintuple of algorithms (FMT.Setup,FMT.Keygen,FMT.Encrypt,FMT.Decrypt)
with the following syntax.

• Parameter setup (executed by a trusted party): FMT.Setup(1λ) → ppFMT. On input a security parameter λ,
FMT.Setup outputs the public parameters ppFMT for the scheme.

• Key generation (executed by the receiver): FMT.Keygen(ppFMT, p)→ (pkFMT, skFMT). On input public parameters
ppFMT and a transfer probability p, FMT.Keygen outputs a one-time key pair (pkFMT, skFMT).

• Message encryption (executed by the sender): FMT.Encrypt(ppFMT, pkFMT,m)→ c. On input public parameters
ppFMT, a public key pkFMT and a message m, FMT.Encrypt outputs a ciphertext c.

• Message decryption (executed by the receiver): FMT.Decrypt(ppFMT, skFMT, c)→ m′. On input public parameters
ppFMT, a secret key skFMT and a ciphertext c, FMT.Decrypt outputs a message m′ that equals m or ∅. (The special
symbol ∅ denotes that decryption resulted in no message.)

An FMT scheme satisfies the correctness and security properties defined below.
Correctness. An FMT scheme is correct if for every security parameter λ, public parameters ppFMT ∈ FMT.Setup(1λ),
transfer probability p ∈ P ⊆ [0, 1], key pair (pkFMT, skFMT) ∈ FMT.Keygen(ppFMT, p), and message m ∈M,

FMT.Decrypt(ppFMT, skFMT,FMT.Encrypt(ppFMT, pkFMT,m)) =

{
m w.p. p

∅ w.p. 1− p

where the probability is taken over the randomness of FMT.Encrypt (and FMT.Decrypt is deterministic).
Security. An FMT scheme is secure if it has the properties of fractional hiding and fractional binding. Informally,
fractional hiding says that an honest encryptor transferring a message m can be sure that the decryptor, who knows the
secret key, learns m with probability exactly p (and ∅ with probability 1− p), even if the public key was generated
maliciously. Fractional binding says that, for every p′ 6= p, a malicious encryptor cannot produce a valid ciphertext that
decrypts with probability p′ to a valid message (i.e., not ∅).
An efficient FMT scheme. Our construction of an FMT scheme targets the case where p equals 1/n for some positive
integer n; this case suffices within our construction of a DAP scheme. As in prior work [BM89, BR99], our starting
point is the Elgamal encryption scheme [Elg85], whose semantic security relies on the hardness of DDH in prime-order
groups. We now give an informal sketch of our construction.

20

• FMT.Setup(1λ): sample a group G of prime order q (depending on λ), along with two generators g, g0 ∈ G.

• FMT.Keygen(ppFMT, p): the public key contains a Pedersen commitment [Ped91] to a random s in {1, . . . , n} and
the secret key contains the commitment’s randomness; that is, the commitment is h = g−s0 gα for random α ∈ Zq .

• FMT.Encrypt(ppFMT, pkFMT,m): sample random r ∈ Zq and random t ∈ {1, . . . , n}, and use h as an Elgamal
public key to encrypt the message m′ := m · grt0 ; the resulting ciphertext is c = (t, c1, c2) = (t, gr,m′hr).

• FMT.Decrypt(ppFMT, skFMT, c): use the secret key α to decrypt the ciphertext by setting m′′ := c2/c
α
1 = mg

r(t−s)
0 .

The above sketch omits several important details. In particular, our construction also includes NIZKs (obtained via the
Fiat–Shamir transform applied to simple Σ-protocols) to prove correctness of key generation and encryption. Informally,
our FMT’s correctness and security follow from the fact that m′′ = m only when t = s, which occurs with probability
p = 1/n. The full construction and proof of security (based on hardness of DDH) are in Appendix A.

Remark 4.1 (one-time key pairs). The key pair generated by the receiver can be reused only if the receiver does not
leak information about whether the ciphertext decrypted to a message or ∅. As in prior constructions [BM89, BR99],
this information helps senders evade fractional hiding and fractional binding, and therefore it is best to think of the key
pair as suitable for only a single encryption (or a limited number of encryptions).

Remark 4.2 (security of FMT). The security of prior work on constructing FMT schemes relied on the CDH assumption
[BM89, BR99]. This is because this work only needed to hide information about random messages. Since we use FMT
schemes to hide non-random messages, the security of our construction relies on the DDH assumption, which results in
a semantic-security-like property for the hidden message.

Furthermore, our DAM scheme construction allows the same party to play the role of both sender and receiver.
Thus, to prove security, we require the FMT scheme to be simultaneously simulatable and extractable in the same
experiment. Our construction achieves this property via our usage of simulation-extractable NIZKs [Sah99, DDO+01].

21

5 Recalling decentralized anonymous payments
We review the interface of a decentralized anonymous payment (DAP) scheme, the primary building block in our
construction of a DAM scheme (see Section 7); for details on their construction and security, see [BCG+14]. In this
paper, we use DAP schemes that generalize in a straightforward way the ones in [BCG+14, GGM16] (see Section 5.4
for a comparison), and also relies on a stronger simulation-based security definition, discussed in Appendix B.

Informally, a DAP scheme is a cryptographic primitive that enables parties to conduct privacy-preserving non-
interactive payments to one another. Recall that DAP schemes are formulated in a model where all parties have access
to an ideal append-only log, which we call ledger and denote by L.7 We treat L as an oracle; for instance, when an
algorithm needs to read the ledger, we specify L in the algorithm’s superscript. Each entry in the ledger is called
a transaction, denoted tx; anyone can append a new transaction to the ledger by invoking L.Push(tx). The current
number of entries in the ledger is L.Len. The ledger is additionally partitioned into epochs, and we denote the current
epoch by L.Epoch.Epochs are incremented with the agreement of all participating parties; this consensus is achieved
when every party has invoked L.IncrementEpoch during the current epoch.

5.1 Data structures
The main data structures in DAP schemes are coins, which store funds, and transactions, which create or transfer funds.
Coins. A coin, denoted by the symbol c, is a data structure that stores funds. A coin c has the following attributes: (a) a
commitment cm, which computationally binds together all other attributes of c while hiding any statistical information
about them; (b) an address public key apk, which represents c’s owner; (c) a value v, which represents c’s monetary
value; (d) an arbitrary public information string pub; and (e) an arbitrary secret information string sec.

Spending a coin c requires knowing the address secret key ask associated with c’s address public key apk. Spending
c reveals the coin’s serial number sn, which is deterministically derived from c and ask (but is pseudorandom without
knowing ask); we denote by GetSN this computation, so that sn = GetSN(c, ask). It is computationally infeasible to
create two distinct coins that share the same serial number sn but have differing secret information sec and sec′. The coin
c is also associated with a coin identifier id, which is a string that identifies c uniquely (with all but negligible probability)
and is deterministically derived from c and ask; we denote by GetID this computation, so that id = GetID(c, ask). Note
that id and sn are different; in particular, id is not revealed when c is spent. Furthermore, it is computationally infeasible
to create two coins that have differing serial numbers but the same identifier.
Transactions. A transaction, denoted by the symbol tx, is a data structure that creates or transfers funds. Transactions
are created by users and then appended to the ledger L for anyone to verify; despite being public, they are privacy-
preserving as described below. There are two types of transactions.

• Mint transaction, denoted txm. A mint transaction records the creation of a new coin c. The transaction equals
the tuple (cm, v, pub, ∗), where cm is c’s commitment, v is c’s value, pub is c’s public information, and ∗ is other
implementation-dependent information. While anyone can verify that v and pub are bound to cm, the transaction
does not leak any other information about c.

• Pour transaction, denoted txp. A pour transaction records the transfer of funds from ‘old’ coins to ‘new’ coins
(possibly owned by other parties). The transaction equals the tuple (ts,∆, [sni]

m
1 , [cmj]

n
1 , vpub, info, ∗), where ts is

the timestamp (recording the epoch of when this transaction was created), ∆ is the activation delay (discussed below),
[sni]

m
1 are the serial numbers of the old coins, [cmj]

n
1 are the commitments of the new coins, vpub is part of the value

of the old coins that is revealed for public payments (e.g., for transaction fees), info is an arbitrary information string
associated with the transaction, and ∗ is other implementation-dependent information.

A pour transaction reveals no information about the values of old coins or new coins, besides: (i) the fact that
the sum of the old coin’s values is at least vpub, and that the rest is distributed among the new coins; (ii) the serial
numbers of old coins (thereby ‘consuming’ the old coins); and (iii) the commitments of the new coins.

The activation delay ∆ specifies that txp becomes active ∆ epochs after when it is pushed to the ledger (∆ can be 0);
until then, txp remains dormant. See Section 5.3 for how the ledger handles this aspect.
7In reality, protocols for realizing the ledger, such as that of [Nak09], are not perfect and are subject to temporary inconsistencies, re-orderings of

transactions in flight from parties to the ledger, and so on; in this respect, DAP schemes are only as good as the underlying ledger.

22

5.2 Algorithms
A DAP scheme is a tuple of algorithms (some of which take the ledger L as oracle):

DAP = (Setup,CreateAddr,ReceiveL,MintL,PourL,VerifyTransactionL) .

The syntax and semantics of these algorithms are informally described below; when necessary, an algorithm has oracle
access to the ledger L. For our convenience, we extend/modify [BCG+14]’s interface of a DAP scheme; see Section 5.4
below for a comparison.

System setup: DAP.Setup(1λ,Πm,Πp)→ pp

On input a security parameter 1λ, a mint predicate Πm, and a pour predicate Πp, DAP.Setup outputs public parameters
pp for the system. The predicates Πm,Πp are included in pp, and thus are public; Πm ‘regulates’ which mints of new
coins are legal, and Πp does the same for pours of old coins into new ones (see below for more detail). A trusted party
runs this algorithm once and then publishes the public parameters; afterwards the trusted party is not needed anymore.

Creating addresses: DAP.CreateAddr(pp,meta)→ (apk, ask)

On input public parameters pp and address metadata meta, DAP.CreateAddr outputs an address key pair (apk, ask).
The address metadata is bound to apk in the sense that it is computationally infeasible to create two address public
keys that are equal in all aspects except in differing metadata. Any user may run this algorithm to create an address
key pair; the address public key is to receive coins while the address secret key is to send coins.

Receiving coins: DAP.ReceiveL(pp, (apk, ask))→ set of (unspent) received coins

On input public parameters pp and an address key pair (apk, ask), and given oracle access to the ledger L, DAP.Receive
outputs the set of unspent coins sent to the address public key apk. (To retrieve unspent coins from a particular pour
transaction, one can run DAP.Receive on the “ledger” consisting of just that one transaction.)

Minting coins: The process of creating new coins is called minting, and its inputs and outputs are as follows.

DAP.MintL

public parameters pp
value v
address public key apk
public information string pub
secret information string sec

new coin c
mint transaction txm

The output coin c has value v, address apk, public information pub, and secret information sec; the coin c is to be
kept secret for later spending. A coin’s attribute choices are regulated by the mint predicate Πm: minting succeeds
if and only if Πm(L.Epoch, v, apk, pub, sec) = 1. The output mint transaction txm is to be published by invoking
L.Push(txm).

Pouring coins: The process of transferring value from ‘old’ input coins to ‘new’ output coins is called pouring; the
old coins are consumed while the new coins are minted; a part vpub of the input value can be publicly revealed (e.g., to
pay a transaction fee). Pouring thus allows users to subdivide coins into smaller denominations, merge coins, transfer
ownership of coins, or make public payments — up to restrictions imposed by the pour predicate Πp (see below). The
algorithm that realizes this is called DAP.Pour, and its inputs and outputs are as follows.

23

DAP.PourL

public parameters pp
old coins [ci]

m
1

old address secret keys [aski]m1
new values [vj]

n
1

new address public keys [apkj]
n
1

new public information strings [pubj]
n
1

new secret information strings [secj]n1
public value vpub

transaction information string info
activation delay ∆

new coins [cj]
n
1

pour transaction txp

In other words, DAP.Pour takes as input a list of old coins [ci]
m
1 , along with corresponding secret keys [aski]

m
1 ,

attributes for new coins analogous to DAP.Mint’s inputs, a public value vpub, an arbitrary transaction information
string info, and an activation delay ∆ (discussed below). The outputs of DAP.Pour consist of the new coins [cj]

n
1 and

a pour transaction txp (whose timestamp ts equals L.Epoch and activation delay is ∆). The output coins [cj]
n
1 are to

be kept secret for later use, while the output pour transaction txp is to be published by invoking L.Push(txp).
Analogously to minting, attribute choices while pouring are regulated by the pour predicate Πp: pouring succeeds if
and only if Πp(L.Epoch, [ci]

m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆) = 1.

Finally, the activation delay ∆ specifies that txp becomes active ∆ epochs after when txp is added to the ledger; see
Section 5.3. The epoch when txp is added to the ledger is never less than txp’s timestamp but it could be greater than it.

Verifying transactions: DAP.VerifyTransactionL(pp, tx)→ b

On input public parameters pp and a (mint or pour) transaction tx, and given oracle access to the ledger L,
DAP.VerifyTransaction outputs a bit b denoting whether the transaction tx is valid relative to the ledger L.

5.3 Merkle trees on all coin commitments and all serial numbers
For efficiency reasons, a DAP scheme relies on two data structures publicly maintained alongside the ledger L: (1) a
Merkle tree Tcm over all coin commitments in L, taken in any order; (2) a Merkle tree Tsn over all serial numbers in L,
taken in lexicographic order. These are updated as new transactions are pushed to the ledger, as follows.

Whenever a mint transaction txm is pushed to the ledger, the coin commitment in txm is added to Tcm. Whenever a
pour transaction txp is pushed to the ledger, if txp’s activation delay ∆ equals zero, then txp immediately becomes active:
its coin commitments and serial numbers are added to Tcm and Tsn. However, if ∆ is positive, then txp becomes active
∆ epochs later, so that txp’s coin commitments and serial numbers are not immediately added to the two trees. Instead,
this happens ∆ epochs later only if none of the ∆ transactions in this period is another pour transaction containing any
of txp’s serial numbers (if such a pour transaction does exist then txp remains dormant forever). In summary, the Merkle
trees Tcm and Tsn consider only commitments and serial numbers in active transactions, and ignore dormant ones.

Finally, note that a transaction can be pushed to the ledger only if any commitments or serial numbers that it contains
do not already appear in the respective Merkle trees (i.e., duplicate commitments or serial numbers are forbidden).
Additional commitments and serial numbers. Additional commitments or serial numbers of coins may be revealed,
due to application-dependent reasons, in the ‘∗’ field of a mint/pour transaction, or even in new types of transactions.
The trees Tcm and Tsn are over all (active) commitments and serial numbers appearing anywhere on the ledger L.
Notation for Tcm & Tsn. Later on we prove membership of coin commitments in Tcm, and so for notational conve-
nience we make explicit the following functionality: (1) L.CMRoot returns the current root of Tcm; (2) L.CMProve(cm)
returns a proof πcm of the fact that cm is in Tcm; (3) L.CMVerify(rt, cm, πcm) outputs 1 if and only if πcm is a valid proof
of membership of cm when Tcm had root rt. We also prove membership and non-membership of serial numbers in Tsn,
and so we make explicit the following functionality: (1) L.SNRoot returns the current root of Tsn; (2) L.SNProve(sn)
returns a bit bsn indicating whether sn is in Tsn, and a proof πsn of this fact; (3) L.SNVerify(rt, sn, bsn, πsn) outputs 1 if
and only if πsn is a valid proof of membership (bsn = 1) or of non-membership (bsn = 0) of sn when Tsn had root rt.
Note that membership and non-membership in sorted Merkle trees can be proved efficiently [MRK03].

24

5.4 Extension of the DAP interface
The DAP scheme interface described above generalizes the ones in [BCG+14] and [GGM16]. These straightforward
extensions simplify exposition when constructing a DAM scheme in Section 7. Below we summarize these differences:

• Any arity. DAP.Pour is no longer restricted to only two input and output coins; it now takes an arbitrary number
of input coins and outputs an arbitrary (and possibly different) number of output coins. This ‘arity’ information is not
private because the number of input coins and the number of output coins are revealed in a pour transaction.

• Ledger as oracle. DAP.Pour no longer takes a Merkle tree root and authentication paths as inputs but, instead,
obtains these via oracle access to the ledger L. Similarly, DAP.VerifyTransaction and DAP.Receive no longer take
the ledger L as input but instead access it as an oracle.

• New attribute of an address. An address key pair (apk, ask) has an additional attribute: its metadata meta. Recall
that [BCG+14]’s construction generates address public keys as follows: sample ask and then set apk := PRFask(0).
This can be modified to support the address metadata attribute by evaluating the PRF at meta instead of at 0, and
then accompanying the address with a zero knowledge proof of knowledge that this step was performed correctly.

• New attributes of a coin. A coin c has additional attributes. Note that c’s commitment cm computationally binds
together all (previous and additional) attributes of c while hiding any statistical information about them.

– Identifier. A coin c is associated with a random string id (sampled at minting) that identifies c uniquely (with all
but negligible probability). Note that c’s identifier id is different from c’s serial number sn in that it is not used for
prevention of double spending, and is not revealed when the c is poured to another coin. Moreover, it is difficult to
create two coins that have differing serial numbers but the same identifier.

– Public and secret information. A coin c is associated with two additional pieces of information: a public
information string pub and a secret information string sec. In a mint transaction, pub is publicly revealed but no
information about sec is revealed; in a pour transaction, no information about pub or sec is revealed (beyond what
is implied by the transaction’s validity). We assume that it is computationally infeasible to create coins that have
the same serial number sn but differing secret information sec (in [BCG+14]’s construction, it suffices to append
sec to the serial number randomness). To incorporate these changes, DAP.Mint additionally takes both pub and
sec as input, and DAP.Pour additionally takes analogous parameters for specifying the new coins.

• Mint and pour predicates. DAP.Setup takes two additional inputs: a mint predicate Πm and a pour predicate Πp.
These are included in the public parameters pp, and thus are public. The minting of new coins is now regulated by
Πm, which receives the current epoch and the new coin’s attributes, and accepts or rejects; that is, minting succeeds if
and only if Πm(L.Epoch, v, apk, pub, sec) = 1. Similarly, the pouring of old coins into new coins is now regulated
by Πp, which receives the current epoch and information about the old and new coins, and accepts or rejects; that is,
pouring succeeds if and only if Πp(L.Epoch, [ci]

m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆) = 1.

Via a suitable choice of Πm and Πp, one can overlay additional semantics on minting and pouring. For example, we
use Πp to realize different coin types and allow only certain type transitions. Extending [BCG+14]’s construction
with this functionality is straightforward: mint transactions simply include a zero-knowledge proof that Πm accepted;
similarly, it suffices to include Πp as a sub-circuit of the pour circuit used in DAP.Pour.

Finally, while Πm and Πp only receive L.Epoch as input, one can consider a more general setting where Πm and Πp

have oracle access to L, and use more complex information about L to make a decision. In this paper we do not need
this level of generality, but this additional freedom may be attractive for other applications.

25

6 Definition of a decentralized anonymous micropayment scheme
We define decentralized anonymous micropayment (DAM) schemes, which extend DAP schemes [BCG+14] with
probabilistic payments backed by advance deposits. (Our economic analysis in Section 3 discusses the appropriate
value of deposits.) This extension necessitates discussing the new kinds of data structures used by a DAM scheme’s
interface, and also requires a new security definition that captures not only the notion of financial integrity but also (as
foreshadowed in Section 2.1) strong forms of unlinkability across probabilistic payments and other properties.

We now proceed as follows: we introduce a DAM scheme’s data structures (Section 6.1), algorithms (Section 6.2),
usage (Section 6.3), and security (Section 6.4). Later on, we present our construction (Section 7).

6.1 Data structures
In a DAP scheme all payments are of the same type: old coins are consumed to produce new coins (perhaps belonging
to a different user). A DAM scheme, however, has a richer set of payment types: coins can be consumed to produce not
only new coins, but also to produce deposits or (lottery) tickets; in turn, a ticket can be consumed probabilistically: with
a certain probability, it results in a coin for the receiver (and results in a nullpayment otherwise). Finally, a DAM scheme
allows users to perform two kinds of operations on deposits: withdrawal, which results in coins, and punishment, which
allows users to punish other cheating users for double spending (thereby invalidating their deposit).

To support the above richer semantics, a DAM scheme needs a richer set of data structures than a DAP scheme.
We describe these below. To avoid ambiguity between different “coin types”, we follow the terminology of Zcash
[HBHW16] and refer to the different “coin” data structures as notes.
Notes. In a DAM scheme, funds are stored in notes, denoted n. There are three types of notes.
• Coin notes (also, coins), denoted c. These notes are semantically analogous to coins in a DAP scheme: one can mint

coins or pour coins into new coins. In addition, one can also pour coins into either of the two note types below.
• Deposit notes (also, deposits), denoted d. These notes are used to back ticket notes (see next type) and disincentivize

double spending. One can mint or withdraw deposits. Withdrawals are delayed to prevent front running.
• Ticket notes (also, tickets), denoted t. These notes are used to engage in a probabilistic payments: with a certain

probability the ticket is poured into a coin, and with the remaining probability it remains unspent and can be used in
future probabilistic payments. Each ticket is linked to a (private) deposit that backs it. Tickets can be refreshed to
prevent loss of money or anonymity due to merchant aborts; refreshes are also delayed to prevent front running.

We denote the above note types by the symbols cn, dp, tk; a note’s type is stored in its public information string pub.
Transactions. In a DAM scheme, there are six types of transactions.
• Mint transactions, denoted txm. A DAM mint transaction is analogous to a DAP mint transaction (see Section 5.1); it

records the creation of a new note n (having one of the above types).
• Pour-coin transactions, denoted txpc. A pour-coin transaction txpc is analogous to a DAP pour transaction (see

Section 5.1); it records the transfer of funds from ‘old’ coins into ‘new’ notes (having one of the above types).
• Pour-ticket transactions, denoted txpt. A pour-ticket transaction records the transfer of funds from an ‘old’ ticket

into a ‘new’ coin; it represents the fact that a probabilistic payment resulted in a macropayment (nullpayments do
not have corresponding transactions). A pour-ticket transaction consists of a DAP pour transaction txp that stores
additional information that enables verification of the macropayment.

• Withdraw transactions, denoted txwd. A withdraw transaction records the transfer of funds from an ‘old’ deposit into
a ‘new’ coin. The transaction consists of a suitable DAP pour transaction (and inherits its privacy guarantees).

• Refresh transactions, denoted txref . A refresh transaction records the transfer of funds from an ‘old’ ticket into a
‘new’ ticket. The transaction consists of a suitable DAP pour transaction (and inherits its privacy guarantees).
• Punish transactions, denoted txpun. A punish transaction records a detected double spend. The transaction equals the

tuple (txpt, tx
′
pt, sn, id), where the two pour-ticket transactions txpt, tx

′
pt are proof of a double-spent ticket, and sn

and id are the serial number and unique identifier of the deposit d that backed that ticket in both macropayments.
Note that pour-coin, pour-ticket, withdraw, and refresh transactions are instances of DAP pour transactions; they differ
in the types of the input and output notes, and also in their activation delay. In particular, pour-coin and pour-ticket
transactions have activation delay zero, while withdraw and refresh transactions have activation delays ∆w and ∆r,

26

which are predetermined system constants. These delays prevent cheating customers from evading punishment by front
running honest merchants seeking to punish them.

6.2 Algorithms
A DAM scheme specifies various algorithms and one 2-party protocol; some of these take the ledger L as oracle.

DAM =

 Setup
CreateAddr
ReceiveL

MintCoinL

MintDepositL

MintTicketL

PourCoinToCoinL

PourCoinToDepositL

PourCoinToTicketL

PourTicketL

WithdrawDepositL

RefreshTicketL
Punish
VerifyTransactionL

 .

We describe the syntax and semantics of each of these below.

System setup: DAM.Setup(1λ)→ pp

On input a security parameter 1λ, DAM.Setup outputs public parameters pp for the system. A trusted party runs this
algorithm once and then publishes the public parameters; afterwards the trusted party is not needed anymore.

Creating addresses: DAM.CreateAddr(pp, spec)→ (apk, ask)

On input public parameters pp and a probabilistic payment specification spec, DAM.CreateAddr outputs an address
key pair (apk, ask). The specification spec := (a,w, p, V) consists of the average-case payment rate a, the worst-case
payment rate w, transfer probability p, and payment value V for a probabilistic payment. (Users not intending to
receive probabilistic payments to apk can set its spec to be ⊥.) Any user may run this algorithm to create an address
key pair; the address public key is to receive notes while the address secret key is to send notes.

Receiving payments: DAM.ReceiveL(pp, (apk, ask))→ set of (unspent) received notes

On input public parameters pp and an address key pair (apk, ask), and given oracle access to the ledger L, DAM.Receive
outputs the set of unspent notes sent to the address public key apk. (To retrieve unspent notes from a particular
transaction, one can run DAM.Receive on the “ledger” consisting of just that one transaction.)

Minting notes: The process of creating new notes is called minting. The minting procedure depends on whether one
wants to mint a coin, a deposit, or a ticket. Hence, a DAM scheme includes a triple of algorithms

(DAM.MintCoinL,DAM.MintDepositL,DAM.MintTicketL) .

Each of these algorithms takes as input public parameters pp, a note value v, and an address public key apk, and
outputs the minted note (whose type is stored in its public information pub) and a corresponding mint transaction txm.
Moreover:

• When minting a deposit, the minting procedure takes as additional input a receiver address set R, and a commitment
to R is stored in the deposit’s secret information string sec; R specifies the addresses of merchants that can be paid
with tickets backed by this deposit (see Section 3.3).
• When minting a ticket, the minting procedure takes as additional input a deposit, which is stored in the ticket’s

secret information sec.

The table below summarizes the inputs and outputs for these three algorithms. Note that the output mint transaction
txm is to be published by invoking L.Push(txm).

DAM.MintCoinL DAM.MintDepositL DAM.MintTicketL

public parameters pp
value v

address public key apk

— receiver address set R deposit number d

coin c such that deposit d such that ticket t such that
c.pub = cn d.pub = dp t.pub = tk

c.sec = ⊥ d.sec = a commitment to R t.sec = d

mint transaction txm

27

Pouring notes: The process of transferring value from notes to other notes is called pouring; these ‘old’ and ‘new’
notes can be of different types. The pour procedure depends on whether one wants to pour a coin or a ticket. In the first
case, the procedure consists of three separate algorithms, depending on the desired new type: DAM.PourCoinToCoin,
DAM.PourCoinToDeposit, and DAM.PourCoinToTicket. The three algorithms are used to pour a set of ‘old’ input
coins into a set of ‘new’ output coins, deposits, or tickets respectively; the output pour-coin transaction txpc is to be
published by invoking L.Push(txpc).

If instead one wants to pour a ticket, then the procedure consists of a protocol DAM.PourTicketL, which is used to
run a probabilistic payment between two parties called the sender and receiver; with a certain probability, the receiver
gets a pour-ticket transaction txpt transferring the ticket to a coin. (If the ticket has already been spent, the receiver
obtains a punish transaction txpun that is used to revoke the deposit.) If the receiver does not tell the sender in a timely
manner whether or not the protocol resulted in a nullpayment or a macropayment, the sender can refresh his ticket to
obtain a refresh transaction txref . Each party is responsible for publishing any output transaction (txpt, txpun, or txref)
by invoking L.Push on it.

The receiver maintains two data structures across multiple probabilistic payments: (1) a deposit blacklist D, which
records the deposits that have been revoked within the current epoch (the ledger ensures that deposits revoked before
the current epoch cannot be used to back payments); and (2) a payment counter P, which keeps track of how many
probabilistic payments and macropayments a customer has made within the current time window, to ensure that a
customer does not ‘overspend’, violating bounds imposed by the economic analysis. For more details, see Section 6.3.

DAM.PourCoinToCoinL DAM.PourCoinToDepositL DAM.PourCoinToTicketL

public parameters pp
old coins [ci]

m
1

old address secret keys [aski]m1
new note values [vj]

n
1

new address public keys [apkj]
n
1

public value vpub

transaction information string info

— receiver address sets [Rj]
n
1 deposits [dj]

n
1

new coins [cj]
n
1 such that new deposits [dj]

n
1 such that new tickets [tj]

n
1 such that

cj .pub = cn dj .pub = dp tj .pub = tk

cj .sec = ⊥ dj .sec = a commitment to Rj tj .sec = dj

pour-coin transaction txpc

DAM.PourTicketL

SENDER RECEIVER

public parameters pp
old ticket t
old ticket address secret key askt
deposit d
deposit address secret key askd
deposit receiver address set Rd

transaction information string info
average-case and worst-case counters actr,wctr

public parameters pp
current deposit blacklist D
current payment counter P
new coin address key pair (apkc, askc)
receiver time window twr

public value vpub

status ∈ {null, macro, fail}
if status = fail: also a new ticket t′ & refresh
transaction txref

status ∈ {null, macro, fail, double}
updated payment counter P′

if status = double: also an updated blacklist D′

& punish transaction txpun

if status = macro: also a new coin c & pour-
ticket transaction txpt

Withdrawing deposits: A deposit can be withdrawn, pouring the deposit’s value into a new coin, by using the
algorithm DAM.WithdrawDeposit. Its output consists of the new coin c and a withdraw transaction txwd, which is to
be published by invoking L.Push(txwd). Withdraw transactions have an activation delay of ∆w so to prevent users
from withdrawing a deposit before they can be punished for double spending tickets backed by it (see Section 6.3).

28

DAM.WithdrawDepositL

public parameters pp
old deposit d
old deposit address secret key askd
new coin address public key apk
public value vpub

transaction information string info

new coin c
withdraw transaction txwd

Refreshing tickets: A ticket can be refreshed, pouring the ticket’s value into a new ticket, by using the algorithm
DAM.RefreshTicket. Its output consists of the new ticket t′ and a refresh transaction txref , which is to be published by
invoking L.Push(txref). Refresh transactions have an activation delay of ∆r so to prevent users from spending tickets
back to themselves (see Section 6.3). Refreshing a ticket enables a customer to safely overcome a merchant abort, i.e.,
when the merchant does not inform the customer of whether his probabilistic payment resulted in a nullpayment or a
macropayment. Indeed, if the customer were to continue using the same ticket in the future, he may inadvertently
double spend, and thereby lose his deposit. Note that refreshing tickets maintains ticket privacy, and thus malicious
merchants cannot compromise the anonymity of an honest customer.

DAM.RefreshTicketL

public parameters pp
old ticket t
old ticket address secret key askt
new ticket address public key apk
public value vpub

transaction information string info

new ticket t′

refresh transaction txref

Punishing double spenders: DAM.Punish(txpt, tx
′
pt,D)→ (txpun,D

′)

On input two pour-ticket transactions txpt, tx′pt using the same ticket and the current deposit blacklist D, DAM.Punish
outputs a punish transaction revoking the deposit backing that ticket and an updated deposit blacklist D′.

Verifying transactions: DAM.VerifyTransactionL(pp, tx)→ b

On input public parameters pp and a transaction tx, and given oracle access to the ledger L, DAM.VerifyTransaction
output a bit b denoting whether the transaction tx is valid relative to the ledger L.

6.3 Guidelines for usage
Since a DAM scheme has a rich interface, here we summarize how its various components are intended to interact.
Before the system is used, a trusted third party runs DAM.Setup to generate the public parameters for the system, and
publishes these for everyone to see. Afterwards, anyone can use DAM.CreateAddr to create his own address key pair,
so as to mint notes and make payments; merchants must bind their payment rate, probability, and value to the address by
passing these parameters as specification to DAM.CreateAddr. One can obtain information about received payments by
running DAM.Receive. Throughout, anyone can use DAM.VerifyTransaction to verify a transaction; for example, this
algorithm can be used by the nodes that run a distributed protocol to maintain the ledger (if the ledger is so maintained).

A safe use of probabilistic payments entails additional guidelines that customers and merchants must keep in mind.

• Guidelines for customers. A customer should remember that, while an honest merchant should respond right away,
the merchant’s response is not instantaneous; in the meantime, if the customer wishes to safely make additional
probabilistic payments (even in parallel), he should rotate among different tickets. Yet, if a merchant response takes
longer than expected, then the customer should interpret it as an ‘abort’ and refresh his ticket. (Or else a malicious

29

merchant could later frame the customer for double spending, or learn when the ticket is next spent.) Finally, a
customer can withdraw his deposit if he no longer wishes to use that money to back tickets.

To bound the required value of a deposit, our economic analysis requires bounding the cumulative payment rate
across the set of merchants that can be paid by payments backed by that deposit. Estimating and bounding the total
number of merchants in a system is difficult to do at system setup time, and cautious over-estimation can lead to
a unnecessary blow-up in the size of the deposit. To mitigate this, we associate with each deposit a set of ‘valid’
merchants (see Section 3.3). At deposit creation time, a user must specify such a merchant set, and set the value of
the deposit accordingly. This allows a deposit to be only as large as the amount required to support financial activity
with the merchants in the deposit’s merchant set.

• Guidelines for merchants. The ledger partitions time into epochs and, in the current epoch, records ‘history’ up to
and excluding the current epoch. While the ledger is updated only once per epoch, individual transactions propagate
through the network at a much faster rate. For example, in Bitcoin an epoch is around 10 minutes but the network
broadcast time is much smaller, on the order of seconds. Merchants can, and should, leverage information that they
‘hear’ from the network, in order to further limit malicious customers even if that information is not yet in the ledger.

A merchant is responsible for broadcasting any pour-ticket transactions that he obtains as the result of engaging in
probabilistic payments (as the receiver), in addition to publishing these to the ledger for the next epoch. Moreover, a
merchant is responsible for maintaining two data structures across probabilistic payments, as we now explain.

The merchant maintains a deposit blacklist D, which records the deposits that have been revoked within the current
epoch. (Deposits revoked in previous epochs are on the ledger, and cannot back probabilistic payments in this epoch.)
The merchant resets D at the beginning of every epoch, and after that does the following.

– Whenever the merchant engages in a probabilistic payment as the receiver, via the protocol DAM.PourTicket, he
provides the current D as one of the receiver inputs. In the event that the sender used a deposit that is blacklisted,
the merchant also gets as output the updated D′ and a punish transaction txpun, which he publishes to the ledger.

– Whenever the merchant learns of a (valid) pour-ticket transaction tx′pt that shares the same serial number as another
pour-ticket transaction txpt seen in the current epoch, he runs DAM.Punish on input txpt, tx

′
pt and the current D,

and obtains as output the updated D′ as well as a punish transaction txpun, which he publishes to the ledger.

The merchant also maintains a payment counter P, which records payment value rates in a merchant-defined time
window, as we now explain. Our economic analysis (Section 3) says that the required deposit value is determined
by either A or W , which denote the per-deposit maximum value of probabilistic payments or of macropayments
(respectively) within a certain time period. Our scheme (and thus construction) support enforcement of both bounds
simultaneously, but for simplicity in this discussion we focus on worst-case utility.

A merchant M is responsible “for his own share”: at address creation time, he chooses an worst-case bound wM, and
at protocol execution time he chooses a time window twM that partitions time into intervals of that length. His goal is
to ensure that the per-deposit maximum value of probabilistic payments at every interval of length twM is at most
wM. Since which deposit backs a ticket is not revealed during a pour ticket, a DAM scheme provides functionality
for the merchant to do so: whenever the merchant engages in a probabilistic payment as the receiver, via the protocol
DAM.PourTicket, he provides the current P, and time window twM as receiver inputs, and obtains as output the
updated P′.

Intuitively, if the sender’s deposit is not at least wM, the merchant M receives the output fail. Otherwise, the
merchant can query the payment counter P to learn if the sender has breached the boundwM in probabilistic payments
with him. If so, the merchant should reject the sender’s payment.

Side-channel information leakage. In sum, after each execution of the DAM.PourTicket protocol, the honest
merchant learns at most the following information: whether the deposit is sufficient to back payments to the current
merchant, and whether the rate limit for that merchant has been exceeded or not. However, a malicious merchant might
attempt to glean extra information by repeating time windows; since rate limits are enforced within time windows,
reusing time windows can reveal information about whether or not a customer has already interacted with the merchant
in the past. To prevent this, the customer should keep track of past time windows, and refuse payment if these repeat.

30

(How many time windows the customer must store depends on the construction; our construction allows the customer
to store only the time windows seen within the current ledger epoch and forget those of past epochs; see Section 7.2.3.)
Activation delays prevent front running. A DAM scheme enables users to withdraw deposits and refresh tickets.
These operations could in principle create a security vulnerability: a malicious customer could attempt to front run the
merchant by withdrawing a deposit before the merchant revokes it, or refresh a ticket before the merchant claims it. To
prevent such scenarios, withdraw and refresh transactions have activation delays of ∆w and ∆r, i.e., they become active
∆w and ∆r epochs after they are added to the ledger. This gives time to a merchant to revoke the deposit or claim the
ticket, if appropriate. If the merchant does so during the waiting period, then the withdraw or refresh transaction does
not become active. (See Section 5.3 for more details on activation delays.)

6.4 Security
We informally describe the security goals of a DAM scheme (Section 6.4.1), and then formally state the security
definition of a DAM scheme (Section 6.4.2) by specifying an ideal functionality FDAM that captures these goals.

6.4.1 Informal security goals

A DAM scheme provides functionality for deterministic payments and probabilistic payments, and we outline the
security goals as they pertain to each of these.
Security of deterministic payments. Deterministic payments in a DAM scheme inherit the security of payments in a
DAP scheme, including the following properties.
• Transaction anonymity. Transactions do not reveal a payment’s origin, destination, or amount. Note, however, that

transactions do not hide type information such as whether one is minting a coin, ticket, or deposit, or whether one is
pouring from a coin, deposit, or ticket; overall, we do not seek to hide type transitions.

• Satisfaction of financial invariants. Users cannot own or spend more money than they have obtained by minting new
notes or receiving notes from other users. In particular, users cannot spend the same note multiple times.

• Transaction non-malleability. Malicious parties cannot modify a transaction ‘in flight’ before it reaches the ledger.
Security of probabilistic payments. Probabilistic payments between senders and receivers enrich payment semantics
and introduce interaction, and thus entail new security goals that are not captured by the above.
• Sender privacy. Probabilistic payments of honest senders are unlinkable, not only given information on the ledger,

but also from the perspective of receivers; this holds regardless of whether the payment turns into a macropayment
or nullpayment. More precisely, both macropayments and nullpayments reveal no information about which tickets
are used, and the receiver learns only that the deposit backing the payment is large enough to support the sender’s
spending activity. (Naturally, if a sender double spends, his anonymity is not guaranteed.)

• Sender utility. If an honest sender engages with a malicious receiver in a probabilistic payment, the malicious receiver
cannot force the sender (even by aborting) to lose his deposit or anonymity, or to lose his ticket with any probability
other than the specified one for the payment.

• Receiver privacy. Engaging in a probabilistic payment as a receiver does not reveal to the ledger any receiver-specific
information, such as the receiver address, payment probability, macropayment value, or payment value rate.

• Receiver utility (against rational senders). We cannot guarantee that a receiver, who engages with a malicious
sender in a probabilistic payment, will not lose money, because a malicious sender may double spend regardless
of the negative utility incurred by losing his deposit. At best, we can require that malicious senders will get their
deposits revoked when engaging with honest receivers. We thus require that: (1) each ticket is bound to a single
deposit; (2) revoked deposits cannot be withdrawn; (3) spent tickets cannot be refreshed; (4) senders cannot bypass
payment rate bounds; (5) deposits cannot be withdrawn before an activation delay of ∆w epochs; (6) tickets cannot
be refreshed before an activation delay of ∆r epochs; (7) tickets with identical serial numbers must have the same
deposit; (8) generating two macropayments backed by the same ticket reveals the deposit.

6.4.2 Security definition

We define security of a DAM scheme via the real/ideal paradigm [Gol04]: we specify an ideal functionality FDAM and
say that a DAM scheme is secure if it realizes FDAM against static corruptions. We focus on standalone security, and

31

leave achieving security under composition to future work (which may take [KMS+16] as a starting point).

Definition 6.1 (security of a DAM scheme). A DAM scheme DAM is secure if for every honest execution strategy Σ
and efficient real-world adversary A that corrupts a subset of parties, there exists an efficient ideal-world simulator
SimA that corrupts the same subset of parties such that the view of A when running in a real-world execution of DAM
is computationally indistinguishable from the output of SimA when running in an ideal-world execution with the ideal
functionality FDAM.

The ideal functionality. The ideal functionality FDAM is specified in Figures 1 and 2. The ideal functionality
maintains in clk (initialized to 0) the current epoch, and maintains the following tables (initialized as empty): (1) Addr,
which maps an address to the party that owns it; (2) Notes, which maps a note identifier to that note’s information,
consisting of the note’s type, value, address, and activation time; (3) State, which maps a note identifier to that note’s
state, either unspent or spent; (4) Buf, which temporarily holds coins and tickets that result from deposit withdrawal
or ticket refreshes (as these have positive activation delays); (5) Spent, which counts the number of times a ticket has
been spent to a particular session identifier sid; (6) Rates, which counts the number of probabilistic payments backed
by a deposit d that have been made in a given time window.

Parties may obtain addresses from the ideal functionality. Parties can mint notes and receive poured notes to these
addresses. Each note can be in one of two states: unspent or spent. When transactions occur, the ideal functionality
sends to all parties the identifier of the notes that were consumed, the public output, and the number of input and output
notes. If concurrent calls are made to the ideal functionality, it serializes them; the only exception is calls to PourTicket,
which are serialized only up till Step 27 (in order to allow interleaving of interactions).
Operation of the honest parties. In both the real and ideal worlds, each uncorrupted party is provided with an
adaptive execution strategy ΣL that informs its operation. In both worlds, the execution strategy can invoke the various
mint and pour algorithms, initiate pour-ticket protocol executions, withdraw deposits, refresh tickets, and retrieve
unspent coins. In return, the execution strategy receives a notification when a request has been satisfied, and whenever
a transaction has been conducted by another party. In both worlds we define an honest party that runs the execution
strategy in such a way that the structure of inputs to the executions strategy is identical between the two worlds. A full
description of the operation of these parties is provided in Appendix C.

32

RegisterAddress[P]

(
address identifier id,

probabilistic payment spec spec

)
IncrementEpoch[P] GetTime[P]

1. Set a := (id‖spec).
2. If Addr[a] 6= ⊥: Send to P: registered.
3. If Addr[a] = ⊥:

(a) set Addr[a] := P .
(b) Send to P: address a.

1. Check that all parties have invoked IncrementEpoch.
2. Set clk := clk + 1.
3. Reset Rates and DBTable to be empty.
4. ProcessBuffer().

1. Send to P: clk.

MintCoin[P]

(
new value v,
new address a

)
MintDeposit[P]

 new value v,
new address a,

receiver address set R

 MintTicket[P]

 new value v,
new address a,

deposit information infod


1. Check that infod.ad = a.

1. Sample unique coin identifier c. 1. Sample unique deposit identifier d. 2. Sample unique ticket identifier t.
2. Set Notes[c] := (cn, v, a, clk). 2. Set Notes[d] := (dp, v, a, clk,R). 3. Set Notes[t] := (tk, v, a, clk, infod).
3. Set State[c] := unspent. 3. Set State[d] := unspent. 4. Set State[t] := unspent.
4. Set Token[c] := tokcn. 4. Set State[d] := tokdp. 5. Set State[t] := toktk.
5. Send to all parties: (mintcn, c, v). 5. Send to all parties: (mintdp,d, v). 6. Send to all parties: (minttk, t, v).

PourCoinToCoin[P]

 old coins [ci]
m
1 ,

new addr. [aj]
n
1 ,

new values [vj]
n
1 ,

public value vpub

 PourCoinToDeposit[P]


old coins [ci]

m
1 ,

new addr. [aj]
n
1 ,

new values [vj]
n
1 ,

public value vpub,
receiver addr. sets [Rj]

n
1

 PourCoinToTicket[P]


old coins [ci]

m
1 ,

new addr. [aj]
n
1 ,

new values [vj]
n
1 ,

public value vpub,

deposits [infodj]
n
1


1. Check that

∑m
i=1 vi =

∑n
j=1 vj + vpub.

2. For each i ∈ {1, . . . ,m}:
(a) check that State[ci] = unspent.
(b) retrieve (tpi, vi, ai, ti) := Notes[ci].
(c) check that tpi = cn.
(d) check that Addr[ai] = P .
(e) set State[ci] := spent.

3. For each j ∈ {1, . . . , n}:

(a) sample unique coin identifier cj .
(b) set Notes[cj] := (cn, vj , aj , clk).
(c) set State[cj] := unspent.
(d) if ∃ Pj s.t. Addr[aj] = Pj :

Send to Pj : (prvpc, cn, cj , vj , aj).
(e) otherwise:

Send toA: (prvpc, cn, cj , vj , aj).
4. Send to all parties: (pourcn,m, [cj]

n
1 , vpub).

3. For each j ∈ {1, . . . , n}:

(a) sample unique deposit identifier dj .
(b) set Notes[dj] := (dp, vj , aj , clk,Rj).
(c) set State[dj] := unspent.
(d) if ∃ Pj s.t. Addr[aj] = Pj :

Send to Pj : (prvpc, dp,dj , vj , aj ,Rj).
(e) otherwise:

Send toA: (prvpc, dp,dj , vj , aj ,Rj).
4. Send to all parties: (pourcn,m, [dj]

n
1 , vpub).

3. For each j ∈ {1, . . . , n}:
(a) check that for all i = 1 tom: aj = ai = infodj .ad.
(b) sample unique ticket identifier tj .
(c) set Notes[tj] := (tk, vj , aj , clk, infodj).
(d) set State[tj] := unspent.
(e) if ∃ Pj s.t. Addr[aj] = Pj :

Send to Pj : (prvpc, tk, tj , vj , aj , infodj).
(f) otherwise:

Send toA: (prvpc, tk, tj , vj , aj , infodj).
4. Send to all parties: (pourcn,m, [tj]

n
1 , vpub).

WithdrawDeposit[P]

 deposit d,
new address anew,
public value vpub

 RefreshTicket[P]

 ticket t,
new address anew,
public value vpub

 ProcessBuffer()

1. Retrieve (dp, v, a, t,R) := Notes[d].

2. Check that State[d] = unspent.
3. Check that Addr[a] = P .
4. Set Buf[d, ∗] := ⊥.
5. Sample unique coin identifier c.
6. Set v′ := v − vpub.
7. Set t′ := clk + ∆w .
8. Set Buf[d, t′] := (c, (cn, v′, anew, t

′)).
9. If ∃ P′ s.t. Addr[anew] = P′:

Send to P′: (withdraw, cn, c, v, anew).
10. Otherwise:

Send toA: (withdraw, cn, c, v, anew).
11. Send to all parties: (withdraw, c, vpub).

1. Retrieve (tk, v, a, t, infod) := Notes[t].
2. Check that anew = a.
3. Check that State[t] = unspent.
4. Check that Addr[a] = P .
5. Set Buf[t, ∗] := ⊥.
6. Sample unique ticket identifier t′.
7. Set v′ := v − vpub.
8. Set t′ := clk + ∆r .
9. Set Buf[t, t′] := (t′, (tk, v′, anew, t

′, infod)).
10. If ∃ P′ s.t. Addr[anew] = P′:

Send to P′: (refresh, tk, t′, v′, anew, infod).
11. Otherwise:

Send toA: (refresh, tk, t′, v′, anew, infod).
12. Send to all parties: (refresh, t′, vpub).

1. If there exists d such that Buf[d, clk] 6= ⊥:
(a) Retrieve (c, (cn, v, a, t)) := Buf[d, clk].
(b) Check that State[d] = unspent.
(c) Set State[d] := spent.
(d) Set Notes[c] := (cn, v, a, t).
(e) Set State[c] := unspent.

2. If there exists t such that Buf[t, clk] 6= ⊥:
(a) Retrieve (t′, (tk, v, a, t, infod)) := Buf[t, clk].
(b) Check that State[t] = unspent.
(c) Set State[t] := spent.
(d) Set Notes[t′] := (tk, v, a, t, infod).
(e) Set State[t′] := unspent.

Figure 1: Ideal functionality FDAM of a DAM scheme (part 1 of 2).

33

PourTicket[Ps]
(

receiver party Pr

)
RedeemTicket[Pr]

 ticket token toktk,
session identifier sid,

public value vpub


1. Send to Pr: init.
2. Receive from Pr: sid,D, vpub.
3. Parse sid as (ar, twr).
4. Parse ar as (∗‖(ar,wr, pr, Vr)).
5. Send to Ps: (sid, vpub).
6. Receive from Ps: ok?.
7. If ok? = ⊥: halt and Send to Pr: abort.
8. If ok? = t: continue.
9. Retrieve (tk, v, a, t, infod) := Notes[t].

10. Parse infod as (d′, v′
d
, a′
d

).
11. Check that Addr[a] = Ps.

CHECK THAT DEPOSIT IS VALID AND UNSPENT.
12. Check that State[d] = unspent.
13. Retrieve (dp, vd, ad, td,Rd) := Notes[d]
14. Check that (d′, v′

d
, a′
d

) = (d, vd, ad).
15. Check that Addr[ad] = Ps.

CHECK IF DEPOSIT WAS BLACKLISTED IN CURRENT EPOCH.
16. Retrieve tokdp := Token[d].
17. Check that DBTable[d] = False and tokdp 6∈ D.

CHECK THAT DEPOSIT IS SUFFICIENTLY LARGE.
18. SetA :=

∑
ai∈Rd

ai.a.
19. SetW :=

∑
ai∈Rd

ai.w.
20. Set Vmax := maxai∈Rd (ai.V).
21. If ar 6∈ Rd:

(a) ifW + wr ≤ vd andA+ ar + max(Vmax, Vr) ≤ vd:
set Notes[d] := (dp, vd, ad, td,Rd ∪ {ar}).

(b) else: halt.
CHECK AVERAGE-CASE PAYMENT VALUE RATE BOUND.

22. Set Rates[A,d, sid] := Rates[A,d, sid] + 1.
23. If Rates[A,d, sid] ≤ ar/prVr: set avg := 0.
24. If Rates[A,d, sid] > ar/prVr: set avg := 1.
25. Set b := 1 with probability p, and 0 otherwise.

DECIDE PAYMENT OUTCOME.
26. If b = 0: set result := null.
27. If b = 1:

CHECK WORST-CASE PAYMENT VALUE RATE BOUND.
(a) set Rates[W,d, sid] := Rates[A,d, sid] + 1.
(b) if Rates[W,d, sid] ≤ wr/prVr: set worst := 0.
(c) if Rates[W,d, sid] > wr/prVr: set worst := 1.

CHECK DOUBLE SPENDING.
(d) retrieve toktk := Token[t].
(e) if Spent[t, ∗, ∗] = 0: set result := (macro, toktk).
(f) if Spent[t, ∗, ∗] ≥ 1:

i. set result := (macro, toktk, tokdp).
ii. set DBTable[d] := True.

(g) set Spent[t, sid, vpub] := Spent[t, sid, vpub] + 1.
28. Send to Pr: (pourtk, avg,worst, result).
29. Receive from Pr: ok?.
30. If ok? = 0: Send to Ps: abort.
31. If ok? = 1: Send to Ps: b.

1. Check that ∃t s.t. toktk := Token[t].
2. If so, retrieve t.
3. Check that Spent[t, sid, vpub] ≥ 1.
4. Parse sid as (ar, twr).
5. Retrieve (tk, v, a, t, infod) := Notes[t].
6. If State[t] = unspent:

(a) set State[t] := spent.
(b) sample unique coin identifier c.
(c) set Notes[c] := (cn, v − vpub, ar, clk).
(d) If ∃ P such that Addr[ar] = P :

Send to P: (ptk, cn, c, v − vpub, ar).
(e) Otherwise:

Send toA: (ptk, cn, c, v − vpub, ar).
(f) Send to Pr: (macropay).
(g) Send to all parties: (pourtk, c, vpub).

7. If State[t] = spent and Spent[t, ∗, ∗] = 1:
(a) Send to Pr: toolate.

8. If State[t] = spent and Spent[t, ∗, ∗] ≥ 1:
(a) set State[d] := spent.
(b) retrieve tokdp := Token[d].
(c) Send to all parties: (doublespend, tokdp).

Figure 2: Ideal functionality FDAM of a DAM scheme (part 2 of 2).

34

7 Construction of a decentralized anonymous micropayment scheme
We present our construction of a decentralized anonymous micropayment (DAM) scheme (see Section 6 for its
definition); the main building blocks are DAP schemes (see Section 5) and FMT schemes (see Section 4). This section
is organized as follows: in Section 7.1 we informally describe our construction; in Section 7.2 we describe additional
building blocks; in Section 7.3 we give the pseudocode of our construction (see Figures 3, 4, 5); in Section 7.4 we state
the theorem that asserts security, and its proof is in Appendix C.

7.1 Informal description
Recall that a DAM scheme is a tuple of algorithms:

DAM =

 Setup
CreateAddr
ReceiveL

MintCoinL

MintDepositL

MintTicketL

PourCoinToCoinL

PourCoinToDepositL

PourCoinToTicketL

PourTicketL

WithdrawDepositL

RefreshTicketL
Punish
VerifyTransactionL

 .

We sketch the construction of these in Section 7.1.1 and Section 7.1.2, and then separately discuss security intuition in
Section 7.1.3 and ‘pour regulation’ in Section 7.1.4.

7.1.1 Informal algorithm descriptions

Setup. The algorithm DAM.Setup samples public parameters for the various building blocks that we use, which
includes DAP schemes and FMT schemes, as well as one-time signature schemes and NIZKs (see Section 7.2).
Creating addresses. The algorithm DAM.CreateAddr samples a new address key pair by running DAP.CreateAddr
with the address information set to the probabilistic payment specification and outputting its result; in other words,
DAM addresses are simply addresses of the underlying DAP scheme. Receivers must bind their intended payment rates,
probability, and value to the address by passing it as input to DAM.CreateAddr (other users can set it to ⊥ if they do
not intend to receive probabilistic payments).
Receiving coins. The algorithm DAM.Receive, given an address key pair, retrieves all the unspent coins sent to this
address by simply running DAP.Receive. Indeed, DAM pour-coin, pour-ticket, withdraw, and refresh transactions can
be viewed as DAP pour transactions, and so DAP.Receive may retrieve from these any relevant coins.
Minting notes. Each of the minting algorithms DAM.MintCoin, DAM.MintDeposit, and DAM.MintTicket first sets
the public information string pub to the type of the note being minted (respectively, cn, dp, or tk), and sets the secret
information string sec accordingly: for coins, sec equals ⊥; for deposits, sec is a commitment to the deposit’s receiver
address set R; for tickets, sec equals the (already-minted) deposit that backs it. Then, the algorithm mints the note by
running DAP.Mint.
Pouring coins. Each of the algorithms DAM.PourCoinToCoin, DAM.PourCoinToDeposit, DAM.PourCoinToTicket
first sets the public and secret information strings similarly to above, and then runs DAP.Pour to generate the new notes.
A DAM scheme also includes a protocol for pouring tickets into coins, which we discuss separately in Section 7.1.2
because it is the most complex part of the construction.
Withdrawing deposits. The algorithm DAM.WithdrawDeposit, given a deposit d (and its address secret key) and
address public key apk, pours the deposit into a new coin c with address apk by running DAP.Pour. The output consists
of the new coin c, as well as a withdraw transaction txwd that is just a DAP pour transaction having activation delay
∆w. Since pour transactions reveal the serial numbers of input notes, it is easy to blacklist the withdrawn deposit (see
Section 7.1.2).
Refreshing tickets. The algorithm DAM.RefreshTicket, given a ticket t (and its address secret key) and address
public key apk, pours the ticket into a new one with address apk by using DAP.Pour; no information about the ticket
(except its serial number) is revealed in a refresh transaction. The output pour transaction has activation delay ∆r.
(Recall that ticket refreshes enable honest users to avoid double spending when dealing with malicious merchants; see
Section 6.3.)

35

Punishing double spenders. The algorithm DAM.Punish, given as input two pour-ticket transactions txpt and tx′pt

and a deposit blacklist, recovers from the pour-ticket transactions the serial number sn and identifier id of the deposit
that backed both payments and adds it to the deposit blacklist. It then outputs a punish transaction txpun consisting of
(txpt, tx

′
pt, sn, id). Once txpun appears on the ledger, d’s serial number becomes public, and d is considered revoked.

Verifying transactions. The algorithm DAM.VerifyTransaction, given a transaction tx, conducts different verifications
on tx depending on its type.

1. Mint transaction. DAM.VerifyTransaction passes the transaction directly to DAP.VerifyTransaction.

2. Pour-coin, withdraw, and refresh transactions. DAM.VerifyTransaction first checks that the type specified in
the transaction information string info of tx contains the correct type for the input notes, and then passes tx to
DAP.VerifyTransaction.

3. Pour-ticket transaction. DAM.VerifyTransaction retrieves from tx a “pour-ticket” zero-knowledge proof (which
we discuss later in Section 7.2.7) and verifies it, and also retrieves from tx a DAP pour transaction and uses
DAP.VerifyTransaction to verify it.

4. Punish transaction. Punish transactions contain two pour-ticket transactions (allegedly both about the same double-
spent ticket) and a deposit d (allegedly backing that ticket); the DAM.VerifyTransaction verifies that both pour-ticket
transactions are valid and, moreover, that one can recover d from these two by combining two shares of d contained
in each of these pour-ticket transactions (we discuss later in Section 7.2.5 how we do this secret sharing).

7.1.2 A 3-message protocol for probabilistic payments

We outline the construction of DAM.PourTicket, a 3-message protocol that realizes an offline probabilistic payment
between a sender (customer) and receiver (merchant); see Figure 4 for details. For simplicity, we only discuss
enforcement of the worst-case payment rate bounds; enforcement of the average-case bound is achieved via essentially
the same ideas. Recall that the worst-case bound limits the number of macropayments that occur in a particular time
window tw.
1st message (sender← receiver). The first message of the protocol is from the receiver to the sender and consists
of the receiver’s session identifier sid, session public key spk, the list of deposits D that have been blacklisted in this
epoch, and the desired public value vpub. These are constructed as follows. Suppose that the receiver has an address
key pair (apkc, askc) and wishes to receive payments at this address with payment probability pr and macropayment
value Vr; moreover, suppose that the receiver’s per-deposit maximum cumulative average-case payment value rate is
ar. Then the receiver constructs his session identifier as sid := (apkc, twr). To construct the session public key, the
receiver samples a new key pair (pkSIG, skSIG) for the one-time signature scheme, and a new key pair (pkFMT, skFMT)
for the fractional message transfer scheme and sets spk := (pkFMT, pkSIG). Finally, the deposit blacklist D consists of
the identifiers of deposits seen in punish transactions within the current epoch.
2nd message (sender→ receiver). The sender now pours his ticket t into a new coin c using DAP.Pour, and then
uses fractional message transfer to probabilistically transmit the new coin c to the receiver, while also proving, in zero
knowledge, that he did so correctly. We now expand on this description, which hides subtle aspects of our construction.

After pouring his ticket t into a new coin c (which results in a DAP pour transaction txp), the sender uses the deposit
d backing t to generate two crucial quantities: the worst-case rate limit tag wrlt and the double spend tag dst. The rate
limit tag allows the receiver to enforce the payment value rate bounds required by the economic analysis. The double
spend tag allows the receiver to extract deposit revocation information if and only if t is spent in two macropayments.

A natural strategy would be for the sender to send to the receiver, in the clear, the rate limit tag wrlt, and a FMT
ciphertext cFMT containing txp and dst, along with a non-interactive zero knowledge proof that both were generated
correctly. However, doing so does not preserve privacy. Indeed, to ensure that the sender cannot double spend the ticket
to herself and escape punishment, the ledger needs to check that the double spend tag was generated correctly. This can
be done by verifying the NIZK proof, but to do this would require including the FMT ciphertext, blacklist detection tag,
and rate limit tag as part of the NP instance being verified. This is problematic, since publishing these leaks information
about the transfer probability pr and the deposit, both of which are private information.

36

To fix this problem, the sender hides wrlt and cFMT inside two commitments ω0 and ω1, and then computes a proof of
correctness relative to these commitments. More precisely, the first commitment ω0 hides m0 := (sid, spk, vpub, cFMT),
where sid, spk, and vpub are the receiver’s session identifier, session public key, and public value respectively, and cFMT

is a FMT ciphertext. The FMT ciphertext cFMT, as before, contains wrlt, txp and dst, but now also contains randomness
r1 that opens the second commitment ω1, which in turn hides m1 := (txp, dst,wrlt). Thus opening the FMT ciphertext
allows the receiver to open ω1 and obtain the correct txp, dst,wrlt. Next, the sender generates a non-interactive zero
knowledge proof of knowledge πpt asserting that he performed all these steps correctly (see Section 7.2.7). The NIZK
also asserts (a) that the deposit d’s receiver address set R contains the receiver’s address public key apk, (b) that d’s
identifier has not appeared in punish transactions in the current epoch, and (c) that d’s serial number has not appeared
on the ledger prior to the current epoch (that is, d was not revoked or withdrawn in prior epochs).

Finally, he sends (ω0,m0, ω1, πpt) and randomness r0 for opening ω0 to the receiver. Since the proof is now
computed relative to ω0 and ω1, and not cFMT and wrlt, it can safely be published to the ledger.
3rd message (sender← receiver). The receiver uses r0 and m0 to open ω0 and checks that the committed sid, spk
and vpub are indeed the correct ones (which were sent in the first message). Next, he checks the correctness of πpt, and
finally, using the rate limit tag, he checks that the payment value rate ar has not been exceeded. If these checks pass, he
tries to open the FMT ciphertext cFMT inside ω0. If he is able to successfully open it, he can open ω1 to obtain txp and
dst. If the ticket t has already been spent (i.e., the deposit d has been blacklisted), the receiver recovers the deposit and
creates a punish transaction txpun. If not, he posts txp to obtain his payment. Finally, he sends to the sender the secret
key skFMT used for decryption, and m′, which is the outcome of decryption, to communicate whether the outcome was
‘macropayment’ or ‘nullpayment’.
Outcome verification. Upon receiving the FMT secret key, the sender checks that the FMT ciphertext cFMT decrypts
to claimed message m′ under the key skFMT; this reveals whether the claimed outcome was the correct one. If the
receiver sends an incorrect secret key, or does not send anything at all, the sender refreshes his ticket, thereby generating
a new ticket t′ and a refresh transaction txref .

7.1.3 Security considerations

We give an intuitive justification of why the probabilistic payment protocol is secure.
Sender security. The fractional hiding property of the FMT scheme ensures that the receiver can only open cFMT

with probability pr. Since the commitment ω1 is hiding and the proof πpt is zero knowledge, the rest of the sender’s
message is indistinguishable from random. Finally, the security of the “outcome verification” step is guaranteed by the
fractional hiding property of the FMT scheme; if the receiver could generate two different secret keys that can decrypt
the same FMT ciphertext to different messages, then he could bias the probability of opening the ciphertext in his favor,
thus breaking fractional hiding.

The above ensures “intra-protocol” sender security. Post-protocol security requires that the receiver cannot
compromise the honest sender’s anonymity or cause monetary loss by aborting. This is achieved by allowing the sender
to refresh tickets by pouring them into new ones. This breaks the link between the ticket that the receiver has seen and
the ticket that the sender can now spend, enabling the sender to freely spend his new ticket.
Receiver security. Opening ω0 allows the receiver to check that the sender generated the rate limit tags relative to
the true session identifier and public key. The fractional binding property of the FMT scheme ensures that the sender
cannot alter the probability of opening cFMT. The NIZK proof ensures the correctness of each step.

The above ensures “intra-protocol” receiver security. Achieving post-protocol security is trickier, since we need to
ensure that the sender can only create double spend tags that are consistent across independent pour-ticket transactions.
In our construction, the sender can attempt to bypass this requirement by manipulating the three inputs that create a
double spend tag: the randomness x used for generating the tag, and the deposit d that is hidden in the tag, and the
ticket t that d backs.

Preventing reuse of randomness. To prevent recovery of the deposit serial number from multiple double spend tags,
the sender could attempt to reuse randomness across each tag. This would prevent recovery, since each receiver
would possess the same tag. To prevent this, our construction of a double spend tag dst uses a special one-time
signature public key pkSIG as randomness. Later, upon receiving the tag, the receiver signs the tag (among other

37

things) with the secret key skSIG corresponding to pkSIG. To create two different pour-ticket transactions with the
same double spend tag (one to an honest receiver and one back to himself), the sender would thus have to forge a
signature, which is computationally infeasible by the security of the signature scheme.

Ensuring d backs t. The NIZK proof created by the sender ensures that the deposit d hidden in the double spend tag
is the one backing t.

‘Identical’ tickets backed by different deposits. In principle, one could construct two tickets t, t′ that have the same
serial number (and are thus indistinguishable from the point of view of double spending), but are backed by different
deposits. Since t and t′ would share serial numbers, only one of the two could be successfully spent. This could lead
to the following attack: the sender generates two such tickets, and pays himself with one, and pays a receiver with
the other. When a macropayment occurs, he front runs the receiver to get his self-payment onto the ledger first. The
receiver is then robbed of his payment, but also cannot punish the sender, since the double spend tags hide different
deposits, making revocation impossible.

However, our construction prevents such an attack by ensuring that the serial number of a note is derived (in part)
from its secret information string sec. This property is guaranteed by the DAP scheme (see Sections 5.1 and 5.4).8

7.1.4 Regulating type transitions when pouring

The definition of a DAM scheme restricts fund transfers between different note types: coins can be poured into coins,
deposits, or tickets; a deposit can be poured into a coin; a ticket can be poured into a coin or ticket. Moreover, some type
transitions are handled differently from others: for example, pouring from a set of coins yields a pour-coin transaction
that is immediately valid, while pouring from a ticket to a ticket yields a refresh transaction that only becomes valid
after a waiting period (the activation delay). We realize most of these fund transfers via DAP pours, but we must also
somehow meet the aforementioned restrictions.

The first obstacle is that a note’s type is not necessarily known, because we store the type of note in its public
information string pub, which is not revealed by a DAP pour transaction. But remember that a DAP scheme allows
us to choose, at parameter setup time, a pour predicate that regulates all pour transactions. We thus engineer a pour
predicate Π∗p , tailored for our application, that (i) allows only the aforementioned type transitions, and (ii) ensures that
the information string info in a DAP pour transaction correctly exposes the type of the note from which we are pouring;
see Section 7.2.2 for more details. (It turns out that explicitly exposing the type of output coins is not needed.)

7.2 Building blocks
In addition to DAP schemes (Section 5) and FMT schemes (Section 4), our construction uses standard cryptographic
tools (Section 7.2.1), as well as several DAM-specific building blocks: the ‘DAM pour predicate’ (Section 7.2.2), means
of enforcing payment value rate limits (Section 7.2.3), detecting recently revoked deposits (Section 7.2.4), secret sharing
for double spend tags (Section 7.2.5), receiver set Merkle trees (Section 7.2.6), and non-interactive zero knowledge
proofs of knowledge for a ‘pour-ticket’ NP relation (Section 7.2.7).

7.2.1 Standard cryptographic tools

Collision-resistant hash functions. A collision-resistant hash function CRH is a function for which it is computa-
tionally infeasible to find two inputs x, y such that x 6= y but CRH(x) = CRH(y). We use CRH in our construction of
double spend tags; see Section 7.2.5. (More precisely, CRH is a family indexed by public parameters; for notational
simplicity, we do not make these explicit in our construction.)
Pseudorandom functions. A pseudorandom function PRF is a function family, indexed by a random seed, whose
outputs are computationally indistinguishable from random; we denote by PRFs(x) the output of the function when the
seed is s, and the input is x. We also assume that PRF is collision resistant, i.e., it is computationally infeasible to find
(s, x) 6= (s′, x′) such that PRFs(x) = PRFs′(x

′). We use PRF to generate rate limit tags (see Section 7.3).

8Note that the zero knowledge proof in the construction cannot prevent such an attack because it has no knowledge of other tickets.

38

Commitment schemes. A (non-interactive) commitment scheme COMM enables a party to generate a (statistically)
hiding and (computationally) binding commitment to a given message. Namely, for every two messages x, y the
distributions COMMr(x) and COMMr(y) are statistically close for random r; moreover, it is computationally infeasible
to find two messages x, y and randomness r, r′ such that x 6= y but COMMr(x) = COMMr′(y). (More precisely,
COMM is a family indexed by public parameters; for notational simplicity, we do not make these explicit in our
construction.)
One-time signature schemes. A one-time signature scheme is a signature scheme SIG := (SIG.Setup,SIG.Keygen,
SIG.Sign,SIG.Verify) that guarantees message unforgeability only if a key pair is used once. The algorithms have the
following syntax: (i) on input a security parameter, SIG.Setup samples public parameters ppSIG; (ii) on input ppSIG,
SIG.Keygen outputs a key pair (pkSIG, skSIG); (iii) on input public parameters ppSIG, a secret key skSIG, and a message
x, SIG.Sign outputs a signature σ for x; (iv) on input public parameters ppSIG, a public key pkSIG, a message x, and a
purported signature σ, SIG.Verify outputs a bit denoting whether σ is a valid signature for x under public key pkSIG.

7.2.2 Choice of mint and pour predicate

Recall that DAP.Setup takes as input two predicates: a mint predicate Πm that regulates the minting of coins, and
a pour predicate Πp that regulates the pouring of coins. In our DAM scheme construction, we leverage both a mint
predicate Πm := Π∗m and a pour predicate Πp := Π∗p .

• Mint predicate. The mint predicate Π∗m regulates minting of tickets, and ensures that the public key of a ticket is the
same as the public key of the underlying deposit.

• Pour predicate. The pour predicate Π∗p (a) allows only certain type transitions among coins, deposits, and tickets;
and (b) enforces the correct activation delays on these type transitions. To check type transitions, we store a note’s
type (coin, deposit, or ticket) in the note’s public information string, and then Π∗p allows only the following type
conversions: coins can be poured into coins, deposits, or tickets; deposits can be poured into coins; tickets can be
poured into coins or tickets. Additionally, when pouring coins or tickets to tickets (i.e., via DAM.PourCoinToTicket
or DAM.RefreshTicket), Π∗p enforces that the public keys of input and output notes must all be equal. Depending
on the type transition, Π∗p enforces the correct activation delay: zero for all, except ∆r when refreshing a ticket
(i.e., ticket to ticket) and ∆w when withdrawing a deposit (i.e., deposit to coin). In detail, we define Π∗p as follows
(dropping unused inputs):

Π∗m


ledger time L.Len,

public key apk,
public information pub,
secret information sec

 Π∗p


ledger time L.Len,

old input notes [ni]
m
1 ,

new public keys [apkj]
n
1 ,

new public information [pubj]
n
1 ,

transaction information string info,
activation delay ∆


1. If pub = tk: check that d.apk = apk. 1. Parse info as (info′, tp) and check that tp ∈ {cn, dp, tk}.

2. For i ∈ {1, . . . ,m}: check that ni.pub = tp.
3. If tp = cn:

(a) check that there exists tp′ ∈ {cn, dp, tk} such that pubj = tp′ (for all j) and ∆ = 0.
(b) if pubj = tk: check that for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}:

i. ni.apk = apkj
ii. dj .apk = apkj .

4. If tp = dp:
(a) check that m = n = 1, pub1 = cn, and ∆ = ∆w.

5. If tp = tk:
(a) check that m = n = 1 and pub1 ∈ {cn, tk};
(b) if pub1 = cn: check that ∆ = 0;
(c) if pub1 = tk: check that ∆ = ∆r and that n1.apk = n1.sec.apk = apk1.

7.2.3 Enforcing payment value rates

The deposit value bounds in the economic analysis of Section 3 require receivers to enforce payment value rates within
a particular time window. To prove that he has not exceeded the bounds on these rates, the sender constructs a rate limit

39

tag and sends it over to the receiver. The receiver maintains a payment counter that allows him to use the received rate
limit tag to check whether or not the payment value rate has been exceeded.
Rate limit tags. Rate limit tags enable enforcement of payment value rate bounds while simultaneously ensuring
privacy and unlinkability of payments backed by the same deposit. A sender computes a rate limit tag by evaluating a
PRF seeded by a deposit’s secret key askd on a non-repeating counter ctr, the merchant’s session identifier sid, and the
current ledger epoch L.Epoch.

Our construction uses two different kinds of rate limit tags: one to track the number of probabilistic payments a
deposit d has backed, and one to track the number macropayments d has backed. To prevent collisions between the two
(which can leak information about the origin of a probabilistic transaction), we compute the two with different PRFs.
We wrap up the computation of rate limit tags into specialized interfaces detailed below.

ARLT.CreateTag WRLT.CreateTag

deposit secret key askd
session identifier sid

current ledger epoch L.Epoch

average-case counter actr worst-case counter wctr

average-case rate limit tag arlt worst-case rate limit tag wrlt

1. arlt← PRF′askd
(sid‖L.Epoch‖wctr). 1. wrlt← PRF′′askd

(sid‖L.Epoch‖actr).
2. Output arlt. 2. Output wrlt.

Payment counters. The payment counter P is a set data structure that has two associated algorithms:
• PC.Add(P, rlt, f)→ P′.

This algorithm takes as input a payment counter P, a rate limit tag rlt and a flag f ∈ {A, W} that decides whether P
should count the input tag towards the average-case or worst-case bounds, and outputs an updated payment counter
P′ that also contains rlt.

• PC.CheckCounter(P, rlt, f)→ b.
This algorithm takes as input a payment counter P, a rate limit tag rlt and a flag f ∈ {A, W} (to decide whether P
should check the average-case or worst-case rate limits) and outputs a bit b such that b = 1 if and only if rlt is already
in P (our construction of rate limit tags ensures that such a collision can happen if and only if the sender exceeds the
rate limit set by the merchant).9

7.2.4 Detecting revoked deposits

The deposit value bounds in the economic analysis of Section 3 require receivers to detect and reject payments backed
by deposits that have been blacklisted in the current epoch just before the latest time window. To enable this while
simultaneously hiding information about the deposit, the receiver maintains a deposit blacklist that is reset every epoch.
When a sender wishes to initiate a probabilistic payment, the receiver sends over this (short) list, and the sender proves
that his deposit is not in the blacklist (see Section 7.2.7 for details of this proof).
Deposit blacklist. The deposit blacklist D is a set data structure containing all the deposit identifiers seen in punish
transactions published in the current epoch. It has the following interface:

Updating blacklists: DB.Add(D, id)→ D′.

This algorithm takes as input a deposit blacklist D, a deposit’s identifier id and outputs a new deposit blacklist
D′ := D ∪ {id}.

Committing to a blacklist: DB.Comm(D)→ γD.

This algorithm takes as input a deposit blacklist D and outputs a commitment γD to D that allows later proofs of
non-membership in D.

9Note that even if the sender is dishonest and double spends, the payment counter does not compromise anonymity, since the rate limit tag is
pseudorandom to the receiver. Furthermore, if the list of tags is sorted, finding collisions can be done efficiently via binary search.

40

Proving non-membership: DB.Prove(D, id)→ πD.

This algorithm takes as input a deposit blacklist D and a deposit identifier id, and outputs a proof πD that D does not
contain id.

Verifying non-membership: DB.Verify(γD, id, πD)→ b.

This algorithm takes as input a deposit blacklist commitment γD, a deposit identifier id, and a proof πD, and outputs a
bit b denoting whether or not πD is a valid proof of non-membership relative to γD.

7.2.5 Creating double spend tags and recovering deposits

When a ticket t participates in a probabilistic payment that results in a macropayment, the receiver obtains, and appends
to the ledger, a pour-ticket transaction txpt. We include in txpt a double spend tag dst, whose purpose is to allow
revocation of t’s deposit d if t is ever involved in another probabilistic payment that results in a macropayment (which
is a detectable double spend). We thus set the double spend tag dst to be a 2-out-of-n secret share [Sha79] of the deposit
d’s serial number sn and identifier id, so that any single double spend tag dst in a pour-ticket transaction txpt does not
leak information about d, but together with an additional double spend tag dst′ in another pour-ticket transaction tx′pt

(relative to the same ticket) allows anyone to recover sn and id and blacklist the deposit. (Our technique is similar to
that used in [Bra93, Fer93] to obtain traceability after double spends.)

For notational simplicity, we “wrap” the secret-sharing functionality inside a double spend tag interface that consists
of two algorithms (DST.CreateTag,DST.GetSecret) for the two tasks of creating a double spend tag and of recovering
a deposit from two pour-ticket transactions relative to the same (double-spent) ticket, as follows.

• DST.CreateTag takes as input a ticket t, the t’s address secret key askt, a deposit d, d’s address secret key askd,
and a session public key spk (of the probabilistic payment), and pseudorandomly constructs the double spend tag as
follows: retrieve from spk the one-time signature public key pkSIG; compute sn and id from d and askd; construct
the line ` that has slope PRFaskt(GetID(t, askt)) and evaluates to sn‖id at zero; set dst to be the value of ` at
CRH(pkSIG). (The use of CRH here is merely to shrink pkSIG to fit in an element of the underlying implicit finite
field, if needed.)

• DST.GetSecret takes as input two pour-ticket transactions txpt, tx
′
pt, and recovers the serial number sn and identifier

id of the deposit d that backed both payments as follows: retrieve from txpt a one-time signature public key pkSIG

and double spend tag dst and similarly retrieve pk′SIG and dst′ from tx′pt; recover the line `(X) that passes through
the points (x, y) := (CRH(pkSIG), dst) and (x′, y′) := (CRH(pk′SIG), dst′); set (sn‖id) to be the value of ` at zero.

Selecting the line ` depending on the ticket identifier ensures that different probabilistic payments that use the same
ticket will refer to the same line. (It is computationally infeasible to mint different tickets that share the same secret
key and, moreover, the deposit d is computationally bound to the ticket at ticket minting time.) Furthermore, each
probabilistic payment evaluates ` at a different point by using different one-time public keys (chosen by the receiver), to
ensure that a malicious sender does not reveal the same share in two different macropayments (which would prevent
recovery of ` from those two macropayments). Note that we are forced to use CRH(pkSIG) as the evaluation point,
rather than simply using CRH(spk) = CRH(pkFMT, pkSIG), because others would need to know CRH(spk) to recover
the hidden secret, and this may reveal information about pkFMT, and thus also about the payment probability pr, thereby
revealing private information about the payment. The pseudocode below summarizes the construction described above.

41

DST.CreateTag DST.GetSecret

ticket t pour-ticket transactions txpt and tx′pt

ticket address secret key askt
deposit d
deposit address secret key askd
session public key spk

double spend tag dst deposit serial number sn and identifier id

1. Compute sn← GetSN(d, askd); id← GetID(d, askd). 1. Set x := CRH(pkSIG), where pkSIG is the one-time signature public key in txpt.
2. Set secret s := sn‖id. 2. Set y := dst, where dst is the double spend tag in txpt.
3. Set point t := CRH(spk.pkSIG). 3. Set x′ := CRH(pk′SIG), where pk′SIG is the one-time signature public key in tx′pt.
4. Set slope m := PRFaskt (GetID(t, askt)). 4. Set y′ := dst′, where dst′ is the double spend tag in tx′pt.
5. Construct line `(X) := m ·X + s. 5. Interpolate points (x, y) and (x′, y′) to recover the line `.
6. Compute dst := `(t) = m · t+ s. 6. Compute sn‖id := `(0).
7. Output dst. 7. Output (sn, id).

7.2.6 Receiver address set Merkle tree

Recall that to successfully enforce payment rates, we associate with each deposit a “receiver address set”. The deposit’s
value then needs to be large enough to support transactions with the receivers in this set. Thus, to pay a receiver having
address public key apk with a ticket t, a sender must prove that apk is in the receiver address set R of t’s deposit, and
that the value of this deposit is greater than (1)

∑
r∈Rwr for the worst-case bound; and (2) (

∑
r∈R ar) + maxr∈R Vr

for the average-case bound.
To enable efficient proofs of these, we construct a monotonic Merkle tree over the receiver address set. Such a

tree not only enables efficient proofs of membership, but also enables efficient proofs of the fact that for any tree,
the value at the root is the true aggregate of those elements in the set for which a valid path exists in the tree. For
concreteness, below we discuss these properties with respect to summation; obtaining similar guarantees for other
aggregation operations is straightforward. Such summation Merkle trees have been considered before (see [Wil14] and
[NBF+16, pg. 93]).

A summation Merkle tree is constructed as follows: the leaves consist of elements of a set, and each internal
node stores the sum s = vl + vr of the values vl, vr of its children, and also stores a hash h = CRH(left‖right‖s) of
the children and their sum. Aside from providing an efficient set membership proof (like standard Merkle trees), a
such a tree also provides the following guarantee: if there are n valid authentication paths in the tree (for leaf values
v1, . . . , vn), then the sum at the root is at least

∑n
i=1 vi.

10 This guarantee is sufficient for our needs, because our
economic analysis only requires the deposit to be as large as the cumulative payment rates for the merchants a sender
transacts with. If a path in the tree is not valid, the path verification step in the zero knowledge proof (see Section 7.2.7)
will fail, causing the receiver to terminate the transaction. Thus the sender will only be able to transact with those
receivers for whom he can produce a valid authentication path.

The above idea can be extended in a straightforward manner to support other aggregation operations like max, min,
multiplication, etc., with suitably modified notions of comparison. We use such monotonic Merkle trees to enable the
proofs required for successful probabilistic payment, wrapping up calls to the data structure into a Receiver Set Tree
(RST) interface:

1. Set commitment. RST.Comm(R) → αR. On input a receiver address set R, RST.Comm generates a short
commitment αR to the set.

2. Proving membership and summation. RST.Prove(R, apk)→ πR. On input a receiver address set R and an address
public key apk, RST.Prove outputs a proof πR of the following.

(a) Valid receiver address: apk ∈ R.
10This is easy to verify: we proceed via induction on n. The case for n = 1 is trivial. Assume that the hypothesis is true for n = k. Then we

prove that if the k + 1th path is valid, then the sum at the root is
∑k+1
i=1 li.

Let the k + 1th path intersect a previous path pi at an internal vertex v, and let the values of the two paths at v be different. Since both paths are
valid, the hashes at v must be equal. But these two facts cannot be reconciled unless the collision resistance of the hash function is broken. Since we
assume collision resistance, this means that the values of v in both pi and pk+1 must be equal. This means that v ≥ li + lk+1. Propagating this sum
up the tree, we obtain that the sum at the root must be at least as large as

∑k+1
i=1 li.

42

(b) Worst-case bound: αR.W ≥ apk.wr, where W is the sum of the worst-case bounds in R.
(c) αR.A + αR.Vmax ≥ apk.ar + apk.Vr, where A is the sum of the average-case bounds in R, and the Vmax is the

maximum transaction value among all the addresses in R.

Proofs for these conditions can be obtained easily from the aforementioned monotonic Merkle trees.

3. Verifying proofs. RST.Verify(αR, πR)→ b. On input a commitment to a receiver address set αR and a (claimed)
proof of membership and deposit size πR, RST.Verify outputs a bit b denoting if πR is a valid proof relative to αR.

7.2.7 The pour-ticket NP relation

We use non-interactive zero knowledge proofs of knowledge to enable a sender (customer) to prove to a receiver
(merchant) that he has committed to well-formed double spend tag, new coin, and pour transaction. More precisely,
the proofs have to be simulation extractable, i.e., they continue to be proofs of knowledge even given previous
simulated proofs [Sah99, DDO+01]. This primitive is a tuple NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) with
the following syntax: (i) (setup) given a security parameter λ and the specification of an NP relationR, NIZK.Setup
outputs a common reference string crs; (ii) (proving) given crs and an instance-witness pair (x,w) ∈ R, NIZK.Prove
outputs a proof π; (iii) (verifying) given crs, instance x, and proof π, NIZK.Verify outputs a decision bit. We use the
primitive NIZK only for the following NP relation.
The NP relationRpt. The NP relationRpt consists of instance-witness pairs (x,w) of the form

x := (L.Len,L.SNRoot,L.CMRoot, pkSIG, ω0, ω1)

w :=

(
t, askt,d, askd c, txp, info πR, πsn, πcm, πD cFMT, r0, r1sid, spk, vpub dst, arlt,wrlt actr,wctr, γD

)
that satisfy the following conditions.

Condition Explanation

sid = (apkc, twr) The session identifier sid has the correct contents.

spk = (pkFMT, pkSIG) The session public key spk has the correct contents.

t.pub = tk & t.sec = d & t.v = V + vpub The ticket t is backed by the deposit d and is of the correct value.

(d.apk, askd) ∈ DAP.CreateAddr(pp.ppDAP,⊥) The address secret key askd is paired with d’s address public key.

d.pub = dp The deposit d
RST.Verify(d.sec, apkc, πR) = 1 has large enough value and can be used in a payment to apkc,
L.CMVerify(L.CMRoot,d.cm, πcm) = 1 was minted,
L.SNVerify(L.SNRoot,GetSN(d, askd), 0, πsn) = 1 its serial number is not on the serial number list, and
DB.Verify(γD,GetID(d, askd), πD) = 1 its identifier is not in the receiver’s deposit blacklist.

actr ∈ {1, . . . , ar/prVr} The average-case rate limit tag arlt is computed correctly.
arlt = ARLT.CreateTag(askd, sid, actr)

wctr ∈ {1, . . . ,wr/prVr} The worst-case rate limit tag wrlt is computed correctly.
wrlt = WRLT.CreateTag(askd, sid,wctr)

dst = DST.CreateTag(t, askt,d, askd, spk) The double spend tag dst is computed correctly.

pub = cn & sec = ⊥ & info′ = (info, tk)
The new coin c and pour transaction txp are computed correctly.

(c, txp) ∈ DAP.PourL(pp.ppDAP, t, askt, Vr, apkc, pub, sec, vpub, info′, 0)

cFMT ∈ FMT.Encrypt(ppFMT, pkFMT, (txp, dst,wrlt, r1)) The FMT ciphertext and
ω1 = COMMr1

(txp, dst,wrlt)
commitments are computed correctly.

ω0 = COMMr0
(sid, spk, vpub, γD, cFMT, arlt)

43

7.3 Construction

DAM.Setup DAM.CreateAddr DAM.ReceiveL

security parameter 1λ public parameters pp public parameters pp
— probabilistic payment specification spec address key pair (apk, ask)

public parameters pp address key pair (apk, ask) set of (unspent) received notes

1. ppDAP ← DAP.Setup(1λ,Π∗m,Π
∗
p) 1. meta := spec 1. output DAP.ReceiveL(pp.ppDAP, (apk, ask))

2. ppFMT ← FMT.Setup(1λ) 2. (apk, ask)← DAP.CreateAddr(pp.ppDAP,meta) (Pour-coin, pour-ticket, withdraw, and refresh
transactions can be viewed as DAP pour transac-
tions, and so DAP.Receive can retrieve unspent
notes from them.)

3. ppSIG ← SIG.Setup(1λ) 3. output (apk, ask)

4. crspt ← NIZK.Setup(1λ,Rpt)
5. output pp := (ppDAP, ppFMT, ppSIG, crspt)

DAM.MintCoinL DAM.MintDepositL DAM.MintTicketL

public parameters pp
value v

address public key apk

— receiver address set R deposit number d

coin c such that deposit d such that ticket t such that
c.pub = cn d.pub = dp t.pub = tk
c.sec = ⊥ d.sec = a commitment to R t.sec = d

mint transaction txm

1. pub := cn 1. pub := dp 1. pub := cn

2. sec := ⊥ 2. sec := RST.Comm(R) 2. sec := d

3. (n, txm)← DAP.Mint(pp.ppDAP, v, apk, pub, sec)
4. output (n, txm)

DAM.PourCoinToCoinL DAM.PourCoinToDepositL DAM.PourCoinToTicketL

public parameters pp
old coins [ci]

m
1

old address secret keys [aski]
m
1

new note values [vj]
n
1

new address public keys [apkj]
n
1

public value vpub

transaction information string info

— receiver address sets [Rj]
n
1 deposits [dj]

n
1

new coins [cj]
n
1 such that new deposits [dj]

n
1 such that new tickets [tj]

n
1 such that

cj .pub = cn dj .pub = dp tj .pub = tk

cj .sec = ⊥ dj .sec = a commitment to Rj tj .sec = dj

pour-coin transaction txpc

1. pubj := cn 1. pubj := dp 1. pubj := tk

2. secj := ⊥ 2. secj := RST.Comm(Rj) 2. secj := dj

3. info′ := (info, cn)

4. ([nj]
n
1 , txp)← DAP.PourL(pp.ppDAP, [ci]

m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info′, 0)

5. output ([nj]
n
1 , txpc), where txpc := txp

DAM.WithdrawDeposit DAM.RefreshTicketL DAM.Punish

public parameters pp public parameters pp pour-ticket transactions txpt and tx′pt

old deposit d old ticket t current deposit blacklist D
old deposit address secret key askd old ticket address secret key askt

new coin address public key apk new ticket address public key apk
public value vpub public value vpub

transaction information string info transaction information string info

new coin c new ticket t′ punish transaction txpun

withdraw transaction txwd refresh transaction txref updated deposit blacklist D′

1. pub := cn 1. pub := tk 1. (sn, id)← DST.GetSecret(txpt, tx′pt)

2. sec := ⊥ 2. sec := t.d 2. D′ ← DB.Add(D, id)
3. v := d.v − vpub 3. v := t.v − vpub 3. txpun := (txpt, tx′pt, sn, id)

4. info′ := (info, dp) 4. info′ := (info, tk) 4. output (txpun,D
′)

5. (c, txp)← DAP.PourL(pp.ppDAP, α) where 5. (t′, txp)← DAP.PourL(pp.ppDAP, α) where
α := (d, askd, v, apk, pub, sec, vpub, info′,∆w) α := (t, askt, v, apk, pub, sec, vpub, info′,∆r)

6. output (c, txwd), where txwd := txp 6. output (t′, txref), where txref := txp

Figure 3: Construction of a DAM scheme (part 1 of 3).

44

DAM.PourTicketL

SENDER RECEIVER

public parameters pp
old ticket t
old ticket address secret key askt

deposit d
deposit address secret key askd

deposit receiver address set Rd

transaction information string info
average-case and worst-case counters actr,wctr

public parameters pp
current deposit blacklist D
current payment counter P
new coin address key pair (apkc, askc)
receiver time window twr

public value vpub

status ∈ {null, macro, fail}
if status = fail: also a new ticket t′ & refresh transaction txref

status ∈ {null, macro, fail, double}
updated payment counter P′

if status = double: also an updated blacklist D′ & punish transaction txpun

if status = macro: also a new coin c & pour-ticket transaction txpt

STEP 1: GENERATE ONE-TIME KEY PAIRS.
1. (pkSIG, skSIG)← SIG.Keygen(pp.ppSIG).
2. (pkFMT, skFMT)← FMT.Keygen(pp.ppFMT, pr).
3. γD ← DB.Comm(D).
4. sid := (apkc, twr) and spk := (pkFMT, pkSIG).

STEP 2: COMPUTE TAGS & POUR TICKET.
1. Parse sid as (apkc, twr) and spk as (pkFMT, pkSIG).
2. Parse apkc.meta as (ar,wr, pr, Vr).
3. Check that apkc is indeed the expected one.
4. arlt← ARLT.CreateTag(askd, sid, actr).
5. wrlt← WRLT.CreateTag(askd, sid,wctr).
6. dst← DST.CreateTag(t, askt,d, askd, spk).
7. v := t.v − vpub.
8. pub := cn and sec := ⊥.
9. info′ := (info, tk).

10. (c, txp)← DAP.PourL(pp.ppDAP, t, askt, v, apkc, pub, sec, vpub, info′, 0).

sid, spk,D, γD, vpub
C−−−−−−−−−−−−−−−− SEND PARAMETERS TO SENDER.

STEP 3: ENCRYPT & COMMIT.
1. Sample COMM randomness r0, r1.
2. m1 := (txp, dst,wrlt).
3. cFMT ← FMT.Encrypt(ppFMT, pkFMT,m1‖r1).
4. m0 := (sid, spk, vpub, γD, cFMT, arlt).
5. ω0 := COMMr0

(m0) and ω1 := COMMr1
(m1).

STEP 4: GENERATE PROOF OF CORRECTNESS.
1. πR ← RST.Prove(Rd, apkc).
2. πD ← DB.Prove(D,GetID(d, askd)).
3. πcm ← L.CMProve(d.cm).
4. (bsn, πsn)← L.SNProve(sn) where sn← GetSN(d, askd).
5. x := (L.Len,L.SNRoot,L.CMRoot, pkSIG, ω0, ω1).

6. w :=

(
t, askt,d, askd c, txp, info πR, πsn, πcm, πD cFMT, r0, r1sid, spk, vpub dst, arlt,wrlt actr,wctr, γD

)
.

7. πpt ← NIZK.Prove(pp.crspt,x,w). (See Section 7.2.7 for the NP relationRpt.)

SEND COMMITMENTS AND PROOF TO RECEIVER.
m0, ω0, ω1, r0, πpt

−−−−−−−−−−−−−−−−B STEP 5: VERIFY SENDER MESSAGE.
1. Parsem0 as (sid′, spk′, v′pub, γ

′
D, cFMT, arlt).

2. x := (L.Len,L.SNRoot,L.CMRoot, pkSIG, ω0, ω1).
3. If COMMr0

(m0) 6= ω0: output fail.
4. If (sid′, spk′, v′pub, γ

′
D) 6= (sid, spk, vpub, γD): output fail.

5. If NIZK.Verify(pp.crspt,x, πpt) = 0: output fail.
6. If PC.CheckCounter(P, arlt, A) = 1: output fail.
7. P′ ← PC.Add(P, arlt, A), output P′ and continue.
8. m′ ← FMT.Decrypt(ppFMT, skFMT, cFMT).
9. Ifm′ = ∅: output null and skip Step 6.

STEP 6: CHECK FOR DOUBLE SPENDING. (only ifm′ 6= ∅)
1. Parsem′ as (m1‖r1), andm1 as (txp, dst,wrlt).
2. Parse txp as (ts, 0, sn, cm, vpub, info, ∗).
3. If PC.CheckCounter(P,wrlt, W) = 1: output fail.
4. P′ ← PC.Add(P,wrlt, W), output P′ and continue.
5. mSIG := (txp, dst, ω0, ω1, r1, πpt).
6. σ ← SIG.Sign(ppSIG, skSIG,mSIG).
7. ∗′ := (∗, (pkSIG,mSIG, σ)).
8. txpt := tx′p where tx′p := (ts, 0, sn, cm, vpub, info, ∗′).
9. Search L for a transaction tx′pt s.t. tx′pt.sn = txpt.sn.

10. If such a transaction exists:
(a) (txpun,D

′)← DAM.Punish(txpt, tx′pt,D).
(b) Output double and (txpun,D

′).
11. If no such transaction exists:

(a) L′ := (txp).

(b) c← DAP.ReceiveL
′
(pp.ppDAP, (apkc, askc)).

(c) Output macro and (c, txpt).

STEP 7: DEDUCE OUTCOME OF PAYMENT.
1. If FMT.Decrypt(ppFMT, skFMT, cFMT) 6= m′:

(a) (t′, txref)← DAM.RefreshTicketL(pp, t, askt, t.apk, vpub, info).
(b) Output fail and (t′, txref).

2. Ifm′ = ∅: output null.
3. Ifm′ 6= ∅: output macro.

m′, skFMT
C−−−−−−−−−−−−−−−− SEND COMMITMENT OPENING AND RANDOMNESS TO SENDER.

Figure 4: Construction of a DAM scheme (part 2 of 3).
45

DAM.VerifyTransactionL

public parameter pp
transaction tx

bit b denoting if tx is valid

If any of the checks below fail, output 0.

1. If tx is a mint transaction:
(a) check that DAP.VerifyTransactionL(pp.ppDAP, txm) = 1

2. If tx is a pour-coin transaction:
(a) View tx as a DAP pour transaction txp

(b) Check that txp.info = (info′, cn)

(c) Check that DAP.VerifyTransactionL(pp.ppDAP, txp) = 1
3. If tx is a withdraw transaction:

(a) View tx as a DAP pour transaction txp.
(b) Check that txp.info = (info′, dp)

(c) Check that DAP.VerifyTransactionL(pp.ppDAP, txp) = 1
4. If tx is a refresh transaction:

(a) View tx as a DAP pour transaction txp

(b) Check that txp.info = (info′, tk)

(c) Check that DAP.VerifyTransactionL(pp.ppDAP, txp) = 1
5. If tx is a pour-ticket transaction:

(a) View tx as a DAP pour transaction txp = (ts, 0, sn, cm, info, ∗)
(b) Parse ∗ as (∗′, (pkSIG,mSIG, σ))
(c) ParsemSIG as (txp, dst, ω0, ω1, r1, πpt)
(d) x := (L.Len,L.SNRoot,L.CMRoot, pkSIG, ω0, ω1)
(e) Check that COMMr1 (txp, dst,wrlt) = ω1

(f) Check that SIG.Verify(ppSIG, pkSIG,mSIG, σ) = 1
(g) Check that NIZK.Verify(pp.crspt,x, πpt) = 1

(h) Check that DAP.VerifyTransactionL(pp.ppDAP, txp) = 1
6. If tx is a punish transaction:

(a) Parse tx as (txpt, tx′pt, sn, id)

(b) Check that DAM.VerifyTransactionL(pp, txpt) = 1

(c) Check that DAM.VerifyTransactionL(pp, tx′pt) = 1

(d) Check that (sn, id) = DST.GetSecret(txpt, tx′pt)

Figure 5: Construction of a DAM scheme (part 3 of 3).

7.4 Security of the construction
The security of our DAM scheme construction relies on the security of the underlying DAP scheme, FMT scheme, and
other cryptographic building blocks. Below we state the theorem that asserts this; its proof is provided in Appendix C.

Theorem 7.1 (formal statement of Thm. 1.2). The DAM scheme specified in Section 7.3 (see Figures 3, 4, 5) is secure,
i.e., satisfies the security definition of Definition 6.1 in Section 6.4, provided that the following holds: (1) DAP is a DAP
scheme secure in the sense of Definition B.2; (2) FMT is an FMT scheme secure in the sense of Appendix A.1; (3) NIZK
is a simulation-extractable non-interactive perfect zero knowledge argument system; (4) COMM is a commitment
scheme; (5) CRH is a collision-resistant hash function; (6) PRF is a (collision-resistant) pseudorandom function;
(7) SIG is a strongly-unforgeable one-time signature scheme.

46

A Fractional message transfer
The notion of fractional message transfer (FMT) is informally introduced in Section 4; we now formally define it
and then give an efficient construction for it. More precisely, we define the notion of an FMT scheme (Appendix A.1)
and then give an efficient construction for it (Appendix A.2). Afterwards, we define the notion of an FMT protocol
(Appendix A.3) and then explain how an FMT scheme immediately implies an FMT protocol (Appendix A.4).

Remark A.1 (scheme vs. protocol). Our construction of a DAM scheme uses FMT schemes as a building block (see
Section 7). The construction does not directly use an FMT protocol because we interleave the FMT scheme with other
building blocks, and because our construction requires the receiver to prove to the sender whether or not he could obtain
the encrypted message, which might be restrictive in other uses of the protocol. Still, we find it instructive to also
discuss FMT protocols because their security is defined via an ideal functionality, and we show that the security of
FMT schemes does imply security relative to that ideal functionality.

Remark A.2 (security definition). Prior work on constructing FMT schemes only required security for random
messages, and hence could rely only on the hardness of the CDH problem to prove security [BM89, BR99]. However,
we use FMT to encrypt non-random messages, and thus require a security property similar to semantic security. Looking
ahead, this is why the security of our construction relies on the DDH assumption and not on the CDH assumption.

Furthermore, in our DAM scheme, the same party can act as both the sender and the receiver. To prove security
of our DAM construction, we thus require the FMT scheme to be both simulatable and extractable in the same
experiment; this is similar to the notion of simulation-extractability for non-interactive zero knowledge proof schemes
[Sah99, DDO+01].

A.1 Definition of a fractional message transfer scheme
A fractional message transfer (FMT) scheme with message spaceM and probability space P ⊆ [0, 1] is a tuple of
algorithms

FMT = (FMT.Setup,FMT.Keygen,FMT.Encrypt,FMT.Decrypt)

with the following syntax.

• PARAMETER SETUP: FMT.Setup(1λ)→ ppFMT

On input a security parameter λ, FMT.Setup outputs public parameters ppFMT for the scheme.

• KEY GENERATION: FMT.Keygen(ppFMT, p)→ (pkFMT, skFMT)

On input public parameters ppFMT and a transfer probability p ∈ P , FMT.Keygen outputs a one-time public key
pkFMT and secret key skFMT. (Without loss of generality, both keys contain p in plaintext.)

• MESSAGE ENCRYPTION: FMT.Encrypt(ppFMT, pkFMT,m)→ c

On input public parameters ppFMT, a public key pkFMT and a message m ∈M, FMT.Encrypt outputs a ciphertext c.

• MESSAGE DECRYPTION: FMT.Decrypt(ppFMT, skFMT, c)→ m′

On input public parameters ppFMT, a secret key skFMT and a ciphertext c, FMT.Decrypt outputs a message m′ that
equals m or ∅.

An FMT scheme satisfies the correctness and security properties described below.
Correctness. An FMT scheme is correct if for every security parameter λ, public parameters ppFMT ∈ FMT.Setup(1λ),
transfer probability p ∈ P , key pair (pkFMT, skFMT) ∈ FMT.Keygen(ppFMT, p), and message m ∈M,

FMT.Decrypt(ppFMT, skFMT,FMT.Encrypt(ppFMT, pkFMT,m)) =

{
m w.p. p

∅ w.p. 1− p

where the probability is taken over the randomness of FMT.Encrypt (and FMT.Decrypt is deterministic).

47

Security. An FMT scheme is secure if there exist algorithms (FMT.SimSetup,FMT.SimKeygen,FMT.SimEncrypt,
FMT.ExtDecrypt,FMT.SimDecrypt) that yield the properties of fractional hiding and fractional binding, as described
below. (Informally, these correspond to sender security and receiver security of an FMT protocol, respectively; see
Appendix A.3.)

• SIMULATION OF PARAMETER SETUP: FMT.SimSetup(1λ)→ (ppFMT, tdFMT)

On input a security parameter λ, FMT.SimSetup outputs simulated public parameters ppFMT and a simulation
trapdoor tdFMT.

• SIMULATION OF KEY GENERATION: FMT.SimKeygen(ppFMT, tdFMT, p)→ (pkFMT, skFMT)

On input simulated public parameters ppFMT, a simulation trapdoor tdFMT, and a transfer probability p ∈ P ,
FMT.SimKeygen outputs a simulated key pair (pkFMT, skFMT).

• SIMULATION OF MESSAGE ENCRYPTION: FMT.SimEncrypt(ppFMT, tdFMT, pkFMT, b,m
′)→ c

On input simulated public parameters ppFMT, a simulation trapdoor tdFMT, a public key pkFMT, a bit b, and a message
m′ ∈M, FMT.SimEncrypt outputs a ciphertext c.

• EXTRACTION OF MESSAGE FOR DECRYPTION: FMT.ExtDecrypt(ppFMT, tdFMT, skFMT, c)→ (m, sk′FMT)

On input sumulated public parameters ppFMT, a simulation trapdoor tdFMT, a secret key skFMT, and a ciphertext c,
FMT.ExtDecrypt outputs a message m such that m = FMT.Decrypt(ppFMT, skFMT, c).

• SIMULATION FOR DECRYPTION VERIFICATION: FMT.SimDecrypt(ppFMT, tdFMT, skFMT, b)→ sk′FMT

On input public parameters ppFMT, a simulation trapdoor tdFMT, a secret key skFMT, and a bit b, FMT.SimDecrypt
outputs a simulated secret key sk′FMT.

We now use the above algorithms to specify the two security properties.

• Fractional hiding. Informally, fractional hiding says that an honest encryptor transferring a message m can be
sure that the decryptor, who knows the secret key, learns m with probability exactly p (and ∅ with probability 1− p),
even if the public key was maliciously generated. In detail, given an efficient adversary AFH and transfer probability
p ∈ P , we define the following two experiments.

– Real(AFH, p)

1. Sample ppFMT ← FMT.Setup(1λ) and give ppFMT to AFH.
2. The adversary AFH replies with (pkFMT,m). (If pkFMT is not a valid public key or m 6∈ M, abort.)
3. Sample c← FMT.Encrypt(ppFMT, pkFMT,m) and give c to AFH.

– Ideal(AFH, p)

1. Sample (ppFMT, tdFMT)← FMT.SimSetup(1λ) and give ppFMT to AFH.
2. The adversary AFH replies with (pkFMT,m). (If pkFMT is not a valid public key or m 6∈ M, abort.)
3. Sample b ∈ {0, 1} such that b = 1 with probability p.
4. If b = 1, set m′ := m; if b = 0, sample a message m′ inM at random.
5. Sample c← FMT.SimEncrypt(ppFMT, tdFMT, pkFMT, b,m

′) and give c to AFH.

Denote by Output (Real(AFH)) and Output (Ideal(AFH)) the output of AFH in the first and second experiments,
respectively. An FMT scheme is fractional hiding if, for every stateful efficient adversaryAFH and transfer probability
p ∈ P , Output (Real(AFH)) and Output (Ideal(AFH)) are computationally indistinguishable.

• Fractional binding. Informally, fractional binding says that, for every p′ 6= p, a malicious encryptor cannot produce
a valid ciphertext that decrypts with probability p′ to a valid message (i.e., not ∅). In detail, given an efficient
adversary AFB and transfer probability p ∈ P , we define the following two experiments.

– Real(AFB, p)

1. Sample ppFMT ← FMT.Setup(1λ) and give ppFMT to AFB.

48

2. Sample (pkFMT, skFMT)← FMT.Keygen(ppFMT, p) and give pkFMT to AFB.
3. The adversary AFB replies with a ciphertext c. (If c is an invalid ciphertext, abort.)
4. Sample m← FMT.Decrypt(ppFMT, skFMT, c).
5. Output (m, skFMT).

– Ideal(AFB, p)

1. Sample (ppFMT, tdFMT)← FMT.SimSetup(1λ) and give ppFMT to AFB.
2. Sample (pkFMT, skFMT)← FMT.SimKeygen(ppFMT, tdFMT, p) and give pkFMT to AFB.
3. The adversary AFB replies with a ciphertext c. (If c is an invalid ciphertext, abort.)
4. Sample m← FMT.ExtDecrypt(ppFMT, tdFMT, skFMT, c).
5. Sample a bit b such that b = 1 with probability p and 0 otherwise.
6. Sample sk′FMT ← FMT.SimDecrypt(ppFMT, tdFMT, skFMT, b)
7. Output (m, sk′FMT) if b = 1, and (∅, sk′FMT) otherwise.

Denote by Output (Real(AFB)) and Output (Ideal(AFB)) the output of the first and second experiments, respec-
tively. An FMT scheme is fractional binding if, for every efficient adversary AFB and transfer probability p ∈ P ,
Output (Real(AFB)) and Output (Ideal(AFB)) are computationally indistinguishable.

A.2 Construction of a fractional message transfer scheme
We give an efficient construction of an FMT scheme, for the case when the transfer probability p equals 1/n for some
integer n with 1 ≤ n < q and q a cryptographically-large prime. (This suffices for the purposes of this paper.) Our
construction uses the following two ingredients.

• A group generator GroupGen that, on input a security parameter λ (represented in unary), outputs a tuple (G, q, g)
that describes a group G of prime order q generated by g. We assume that the DDH problem is hard for GroupGen,
that is, the following two distribution families are computationally indistinguishable:{

(G, q, g, ga, gb, gc)
∣∣∣∣ (G, q, g)← GroupGen(1λ)

a, b, c← Zq

}
λ∈N

and
{

(G, q, g, ga, gb, gab)
∣∣∣∣ (G, q, g)← GroupGen(1λ)

a, b← Zq

}
λ∈N

.

• A non-interactive zero-knowledge proof of knowledge system for (specific) NP relations. We denote it as NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) and its syntax is as follows: given a security parameter λ and the specifica-
tion of an NP relationR, NIZK.Setup outputs a common reference string crs; given crs and an instance-witness pair
(x,w) ∈ R, NIZK.Prove outputs a proof π; and given crs, instance x, and proof π, NIZK.Verify outputs a decision
bit b. We use such a proof system only for these two simple NP relations over elements in G:

– RK :=
{(

(z, g1, g2), (s, α)
)

s.t. z = g1
−sg2

α
}

, and

– RE :=
{(

(z1, z2, g1, g2), (m, r)
)

s.t. z1 = g1
r and z2 = m · g2

r
}

.

For these relations, we do not need generic proof systems; instead, efficient proof systems tailored to proving
statements about discrete logarithms suffice, as we now explain.

– For RK: In a prime-order group every non-identity element is a generator; so RK is the relation of Pedersen
commitment and decommitment pairs [Ped91]. One can obtain an efficient proof system for this by applying the
Fiat–Shamir transform to known Σ-protocols [Oka92]. For the resulting proof system: (a) proving requires two
exponentiations, (b) verification requires three exponentiations, and (c) the proof consists of three scalars in Zq .

– ForRE: The relationRE consists of instances that are Elgamal ciphertexts and witnesses that are the corresponding
underlying message m and randomness r. One can verify that, for Elgamal ciphertexts, fixing the choice of
randomness r fixes the message m [SJ00]. Hence one only needs to prove knowledge of r to also prove knowledge
of m. One can obtain an efficient proof system to do this by applying the Fiat–Shamir transform to known Σ-
protocols [CEv87, Sch91]. For the resulting proof system: (a) proving requires one exponentiation, (b) verification
requires two exponentiations, and (c) the proof consists of two scalars in Zq .

49

To satisfy the notion of ”simulation-extractability” for FMT schemes mentioned in Remark A.2, we require that
the NIZKs above be simulation-extractable. Since these NIZKs are instantiated via the Fiat–Shamir transform over
Σ-protocols, we obtain simulation-extractability for free.

We now describe our construction of an FMT scheme in terms of the above ingredients, and then state our theorem.

FMT.Setup(1λ)

1. Sample a group description (G, q, g)← GroupGen(1λ).
2. Sample g0 at random in G.
3. Compute crsK ← NIZK.Setup(1λ,RK).
4. Compute crsE ← NIZK.Setup(1λ,RE).
5. Output public parameters ppFMT := (G, q, g, g0, crsK, crsE).

FMT.Keygen(ppFMT, 1/n)

1. Parse ppFMT as (G, q, g, g0, crsK, crsE).
2. Sample s uniformly in {1, . . . , n}.
3. Sample α uniformly in Zq .
4. Set h := g0−sgα.
5. Set πK := NIZK.Prove(crsK, (h, g0, g), (s, α)).
6. Set pkFMT := (ppFMT, 1/n, h, πK).
7. Set skFMT := (ppFMT, 1/n, h, πK, s, α).
8. Output key pair (pkFMT, skFMT).

FMT.Encrypt(ppFMT, pkFMT,m)

1. Parse ppFMT as (G, q, g, g0, crsK, crsE).
2. Parse pkFMT as a tuple (1/n, h, πK).
3. If NIZK.Verify(crsK, (h, g0, g), πK) = 0: halt and output ⊥.
4. Sample t at random in {1, . . . , n}.
5. Sample r at random in Zq .
6. Set c1 := gr and c2 := m · (gt0h)

r .
7. Set πE := NIZK.Prove(crsE, (c1, c2, g, g0

th), (m, r)).
8. Output ciphertext c := (t, c1, c2, πE).

FMT.Decrypt(ppFMT, skFMT, c)

1. Parse ppFMT as (G, q, g, g0, crsK, crsE).
2. Parse skFMT as (1/n, h, πK, s, α).
3. Parse c as (t, c1, c2, πE).
4. If t 6∈ {1, . . . , n}: halt and output ⊥.
5. If NIZK.Verify(crsE, (c1, c2, g, g0

th), πE) = 0: halt and output ⊥.
6. If t 6= s: set m′ := ∅, and output m′.
7. If t = s: set m′ := c2/c1α, and output m′.

Theorem A.3 (formal statement of Thm. 1.3). The above construction is a correct and secure FMT scheme when
assuming (1) the hardness of DDH for GroupGen, and (2) the security of NIZK for the NP relationsRK andRE. The
message spaceM of the FMT scheme is the group G sampled by GroupGen, and the probability space P is the set of
rationals 1/n such that 1 ≤ n < |G|.

Remark A.4. In the random oracle model, we can efficiently instantiate the NIZKs used in Theorem A.3 by applying
the Fiat–Shamir transform to the aforementioned Σ-protocols. The resulting FMT scheme has public keys consisting of
one group element in G and three scalars in Zq , and ciphertexts of two group elements in G and two scalars in Zq .

To prove the theorem, we first argue correctness and then argue security.
Correctness. An honestly-generated ciphertext c is a tuple (t, c1, c2, πE) where t is random in {1, . . . , n}, c1 = gr,
c2 = m · (gt0h)

r, and πE is a valid proof. The decryption algorithm gets as input a private key skFMT, which contains
(s, α) such that h = g0

−sgα; after verifying that t ∈ {1, . . . , n} and πE is valid, the decryption algorithm first checks if
t = s. If so, he computes

c2/c
α
1 = m · (gr(t−s)0 grα)/grα = m · (grα)/grα = m.

If not, he outputs ∅. Since t and s are random in {1, . . . , n}, t = s with probability 1/n, and the receiver obtains m
and ∅ with the claimed probabilities, as required.
Security. The NIZK scheme is a zero knowledge proof of knowledge, and so admits the following algorithms that
enable witness extraction or proof simulation, depending on the “mode” of the simulated common reference string.

• NIZK.SimSetup(1λ,R)→ (crs, tdNIZK). On input a security parameter λ and the specification of an NP relationR,
NIZK.SimSetup outputs a simulated common reference string crs and the corresponding trapdoor tdNIZK.

• NIZK.Extract(crs, tdNIZK,x, π) → w. On input a simulated common reference string crs, a simulation trapdoor
tdNIZK, an NP instance x and a proof π, NIZK.Extract outputs the associated witness w.

• NIZK.Simulate(crs, tdNIZK,x) → π. On input a simulated common reference string crs, a simulation trapdoor
tdNIZK, and an NP instance x, NIZK.Simulate outputs a simulated proof π.

We now construct the simulation and extraction algorithms (FMT.SimSetup,FMT.SimKeygen,FMT.SimEncrypt,
FMT.ExtDecrypt,FMT.SimDecrypt) required to show fractional hiding and fractional binding.

50

FMT.SimSetup(1λ)

1. Sample a group description (G, q, g)← GroupGen(1λ).
2. Sample x at random in Zq , and set g0 = gx.
3. Compute (crsK, tdK)← NIZK.SimSetup(1λ,RK).
4. Compute (crsE, tdE)← NIZK.SimSetup(1λ,RE).
5. Set tdFMT := (tdK, tdE, x).
6. Set ppFMT := (G, q, g, g0, crsK, crsE).
7. Output (ppFMT, tdFMT).

FMT.SimKeygen(ppFMT, tdFMT, 1/n)

1. Parse ppFMT as (G, q, g, g0, crsK, crsE).
2. Parse tdFMT as (tdK, tdE, x).
3. Sample s uniformly in {1, . . . , n}.
4. Sample α uniformly in Zq .
5. Set h := g0−sgα.
6. Set πK := NIZK.Simulate(crsK, tdK, (h, g0, g)).
7. Set pkFMT := (ppFMT, 1/n, h, πK).
8. Set skFMT := (ppFMT, 1/n, h, πK, s, α).
9. Output key pair (pkFMT, skFMT).

FMT.ExtDecrypt(ppFMT, tdFMT, skFMT, c)

1. Parse ppFMT as (G, q, g, g0, crsK, crsE).
2. Parse tdFMT as (tdK, tdE, x).
3. Parse skFMT as (1/n, h, πK, s, α).
4. Compute (m, r)← NIZK.Extract(crsE, tdE, (c1, c2, g, g0

th), πE).
5. Output m.

FMT.SimEncrypt(ppFMT, tdFMT, pkFMT, b,m
′)

1. Parse ppFMT as (G, q, g, g0, crsK, crsE).
2. Parse tdFMT as (tdK, tdE, x).
3. Parse pkFMT as (1/n, h, πK).
4. Compute (s, α)← NIZK.Extract(crsK, tdK, (h, g0, g), πK).
5. If s 6∈ {1, . . . , n}:
• sample t at random in {1, . . . , n};
• sample m′′ at random inM.

6. If s ∈ {1, . . . , n}:
• if b = 1, then set t := s;
• if b = 0, then set t to any value in {1, . . . , n} \ {s};
• set m′′ := m′.

7. Sample r at random in Zq .
8. Set c1 := gr and c2 := m′′ · (gt0h)

r .
9. Set πE := NIZK.Simulate(crsE, tdE, (c1, c2, g, g0

th)).
10. Output ciphertext c := (t, c1, c2, πE).

FMT.SimDecrypt(ppFMT, tdFMT, skFMT, b)

1. Parse ppFMT as (G, q, g, g0, crsK, crsE).
2. Parse tdFMT as (tdK, tdE, x).
3. Parse skFMT as (1/n, h, πK, s, α).
4. If b = 0:
• sample s′ such that s 6= s′, and set α′ := (α− sx) + s′x.
• set sk′FMT := (1/n, h, πK, s

′, α′).
• output sk′FMT.

5. If b = 1: output skFMT.

Before arguing fractional hiding and fractional binding, we state and sketch the proof of two claims.

Claim A.5. The following two distribution ensembles are computationally indistinguishable:{
ppFMT

∣∣ ppFMT ← FMT.Setup(1λ)
}
λ∈N and{

ppFMT

∣∣ (ppFMT, tdFMT)← FMT.SimSetup(1λ)
}
λ∈N .

Proof sketch. The two sets of public parameters differ only in the NIZK common reference strings. In the former case,
these are sampled normally, while in the latter case they are simulated. By the security of the NIZK scheme, these
common reference strings are computationally indistinguishable.

Claim A.6. For every transfer probability p ∈ P , the following two distribution ensembles are computationally
indistinguishable:{

(ppFMT, pkFMT)

∣∣∣∣ ppFMT ← FMT.Setup(1λ)
(pkFMT, skFMT)← FMT.Keygen(ppFMT, p)

}
λ∈N

and{
(ppFMT, pkFMT)

∣∣∣∣ (ppFMT, tdFMT)← FMT.SimSetup(1λ)
(pkFMT, skFMT)← FMT.SimKeygen(ppFMT, tdFMT, p)

}
λ∈N

.

Proof sketch. The difference between the two is that the public key output by FMT.SimKeygen contains a simulated
proof instead of an actual proof. By the security of the NIZK scheme, these are computationally indistinguishable.

Fractional hiding. Fractional hiding of our construction is implied by the following claim.

Claim A.7. For every stateful efficient adversary AFH and transfer probability p ∈ P , the following distribution
ensembles are indistinguishable:out

∣∣∣∣∣∣∣∣
ppFMT ← FMT.Setup(1λ)

(pkFMT,m)← AFH(ppFMT)
c← FMT.Encrypt(ppFMT, pkFMT,m)

out← AFH(c)


λ∈N

and

51


out

∣∣∣∣∣∣∣∣∣∣∣∣

(ppFMT, tdFMT)← FMT.SimSetup(1λ)
(pkFMT,m)← AFH(ppFMT)

b← “1 w.p. p and 0 otherwise”
If b = 1, set m′ := m; else sample m′ uniformly inM
c← FMT.SimEncrypt(ppFMT, tdFMT, pkFMT, b,m

′)
out← AFH(c)


λ∈N

.

In both experiments above, if pkFMT is not a valid public key or m 6∈ M (both produced by AFH), then abort.

Proof sketch. For ease of exposition, in this proof we “wrap” the sampling of b, assignment of m′, and computation of c
by FMT.SimEncrypt into a single procedure, which we call SimExperiment.

By Claim A.5, the public parameters used in either experiment are computationally indistinguishable. Hence, the
public keys pkFMT generated by the adversary AFH in either case must be computationally indistinguishable. Now we
are left to argue the indistinguishability of the outputs of FMT.Encrypt and SimExperiment. Consider the following
sequence of hybrids on this part of the experiment, where we change how t is sampled:

• H0: FMT.Encrypt. (That is, sample t at random in {1, . . . , n}.)

• H1: Sample b as in SimExperiment, but set m′ := m regardless of b. Then modify the algorithm FMT.Encrypt into
an algorithm FMT.Encrypt′ that additionally takes as input b and the trapdoor tdFMT, and proceeds as follows.

1. Parse tdFMT as (tdK, tdE).
2. Compute (s, α)← NIZK.Extract(crsK, tdK, (h, g0, g), πK).
3. If s 6∈ {1, . . . , n}, then sample t at random in {1, . . . , n} (as before).
4. If s ∈ {1, . . . , n} and b = 1, then set t := s.
5. If s ∈ {1, . . . , n} and b = 0, then sample t at random in {1, . . . , n} \ {s}.
The last two steps imply that FMT.Encrypt′ does not merely sample t at random in {1, . . . , n}; rather, it sets t
depending on s. Recall that, in contrast, FMT.Encrypt does sample t at random (see its Step 4). However, this does
not change the distribution of t in the two experiments; in both, t is distributed uniformly in {1, . . . , n}.

• H2: Make the following changes to the previous hybrid.

– Instead of setting m′ := m regardless of b, assign m′ as in SimExperiment (depending on b), and then pass this as
input to FMT.Encrypt′′, which is a further modification of FMT.Encrypt′, as we now describe.

– Modify Step 3 of FMT.Encrypt′ as follows:
If s 6∈ {1, . . . , n}, then in addition to the above, sample m′′ at random inM.

– Modify Step 4 and Step 5 of FMT.Encrypt′ as follows:
If s ∈ {1, . . . , n}, then in addition to the above, set m′′ := m′.

The cumulative effect of these changes is the following: if t 6= s, then the encrypted message m′′ is random inM;
otherwise, the encrypted message m′′ equals m.

• H3: SimExperiment. (Compute c via FMT.SimEncrypt; that is, instead of computing the proof πE honestly, simulate
it via NIZK.Simulate.)

Observe thatH0 andH1 are indistinguishable because the distribution of t is identical in the two cases: t is uniform in
{1, . . . , n}. Also observe thatH2 andH3 differ only in how the proof πE is computed: inH2 the proof πE is computed
honestly, while inH3 the proof πE is computed via NIZK.Simulate. These proofs are indistinguishable by the security
of the NIZK scheme, and therefore H2 and H3 are indistinguishable. So we are left to prove that H1 and H2 are
indistinguishable, which we now argue.

First, consider the case when s /∈ {1, . . . , n}. For this case, since FMT.Encrypt always samples t uniformly
in {1, . . . , n}, the ciphertext c will never decrypt to the original message m. To simulate this, whenever s 6∈
{1, . . . , n},FMT.SimEncrypt samples t uniformly in {1, . . . , n} and replaces m′ by m′′. Hence the adversary cannot
distinguish betweenH1 andH2 by dishonestly setting s outside the range {1, . . . , n}.

Next, consider the case when s ∈ {1, . . . , n}. For this case, we prove indistinguishability by contradiction: if there
exists an efficient adversary A that distinguishes these two hybrids then there exists an efficient adversary B that breaks
the DDH assumption for GroupGen. This latter adversary B receives a DDH challenge and works as follows.

52

• B(G, g, ga, gb, x):

1. Compute (crsK, tdK)← NIZK.SimSetup(1λ,RK,Ext).
2. Compute (crsE, tdE)← NIZK.SimSetup(1λ,RE,Sim).
3. Set g0 := ga.
4. Set ppFMT := (G, q, g, g0, crsK, crsE).
5. Give ppFMT to A and obtain (pkFMT,m).
6. Parse pkFMT as (1/n, h, πK).
7. Compute (s, α)← NIZK.Extract(crsK, tdK, (h, g0, g), πK).
8. Sample t at random in {1, . . . , n}.
9. Sample r at random in Zq .

10. If s = t: compute (c1, c2) = (gr,m · (gα)
r
).

11. If s 6= t: compute (c1, c2) = (gb,m · xtx−s(gb)α).
12. Set πE := NIZK.Simulate(crsE, tdE, (c1, c2, g, g0

th)).
13. Set c := (t, c1, c2, πE).
14. Output A(c).

Now let us discuss the two cases for x.

1. Case 1: x equals gab. Then c2 = m · gab(t−s)gbα = (gt0h)
b, and c is distributed as inH1.

2. Case 2: x is random in G. Then c2 = m · xt−sgbα; letting x = gab+z for some z ∈ Zq , we see that

c2 = m · gz(t−s)gb(t−s)0 gbα

= m′ · (gt0h)
b
.

Here m′ = m · gz(t−s). Since x is random in G, so is m′. Therefore c is distributed as inH2.

We deduce that if A can distinguish H1 and H2 then B breaks DDH. We conclude that hybrids H0 and H3 (i.e. the
outputs of FMT.Encrypt and SimExperiment) are indistinguishable, and therefore the output of the adversary AFH in
the two experiments is indistinguishable, as required.

Fractional binding. Fractional binding of our construction is implied by the following claim.

Claim A.8. For every efficiency adversaryAFB and transfer probability p ∈ P , the following two distribution ensembles
are computationally indistinguishable:(ppFMT, pkFMT, skFMT, c,m)

∣∣∣∣∣∣∣∣
ppFMT ← FMT.Setup(1λ)

(pkFMT, skFMT)← FMT.Keygen(ppFMT, p)
c← AFB(ppFMT, pkFMT)

m← FMT.Decrypt(ppFMT, skFMT, c)


λ∈N

and


(ppFMT, pkFMT, sk

′
FMT, c,m

′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

with probability p set b := 1; else set b := 0
(ppFMT, tdFMT)← FMT.SimSetup(1λ)

(pkFMT, skFMT)← FMT.SimKeygen(ppFMT, tdFMT, p)
c← AFB(ppFMT, pkFMT)

m← FMT.ExtDecrypt(ppFMT, tdFMT, skFMT, c)
sk′FMT ← FMT.SimDecrypt(ppFMT, tdFMT, skFMT, b)

if b = 1, set m′ := m; else set m′ := ∅


λ∈N

.

In both experiments above, if c is not a valid ciphertext (produced by AFB), then abort.

Proof sketch. By Claim A.5, the public parameters used in either experiment are computationally indistinguishable. In
addition, by Claim A.6, the public keys used in either experiment are computationally indistinguishable. Therefore, the
challenge ciphertexts c output by the adversaryAFB in either experiment must also be computationally indistinguishable.

53

Now, if c is a valid ciphertext, it defines a corresponding unique pair (m, r) (since c1 = gr binds r perfectly),
and hence the output of NIZK.Extract equals the actual (m, r) implicitly used by the adversary under the challenge
ciphertext. Next, the simulated secret key sk′FMT output by skFMT is distributed identically to the actual skFMT of the
first experiment: when b = 1, it is the actual secret key, and when b = 0, it is a secret key having the same h as skFMT,
but different s′ and α′ subject to the constraint that h = g−s

′

0 gα
′
. The claim follows from these two points and from the

indistinguishability of the ciphertexts in the two experiments.

A.3 Definition of a fractional message transfer protocol
We define the notion of an FMT protocol by using the real/ideal world paradigm, where we compare the adversary’s
view in the real execution of the protocol to the output of a corresponding simulator interacting with a trusted third
party that embodies the “FMT ideal functionality”. Security then requires that for every efficient adversary there exists
an efficient simulator such that the adversary’s view (in the real world) and the simulator’s output (in the ideal world)
are computationally indistinguishable. Details follow.
Execution in the real world. We denote by SR and RR the real sender and the real receiver; the sender’s input is a
transfer probability p and a message m, while the receiver’s input is the (same) transfer probability p. The sender and
receiver interact using the FMT protocol, at the end of which the receiver learns either (i) the message m (indicating
that the message transfer did occur), (ii) the distinguished message ∅ (indicating that the message transfer did not
occur), or (iii) the error symbol ⊥ (indicating that something went wrong). After the protocol, each party produces an
output; together these form the output of the real execution, which we denote by Real[SR, RR](p,m).
Execution in the ideal world. We denote by SI and RI the ideal sender and the ideal receiver; the sender’s input and
the receiver’s input are the same as in the execution in the real world. The sender and receiver interact with the ideal
functionality as follows:

(1) The sender sends to the ideal functionality a transfer probability pS , a message mS , and a bit bS ; the bit tells the
ideal functionality whether the transfer should result in error or not.

(2) The receiver sends to the ideal functionality a transfer probability pR.

(3) If bS = 0 or pS 6= pR, then the ideal functionality sends ⊥ to the receiver. If bS = 1 and pS = pR, then the ideal
functionality with probability pS sends mS to the receiver and with probability 1− pS sends ∅ to the receiver.

Note that pS and pR may differ from p, and mS may differ from m. After the above, each party produces an output;
together these form the output of the ideal execution, which we denote by Ideal[SI, RI](p,m).
Security. An FMT protocol is secure if the following two conditions hold.

• Sender security. For every efficient receiver adversary R̃ in the real world there exists an efficient receiver sim-
ulator SimR̃ in the ideal world such that, for every transfer probability p and message m, Real[SR, R̃](p,m) and
Ideal[SI,SimR̃](p,m) are computationally indistinguishable.

• Receiver security. For every efficient sender adversary S̃ in the real world there exists an efficient sender simu-
lator SimS̃ in the ideal world such that, for every transfer probability p and message m, Real[S̃, RR](p,m) and
Ideal[SimS̃ , RI](p,m) are computationally indistinguishable.

Remark A.9. For simplicity, the above discussion does not mention the parties’ auxiliary inputs. Extending the
discussion to do so is straightforward. (Security with respect to auxiliary inputs implies, e.g., sequential composition.)

A.4 Construction of a fractional message transfer protocol
We construct a 2-message FMT protocol from any FMT scheme, in the common reference string model. Let FMT =
(FMT.Setup,FMT.Keygen,FMT.Encrypt,FMT.Decrypt) be an FMT scheme; the common reference string consists
of ppFMT sampled according to FMT.Setup(1λ). The protocol proceeds as follows:

54

• Step 0: The sender’s input is a transfer probability p and a message m, while the receiver’s input is the (same)
transfer probability p.

• Step 1 (first message): The receiver samples a key pair (pkFMT, skFMT)← FMT.Keygen(ppFMT, p) and then sends
the public key pkFMT to the sender.

• Step 2 (second message): If pkFMT is a valid public key consistent with the public parameters ppFMT and the transfer
probability p, then the sender encrypts the message m to obtain a ciphertext c← FMT.Encrypt(ppFMT, pkFMT,m)
and then sends c to the receiver. (Otherwise, the sender aborts.)

• Step 3: If c is a valid ciphertext, then the receiver decrypts c to obtain the messagem′ ← FMT.Decrypt(ppFMT, skFMT, c),
and outputs m′. (Otherwise, the receiver aborts.)

The following statement is not hard to prove.

Theorem A.10. If FMT is an FMT scheme then the above is an FMT protocol (in the common reference string model).

Proof sketch. Sender security and receiver security of the FMT protocol directly follow from the fractional hiding and
fractional binding properties of the FMT scheme, respectively. Below we sketch the proofs for these two implications.
Sender security. For every efficient receiver adversary R̃ (in the real world) we construct an efficient receiver simulator
SimR̃ (in the ideal world), as follows.

• SimR̃ (interacting with R̃ as if in the real world)

1. Sample (ppFMT, tdFMT)← FMT.SimSetup(1λ) and send ppFMT to R̃.
2. The receiver adversary R̃ replies with pkFMT. (If pkFMT is not a valid public key or is not consistent with SimR̃’s

input p, send pR 6= p to the ideal functionality and abort.)
3. Send p to the ideal functionality.
4. Receive a message m or ∅ from the ideal functionality.
5. If the received message is m, then send FMT.SimEncrypt(ppFMT, tdFMT, pkFMT, 1,m) to R̃.

Otherwise, sample a message m′ inM at random and send FMT.SimEncrypt(ppFMT, tdFMT, pkFMT, 0,m
′) to

R̃.
6. Output whatever the receiver adversary R̃ outputs.

Security is guaranteed by the fractional hiding property of the FMT scheme:

– First, the output of R̃ is the output of AFH in the real world, and the output of SimR̃ is the output of AFH in the ideal
world. Since Output (Real(AFH)) and Output (Ideal(AFH)) are computationally indistinguishable, the outputs of
R̃ and SimR̃ are also computationally indistinguishable.

– Second, the outputs of SR and SI are both either abort or nothing. Since the probability of aborting is compu-
tationally indistinguishable in Real(AFH) and Ideal(AFH), the outputs of SR and SI are also computationally
indistinguishable.

Receiver security. For every efficient sender adversary S̃ (in the real world) we construct an efficient sender simulator
SimS̃ (in the ideal world), as follows.

• SimS̃ (interacting with S̃ as if in the real world)

1. Sample (ppFMT, tdFMT)← FMT.SimSetup(1λ) and send ppFMT to S̃.
2. Sample (pkFMT, skFMT)← FMT.SimKeygen(ppFMT, tdFMT, p) and send pkFMT to S̃.
3. The sender adversary S̃ replies with a ciphertext c. (If c is an invalid ciphertext, send to the ideal functionality p, a

random message mS inM, and bS = 0, and abort.)
4. Compute (m)← FMT.ExtDecrypt(ppFMT, tdFMT, skFMT, c) and send (p,m, bS = 1) to the ideal functionality.
5. Output whatever the sender adversary S̃ outputs.

Security is guaranteed by the fractional binding property of the FMT scheme:

55

– First, the probability of aborting in Real(AFB) and in Ideal(AFB) are computationally indistinguishable, so the
view of S̃ in the real world is computationally indistinguishable from its view when interacting with SimS̃ . Therefore
the output of S̃ and output of SimS̃ are also computationally indistinguishable.

– Second, the output of RR is the output of Real(AFB), and the output of RI is the output of Ideal(AFB). Since
Output (Real(AFB)) and Output (Ideal(AFB)) are computationally indistinguishable, the outputs of RR and RI

are also computationally indistinguishable.

56

B Security of decentralized anonymous payment systems
We use DAP schemes that generalize in a straightforward way those in [BCG+14, GGM16] (see Section 5.4); moreover,
we rely on a simulation-based security definition, stronger than previous game-based ones. The purpose of this section
is to specify this security definition. We introduce auxiliary algorithms and notions (Appendix B.1) and then specify the
security definition via real and ideal experiments (Appendix B.2); afterwards, we comment on suitable instantiations
(Appendix B.3).

B.1 Auxiliary algorithms and notions

Auxiliary algorithms for a DAP scheme. A secure DAP scheme possesses the following auxiliary algorithms, some
of which have oracle access to the ledger L:

(DAP.SimSetup,DAP.SimPourL,DAP.SimMintL,DAP.ExtractMintL,DAP.ExtractPourL)

These are defined as follows:

• DAP.SimSetup(1λ,Πm,Πp)→ (ppDAP, tdDAP).

On input a security parameter 1λ, mint predicate Πm, and pour predicate Πp, DAP.SimSetup outputs simulated DAP
parameters ppDAP and a trapdoor tdDAP.

• DAP.SimMintL(ppDAP, tdDAP, v, pub)→ (c, txm).

On input simulated public parameters ppDAP, trapdoor tdDAP, new coin value v, and public information string pub,
and with oracle access to L, DAP.SimMintL outputs a new coin c and a simulated mint transaction txm that is
consistent with c.

• DAP.SimPourL(ppDAP, tdDAP,m, n, vpub,∆, [ck]p1)→ ([cj]
n
1 , txp).

On input simulated public parameters ppDAP, trapdoor tdDAP, number of input coins m, number of output coins n,
public value vpub, activation delay ∆, and 0 ≤ p ≤ n output coins [ck]p1, and with oracle access to L, DAP.SimPour
outputs new coins [cj]

n
1 that contain [ck]p1, and a simulated pour transaction txp that has activation delay ∆ and is

consistent with [cj]
n
1 .

• DAP.ExtractMintL(ppDAP, tdDAP, txm)→ (v, apk, pub, sec, c).

On input simulated public parameters ppDAP, trapdoor tdDAP, and a mint transaction txm, and with oracle access to
L, DAP.ExtractMint extracts the inputs used to create txm, along with the generated new coin.

• DAP.ExtractPourL(ppDAP, tdDAP, txp)→ ([ci]
m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆, [cj]

n
1).

On input simulated public parameters ppDAP, trapdoor tdDAP, and a pour transaction txp, and with oracle access to L,
DAP.ExtractPour extracts the inputs used to create txp, along with the generated new coins.

The algorithms DAP.ExtractMint and DAP.ExtractPour are required to work even when the adversary has received
simulated outputs from DAP.SimMint and DAP.SimPour. This definition is analogous to simulation extractability and
we formalize it in our definitions further below.
Consistent transcripts. We introduce the notion of a transcript, and then define what it means for a transcript to be
consistent. A transcript T is a list of transcript entries te, each of two possible types:

1. Mint entries (denoted tem). A mint entry is a tuple of the form tem := (v, apk, pub, sec, c, txm). Thus a mint entry
consists of the inputs and outputs of an invocation of DAP.Mint.

2. Pour entries (denoted tep). A pour entry is a tuple of the form tep := ([ci]
m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 ,

[secj]
n
1 , vpub, info,∆, [cj]

n
1 , txp). Thus a pour entry consists of the inputs and outputs of an invocation of DAP.Pour.

57

A transcript entry is active if the contained transaction has become active on the ledger L. Otherwise, the entry is
dormant. (For definitions of active and dormant transactions, see Sections 5.1 and 5.4.)

Definition B.1. A transcript T is consistent if each transcript entry is consistent as defined below.

1. A mint entry te = (v, apk, pub, sec, c, txm) is consistent if the mint predicate evaluated on the mint inputs outputs 1,
that is, Πm(v, apk, pub, sec) = 1.

2. A pour entry te = ([ci]
m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆, [cj]

n
1 , txp) is valid if the following

conditions are satisfied.

(a) The pour predicate evaluated on the pour inputs outputs 1, that is,

Πp([ci]
m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆) = 1 .

(b) The commitment of each input coin in [ci]
m
1 appears exactly once in some previous active transcript entry.

(c) The total sum of coin values in [cj]
n
1 plus the public output vpub is equal to the sum of the values in [ci]

m
1 , that

is,
∑m
i=1 ci.v =

∑n
j=1 vj + vpub.

(d) The secret key aski for an input coin ci corresponds to ci’s public key apki that appears in a previous transcript
entry that specifies ci’s creation.

With these preliminaries in place, we now provide our main security definition for a DAP scheme.

B.2 Security definition
We define security of a DAP scheme by requiring indistinguishability of any efficient adversary’s outcome in two
experiments. In Appendix B.2.1, we define the real-world experiment, and in Appendix B.2.2 we define the ideal-world
experiment. Finally in Appendix B.2.3, we provide the formal security definition of a DAP scheme with respect to
these two experiments.

In both experiments, we consider an adversary A that interacts with a challenger. The challenger maintains two
tables: a coin table Coins and an address table Addr. The experiments are parameterized by a security parameter λ
and two predicates Πm,Πp. In each experiment a ledger L and a transcript T are first initialized to be empty. The
adversary A can read transactions from and append transactions to L, with the caveat that any appended transaction tx
must satisfy DAP.VerifyTransactionL(ppDAP, tx) = 1.

B.2.1 Real experiment

At the beginning of the real experiment (denoted REAL), A is given honestly-generated public parameters ppDAP ←
DAP.Setup(1λ,Πm,Πp), and can subsequently issue to the challenger the following queries sequentially and in any
order:

• Creating addresses: query = (CreateAddr,meta).

1. Compute (apk, ask)← DAP.CreateAddr(ppDAP,meta).
2. Set Addr[apk] := ask.
3. Return apk to A.

• Minting coins: query = (Mint, (v, apk, pub, sec)).

1. Compute (c, txm)← DAP.MintL(v, apk, pub, sec).
2. If DAP.Mint returns ⊥: halt and return ⊥ to A. Otherwise, write txm to L.
3. Construct a transcript entry tem := (v, apk, pub, sec, c, txm) and append tem to T.
4. Parse txm to obtain cm.
5. Set Coins[cm] := (c, txm, 0) and clk in the coin table.

• Pouring coins: query = (Pour, ([cmi]
m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 ,∆, vpub, info)).

58

1. For i = 1 to m:
(a) if Coins[cmi] = ⊥: return ⊥ to A.
(b) retrieve (ci, txi,∆i) := Coins[cmi].
(c) if txi is not active on the ledger: return ⊥ to A.
(d) if Addr[apk] = ⊥: return ⊥ to A.
(e) retrieve aski := Addr[ci.apk].

2. Use the retrieved coins and secret keys to construct [ci]
m
1 and [aski]

m
1 .

3. Compute ([cj]
n
1 , txp)← DAP.PourL(ppDAP, [ci]

m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆).

4. If DAP.Pour returns ⊥: return ⊥ to A.
5. Parse txp as (ts,∆, [sni]

m
1 , [cmj]

n
1 , vpub, info, ∗).

6. For j = 1 to n: set Coins[cmj] := (cj , txp,∆).
7. Construct a transcript entry tep := ([ci]

m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆, [cj]

n
1 , txp).

8. Append tep to T.
9. Append txp to L.

• Receiving coins: query = (Receive).

1. For all apk such that Addr[apk] 6= ⊥:
(a) retrieve ask := Addr[apk].
(b) compute [cj]

n
1 ← DAP.ReceiveL(ppDAP, (apk, ask)).

(c) For j = 1 to n:
i. retrieve the transaction tx containing cj .cm from L.

ii. set Coins[cj .cm] := (cj , tx, tx.∆).

B.2.2 Ideal experiment

The ideal experiment (denoted IDEAL) proceeds similarly to REAL, but with the following modifications. At the
beginning, the challenger computes simulated parameters and a trapdoor: (ppDAP, tdDAP)← DAP.SimSetup(1λ), and
gives the simulated parameters to the adversary A in place of the honestly-generated parameters. The CreateAddr
and Receive queries are handled identically to the REAL experiment, but the Mint and Pour queries are handled as
follows:

Minting coins: query = (Mint, (v, apk, pub, sec)).

1. If Πm(v, apk, pub, sec) = 0: abort and return ⊥ to A.
2. Compute (c, txm)← DAP.SimMintL(ppDAP, tdDAP, v, pub).
3. If DAP.SimMint returns ⊥: abort and output ⊥ to A. Otherwise write txm to L.
4. Construct a transcript entry tem := (v, apk, pub, sec, c, txm) and append tem to T.
5. Set Coins[c.cm] := (c, txm, 0).

Pouring coins: query = (Pour, ([cmi]
m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆)).

1. For i = 1 to m:
(a) if Coins[cmi] = ⊥: return ⊥ to A.
(b) retrieve (ci, txi,∆i) := Coins[cmi].
(c) if txi is not active on the ledger: return ⊥ to A.
(d) if Addr[apk] = ⊥: return ⊥ to A.
(e) retrieve aski := Addr[ci.apk].

2. Evaluate Πp on all of the inputs and retrieved values. If it outputs 0, abort and return ⊥ to A.
3. For j = 1 to n: if Addr[apkj] = ⊥: ck ← DAP.Mint(ppDAP, vj , apkj , pubj , secj).
4. Compute ([cj]

n
1 , txp)← DAP.SimPourL(ppDAP, tdDAP,m, n, vpub,∆, [ck]p1).

5. If DAP.SimPour returns ⊥: abort and return ⊥ to A.
6. Parse txp as (ts,∆, [sni]

m
1 , [cmj]

n
1 , vpub, info, ∗).

59

7. For j = 1 to n: set Coins[cj .cm] := (cj , txp,∆).
8. Construct a transcript entry tep := ([ci]

m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆, [cj]

n
1 , txp).

9. Append tep to T.
10. Append txp to L.

In addition, each time A appends a valid transaction tx ∈ {txm, txp} to L, the challenger runs DAP.ExtractMintL or
DAP.ExtractPourL (respectively) and constructs a transcript entry te to append to T. If any of the following events
occur, the challenger returns inconsistent to A and halts the experiment:

1. The algorithm DAP.ExtractMintL or DAP.ExtractPourL outputs ⊥;
2. The resulting transcript T becomes inconsistent, in the sense of Definition B.1;
3. A pour entry tep constructed by extracting from a txp written to L by the A spends coins currently registered to a

public key apk such that Addr[apk] 6= ⊥. (Such an entry is equivalent to the adversary attempting to spend coins it
does not “own”.)

This concludes the description of the IDEAL experiment. Having defined this experiment, we are now ready to provide
a formal definition for the security of a DAP scheme.

B.2.3 Formal security definition

Definition B.2. We say that a DAP scheme DAP is secure for a security parameter λ and the predicates (Πm,Πp)
if for every efficient adversary A, A’s output at the end of the REAL and IDEAL experiments is computationally
indistinguishable.

Discussion. Intuitively, we note that this definition preserves anonymity because the simulated Mint and Pour
algorithms DAP.SimMint and DAP.SimPour do not receive any secret information about the coins being spent.
Simultaneously, this definition implies that for every set of transactions written to L by A, we can construct a valid
transcript that contains all coin secrets and is consistent. Thus, under this definition, no adversary A can submit
transactions that violate the financial invariant, double spend the same coin, or manufacture coins except as the output
of a valid mint or pour transaction that has been pushed to L. Moreover, these properties hold simultaneously, that is,
the extraction algorithms must work correctly even when the adversary receives transactions generated using tdDAP via
the DAP.SimPour or DAP.SimMint algorithms. We also note that Definition B.2 is a strictly stronger definition than
the various security definitions provided by [BCG+14, Appendix C].

B.3 Security of existing DAP constructions
DAP schemes were constructed in [BCG+14], and proved secure relative to a set of game-based definitions targeting
various security goals. Subsequent work identified some limitations in these game-based definitions (e.g., faerie gold
[HBHW16]), and proposed not only strong simulation-based security definitions for DAP schemes [GGM16], but
also simulation-based and composable definitions for anonymous smart contracts [KMS+16]. Our security definitions
are also simulation-based, and consider a notion of a DAP scheme that extends prior ones [BCG+14, GGM16] via
straightforward modifications of its interface (see Section 5.4), justified via simple modifications of the underlying
construction.

One of the main cryptographic primitives used in constructions of DAP schemes is non-interactive zero knowledge
proofs of knowledge. When aiming for simulation-based security definitions, these have to continue to be proofs of
knowledge even given previous simulated proofs, i.e., they have to be simulation extractable [Sah99, DDO+01]. Indeed,
the aforementioned subsequent works achieve simulation-based security definitions by ‘retrofitting’ DAP schemes with
such stronger proof systems; we too rely on these. The auxiliary algorithms mentioned in Appendix B.1 then follow in
a straightforward way from the algorithms for simulating proofs and extracting witnesses in these proof systems.

60

C Security of our DAM construction
In this section we complete the formalization of the security definitions for DAM, and provide a proof of security for
the DAM construction presented in Section 7.3. We now begin by defining the operation of the honest parties.
The honest real and ideal-world parties. Each honest party in both the real and ideal worlds is provided with an
adaptive execution strategy Σ. The execution strategy is a stateful efficient program that is run by the honest party
continuously to produce a series of instructions, where each instruction is one of (RegisterAddress, IncrementEpoch,
MintCoin,MintDeposit,MintTicket,PourCoinToDeposit,PourCoinToTicket,WithdrawDeposit,RefreshTicket,PourTicket).
Similarly, the existence of new transactions is reported to Σ. Crucially, all instructions reference coins by public
pseudonyms for coins, deposits and tickets; and no secret information is provided to Σ in response to any instruction.
The distribution of these coin pseudonyms is such that in both the real and ideal worlds the distribution of inputs to Σ is
structured identically.

With these building blocks in place, we now proceed to a proof of security for our DAM scheme of Section 7.3.
That is, we prove Theorem 7.1, which states that our construction of a DAM scheme in Section 7.3 is secure in the
sense of Definition 6.1. More formally, assuming the following, we prove that for every real-world adversary A against
our DAM scheme construction DAM, there exists a ideal-world adversary S such that the outputs of the real-world and
ideal-world experiments are indistinguishable.

1. All parties communicate through secure, authenticated channels;
2. In the real world, all parties have access to a trusted global append-only ledger L;
3. DAP is a DAP scheme secure in the sense of Definition B.2;
4. FMT is an FMT scheme secure in the sense of Appendix A.1;
5. NIZK is a simulation-extractable non-interactive perfect zero knowledge argument system;
6. COMM is a commitment scheme;
7. CRH is a collision-resistant hash function;
8. PRF is a (collision-resistant) pseudorandom function;
9. SIG is a strongly-unforgeable one-time signature scheme.

Roadmap. In Section C.1, we construct S, and then in Section C.2, we prove that the outputs of the adversary A in
the real-world and ideal-world experiments are indistinguishable.

C.1 Ideal-world adversary S
Let us now define S , which runs A internally and interacts with Tp as described below. At the start of the experiment,
S first initializes the following tables to be empty:

– SimNotes, which maps real notes to their ideal identifiers.
– SimARates, which maps a session identifier sid to a set of average-case rate limit tags for payments to sid.
– SimWRates, which maps a session identifier sid to a set of worst-case rate limit tags for payments to sid.
– SimTokens, which maps ideal ticket tokens to the double spend tag information for the corresponding pour-ticket

transaction.
– SimPourTk, which maps pour-ticket transactions to their corresponding ideal ticket tokens.

Next, S runs generates simulated parameters and a trapdoor for the DAM scheme as follows:
1. (ppDAP, tdDAP)← DAP.SimSetup(1λ,Πm,Πp).
2. (ppFMT, tdFMT)← FMT.SimSetup(1λ).
3. ppSIG ← SIG.Setup(1λ).
4. (crspt, tdpt)← NIZK.SimSetup(1λ,Rpt).
5. pp := (ppDAP, ppFMT, ppSIG, crspt).
6. td := (tdDAP, tdFMT, tdpt).
S now runs A internally, providing it with the simulated public parameters parameters pp. S initializes an empty
transcript T, simulates the ledger L, responds to A’s attempts to append to L, and interacts with the trusted party Tp as
follows:

61

1. in Section C.1.1, we detail how S increments the ledger epoch and which transactions it allows onto the ledger.
2. In Section C.1.2, we detail how S responds to actions initiated by A, such as appending mint, pour-coin, pour-ticket,

withdraw and refresh transactions to the ledger, as well as interacting with the trusted party whenever A wishes to
engage in a PourTicket protocol (as sender) with another honest party.

3. In Section C.1.3, we detail how S responds to notifications from Tp for mints, pour-coins, pour-ticket, withdraw
and refresh transactions, and also how S mediates between the trusted party and A when an honest party (acting as
sender) initiates a PourTicket protocol with a corrupted party controlled by A.

Finally, we assume that whenever S extracts from or simulates a transaction, it creates a corresponding transcript entry,
appends it to the transcript T, and checks that T is consistent as defined in Definition B.1.

C.1.1 Ledger operations

Ledger epochs. Whenever A attempts to increment the ledger epoch L.Epoch, S invokes Tp.IncrementEpoch(). If
S receives a ‘increment’ message inc from Tp,

Validating ledger transactions. Whenever A attempts to send a transaction tx to L, S writes tx to L if and only if
DAM.VerifyTransactionL(pp, tx) = 1.

C.1.2 Adversarial actions

When A performs the following actions, S interacts with the trusted party Tp as follows.

Adversarial mints. When A posts a mint transaction txm to L, S performs the following actions.

if pub = cn if pub = dp if pub = tk

1. (v, apk, pub, sec,n)← DAP.ExtractMint(ppDAP, tdDAP, txm).
2. If DAP.ExtractMint returns ⊥: abort and return ⊥ toA.

3. Invoke Tp.MintCoin(v, apk).
4. Receive from Tp: (mintcn, c, v).
5. Set SimNotes[n] := c.

3. Invoke Tp.MintDeposit(v, apk,∅).
4. Receive from Tp: (mintdp,d, v).
5. Set SimNotes[n] := d.

3. Parse sec as d.
4. Retrieve d := SimNotes[d].
5. Set infod := (d,d.v,d.apk).
6. Invoke Tp.MintTicket(v, apk, infod).
7. Receive from Tp: (minttk, t, v).
8. Set SimNotes[n] := t.

Adversarial pour-coins. When A posts a pour-coin transaction txpc to L, S performs the following actions.

1. ([ci]
m
1 , [aski]

m
1 , [vj]

n
1 , [apkj]

n
1 , [pubj]

n
1 , [secj]

n
1 , vpub, info,∆, [nj]

n
1)← DAP.ExtractPour(ppDAP, tdDAP, txpc).

2. For i = 1 to m: retrieve ci := SimNotes[ci]

if for all j ∈ {1, . . . , n}, pubj = cn if for all j ∈ {1, . . . , n}, pubj = dp:

1. Tp.PourCoinToCoin([ci]
m
1 , [apkj]

n
1 , [vj]

n
1 , vpub).

2. Receive from Tp: (pourcn,m, [cj]
n
1 , vpub).

3. for j = 1 to n: set SimNotes[nj] := cj .

1. Tp.PourCoinToDeposit([ci]m1 , [apkj]
n
1 , [vj]

n
1 , vpub, [∅j]n1).

2. Receive from Tp: (pourcn,m, [dj]
n
1 , vpub).

3. for j = 1 to n: set SimNotes[nj] := dj .

if for all j ∈ {1, . . . , n}, pubj = tk:

1. for j = 1 to n:
(a) parse secj as dj .
(b) retrieve dj := SimNotes[dj].
(c) infodj := (dj ,dj .v,dj .apk).

2. Tp.PourCoinToTicket([ci]m1 , [apkj]
n
1 , [vj]

n
1 , vpub, [infodj]n1).

3. Receive from Tp: (pourcn,m, [tj]
n
1 , vpub).

4. for j = 1 to n: set SimNotes[nj] := tj .

62

Adversarial deposit withdrawals and ticket refreshes. When A posts a withdraw transaction txwd or refresh
transaction txref to L, S performs the following actions.

withdraw transaction refresh transaction

1. α← DAP.ExtractPour(pp, tdDAP, txwd).
2. Parseα as (d, askd, v, apk, pub, sec, vpub, info,∆, c).
3. Retrieve d := SimNotes[d].
4. Invoke Tp.RefreshTicket(d, apk, vpub).
5. Receive from Tp: (withdraw, c, vpub).
6. Set SimNotes[c] := c.

1. α← DAP.ExtractPour(pp, tdDAP, txref).
2. Parse α as (t, askt, v, apk, pub, sec, vpub, info,∆, t′).
3. Retrieve t := SimNotes[t].
4. Invoke Tp.RefreshTicket(t, apk, vpub).
5. Receive from Tp: (refresh, t′, vpub).
6. Set SimNotes[t′] := t′.

Adversarial probabilistic payments. WhenA (in the role of the Sender) engages in the DAM.PourTicket protocol
with an honest receiving party Pr, S engages in the PourTicket protocol with A in the role of the Receiver, and calls
Tp.PourTicket(Pr). Then, A performs the following actions.

1. Receive from Tp: Pr’s (sid,D, vpub).
2. Compute (pkFMT, skFMT)← FMT.SimSetup(ppFMT, tdFMT).
3. Compute (pkSIG, skSIG)← SIG.Keygen(ppSIG).
4. Compute γD ← DB.Comm(D).
5. Construct spk := (pkFMT, pkSIG).
6. Send to A: (sid, spk,D, γD, vpub).
7. Receive from A: (m0, ω0, ω1, r0, πpt).
8. Parse m0 as (sid′, spk′, v′pub, γ

′
D, cFMT, arlt).

9. x := (L.Len,L.SNRoot,L.CMRoot, pkSIG, ω0, ω1).
10. If COMMr0(m0) 6= ω0: output fail.
11. If (sid′, spk′, v′pub, γ

′
D) 6= (sid, spk, vpub, γD): output fail.

12. Check that NIZK.Verify(crspt,x, πpt) = 1.
13. Compute w← NIZK.Extract(crspt, tdpt, πpt).

14. Parse w as
(
t, askt,d, askd c, txp, info πR, πsn, πcm, πD cFMT, r0, r1sid, spk, vpub dst, arlt,wrlt actr,wctr, γD

)
.

15. Retrieve t := SimNotes[t].
16. Set ok? := t.
17. Send to Tp: ok?.
18. Receive from Tp: final.
19. If final = abort: Send to A: abort.
20. If final ∈ {0, 1}:

(a) sk′FMT ← FMT.SimDecrypt(ppFMT, tdFMT, skFMT, ok?).
(b) If final = 0: set m′ = ∅.
(c) If final = 1: set m′ = FMT.ExtDecrypt(ppFMT, tdFMT, cFMT).
(d) Send to A: (m′, skFMT).

Adversarial pour-ticket transactions. When A posts a pour-ticket transaction txpt to L, S performs the following
actions.

1. Retrieve (toktk, sid, vpub) := SimPourTk[txpt.sn].
2. Invoke Tp.RedeemTicket(toktk, sid, vpub).
3. Discard any messages received as a result of this invocation.

C.1.3 Trusted party messages:

When S receives messages from the trusted party Tp, it performs the following actions.

Mints. When Tp sends a mint message (mint,n, v) to S, where mint ∈ {mintcn, minttk, mintdp}, S performs
the following actions.

63

if mint = mintcn if mint = mintdp if mint = minttk

1. Set pub := cn. 1. Set pub := dp. 1. Set pub := tk.

2. (n, txm)← DAP.SimMintL(ppDAP, tdDAP, v, pub).
3. Set SimNotes[n] := n.
4. Append txm to L.

Pour-coins. When Tp sends a pour-coin message for a pour-coin transaction (pourcn,m, [nj]
n
1 , vpub) to all parties,

S performs the following actions.

• If no additional messages are received:
1. Compute ([nj]

n
1 , txp)← DAP.SimPourL(ppDAP, tdDAP,m, n, vpub, 0,⊥).

2. For each j = 1 to n: set SimNotes[nj] := nj .
3. Append txp to L.

• If p ≤ n additional messages of the following forms are received:

[(prvpc, cn, ck, vk, ak)]p1 [(prvpc, dp,dk, vk, ak,Rk)]p1 [(prvpc, tk, tk, vk, ak, infodk)]p1

1. For k = 1 to p:
(a) (nk, txm)← DAM.MintCoin(pp, vk, ak).

1. For k = 1 to p:
(a) αRk

← RST.Comm(Rk).
(b) (nk, txm)← DAM.MintDeposit(pp, vk, ak, αRk

).

1. For k = 1 to p:
(a) retrieve dk s.t. SimNotes[dk] = infodk .d.
(b) (nk, txm)← DAM.MintTicket(pp, vk, ak,dk).

3. ([nj]
n
1 , txp)← DAP.SimPour(ppDAP, tdDAP,m, n, vpub, 0, [dk]p1).

4. For each j = 1 to n: set SimNotes[nj] := nj .
5. Append txp to L.

Deposit withdrawals and ticket refreshes. When Tp sends a withdraw message (withdraw, c, vpub) or a refresh
message (refresh, t′, vpub) to S, S performs the following actions.

• If no additional messages are received:

withdraw transaction refresh transaction
1. (c, txp)← DAP.SimPour(ppDAP, tdDAP, 1, 1, vpub,∆w,⊥).
2. Set SimNotes[c] := c.
3. Append txp to L.

1. (t′, txp)← DAP.SimPour(ppDAP, tdDAP, 1, 1, vpub,∆r,⊥).
2. Set SimNotes[t′] := t′.
3. Append txp to L.

• If additional messages of the following forms are received:

withdraw transaction refresh transaction
(withdraw, cn, c, v, a) (refresh, tk, t′, v, a, infod)

1. (c, txm)← DAM.MintCoin(ppDAP, v, a).
2. (c, txp)← DAP.SimPour(ppDAP, tdDAP, 1, 1, vpub,∆w, c).
3. Set SimNotes[c] := c.
4. Append txp to L.

1. Retrieve d such that SimNotes[d] = infod.d.
2. (t′, txm)← DAM.MintTicket(ppDAP, v, a,d).
3. (t′, txp)← DAP.SimPour(ppDAP, tdDAP, 1, 1, vpub,∆r, t′).
4. Set SimNotes[t′] := t′.
5. Append txp to L.

Probabilistic payments. When an honest party Ps, operating as the sender, initiates the pour-ticket protocol
PourTicket via Tp with receiving party S, S, acting in the role of the sender, engages in the DAM.PourTicket
protocol with A as follows.

1. Receive from Tp: init.
2. Initiate the DAM.PourTicket protocol with A.
3. Receive from A: (sid, spk,D, γD, vpub).
4. Parse sid as (apkc, twr).
5. Parse apkc.spec as (ar,wr, pr, Vr).
6. Send to Tp: (sid,D, vpub).

64

7. Receive from Tp: (pourtk, avg,worst, result).
8. If avg = 0:

(a) sample random average-case rate limit tag arlt.
(b) set SimARates[sid] := SimARates[sid] ∪ {arlt}.

9. If avg = 1: sample a random average-case rate limit tag arlt from SimARates[sid].
10. If result = null:

(a) set b := 0.
(b) sample random double spend tag dst.

11. If result = (macro, toktk):
(a) set b := 1.
(b) compute t := CRH(pkSIG).
(c) sample random double spend tag dst.
(d) set SimTokens[toktk] := (t, dst).

12. If result = (macro, toktk, tokdp):
(a) set b := 1.
(b) retrieve (t′, dst′) := SimTokens[toktk].
(c) if SimTokens[tokdp] = ⊥:

i. sample sn and id randomly.
ii. set SimTokens[tokdp] = (sn, id).

(d) else: retrieve (sn, id) := SimTokens[tokdp].
(e) compute t′ := CRH(pkSIG).
(f) set s := (sn, id)
(g) Construct line `(X) := (dst′ − s)/(t′ − 0) + s.
(h) compute dst := `(t).

13. If result 6= null:
(a) if worst = 0:

i. sample random worst-case rate limit tag wrlt.
ii. set SimWRates[sid] := SimWRates[sid] ∪ {wrlt}.

(b) if worst = 1: sample a random worst-case rate limit tag wrlt from SimWRates[sid].
14. (c, txm)← DAM.MintCoin(ppDAP, Vr, apkc).
15. (c, txp)← DAP.SimPour(ppDAP, tdDAP, 1, 1, vpub, 0, c).
16. Set SimPourTk[txp.sn] := (toktk, sid, vpub).
17. Sample commitment randomness r0, r1.
18. Set m1 := (txp, dst,wrlt).
19. cFMT ← FMT.SimEncrypt(ppFMT, tdFMT, spk.pkFMT, b,m1‖r1).
20. Set ω1 := COMMr1(txp, dst,wrlt).
21. Set ω0 := COMMr0(sid, spk, vpub, γD, cFMT, arlt).
22. Set x := (L.Len,L.SNRoot,L.CMRoot, pkSIG, ω0, ω1).
23. πpt ← NIZK.Simulate(crspt, tdpt,x).
24. Send to A: (m0, ω0, ω1, r0, πpt).
25. Receive from A: (m′, skFMT).
26. If FMT.Decrypt(ppFMT, skFMT, cFMT) = m′: Send to Tp: ok? := 1.
27. If FMT.Decrypt(ppFMT, skFMT, cFMT) 6= m′: Send to Tp: ok? := 0.

Pour-ticket notification. When Tp sends a pour-ticket message (pourtk, c, vpub) not in response to an invocation
by S, S performs the following actions:

1. If S also receives a message of the form (ptk, cn, c, v, ar):
(a) compute (c, txm)← DAM.MintCoin(ppDAP, Vr, ar).
(b) (c, txp)← DAP.SimPour(ppDAP, tdDAP, 1, 1, vpub, 0, c).

65

2. If no such message is received: compute (c, txp)← DAP.SimPour(ppDAP, tdDAP, 1, 1, vpub, 0,⊥).
3. Parse txp as (ts, 0, sn, cm, vpub, info, ∗).
4. Sample a one-time signature key pair (pkSIG, skSIG)← SIG.Keygen(pp.ppSIG).
5. Sample random double spend tag dst, commitment ω0, randomness r1, and worst-case rate limit tag wrlt.
6. Set ω1 := COMMr1(txp, dst,wrlt).
7. Simulate πpt ← NIZK.Simulate(crspt, tdpt, (L.Len,L.SNRoot,L.CMRoot, pkSIG, ω0, ω1)).
8. mSIG := (txp, dst, ω0, ω1, r1, πpt).
9. σ ← SIG.Sign(ppSIG, skSIG,mSIG).

10. ∗′ := (∗, (pkSIG,mSIG, σ)).
11. txpt := tx′p where tx′p := (ts, 0, sn, cm, vpub, info, ∗′).
12. Push txpt to L.

Double spend notification. When Tp sends a double-spend message (doublespend, tokdp) without being invoked
by S, S performs the following actions:

1. If SimTokens[tokdp] = ⊥:
(a) sample a random serial number sn and a random deposit identifier id.
(b) set SimTokens[tokdp] := (sn, id).

2. If SimTokens[tokdp] 6= ⊥: retrieve (sn, id) := SimTokens[tokdp].
3. Construct two simulated pour-ticket transactions txpt and tx′pt that are valid and consistent with sn and id.
4. Set txpun := (txpt, tx

′
pt, sn, id)

5. Post txpun to L.

All transactions. In addition to the specific transaction handling above, S monitors the output of A (including the
output of the NIZK and DAP extraction algorithms), and sends A abort if any of the following cases occur:

1. A outputs two commitment openings for a single commitment in the scheme COMM.
2. A outputs two different pre-images for the same output of the hash function CRH or PRF.

C.2 Proof of security by hybrid argument
We now show that the output distribution of the ideal world experiment is computationally indistinguishable from the
output distribution of the real world experiment. We demonstrate this via a series of hybrids defined by games Gi.
Denote by Output (Gi(A)) the output of A at the end of game Gi.

G0: This game corresponds to the real experiment.

G1: In this game, the trusted parameter generator modifies the DAM public parameters by replacing the contained
honestly-generated pour-ticket NIZK CRS with a simulated one (that is, one generated via invoking NIZK.SimSetup).
Additionally, each pour-ticket NIZK πpt sent from an honest party to A is replaced with a simulated proof, and the
knowledge extractor is run on each πpt produced by A. If any extraction fails, the experiment aborts and outputs
abort. Assuming that the NIZK scheme NIZK is simulation-extractable and zero knowledge, Output (G0(A)) is
computationally indistinguishable from Output (G1(A)).

G2: In this game, the trusted parameter generator modifies the DAM public parameters by replacing the contained
honestly-generated DAP parameters with simulated ones (that is, ones generated by invoking DAP.SimSetup).
Additionally, each DAP Mint and Pour generated by an uncorrupted party is replaced with the corresponding
simulated transaction created via DAP.SimMint and DAP.SimPour respectively. Similarly DAP.ExtractMint and
DAP.ExtractPour are run whenever A outputs a valid mint or pour transaction. If any extraction fails, the experiment
abourts and outputs abort. Assuming that the DAP scheme is secure in the sense of Definition B.2, then by Lemma C.1,
we have that Output (G1(A)) is computationally indistinguishable from Output (G2(A)).

66

G3: In this game, the trusted parameter generator modifies the DAM public parameters by replacing the contained hon-
estly generated FMT parameters with simulated ones. By Claim A.5, we have that Output (G2(A)) is computationally
indistinguishable from Output (G3(A)).

G4: Whenever an honest party acting as Sender engages in pour-ticket protocol DAM.PourTicketL with the A acting
as a Receiver, the honest party samples a bit b such that b = 1 with probability p, and simulates running the protocol.
It runs FMT.SimEncrypt using the trapdoor tdFMT to simulate the construction of the FMT ciphertext cFMT such that
the ciphertext will decrypt correctly with probability 1 when b = 1, and when b = 0 will decrypt to ∅. By Claim A.7
and Lemma C.2, we have that Output (G3(A)) is computationally indistinguishable from Output (G4(A)).

G5: Whenever the real-world adversary A engages in DAM.PourTicketL acting as a Sender to receive payment from
an honest party Ps, the honest party first runs FMT.SimKeygen on the trapdoor tdFMT and sends the resulting pkFMT

to A as part of spk in the first move of the protocol. Next, upon receiving c from A in the second move of the protocol,
the honest party runs (m, r)← FMT.ExtDecrypt(ppFMT, tdFMT, skFMT, c) with probability 1. If the decryption of c
is not consistent with the witness extracted from πpt, abort and output abort to A. By Claim A.7 and Lemma C.3, we
have that Output (G4(A)) is computationally indistinguishable from Output (G5(A)).

G6: Whenever the real-world adversaryA posts a valid pour-ticket transaction txpt containing a signature σ under pkSIG

such that pkSIG was generated by an honest party, but the tuple (mSIG, σ) was not a message/signature pair generated
by the honest party, abort and output abort. Under the assumption that the signature scheme is strongly unforgeable,
then by Lemma C.4 we have that Output (G5(A)) is computationally indistinguishable from Output (G6(A)).

G7: Whenever the real-world adversary A outputs two distinct openings to the same commitment for the scheme
COMM, abort and output abort. Note that if COMM is a computationally binding commitment scheme, this occurs
with at most negligible probability. Thus we have that Output (G6(A)) is computationally indistinguishable from
Output (G7(A)).

G8: Whenever the real-world adversary A outputs two distinct pre-images to the same output of the function CRH or
PRF, abort and output abort. Note that if these functions are collision resistant, this will occur with at most negligible
probability. Thus we have that Output (G7(A)) is computationally indistinguishable from Output (G8(A)).

G9: Whenever the real-world adversary A receives a ticket that has not been spent from an honest party, replace the
slope of the double spend tag with a random slope drawn from the appropriate domain. If PRF is a PRF, this happens
with at most negligible probability. Thus we have that Output (G8(A)) is computationally indistinguishable from
Output (G9(A)).

G10: Whenever the real-world adversary A initiates a PourTicket interaction on an (extracted) deposit d, and the total
of the payment rates made by A on d exceeds the value s that is embedded in d.sec, abort the simulation and output
the distinguished error message rates. If CRH is collision resistant, this happens with at most negligible probability.
Thus, by Lemma C.5, Output (G9(A)) is computationally indistinguishable from Output (G10(A)).

We note that the final hybrid is distributed identically to the operation of S from the point of view of A. By summation
over the previous hybrids we show that A’s advantage in distinguishing the interaction with S from the interaction with
the real protocol is at most negligible in λ. We now complete the proof via the following lemmas.

Lemma C.1. No efficient adversary A can distinguish between the distributions G1 and G2.

Proof. The proof relies on the security of the underlying DAP scheme, as defined in Appendix B. Recall that G1 uses the
real DAP scheme DAP, and G2 uses the DAP simulation routines to construct DAP transactions. Let A be a real-world
adversary that succeeds in distinguishing G1 from G2 with non-negligible advantage. We show how to construct a new
adversary A′ that succeeds with non-negligible advantage against the DAP scheme according to Definition B.2. A′ runs
the experiment of Definition B.2, and simultaneously interacts with A which runs the DAM protocol as follows.

First, A′ receives ppDAP from the DAP experiment. It then embeds these parameters in pp and sends them to A.
Now A′ runs the normal DAM protocol with A, taking the role of all honest parties. However each time A′ is required
to 1. create a new address for an honest party, 2. construct a DAP Mint transaction from an honest party, or 3. create a

67

Pour transaction from an honest party, A′ queries the DAP experiment to obtain the necessary values. It then uses the
result (address or transaction) in place of the normal value that would be used in the DAM protocol. If the experiment
aborts prematurely, abort and return abort to A.

We note that if A′ is engaged in the REAL experiment for the DAP scheme, then the distribution of the values
received by A is identical to that of G1. On the other hand, when A′ is engaged in the IDEALexperiment for the DAP
scheme, then the distribution of values received by A is identical to G2. Thus, if A successfully distinguishes G1 from
G2 with advantage that is non-negligible in λ, then we obtain a distinguisher that succeeds against the DAP scheme.
This contradicts our assumption that the DAP scheme is secure.

Lemma C.2. No efficient adversary A can distinguish between the distributions G3 and G4.

Proof. The proof relies on fractional hiding property of the underlying FMT scheme. Let A be an adversary that
distinguishes G3 from G4 with non-negligible advantage. Then we construct a new adversary A′ that succeeds in
distinguishing the two distributions defined in Claim A.7 with non-negligible advantage. A′ selects one PourTicket
interaction in the first such transaction, and emulates the honest sender party. A′ receives pkFMT from A, and selects
the appropriate pour transaction txp and double spend tag dst to use as the message m. A′ forwards this pkFMT and
m to the challenger of the FMT fractional hiding game. It receives a ciphertext c in return, and passes it to A. A′
then outputs whatever A outputs. When the challenger encrypts the ciphertext using FMT.Encrypt, the view of A is
identical to G3. When the challenger encrypts using FMT.SimEncrypt, the view of A is identical to that of G4.

We repeat this process via a hybrid argument, systematically modifying each PourTicket interaction as above until
all such interactions have been modified. The resulting distribution is identical to G4. By definition if A’s output can
be distinguished between G3 and G4 then there must exist one pair of intermediate hybrids in which A′ succeeds in
distinguishing the distributions with non-negligible probability. This implies thatA′ can distinguish the two distributions
of Claim A.7 with non-negligible advantage, which contradicts the assumption.

Lemma C.3. No efficient adversary A can distinguish between the distributions G4 and G5.

Proof. The proof relies on the fractional binding property of the underlying FMT scheme. Let A be an adversary
that distinguishes between the outputs of the two games with non-negligible advantage. Then we construct a new
adversary A′ that succeeds in distinguishing the two distributions defined in Claim A.8 with non-negligible advantage.
A′ selects one PourTicket interaction in the first such transaction, and replaces the honestly-generated public key with
embeds a simulated public key in place of the corresponding values in the interaction. Next, when A outputs c, A′ runs
FMT.ExtDecrypt to extract the underlying messagem and simulates a secret key skFMT via FMT.SimDecrypt. It sends
this simulated secret key toA instead of an honestly generated one. This procedure is repeated via a hybrid argument for
each PourTicket interaction that A engages in. If A distinguishes G3 from G4 with non-negligible advantage, then by
the hybrid argumentAmust distinguish at least one set of intermediate hybrids with non-negligible advantage. However,
this would imply thatA′ succeeds in distinguishing the distributions of Claim A.8 with non-negligible advantage, which
contradicts the assumption.

Lemma C.4. No efficient adversary A can distinguish between the distributions G5 and G6.

Proof. The proof relies on the strong unforgeability of the underlying one-time signature scheme SIG. The proof
proceeds as follows. If A distinguishes between G5 and G6, then it must be the case that at some point A succeeds with
non-negligible probability at producing a pour-ticket transaction that contains a tuple Sforge := (pkSIG,mSIG, σ) with
the conditions that (1) pkSIG was generated by an honest party, (2) (mSIG, σ) was not produced by the honest party, and
(3) SIG.Verify(pkSIG,mSIG, σ) = 1 as enforced by the VerifyTransaction algorithm. Given such a A, we construct an
adversary A′ that breaks the strong unforgeability of SIG as follows.

First, A′ runs the protocol as specified in G5, except that out of all of the PourTicket interactions initiated by honest
parties, it selects one such interaction and obtains pk′SIG from the signing oracle instead of generating it as in the normal
protocol interaction. It embeds this public key in spk sent to A in the first move of the protocol. If A does not abort the
protocol, then A′ uses the signing oracle to obtain σ′ on the message mSIG. (If A fails to complete the protocol, then A′
instead queries the signing oracle on a random string of length |mSIG|.) Notice thatA’s view of this modified interaction
is identical to that of G5. When A later appends a different pour-ticket transasction txpt containg (pkSIG,mSIG, σ), A′
halts if pkSIG 6= pk′SIG. Otherwise, A′ outputs (mSIG, σ) as a forgery in SIG’s security experiment.

68

Note that ifA succeeds in outputting txpt with non-negligible probability, thenA′ will break the strong unforgeability
of SIG with non-negligible advantage.

Lemma C.5. No efficient adversary A can distinguish between the distributions G9 and G10.

Proof. The proof relies on the security of the monotonic Merkle Trees discussed in Section 7.2.6 and the underlying
collision-resistant hash function CRH(). The proof proceeds as follows. If A distinguishes G9 and G10, then it must
be the case that A has, with non-negligible probability, succeeded in completing ` separate PourTicket interactions
containing NIZK proofs (π1

pt, . . . , π
`
pt). Furthermore, once the knowledge extractor is applied to these proofs, each

proof references the same deposit d and we obtain a set of witnesses (π1
R, . . . , π

`
R) and payment rates (w1

r , . . . ,w
`
r)

such that each witness is individually valid w.r.t. d and yet
∑`
i=1w

i
r > s, where s is the sum that was extracted from d

at the time it was minted. We show that such an A implies a second adversary A′ that runs the experiment of G9 with A
and succeeds in finding a collision for CRH with non-negligible probability.

Recall that each πR is a path in a Merkle sum tree, which is constructed as follows: the values w1
r , . . . ,w

`
r are

located at the leaves of the tree. Each internal node stores the sum s = vl + vr of the values vl, vr of its children, and
also stores a hash h = CRH(left‖right‖s) of the children and their sum. The NP statement for πpt requires that the root
of the tree and s is embedded within the deposit d, and therefore each path wir terminates at the same root value and sum.
We observe that if no collisions occur in the hash function CRH, the sum at the root of the tree must be ≥

∑`
i=1w

i
r .

Thus if A succeeds at distinguishing G9 and G10 with non-negligible advantage, then it must be the case that
A′ can extract two distinct proofs πiR and πjR that terminate in the same root value, yet at some point in the path
reference distinct intermediate sums. However, this event can only occur if at some point in the two paths there
exists a collision for the hash function CRH. The algorithm A′ simply runs A until it obtains two such proofs. Upon
extracting these proofs A′ identifies the colliding messages (m1,m2) used as input to CRH and outputs this pair as a
collision. In the event that A succeeds with non-negligible advantage at distinguishing the two games, then A′ succeeds
with non-negligible advantage in identifying a collision in CRH, which violates our assumption that CRH is collision
resistant.

69

References
[BBSU12] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better - how to make Bitcoin a better currency.

In Proceedings of the 16th International Conference on Financial Cryptography and Data Security, FC ’12, pages
399–414, 2012.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings of the 2014 IEEE Symposium on Security
and Privacy, SP ’14, pages 459–474, 2014.

[Bit13] Bitcoinj. Working with micropayment channels. https://bitcoinj.github.io/
working-with-micropayments, 2013.

[Blo14] Block Chain Analysis. Block chain analysis. http://www.block-chain-analysis.com/, 2014.

[BM89] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In Proceedings of the 9th Annual
International Cryptology Conference, CRYPTO ’89, pages 547–557, 1989.

[BP15] Alex Biryukov and Ivan Pustogarov. Proof-of-work as anonymous micropayment: Rewarding a Tor relay. In
Proceedings of the 19th International Conference on Financial Cryptography, FC ’15, pages 445–455, 2015.

[BR99] Mihir Bellare and Ronald L. Rivest. Translucent cryptography - an alternative to key escrow, and its implementation
via fractional oblivious transfer. Journal of Cryptology, 12(2):117–139, 1999.

[Bra93] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In Proceedings of the 13th
Annual International Cryptology Conference, CRYPTO ’93, pages 302–318, 1993.

[Cal12] Mike Caldwell. Sustainable nanopayment idea: Probabilistic payments. https://bitcointalk.org/index.
php?topic=62558.0, 2012.

[CEv87] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An improved protocol for demonstrating possession of
discrete logarithms and some generalizations. In Proceedings of the 6th Annual International Conference on Theory
and Application of Cryptographic Techniques, EUROCRYPT ’87, pages 127–141, 1987.

[Cha82] David Chaum. Blind signatures for untraceable payments. In Proceedings of the 2nd Annual International Cryptology
Conference, CRYPTO ’82, pages 199–203, 1982.

[Cha15] Chainalysis. Chainalysis inc. https://chainalysis.com/, 2015.

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Proceedings of the 24th Annual
International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT ’05, pages 302–321,
2005.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust non-
interactive zero knowledge. In Proceedings of the 21st Annual International Cryptology Conference, CRYPTO ’01,
pages 566–598, 2001.

[DFKP13] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. Pinocchio Coin: building Zerocoin from a
succinct pairing-based proof system. In Proceedings of the 2013 Workshop on Language Support for Privacy Enhancing
Technologies, PETShop ’13, 2013.

[DW15] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with Bitcoin duplex micropayment
channels. In Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed
Systems, SSS ’15, pages 3–18, 2015.

[Elg85] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31(4):469–472, 1985.

[Ell13] Elliptic. Elliptic enterprises limited. https://www.elliptic.co/, 2013.

[Fer93] Niels Ferguson. Single term off-line coins. In Proceedings of the 12th Annual International Conference on Theory and
Application of Cryptographic Techniques, EUROCRYPT ’93, pages 318–328, 1993.

[GGM16] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for decentralized anonymous payments.
Cryptology ePrint Archive, Report 2016/61, 2016.

[GM16] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies. Cryptology ePrint
Archive, Report 2016/701, 2016.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University Press, New York,
NY, USA, 2004.

70

https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
http://www.block-chain-analysis.com/
https://bitcointalk.org/index.php?topic=62558.0
https://bitcointalk.org/index.php?topic=62558.0
https://chainalysis.com/
https://www.elliptic.co/

[HAB+16] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Goldberg. TumbleBit: An untrusted
Bitcoin-compatible anonymous payment hub. Cryptology ePrint Archive, Report 2016/575, 2016.

[HBHW16] Daira Hopwood, Sean Bowe, Tailor Hornby, and Nathan Wilcox. Zcash protocol specification, 2016. URL: https:
//github.com/zcash/zips/blob/master/protocol/protocol.pdf.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on Bitcoin’s peer-to-peer network.
In Proceedings of the 24th USENIX Security Symposium, Security ’15, pages 129–144, 2015.

[HS12] Mike Hearn and Jeremy Spilman. Bitcoin contracts. https://en.bitcoin.it/wiki/Contract, 2012.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy, SP ’16, pages 839–858, 2016.

[LO98] Richard J. Lipton and Rafail Ostrovsky. Micropayments via efficient coin-flipping. In Proceedings of the 2nd
International Conference on Financial Cryptography, FC ’98, pages 1–15, 1998.

[MB15] Malte Möser and Rainer Böhme. Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees. In Proceedings of
the 2nd Workshop on Bitcoin and Blockchain Research, Bitcoin ’15, pages 19–33, 2015.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous distributed e-cash from
Bitcoin. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages 397–411, 2013.

[Mic14] Silvio Micali. Universal payment systems. https://www.youtube.com/watch?v=xgA6TO7drok, 2014.

[MPJ+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker, and Stefan
Savage. A fistful of Bitcoins: characterizing payments among men with no names. In Proceedings of the 2013 Internet
Measurement Conference, IMC ’13, pages 127–140, 2013.

[MR02] Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Proceedings of the Cryptographer’s Track at the RSA
Conference, CT-RSA ’02, pages 149–163, 2002.

[MRK03] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In Proceedings of the 44th Annual Symposium
on Foundations of Computer Science, FOCS ’03, pages 80–91, 2003.

[Nak09] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2009. URL: http://www.bitcoin.org/
bitcoin.pdf.

[NBF+16] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and Cryptocurrency
Technologies: A Comprehensive Introduction. Princeton University Press, 2016.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature schemes. In
Proceedings of the 12th Annual International Cryptology Conference, CRYPTO ’92, pages 31–53, 1992.

[PD16] Joseph Poon and Thaddeus Dryja. The Bitcoin lightning network: Scalable off-chain instant payments. https:
//lightning.network/lightning-network-paper.pdf, 2016.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Proceedings of the
11th Annual International Cryptology Conference, CRYPTO ’91, pages 129–140, 1991.

[PS15] Rafael Pass and Abhi Shelat. Micropayments for decentralized currencies. In Proceedings of the 22nd ACM Conference
on Computer and Communications Security, CCS ’15, pages 207–218, 2015.

[PS16] Rafael Pass and Abhi Shelat. Micropayments for decentralized currencies. Cryptology ePrint Archive, Report 2016/332,
2016.

[RH11] Fergal Reid and Martin Harrigan. An analysis of anonymity in the Bitcoin system. In Proceedings of the 3rd IEEE
International Conference on Privacy, Security, Risk and Trust (PASSAT), and the 3rd IEEE International Conference on
Social Computing (SocialCom), SocialCom/PASSAT ’11, pages 1318–1326, 2011.

[Riv97] Ronald L. Rivest. Electronic lottery tickets as micropayments. In Proceedings of the 1st International Conference on
Financial Cryptography, FC ’97, pages 307–314, 1997.

[Riv04] Ronald L. Rivest. Peppercoin micropayments. In Proceedings of the 8th International Conference on Financial
Cryptography, FC ’04, pages 2–8, 2004.

[RKS15] Tim Ruffing, Aniket Kate, and Dominique Schröder. Liar, liar, coins on fire!: Penalizing equivocation by loss of
Bitcoins. In Proceedings of the 22nd ACM Conference on Computer and Communications Security, CCS ’15, pages
219–230, 2015.

71

https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://en.bitcoin.it/wiki/Contract
https://www.youtube.com/watch?v=xgA6TO7drok
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin transaction graph. In Proceedings of the 17th
International Conference on Financial Cryptography and Data Security, FC ’13, pages 6–24, 2013.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, pages 543–553, 1999.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[SJ00] Claus-Peter Schnorr and Markus Jakobsson. Security of signed Elgamal encryption. In Proceedings of the 6th Annual
International Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT ’00,
pages 73–89, 2000.

[ST99] Tomas Sander and Amnon Ta-Shma. Auditable, anonymous electronic cash extended abstract. In Proceedings of the
19th Annual International Cryptology Conference, CRYPTO ’99, pages 555–572, 1999.

[vOR+03] Nicko van Someren, Andrew M. Odlyzko, Ronald L. Rivest, Tim Jones, and Duncan Goldie-Scot. Does anyone really
need micropayments? In Proceedings of the 7th International Conference on Financial Cryptography, FC ’03, pages
69–76, 2003.

[Whe96] David Wheeler. Transactions using bets. In Proceedings of the 1996 International Workshop on Security Protocols,
SPW ’96, pages 89–92, 1996.

[Wil14] Zak Wilcox. Proving your Bitcoin reserves. https://iwilcox.me.uk/2014/
proving-bitcoin-reserves, 2014.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, FOCS ’77, pages 222–227, 1977.

72

https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://iwilcox.me.uk/2014/proving-bitcoin-reserves

	Abstract
	Contents
	1 Introduction
	1.1 Our contributions
	1.2 Prior work on micropayment channels
	1.3 Roadmap

	2 Techniques
	2.1 Constructing decentralized anonymous payments
	2.2 Intuition for our economic analysis of double spending

	3 Economic analysis of double spending for offline probabilistic payments
	3.1 Informal description of payment dynamics
	3.2 The game and its analysis
	3.3 Interpreting the payment value rates

	4 Efficient fractional message transfer
	5 Recalling decentralized anonymous payments
	5.1 Data structures
	5.2 Algorithms
	5.3 Merkle trees on all coin commitments and all serial numbers
	5.4 Extension of the DAP interface

	6 Definition of a decentralized anonymous micropayment scheme
	6.1 Data structures
	6.2 Algorithms
	6.3 Guidelines for usage
	6.4 Security

	7 Construction of a decentralized anonymous micropayment scheme
	7.1 Informal description
	7.2 Building blocks
	7.3 Construction
	7.4 Security of the construction

	A Fractional message transfer
	A.1 Definition of a fractional message transfer scheme
	A.2 Construction of a fractional message transfer scheme
	A.3 Definition of a fractional message transfer protocol
	A.4 Construction of a fractional message transfer protocol

	B Security of decentralized anonymous payment systems
	B.1 Auxiliary algorithms and notions
	B.2 Security definition
	B.3 Security of existing DAP constructions

	C Security of our DAM construction
	C.1 Ideal-world adversary S
	C.2 Proof of security by hybrid argument

	References

