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Abstract. Motivated by the recent searchable symmetric encryption protocol of Cash et al., we propose
a new multi-client searchable encryption protocol in this work. By tactfully leveraging the RSA-function,
our protocol avoids the per-query interaction between the data owner and the client, thus reducing the
communication overhead significantly and eliminating the need of the data owner to provide the online
services to clients at all times. Furthermore, our protocol manages to protect the query privacy of clients to
some extent, meaning that our protocol hides the exact queries from the data owner. In terms of the leakage
to server, it is exactly the same as Cash et al., thus achieving the same security against the adversarial
server. In addition, by employing attribute-based encryption technique, our protocol also realizes the fine-
grained access control on the stored data. To be compatible with our RSA-based approach, we also present
a deterministic and memory-efficient ‘keyword to prime’ hash function, which may be of independent
interest.
Keywords: cloud storage, searchable encryption, non-interaction, multi-client, RSA function.

1 Introduction

Cloud technology is now a major industry trend that offers great benefits to users. Cloud storage (or data
outsourcing) provides an excellent way to extend the capability to store large volumne of data, to prepare for
the high velocity of data generation, and to easily process the high variety of data (the “3V” of Big Data). In
other words, cloud storage is well designed for the big data era. Meanwhile, data outsourcing raises confidentiality
and privacy concerns. Simple encryption technology can protect data confidentiality easily. However, it is not
possible to search within the encrypted domain. In order to search for a particular keyword, user has to decrypt
the data first, before starting the searching process. It is not practical especailly when the volumne of data is
large. Searchable encryption (SE) [27,5,10,8,7] is a cryptographic primitive addressing encrypted search.

The architecture of SE can be classified into 4 types: single-writer/single-reader, single-writer/multi-reader,
multi-writer/single-reader and multi-writer/multi-reader. The traditional single-writer/single-reader allows the
data owner to first use a special encryption algorithm which produces an encrypted version of the database,
including encrypted metadata, that is then stored on an external server. Later, data owner can interact with the
server to carry out a search on the database and obtain the results (this is also called the symmetric setting as
there is only one writer to the database, the owner, who uses symmetric encryption.) Single-writer/multi-reader
SE allows an arbitrary group of parties other than the owner to submit search queries. The owner can control
the search access by granting and revoking searching privileges to other users.

In the setting of searching on public-key-encrypted data, users who encrypt the data (and send it to the
server) can be different from the owner of the decryption key. This creates the model for multi-writer/single-
reader SE. A more generalized model further allows every user to write an encrypted document to the database
as well as to search within the encrypted domain, including those ciphertexts produced by other users. This is
the multi-reader/multi-writer setting.

In the rest of the paper, we focus on the single-writer/multi-reader setting. In this framework, whenever
a reader (or client) wants to search over the database, she usually needs to perform a per-query interaction
with the writer (or data owner) and asks the data owner to produce and send back the necessary trapdoor
information to help her carry out the search, as shown in the representative work [17]. Thus, the data owner is
required to be online all the time. However, the initial goal of the data owner is to outsource his storage and
services to the cloud server, so removing the per-query interaction between the data owner and the client is a
desired feature.
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1.1 Our Contributions

In this work, we first present a deterministic and memory-efficient hash function, which maps keywords to
primes. With this function, we then propose an efficient non-interactive multi-client searchable encryption in
the single-writer/multi-reader setting, with support for boolean queries. Our construction enjoys the following
nice features:

1. Our construction is motivated by the searchable symmetric encryption (SSE) protocol of Cash et al. [7]
(CASH). When compared to its multi-client version [17] (MULTI), we improve the communication overhead
between the data owner and the client significantly. In fact, MULTI requires the client to interact with
the data owner each time she wants to search on database. For each query, the data owner responds by
generating a partial search token and sending it back to the client. Then the client generates the full token
and forwards it to the server to facilitate the searching process. In return, the server sends to the client an
encrypted index (or document identifier), by decrypting which the client can get the document identifier.
In our construction, we totally eliminate the interactive process, except at the beginning the client needs
to obtain a search-authorized secret key from the data owner for some permitted keywords. After that, the
client can generate a search token from this secret key for any boolean queries on those permitted keywords.
In the return of the encrypted indices from the server, the client is also able to decrypt them without
obtaining any assistance from the data owner.

2. We also note that there is a naive approach to turn MULTI into non-interactive setting. The data owner can
pre-generate all possible search tokens for the client. The number of pre-generated tokens is of order O(M),
where M is the number of possible queries the client is allowed to make. Our construction only requires the
data owner to generate a search-authorized secret key to the client. The size of the secret key is of order
O(1), which is actually just 3072 bits (with respect to 1024-bit RSA security) regardless of the number of
permitted queries.

3. We deploy Attribute-Based Encryption (ABE) mechanism to allow the client to decrypt the encrypted
indices given by the server without any assistance from the data owner. According to our framework, the
data owner can also realize fine-grained access control on his data. In addition, the data owner in our
protocol does not know which particular queries the client has generated or which documents the client has
retrieved, provided that the data owner has authorized the client to search for a set of permitted keywords.
In terms of information leakage to the server, we show that our construction is exactly the same as CASH,
meaning that the transcripts between the client and the server in real protocol can be properly simulated
only with the same leakage profile as CASH. Regarding the expressiveness, our protocol is similar to CASH,
which allows the client to perform arbitrary boolean queries efficiently.

1.2 Related Works

The first searchable encryption by Song et al. [27] is presented in the single-writer/single-reader setting. The
first notion of security for searchable encryption was introduced by Goh [13]. Curtmola et al. [10] proposed the
strong security notion of IND-CKA2. Kurosawa and Ohtaki [20] provided the IND-CKA2 security in the universal
composability (UC) model. On the other hand, Boneh et al. [5] introduced the first public key encryption with
keyword search, together with the security model in the multi-writer/single-reader architecture.

Kamara et al. [19,18] proposed dynamic searchable encryption schemes which allow efficient update of the
database. Golle et al. [14] gave the first searchable encryption with conjunctive keyword searches, in the single-
writer/single-reader setting. The search time is linear in the number of keywords to search. Most recently, Cash
et al. [7] proposed the first sublinear searchable encryption with support for boolean queries and efficiently
implemented it in a large database [6].

In the single-writer/multi-reader architecture, Curtmola et al. [10] proposed a general construction, which
uses broadcast encryption on top of a single-reader scheme. The search time of the scheme by Raykova et al.
[24] is linear in the number of documents. The scheme uses deterministic encryption and directly leaks the
search pattern in addition to the access pattern. Jarecki et al. [17] extend the scheme by Cash et al. [7] to a
single-writer/multi-reader setting while preserving all nice features provided by the original scheme.

In the multi-writer/multi-reader setting, a number of schemes [3,11,29,1] achieved a high level of security.
The search time is linear in the number of keywords per document. The scheme in [22] improved the search
complexity by removing the need of TTP in previous schemes. A stronger model for access pattern privacy was
proposed in [25]. All these schemes only support single keyword search.
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2 Preliminaries

In the section, we give a list of notations and terminologies used through our work and a brief review of hardness
assumptions and cryptographic primitives deployed in our construction.

2.1 Notations

Table 1. Notations used in our work

Notation Meaning

1κ a security parameter

idi the document identifier of the i-th document

Widi a list of keywords contained in the i-th document

DB = (idi,Widi)
d
i=1 a database consisting of a list of document identifier and keyword-set pairs

DB[w] = {id : w ∈Wid} the set of identifiers of documents that contain keyword w

W =
⋃d
i=1 Widi the keyword set of the database

RDK the retrieval decryption key array, which is used to retrieve the original documents

U the attribute universe of the system

[T ] the set of positive integers less than T , i.e., {1, 2, . . . , T}
s

$← S the operation of uniformly sampling a random element s from S

sterm the least frequent term among the queried terms/keywords in a search query

xterm other queried terms in a search query (i.e., the queried terms excluding the sterm)

2.2 Hardness Assumptions

The security of our construction relies on the hardness of the DDH problem and the strong RSA problem [9],
which are formally defined as follows.

Definition 1 (DDH problem). Let G be a cyclic group of prime order p, the decisional Diffie-Hellman (DDH)
problem is to distinguish the ensembles {(g, ga, gb, gab)} from {(g, ga, gb, gz)}, where the elements g ∈ G and
a, b, z ∈ Zp are chosen uniformly at random. Formally, the advantage for any probabilistic polynomial time
(PPT) distinguisher D is defined as: AdvDDHD,G (κ) = |Pr[D(g, ga, gb, gab) = 1]− Pr[D(g, ga, gb, gz) = 1]|.

We say that the DDH assumption holds if for any PPT distinguisher D, its advantage AdvDDHD,G (κ) is negli-
gible in κ.

Definition 2 (Strong RSA Problem). Let n = pq, where p and q are two κ-bit prime numbers such that
p = 2p′+ 1 and q = 2q′+ 1 for some primes p′, q′. Let g be a random element in Z∗n. We say that an algoritm S
solves the strong RSA problem if it receives as input the tuple (n, g) and outputs two elements (z, e) such that
ze = g mod n.

2.3 Pseudorandom Functions

Let F : {0, 1}κ × X → Y be a function defined from {0, 1}κ × X to Y. We say F is a pseudorandom function

(PRF) if for all efficient adversaries A, its advantage Advprf
F,A(κ) defined as,

Advprf
F,A(κ) = |Pr[AF (K,·)(1κ)]− Pr[Af(·)(1κ)]|,

is negligible in κ, where K
$← {0, 1}κ and f is a random function from X to Y.
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2.4 Attribute-based Encryption (ABE)

Attribute-based Encryption (ABE) [15,4,28,16,2] can be broadly categorized into key policy ABE (KP-ABE)
and ciphertext policy ABE (CP-ABE). KP-ABE allows data to be encrypted with a set of attributes, and
each decryption key is associated with an access policy (defined in terms of attributes); while CP-ABE is
complementary – data are encrypted and tagged with the pre-determined access policy, and a decryption key
is associated with the set of attributes. In either type, a ciphertext can be decrypted using the corresponding
decryption key only if the attributes satisfy the access policy. ABE has been shown to be an effective and
scalable access control mechanism for encrypted data. In our construction, we deploy CP-ABE as a primitive.

In general, a CP-ABE consists of the following algorithms ABE=(ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec):

• ABE.Setup(κ): this algorithm takes no input other than the security parameter κ and outputs the public
parameters mpk and a master secret key msk.

• ABE.KeyGen(mpk,msk, S): this algorithm takes as input a set of attributes S, the master key msk and the
public parameters mpk and outputs a decryption key sk.

• ABE.Enc(mpk,m,A): this algorithm takes as input a message m, an access structure A and the public
parameters mpk. It outputs the ciphertext ct such that only a user possessing a set of attributes that
satisfies the access structure will be able to decrypt the message. The ciphertext is assumed to implicitly
contains A.

• ABE.Dec(sk, ct): this algorithm takes a ciphertext ct which contains an access structure A and a private key
sk which is associated with a set of attributes S, and recovers the message m if S ∈ A.

For the standard semantic security of CP-ABE, please refer to [4,28].

2.5 Multi-client Searchable Encryption

In our single-writer/multi-reader (we call it multi-client in the rest of this paper) setting, there are three parties:
the data owner of the plaintext database, a service provider that stores the encrypted database, and the clients
who want to perform search queries over the database. In more details, the data owner outsources his search
service to a cloud server, and generates a search-authorized private key for each client in terms of her credentials.
When a client performs a search query, she generates the search token by herself using her own private key and
then forwards the token to the service provider. With the token, the server finally retrieves the encrypted
identifier or documents for the client.

Formally, the syntax of our multi-client searchable encryption consists of the following algorithms:

• EDBSetup(1κ,DB,RDK,U): the data owner takes 1κ, DB,RDK and U as input and generates the system
master key MK and public key PK, with which it processes the plaintext database DB and outsources the
encrypted database EDB and XSet to the server.

• ClientKGen(MK, S,w): for a client with attribute set S, the data owner takes MK, S and a set w of permitted
keywords as input and generates a search-authorized private key sk for the client. Note that w is authorized
according to the client’s credentials.

• TokenGen(sk,Q): the client uses her private key sk to produce the search token st for the query Q she wants
to perform.

• Search(st,EDB,XSet): with the search token st, the server performs the search over the encrypted database
EDB and XSet and returns the matching results R to the client.

• Retrieve(sk,R): the client uses her private key sk to decrypt the search result R (returned by the sever) and
retrieves the original documents using the relevant document identifier and decryption key.

The goal of the data owner is to outsource his storage and service to the cloud server while leaking as little
as possible information about the queries and plaintext data to the server, and preventing the clients from
performing any search query over unpermitted keywords, which is formalized in the following subsection.

2.6 Security Definitions

In this section, we give security definitions of searchable encryption. In the multi-client setting, we consider
both securities with respect to (w.r.t.) the adversarial server and the clients. Similar to [7], we do not model the
retrieval of encrypted documents in the security analysis and just focus on the storage and processing of the
metadata.
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First, let us consider the security w.r.t. an adversarial server, which can be extended straightforwardly from
[7]. This security is parameterized by a leakage function L, as described below, which captures information
allowed to learn by an adversary from the interaction with a secure scheme. Loosely speaking, the security says
that the server’s view during an adaptive attack can be properly simulated given only the output of the leakage
function L. As in [7], the “adaptive” here means the server selects the database and queries. Moreover, it selects
the authorized keywords for each client in our setting.

Let Π = (EDBSetup,ClientKGen,TokenGen,Search) be a searchable encryption scheme and A,S be two
efficient algorithms. The security is formally defined via a real experiment RealΠA(κ) and an ideal experiment
IdealΠA,S(κ) as follows:

RealΠA(κ) : A(1κ) chooses a database DB. Then the experiment runs the algorithm (MK,PK,EDB,XSet) ←
EDBSetup(1κ,DB,RDK,U) and returns (PK,EDB,XSet) to A. After that, A selects a set w of authorized
keywords for a client and then repeatedly chooses a search query q, where we assume the keywords associated
with q are always within the authorized keyword set w. To respond, the experiment runs the remaining
algorithms in Π (including ClientKGen, TokenGen and Search), and gives the transcript and client output to
A. Eventually, the experiment outputs the bit that A returns.

IdealΠA,S(κ) : The game initializes an empty list q and a counter i = 0. A(1κ) chooses a database DB. Then the
experiment runs (PK,EDB,XSet)← S(L(DB)) and gives (PK,EDB,XSet) to A. A then repeatedly chooses
a search query q. To respond, the experiment records this query as q[i], increments i and gives the output
of S(L(DB,q)) to A, where q consists of all previous queries in addition to the latest query issued by A.
Eventually, the experiment outputs the bit that A returns.

Definition 3 (Security w.r.t. Server). The scheme Π is called L-semantically-secure against adaptive at-
tacks if for all PPT adversaries A there exists an efficient simulator S such that |Pr[RealΠA(κ) = 1] −
Pr[IdealΠA,S(κ)]| ≤ negl(κ).

Before going ahead, we first give the description of leakage function L used in our security analysis. We note
that, for sake of simplicity, we only present the detailed security proof of our scheme for conjunctive queries, so
we start by describing the leakage function for such a simple scenario. Actually, the scheme and security proof
can be readily adapted to any search boolean queries, which will be further discussed later.

In the following, we represent a sequence of T conjunctive queries by q = (s,x), where s[t] and x[t, ·] for
t ∈ [T ] denote the sterm and xterms in the t-th query, and each individual query is written as q[i] = (s[i],x[i, ·]).
With DB and q as input, the leakage function outputs the following leakage items:

• N =
∑d
i=1 |Widi | is the number of keyword-document pairs. This is the size of EDB and XSet.

• s̄ ∈ NT is the equality pattern of the sterms s, indicating which queries have the same sterms. It is calculated
as an array of integers, such that each integer represents one sterm. For instance, if we have s = (a, b, c, a,
a), then s̄ = (1, 2, 3, 1, 1).

• SP[σ] is the size pattern of the queries, which is the number of matching results returned for each stag.
Note that we index it by the values of s̄, i.e., σ ∈ s̄, instead of the query number t as in [7], so we have
SP[̄s[t]] = |DB[s[t]]|.

• RP[t, α] = DB[s[t]] ∩ DB[x[t, α]] where s[t] 6= x[t, α]. It reveals the intersection of the sterm with any other
xterm in the same query.

• SRP[t] = DB[s[t]] is the search results pattern corresponding to the stag of the t-th query.

• IP[t1, t2, α, β] =

{
DB[s[t1]] ∩ DB[s[t2]], if s[t1] 6= s[t2] and x[t1, α] = x[t2, β]

∅, otherwise
is the conditional intersection

pattern, which is a generalization of the IP structure in [7].
• XT[t] = |x[t]|: the number of xterms in the t-th query.

The leakage function for our protocol is similar to that in [7], but a number of components have been
generalized and some additional components are introduced. The generalization of SP is straightforward. RP
has changed a lot. Within a query, it is possible to test the results from the stag against any other keyword,
since a full xtoken is sent to the server. RP captures this as the intersection between the sterm and xterms. IP
is also generalized, where any of the sterms for each conjunctive query is considered instead of only one xterm
per query. Of the additional pieces of leakage, XT is straightforward. However, there is also a component SRP
which represents the results corresponding to any sterm. This component overstates the true leakage but is
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required by the design of the proof. Actually, RP and IP also overstate the leakage that they represent, because
the server in the actual protocol never has access to the unencrypted indices.

Next, we continue to consider the security w.r.t. adversarial clients. In our setting, whenever a legitimate
client registers to the system, the data owner assigns a set of keywords and generates the associated private key
for the client according to his attributes/credentials. Thus, each client is only permitted to proceed search queries
for the authorized keywords in our system. Loosely speaking, the security requires that it be impossible to forge
a valid search token for a query containing some non-authorized keywords, even for an adaptive client (that
can select the authorized keywords by himself). That is, the malicious client is not allowed to gain information
beyond what he is authorized for. Formally, the security is defined via the following game ExpUF

A,token(κ) played
between a challenger C and an adversary A:

Initialization: the challenger runs the setup algorithm (MK,PK,EDB,XSet) ← EDBSetup(1κ,DB, RDK,U)
and returns the system public key PK to adversary A.

Client key extraction: when receiving a private key extraction request for keywords w = (w1, . . . , wn), the
challenger C runs the client key generation algorithm sk ← ClientKGen(MK, S,w) and sends back sk to A.

Output: Eventually, the adversary outputs a search token st for a new query containing some keyword w′ /∈ w,
and the challenger outputs 1 if st is valid.

Definition 4 (Security w.r.t. Client). The search token in Π is said to be unforgeable against adaptive
clients if for all PPT adversaries A its advantage Pr[ExpUF

A,token(κ) = 1] ≤ negl(κ).

Note that in our syntax search tokens are produced by clients using their private keys, so if the generation of
valid tokens is (almost) equivalent to that of the corresponding private key, then the security can be formulated
according to the generation of a valid private key instead of a search token (i.e., the goal of the adversary in
the game is to finally output a valid private key for some un-authorized keyword w′ /∈ w). For the proof of our
scheme, we will follow the latter equivalent way.

3 A Deterministic, Memory-efficient Mapping from Keywords to Primes

Before presenting our multi-client SE protocol, we first give an efficient ‘keyword to prime’ hash function. In
this work, we assume that the search index keywords have been mapped during the encrypted database setup
to prime integers, in order to be compatible with our RSA-based token-derivation function, and that the token
generation and search algorithms can re-compute the same corresponding primes for the keywords searched by
the user. A straightforward approach to implement such a mapping would be to use a lookup table at the data
owner and client, storing all keywords and their corresponding primes. While computationally efficient, this
approach requires memory storage at the data owner proportional to the total number |W| of keywords in the
database index, and memory storage at the client proportional to the number of keywords n to be searched for
by this client, which may be prohibitive and would eliminate the advantage of the compact (constant length
independent of n) client tokens of our protocol.

In this section, we show how to avoid the storage overheads of the lookup table approach, by constructing a
deterministic and memory-efficient collision-resistant hash function for mapping keywords to their corresponding
primes. In this construction, the memory requirements at the data owner and client are constant, indpendent
of the number of keywords |W| in the index or the number of keywords n at the client.

Our construction of a ‘keyword to prime’ collision-resistant hash is a deterministic variant of the randomized
‘strings to primes’ hash function introduced by Gennaro, Halevi and Rabin [12].

Construction. The main idea is to use the randomized hash function introduced in [12] along with a
primality test algorithm, derandomizing the result by using a pseudorandom function (PRF) and choosing the
first prime in a psedurandom sequence of integers as the hash output. Our construction builds a collision-
resistant ‘keyword-to-prime’ hash function family H, where each function h ∈ H maps the keyword space W to
the set P2κ of 2κ-bit prime integers. The construction uses the following ingredients:

• A collision-resistant hash family H̄, where each function h̄ ∈ H̄ maps W to the set of 2κ-bit strings {0, 1}2κ.
• A PRF family F , where each function Fk ∈ F maps {0, 1}κ to {0, 1}κ.

We let Int denote the natural mapping from a binary string in c ∈ {0, 1}κ to the integer Int(c) in [0, 2κ − 1]
whose binary representation is c, and denote by Bin its inverse mapping from integers to binary strings. A hash
function h : W→ P2κ from our family H is specified by picking a random function h̄ from the collision-resistant
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family H̄ and a random pseudorandom function Fk from the PRF family F . The algorithm for evaluating the
function h on a given keyword x ∈ W using (h̄, Fk) to get a corresponding prime w ∈ P2κ is presented in
Algorithm 1.

Algorithm 1 h: Hashing from keywords to primes

Input: keyword x ∈W, functions h̄ : W→ {0, 1}κ ∈ H̄, Fk : {0, 1}κ → {0, 1}κ ∈ F
Output: prime integer w ∈ P2κ

1: foundprime← False
2: r ← 0.
3: while foundprime = False do
4: let w ← 2κ · Int(h̄(x)) + Int(Fk(Bin(r))) // random int. with MS bits equal to h̄(x)
5: if w is prime then
6: let foundprime← True
7: end if
8: let r ← r + 1 mod 2κ

9: end while
10: return w.

Security and Efficiency. The following statement summarizes the security and complexity of evaluating
our hash family construction.

Lemma 1. (1) The hash family H is collision-resistant if the hash family H̄ is collision-resistant. (2) Further-
more, if family F is a pseudorandom function family, and the density of primes in the intervals [2κ · h̄(x), 2κ ·
h̄(x) + 2κ − 1] is ≥ 1/ ln(22κ) for each x (as expected from the Prime Number Theorem), then for each input
x ∈W and m ≥ 1, the number of iterations of the while loop in Algorithm 1 is ≤ 1.4·m·κ, except with probability
negligibly larger than exp(−m).

Proof. The proof of (1) is immediate from the collision-resistance of H̄ and the fact that h̄(x) forms the κ MS
bits of w. To prove (2), fix x ∈ W and let px denote the probability that a uniformly random integer in the
interval [2κ · h̄(x), 2κ · h̄(x) + 2κ − 1] is prime, and let L denote the number of iterations of the while loop in
algorithm 1 on input x. Assume for the moment that Fk is a perfect random function, so that Int(Fk(Bin(r))) is
an independent uniformly random integer in [0, 2κ − 1] for each r ∈ [0, 2κ − 1]. Under this assumption, we have
for each n ≥ 1 that L is geometrically distributed as Pr[L = n] = (1−px)n−1 ·px, and it follows that Pr[L > n] =∑∞
t=n+1(1− px)t−1 · px = (1− px)n. Hence L ≤ m/px, except with probability perr = (1− px)m/px ≤ exp(−m),

where we have used the fact that 1− px ≤ exp(−px) for px ≥ 0. If we now replace the perfectly random Fk with
the pseudorandom Fk, the probability perr can exceed exp(−m) by at most a negligible amount (in the security
parameter κ), or else we obtain an efficient distinguisher against the pseudorandomness of F . To complete the
proof of (2), we use our assumption on the density of primes in the interval [2κ · h̄(x), 2κ · h̄(x) + 2κ − 1], which
implies that px ≥ 1

1.4·κ for all x. ut

We note that the heuristic assumption in Lemma 1 part (2) about the distribution of primes is consistent
for large κ with what one expects from the Prime Number Theorem, and is only needed for our efficiency
estimates for the hash function evaluation, not for its collision-resistance security (if one wants to, this heuristic
assumption can also be avoided to give a provable similar complexity, using a more complex hash function
algorithm, as in [12]).

We now estimate the practical cost of evaluating our hash function h. The memory storage costs are constant
(independent of the size of the keyword set W), namely the cost of storing the two keys for the functions h̄ and
the PRF Fk. The main computation cost in Algorithm 1 is the cost of each primality check of the 2κ-bit integer
w in the iterations of the while loop. According to Lemma 1 with m = 3, the number of such primality tests
would be L ≤ 4.2 · κ, except with small probability ≈ 0.05. Let Texp(2κ) denote the time needed to compute
a full exponentiation modulo a 2κ-bit modulus. Assuming that we implement these primality checks using a
Miller-Rabin probabilistic primality test [21,23], the expected cost [26][Ch. 10] of these L tests (at a 2−κ false
positive probability) would be at most κ/2 exponentiations modulo a 2κ-bit integer for the last while loop
iteration, plus an expected ≤ 2 exponentiations modulo a 2κ-bit modulus for all other L− 1 iterations (which
give composites), giving a total expected time of Th ≤ (κ/2 + 2 · L) · Texp(2κ). Furthermore, using fast trial
division by small primes up to (say) 101 before testing with Miller-Rabin, would reduce the number of dominant
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Miller-Rabin tests to LMR ≈ (
∏

prime p≤101
p−1
p ) · L ≤ 0.11 · L. Thus, the overall expected time for evaluating

our hash function would be

Th ≤ (κ/2 + 0.22 · L) · Texp(2κ) ≈ 1.5κ · Texp(2κ).

Thus, for a typical security parameter κ = 100, we estimate Th to be equivalent to about 150 · Texp(200)
(i.e. 150 exponentiations with a 200-bit modulus). To put this into context with the rest of our protocol, the
latter requires during each token generation to perform an exponentiation modulo a λ ≈ 2048-bit modulus
(to make sure the RSA problem has a ≈ 2100 secrity level) for each keyword w. Since the time Texp(κ) for
an exponentiation modulo a κ-bit modulus is, assuming classical arithmetic, at least quadratic in κ, we have
Texp(λ)/Texp(2κ) = Texp(2048)/Texp(200) ≥ (2048/200)2 ≈ 104, so the cost of evaluating our hash function for
w is expected to be only Th ≈ 150/104 ·Texp(2048) ≈ 1.44 ·Texp(2048), i.e. equivalent to only 1.44 exponetiations
with a 2048-bit modulus, thus adding only a reasonable overhead to the computation time of our protocol for
typical security parameters (2.44 exponentiations instead of 1 exponentiation modulo 2048-bit per keyword).

4 Our Construction

In this section, we present our searchable encryption scheme which mainly consists of four algorithms Π =
(EDBSetup,ClientKGen,TokenGen,Search). For completeness, we also give the description of document retrieval
algorithm Retrieve, by which the client finally retrieves the desired document from the cloud server. In the
construction, we always assume that the set W =

⋃d
i=1 Widi of keywords in DB = (idi,Widi)

d
i=1 consists of

distinct primes, which are mapped from the real keywords by our ‘keyword to prime’ function given in Section
3, and that a specific policy A is implicitly specified for each document identifier idi.

EDBSetup(1κ,DB,RDK,U): takes as input a security parameter κ, a database DB = (idi,Wi)
d
i=1, a retrieval

decryption key array RDK and an attribute universe U , it chooses big primes p, q, random keys KI ,KZ ,KX for a
PRF Fp andKS for a PRF F . Then it outputs the system master key MK = (p, q,KS ,KI ,KZ ,KX , g1, g2, g3,msk)
and the corresponding system public key PK = (n, g,mpk), where (mpk,msk) ← ABE.Setup(1κ,U), n = pq,

g
$← G and gi

$← Z∗n for i ∈ [3]. Then it generates the encrypted database EDB and XSet with the system keys
as the following Algorithm 2.

Algorithm 2 EDB Setup Algorithm

Input: MK, PK, DB
Output: EDB,XSet
1: function EDBGen(MK, PK, DB)
2: EDB← {}; XSet← ∅
3: for w ∈W do
4: c← 1; stagw ← F (KS , g

1/w
1 mod n)

5: for id ∈ DB[w] do
6: `← F (stagw, c); e← ABE.Enc(mpk, id||kid,A)

7: xind← Fp(KI , id); z ← Fp(KZ , g
1/w
2 mod n||c)

8: y ← xind · z−1; xtag← gFp(KX , g
1/w
3 mod n)·xind

9: EDB[`] = (e, y); XSet← XSet ∪ {xtag}
10: c← c+ 1
11: end for
12: end for
13: return EDB,XSet
14: end function

ClientKGen(MK,S,w): assuming that a legitimate client with attribute set S is permitted to perform
searches over keywords w = (w1, w2, . . . , wn), the data owner D generates a corresponding private key sk =

(KS ,KI ,KZ ,KX , skS , skw), where skS ← ABE.KeyGen(msk, S) and skw = (sk
(1)
w , sk

(2)
w , sk

(3)
w ) is computed as

sk(i)
w =

(
g

1/
∏n
j=1 wj

i mod n
)

for i ∈ [3].
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At last, D sends back sk together with w, implicitly assuming that the keyword appearance frequency satisfies
|w1| < |w2| < · · · < |wn|.

TokenGen(sk,Q): whenever the client C wants to search a boolean query Q with keywords w̄ ⊆ w, he
first chooses sterms s̄ ⊆ w̄ according to the query Q. For simplicity, we take the conjunctive query, Q =
w′1 ∧w′2 ∧ · · · ∧w′m, as an example and assume that w′1 is the chosen sterm, then the search token st (including
stags and xtokens) for this query is computed as Algorithm 3.

Algorithm 3 Token Generation Algorithm

Input: sk,Q
Output: st
1: function TokenGen(sk, Q)
2: st, xtoken← {}; s̄← ∅
3: s̄← s̄ ∪ {w′1}
4: x← w̄ \ s̄
5: stag← F

(
KS , (sk

(1)
w )

∏
w∈w\{w′1}

w
mod n

)
= F (KS , g

1/w′1
1 mod n)

6: for c = 1, 2, . . . until the server stops do
7: for i = 2, . . . ,m do

8:
xtoken[c, i] ← gFp

(
KZ ,(sk

(2)
w )

∏
w∈w\{w′1}

w
mod n||c

)
·Fp
(
KX ,(sk

(3)
w )

∏
w∈w\{w′

i
} w

mod n
)

= gFp(KZ ,g
1/w′1
2 mod n||c)·Fp(KX ,g

1/w′i
3 mod n)

9: end for
10: end for
11: st← (stag, xtoken)
12: return st
13: end function

Search(st,EDB,XSet): takes the search token st = (stag, xtoken[1], xtoken[2], · · · ) for a query Q and (EDB,XSet),
the server returns the search result R as Algorithm 4.

Algorithm 4 Search Algorithm

Input: st = (stag, xtoken[1], xtoken[2], · · · ),EDB
Output: R
1: function Search(st,EDB)
2: R ← {}
3: for stag ∈ stags do
4: c← 1; `← F (stag, c)
5: while ` ∈ EDB do
6: (e, y)← EDB[`]
7: if xtoken[c, i]y ∈ XSet for all i then
8: R← R ∪ {e}
9: end if

10: c← c+ 1; `← F (stag, c)
11: end while
12: end for
13: return R
14: end function

Retrieve(sk,R): the client with private key skS decrypts the encrypted index (search result R) and gets the
matching document identifiers and retrieval decryption keys:

• For each e ∈ R, recover (id||kid) ← ABE.Dec(skS , e) if the client’s attributes in S satisfy the access policy
A assigned by the data owner to document identified by id.

• Send id to the server, get the encrypted document ct = Enc(kid, doc), and retrieve the document doc =
Dec(kid, ct) with the corresponding symmetric key kid.
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Note that our protocol is derived from CASH and the RSA function, its correctness is easy to verify, which
follows from the correctness of CASH and the underlying ABE.

5 Security Analysis

In this section, we show the security of our scheme against the adaptive server and client respectively. Similar
to [7], we first give a proof of security against non-adaptive attacks w.r.t. server, and further discuss the proof
of full security later. As to the security w.r.t. client, we use a slight variant of security definition where the goal
of the adversarial client is to generate a new valid private key.

Theorem 1. Our scheme Π is L-semantically secure against non-adaptive attacks where L is the leakage func-
tion defined as before, assuming that the DDH assumption holds in G, that F and Fp are secure PRFs and that
ABE is a CPA secure attribute-based encryption.

Proof. The proof is conducted via a sequence of Games. In all games, the adversary supplies a database DB and
all search queries q at the beginning of the game. The first game Game0 is designed to have the same distribution
as RealΠA(κ) (assuming no false positives), and the last game Game8 is designed to be easily simulated by an
efficient simulator S. By showing that the distributions of all games are (computationally) indistinguishable
to each other, we can see that the simulator S meets the requirements of the security definition w.r.t. server,
thus completing the proof of the theorem. Our proof differs from that of [7] by not including a game equivalent
to their G6. This is because we use a dictionary instead of their TSet data structure, which we handle in
earlier games. Their TSet is a specification of a hash table with an API designed for their purposes. We use
a standard dictionary instead for familiarity to readers and to save specifying additional data structures and
leakages. Moreover, for sake of simplicity we model a slightly different version of the protocol where the client
always sends Tc (some publicly known upper bound) xtoken arrays for each query, instead of having the server
interactively tell the client when to stop. However the proof could be easily generalized to the latter case.

Game0: this Game is slightly modified from the real Game with some minor changes to make the anal-
ysis easier, the details of which is shown in Algorithm 5. With (DB,w, s,x) as input, the Game starts to
simulate the encrypted database (EDB,XSet) by running Initialize, which is identical to EDBSetup in Al-
gorithm 2 except that the calculation of XSet is separated as a single function, XSetSetup, to assist in the
presentation of changes in the following Games. Then Initialize generates the transcript using the Trans-
Gen function, as defined in 5. Specifically, Initialize first computes the private key skw corresponding to
the authorized keywords w. To calculate the transcript array t, for t ∈ [T ], it then lets t[t] be the output of
TransGen(EDB,XSet, skw,KS ,KX ,KZ , s[t],x[t, ·]), which generates a transcript as in the real Game except
that it computes ResInds in a different way: it directly looks up the result corresponding to the query instead of
decrypting the returned ciphertexts Res (concretely, it calculates DB(st) and then filters the values that are also
in DB(xt), where st = s[t], xt = x[t, ·] and DB(xt) denotes the intersection of all DB[x[t, i] for i = 2, 3, . . . , n).

In addition, we also made the following minor bookkeeping change: the order in which the document iden-
tifiers are used for each keyword w are recorded in an array WPerms[w]. The order is chosen as a random
permutation, which matches the real game.

Assuming no false positives happening, the distribution of the game is exactly the same as that of RealΠA(κ).
So we have,

Pr[Game0 = 1] ≤ Pr[RealΠA(κ) = 1] + negl(κ).

Game1: this game is identical to the last one, except that the boxed codes are also included, the details
of which are also given in Algorithm 5. More precisely, we record in this game the stag values after they are
first computed and look them up on subsequent uses, rather than recomputing them: for each t ∈ [T ] it lets
query stag ← stags[s[t]]. According to the calculation of stags in the TokenGen algorithm, it is easy to observe
that the distributions of these two games are identical. Thus, we have

Pr[Game1 = 1] = Pr[Game0 = 1].

Game2: this game is the same as previous, except that we replaces the PRFs F and Fp with random
functions, the details of which are shown in Algorithm 6. Note that since F (KS , ·) is only evaluated on the
same input once, its evaluations can be replaced with random selections from the appropriate range. Regarding
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Fp(KX , ·), Fp(KI , ·) and Fp(KZ , ·), they are replaced by fX , fI and fZ respectively. By a standard hybrid
argument, it is easy to see that there exist efficient adversaries B1,1 and B1,2 such that

Pr[Game1 = 1]− Pr[Game0 = 1] ≤ Advprf
F,B1,1

(κ) + 3Advprf
Fp,B1,2

(κ).

Game3: this game is almost the same as Game2, except that it also includes the boxed code, as shown in
Algorithm 6. This means that the encryption of document identifiers is always replaced with an encryption of
the constant string 0κ. Since the encryption is operated for polynomial, say ploy(κ), times, by a standard hybrid
argument we can see that there exists an efficient adversary B2 such that

Pr[Game2 = 1]− Pr[Game1 = 1] ≤ ploy(κ) ·AdvIND-CPA
Σ,B2

(κ).

Note that the reduction to the IND-CPA security of the underlying ABE scheme Σ is possible, because the
ciphertexts need not to be decrypted. We omit the tedious details here.

Game4: the only difference of this game from the previous is that the XSet and xtoken are generated
in an alternative but equivalent way, which is shown in Algorithm 7. Loosely speaking, all possible values

XSet elem(w, id) = gfX(g
1/w
3 mod n)·fI(id) for each identifier id and keyword w ∈ W are pre-computed and

stored in an array H. Moreover, some xtoken values in transcripts, which do not correspond to possible matches,
are generated and stored in another array Y .

In this game, the function XSetSetup is altered to use the values from the H array to produce the XSet
elements: for a given w ∈W and id ∈ DB[w], it adds the value H[id, w] to XSet. Recall that this value is set to

be gfX(g
1/w
3 mod n)·fI(id) during the Initialize, which is the same as that in Game3. In addition, it is easy to

observe that each invocation of TransGen here will return the same output as the previous game only if xtoken
values are the same in both games. Hence, we only focus on the generation of xtoken array in the following.

In Game3, xtoken is computed as in the real game. Specifically, the xtoken value xtoken[α, c] for each xterm

xt[α] and c ∈ [Tc] is set to be gfZ
(

(sk(2)w )
∏
w∈w\{st} w mod n||c

)
·fX
(

(sk(3)w )
∏
w∈w\xt[α]} w mod n

)
, which is equal to

gfZ(g
1/st
2 mod n||c)·fX(g

1/xt[α]
3 mod n). In this game, xtoken is generated in the following way. First, TransGen

looks up (id1, . . . , idTs) ← DB[st] and σ ← WPerms[st]. For each xt[α] and c ∈ [Tc] it then retrieves EDB[l] =

(e, y) using query stag, where y = fI(idσ[c]) · (fZ(g
1/st
2 mod n||c))−1, and sets the value xtoken[α, c] as:

xtoken[α, c] =

{
H[idσ[c],xt[α]]1/y, c ∈ [Ts],
Y [st,xt[α], c], c ∈ [Tc] \ [Ts].

By a simple verification, we can see that xtoken[α, c] = gfZ(g
1/st
2 mod n||c)·fX(g

1/xt[α]
3 mod n) for each xt[α] and

c ∈ [Tc], which indicates that the xtoken values in both games are exactly the same. Hence, we get

Pr[Game4 = 1] = Pr[Game3 = 1].

Game5: this game is almost identical to Game4, except that the single boxed code in Algorithm 7 is also
included: the values y are now drawn randomly from Z∗p. Due to the modifications made in Game4 and the

fact that the mapping w → (g
1/w
2 mod n) is injective, the value of fZ(g

1/w
2 mod n||c) is used only once

during Initialize and it is uniform and independent of the rest of randomness in the game. Moreover, since
y = xind · z−1 depends on the random value of fZ , it is also uniformly and independently distributed. Thus,
replacing y with random values does not affect the distribution of the game. Therefore, we have

Pr[Game5 = 1] = Pr[Game4 = 1].

Game6: this game is exactly like the previous game, except that it also includes the doubly boxed code
in Algorithm 7. That is, all the values of H and Y arrays are selected at random from G. Under the DDH
assumption, there exists an efficient algorithm B6 such that

Pr[Game6 = 1]− Pr[Game5 = 1] ≤ AdvDDH
G,B6

(κ).

To show the indistinguishability between these two games, a simple reduction can be conducted similarly as
in [7]. Briefly speaking, the values of the X array in Game5 are the ga values, and the X values are raised to

the power of xind when computing H and to the power of fZ(g
1/w
2 mod n||c) when computing Y , where xind

and fZ(g
1/w
2 mod n||c) act as the b values of the DDH tuple. Thus, H and Y in Game5 have values of the form
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gab, while in Game6 they are replaced with random values. Differentiating between them can be easily reduced
to the DDH problem, we omit the details here.

In the last two games Game7 and Game8, we change the way the H array is accessed for enabling the final
simulator to work with its given leakage. The details are shown in Algorithm 8. Briefly speaking, the access
to H is reduced to the cases where H values will be used for multiple times. For other cases, the access to H
will be replaced with a random choice. Since in the later cases, there would be only one chance for the game to
access H, the random section will not affect the distribution of the game. Note that although Game7 continues
to use the TransGen function of Algorithm 7, we removed for simplicity the irrelevant code from the previous
games, such as the selection of random functions.

Game7: this game is almost identical to the above, except that we modify XSetSetup to only include the
members of H that could actually be used or accessed for multiple times, as shown in Algorithm 8. Recall that
after the array H is generated, it is only used in two subroutines: the function XSetSetup and TransGen.
Clearly, the function XSetSetup will never repeat an access to H, so for an index (id, w) of H it only needs to
check if this position will be accessed by TransGen. However, TransGen only accesses H for such positions
that satisfy id ∈ DB[st] and w = xt[α] for some t and α. Apparently, this condition exactly captures the elements
of H used for multiple times. Regarding the other positions, the corresponding elements cannot be distinguished
from random choices. Thus, the modification does not change the distribution of the game. Hence, we get that

Pr[Game7 = 1] = Pr[Game6 = 1].

Game8: the final game is exactly like the previous one, except that we change the way TransGen accesses
H, so that it only computes the xtokens with the members of H that are accessed for multiple times, which is
also shown in Algorithm 8. To test a possible reusage of a member (e.g., indexed by (id, w)) of H, we must check
if either XSetSetup has access to this index, or if TransGen will access it again. In Game7, XSetSetup
was modified in such a way that it only accesses the member H[id, w] if ∈ DB[st] ∩ DB[xt[α]] and w = xt[α]
for some t and α, which is captured by the first “if” statement in the TransGen of Game8. However, it is
also possible that TransGen uses the same member twice. We note that this happens only if it is called for
two different queries because one execution of the subroutine only touches unique elements of H. For clearity,
the current query number t is additionally passed in as an argument. More precisely, for an element indexed
by (id, w) to be accessed twice, it must hold that id ∈ DB[st] ∩ DB[st′ ] and w = xt[α] ∈ xt′ for some t′ 6= t.
The condition for such a repeated access is exactly captured by the second “if” statement in TransGen of this
game. If neither of these conditions apply, the xtoken is randomly selected from G. Since all repeating elements
of H in the previous are still used here, we have

Pr[Game8 = 1] = Pr[Game7 = 1].

Simulator: In the following, we give a simulator S that takes as input the leakage L(DB, s,x) = (N, s̄,SP,RP,
SRP, IP,XT) and outputs a simulated (EDB,XSet) and transaction array t. By showing that the simulator pro-
duces the same distribution as Game8 and combining the relations between the games, we will show that the
simulator satisfies the requirements in the theorem. At the beginning, the simulator first computes a restricted
equality pattern of x as below, denoted by x̂. Then it proceeds through algorithms 9 to 11 to produce its final
output.

The restricted equality pattern x̂ can be computed because it is possible for the server to infer that certain
xterms are equal based on potential XSet elements XSet elem(w, id). This leakage coming from these equalities
is made precise in the IP structure. If there exist id, t1 and t2 such that id ∈ DB[s[t1]]∩DB[s[t2]], then it is possible
to infer if two xterms x[t1, α] and x[t2, β] are equal because there will be repeating values XSet elem(x[t1, α], id)
and XSet elem(x[t2, β], id). This can be formulated equivalently in terms of the leakage IP by defining a T ×A
table x̂[t, α] such that x̂[t1, α] = x̂[t2, β] iff IP[t1, t2, α, β] 6= ∅. The table x̂ describes which xterms are “known”
to be equal by the adversarial server. In particular, we have that

x̂[t1, α] = x̂[t2, β] =⇒ x[t1, α] = x[t2, β]

and

(x[t1, α] = x[t2, β]) ∧ (DB[s[t1]] ∩ DB[s[t2]] 6= ∅) =⇒ x̂[t1, α] = x̂[t2, β].

In the simulator, x̂ is an array of integers and can be computed by incrementally numbering off the x̂[t1, α]
values but setting x̂[t2, β] to the value of x̂[t1, α] when (t1, α) < (t2, β) and IP[t1, t2, α, β] 6= ∅.
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The simulated EDB is produced by Algorithm 9. The main difference between Game8 and the simulator
code is that Game8 fills out the entries of EDB for every w ∈W while the simulator only does it for i ∈ s̄. The
entries of s̄ are integers that correspond to the sterms in the queries, so we may have |̄s| < |W |. The EDB must
have N entries, so the simulator adds additional random entries until the correct size is reached. In both the
simulator and the game, the dictionary keys are indistinguishable and the values are encryptions of 0κ under
the same keys, so the distribution of EDB is indistinguishable between these two cases.

The simulator XSet is produced by algorithm 10. We claim that it is distributed identically in Game8 jointly
consistent with the EDB and xtokens. First, it can be seen that both algorithms add N randomly chosen group
elements to the XSet. In Game8 this is done by looping through every keyword w ∈W and id ∈ DB[w], totally
giving

∑
w∈W DB[w] additions. In the simulator, this is done by keeping track of each addition with a counter

j and then adding additional elements until N elements have been added. What remains to be shown is that
the distribution of the elements is consistent with the EDB and the xtokens.

To show this, we will consider how the xtokens are calculated. The simulated client-server transcript t,
including the xtokens, is produced by Algorithm 11. Clearly the y and σ values are distributed identically, both
being uniformly random. In Game8, the permutations σ are reused when an stag repeats. The reuse pattern in
the simulator is the same, based on repeating values in s̄.

Next, we show that both Game8 and the simulator perform equivalent access to H when calculating the
xtokens. In Game8, H[id, w] is accessed if either (1) id matches a conjunction within the query that uses w (i.e.
∃α s.t. id ∈ DB[st] ∧ xt[α] = w) or (2) the value will be reused in a later query. The same reads are made by
the simulator by only reading for identifiers in R, which is calculated as the identifiers that match (1) using RP
and those that match (2) using IP.

Finally, we show that when H is used for multiple times at the same positions, the reusage is the same in
both Game8 and the simulator. That is, if two reads (id1,x[t, α]) and (id2,x[t, α]) are equal in Game8, then the
equivalent reads (id1, x̂[t, α]) and (id2, x̂[t, α]) are also equal in the simulator. Formally,

(id1,x[t, α]) = (id2,x[t, α]) ⇐⇒ (id1, x̂[t, α]) = (id2, x̂[t, α]) (1)

We have for x̂ that x̂[t1, α] = x̂[t2, β] =⇒ x[t1, α] = x[t2, β], which gives the left direction “ ⇐”. For the
other direction “⇒”, we instead use the other property of x̂, that is (x[t1, α] = x[t2, β])∧ (DB[s[t1]]∩DB[s[t2]] 6=
∅) =⇒ x̂[t1, α] = x̂[t2, β]. Thus, if DB[s[t1]] ∩ DB[s[t2]] 6= ∅, then the equation 1 is proven. Given that
(id1,x[t, α]) = (id2,x[t, α]), then id1 = id2. But then the intersection must contain at least this id and so is
nonempty.

When calculating the ResInds value for the transcript, which are the document identifiers matching the
query, the simulator finds these values using the RP and SRP. This is indicated in the code as a function
Real Results(RP,SRP). For each queried keyword, its matching identifiers can be taken from RP if it is in a
conjunction with any other terms and from SRP if it is not. The set union and intersection of the leaf results
can then be taken to find the final output. ut

Theorem 2. Our scheme Π is secure against malicious clients, i.e., search token in Π is unforgeable against
adaptive attacks, assuming that the strong RSA assumption holds.

Proof. Due to the properties of PRFs, we can see from our scheme that no client can generate a valid search

token for some non-authorized keyword e.g., w′, unless he could correctly guess the value (g
1/w′

j mod n) for
j ∈ [3]. Suppose that there exists an adversarial client A who can produce a valid search token for some non-

authorized keyword w′, implying that he can get the correct value (g
1/w′

j mod n) for some j ∈ [3]. In this
case, we can use A to construct an efficient algorithm B to solve the strong RSA problem with a non-negligible
probability as follows.

Given a random strong RSA instance (n, hj) where hj ← Z∗n, the algorithm B invokes the system setup
algorithm EDBSetup and returns the system public key PK to A. After that, A submits a private key extraction

query w = (w1, . . . , wn) of his choosing along with his attribute set S. To respond, B sets gj = (h
∏n
i=1 wi

j

mod n), which implies hj = (g
1/
∏n
i=1 wi

j mod n), and runs the algorithm skS ← ABE.KeyGen(msk, S). At last,
it sets skw = hj and sends back the pair (skS , skw) as the requested private key. Eventually, A outputs his

guess v for some non-authorized keyword w′ /∈ w. B then verifies the correctness (i.e., v = (g
1/w′

j mod n)) of

his guess by checking if vw
′

= gj mod n. If so, B can solve the strong RSA instance as below:
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Recall that keywords are mapped to different primes, so we have gcd(
∏n
i=1 wi, w

′) = 1. By the extended

Euclidean algorithm, we can find integers a, b such that a(
∏n
i=1 wi) + bw′ = 1, and then get the value h

1/w′

j =

(g
1/w′

j )a · hbj = (h
∏n
i=1 wi/w

′

j )a · hbj mod n. At last, B returns the solution (w′, h
1/w′

j ).
Hence, from the brief analysis we can see that no client is able to generate a valid search token except with

a negligible probability. ut

Theorem 3. Let L be the leakage function defined before, our scheme Π is L-semantically secure against
adaptive attacks, assuming that the DDH assumption holds in G, that F and Fp are secure PRFs and that ABE
is a CPA secure attribute-based encryption.

Proof. The main idea for the proof of this theorem remains the same as that of [7]. Roughly speaking, to handle
adaptivity, the simulator with input N chooses N random group elements and adds them to XSet. To simulate
the response for each query, the simulator adaptively “assign” elements of the XSet to id-keyword pairs. This is
in contrast to the non-adaptive simulator, where it first initializes the H array and then adds the elements to
the XSet, as determined by the leakage. Now the simulator first chooses the XSet values, and then initializes H
adaptively.

6 Further Extension

For sake of simplicity, we only presented our protocol and its security analysis for the case of conjunctive
queries. Similar to [7,17], our protocol can also be readily adapted to support such form of boolean queries
“w1 ∧ ψ(w2, . . . , wm)”, where ψ is a boolean formula over the keywords (w2, . . . , wm) and wi belongs to the
client’s permitted keyword set w. In this case, the client calculates the stag corresponding w1 and the xtoken for
the other keywords and forwards the search token (stag, xtoken) and the boolean formula ψ to the server. Then
the server uses stag to retrieve the tuples (e, y) containing w1. The only difference from the conjunctive case for
the server is the way he determines which tuples match the sub-boolean query ψ. For the t-th tuple, instead of
checking if xtoken[c, i]y ∈ XSet for all 2 ≤ i ≤ m, the server will set a series of boolean variables v2, . . . , vm such
that

vi =

{
1, xtoken[c, i]y ∈ XSet
0, otherwise

,

and evaluate the value of ψ(v2, . . . , vm). If it is true, meaning the tuple matches the query, the server returns
the encrypted index e. Clearly, the search complexity for such boolean queries is still O(|DB[w1]|), the same as
for conjunctive queries. For the same set of keywords, the leakage information to the server for this case is also
the same as for the conjunctive case, except that the boolean formula ψ is exposed to the server too. Hence,
the proof for this case can also be readily adapted. For the support of other boolean queries, please refer to the
details of [7].

7 Security and Performance Analysis

In general, we focus on the privacy of data owner in (multi-client) searchable encryption settings. In some
scenarios, however, the clients may not want the data owner to get the information about the search queries
they made or hope that the data owner learns as little as possible about the queries performed by themselves.

To achieve the additional property mentioned above, Jarecki et al. [17] further augmented their multi-client
SSE to the outsourced private information retrieval (OSPIR) setting. Same as the underlying protocol, the
enhanced protocol OSPIR still requires the clients to interact with the data owner and to submit each boolean
formula for each boolean query, although it enables to hide the exact queried values from data owner. Our
initial goal is to avoid the interaction between the data owner and the clients, but we also succeed to protect
the privacy of the clients to some extent. More precisely, the data owner in our multi-client SE only knows
the queried values belong to the keyword set that is authorized by the data owner according to the client’s
credentials at the beginning, but he has no means to learn what kind of queries the client made. Moreover, he
cannot learn the exact queried values of the search. Therefore, our multi-client SSE also enjoys some additional
nice security features.

In contrast to previous works such as [7,17], we further enforce the security of documents by employing
CP-ABE to encrypt the document identifiers and retrieval decryption keys, by which our protocol realizes
the fine-grained access control on the documents at the same time. In this case, even though the client can
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retrieve many encrypted indices, she still cannot learn the matching document identifiers and retrieval keys if
her attributes do not satisfy the access policy associated with the ciphertext (encrypted index). Regarding the
leakage information learned by the server, it is easy to observe that our protocol is exactly the same as [7,17],
which is summarized in Table 2.

Table 2. Leakage Information

Leakage items Cash et al. [7] Jarecki et al. [17] Our Scheme

N =
∑d
i=1 |Wi| X X X
s̄ X X X

SP[σ] X X X
RP[t, α]=DB[s[t]]∩DB[x[t, α]] X X X

SRP[t, i] = DB[s[t, i]] X X X
IP[t1, t2, α, β] X X X
XT[t] = |x[t]| X X X

Both our protocol and MULTI [17] are based on the CASH [7], but they rely on different methods and
have distinct features. Compared to MULTI, our protocol manages to avoid the interaction between the data
owner and the client, except at the beginning the client gets a search-authorized private key for some permitted
keyword set. Moreover, as discussed before, we achieve the fine-grained access control on the stored documents
by leveraging the ABE technique. Identical to MULTI, our protocol also supports any boolean queries. All the
functionality features are summarized in Table 3.

Table 3. Functionality Analysis

Reference query-type multi-user interaction∗ access control

Cash et al. [7] Boolean No - No

Jarecki et al. [17] Boolean Yes Yes No

Our scheme Boolean Yes No Yes

∗: the interaction needed between the data owner and the clients whenever a client performs search queries.

In the above, we give a brief security and function analysis of our protocol and a comparison with the
representative multi-client SSE in [17] (MULTI). Next, we continue to analyze the efficiency of our protocol.
Due to the fact that both our protocol and the MULTI are under the framework of CASH, the communication
overhead between the data owner and the server (mainly contributed by (EDB,XSet) during the setup phase)
and that between the client and the server (mainly contributed by (stag, xtoken) during the search phase) are
almost identical, except that in our protocol document identifiers are encrypted via ABE instead of symmetric
encryption. Beside the storage overhead introduced by the ABE ciphertext, using ABE also brings some com-
putational cost to the data owner in contrast to exploiting symmetric encryption. In addition, the data owner
needs to compute one extra exponentiation (i.e., the RSA function) for each calculation of the PRF during
the setup phase, totally introducing (2

∑
w∈W |DB[w]|+ |W|) exponentiation operations for the whole database.

Fortunately, the encrypted database (EDB,XSet) are outsourced to the server once and forever, hence in this
part we focus on analyzing the communication overhead between the data owner and the client as well as their
computational cost introduced by the frequent search queries.

For a conjunctive query, e.g., Q = (w1 ∧w2 ∧ · · · ∧wm) performed by a client, we assume that the associated
keywords belong to the client’s authorized keyword set w, i.e., wi ∈ w for i ∈ [m]. To perform such a search, the
client in [17] has to interact with the data owner each time and gets the corresponding trapdoor information
and authentication information, where the data owner needs to calculate (m − 1) exponentiations and an
authenticated encryption. In contrast, the client in our protocol only needs to get from the data owner some
keyword-related (and attribute-related) secret information at the beginning, where the data owner needs to
computes 3 exponentiations and generates an attribute-related secret key for each client, and then she can
perform the following searches by herself at the cost of introducing (m + 1) additional exponentiations to the
generation of xtoken. Note that following our approach the client needs not to intact with the data owner
ever after receiving her secret key because she can use the keyword-related part to generate the search tokens
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Table 4. Communication overhead between client and data owner & their computation cost

Conjunctive query Q = (w1 ∧ w2 ∧ · · · ∧ wm), where wi ∈ w

Reference Comm. overhead Data owner’s comp. cost Clients’ comp. cost

Cash et al. [7] - |DB[w1]|(m− 1) · exp -

Jarecki et al. [17] (m− 1)|G| (m− 1) · exp |DB[w1]|(m− 1) · exp

Our scheme 3|Z∗n| 3 · exp (|DB[w1]|(m− 1) + (m+ 1)) · exp

exp: the exponentiation operation on the group; | · |: the size of a finite set or group, e.g., |G|; w: the authorized
keyword set for a client.

by herself only if she performs a query complying to the authorized keyword set. Therefore, once the data
owner in our protocol outsourced his data to the server, he needs not to be online all the time. Precisely, the
communication (comm.) overhead and the computational (comp.) cost w.r.t. the data owner and the client
during each query are summarized in Table 4. We remark that in the table we only focus on the main comm.
overhead and comp. cost contributed by the queried keywords, and omit the less contributed part, e.g., AuthEnc
in [17] and ABE.KeyGen (which is only computed once for each client) in our protocol.

It is easy to see from this table the communication complexity of our protocol for each conjunctive query is
O(1), even taking into account of all the other part of the private key, e.g., the attribute-related key skS , and
that of Jarecki et al. [17] is O(m). Moreover, when the client performs k conjunctive queries, which are assumed
comply to her authorized keyword set w, the complexity of our protocol remains the same but that of [17] is
O(k ·m), which increases linearly with the number of legitimate queries.

8 Conclusions

In this paper we present a new efficient multi-client searchable encryption protocol based on the RSA function.
Our protocol avoids the per-query interaction between the data owner and the client, which decreases their
communication overhead significantly. Meanwhile, our protocol can protect the privacy of the client to some
extent. Precisely, the data owner in our protocol only knows the permitted search keyword set of the client, but
has no means to learn the exact type of search queries or documents. Moreover, by employing attribute-based
encryption, our protocol realizes fine-grained access control on the stored data. Support for searchability and
access control simultaneously is actually a desirable feature in the practical data sharing scenarios. However, our
current protocol only allows one data owner to share his data with many clients. We leave as an open problem
to construct a system with the same advantages of ours while also support multi-data owner setting.
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Algorithm 5 Game0 and Game1

function Initialize(DB,w, s,x) // For each t ∈ [T ], the keywords
associated with this query satisfy that s[t] ∪ x[t, ·] ⊆ w.

p, q, n,msk,mpk, g1, g2, g3
$←− Z∗n, KS , KX , KI , KZ

$←−
{0, 1}κ

EDB← {}
XSet← ∅
(idi,Wi)← DB
for w ∈ W do

(id1, . . . , idTw )← DB[w]

σ
$←− Perm([Tw])

WPerms[w]← σ

stag← F (KS , g
1/w
1 mod n)

stags[w]← stag

for c ∈ [Tw] do
l← F (stag, c)
e← ABE.Enc(mpk, idσ[c]||kidσ[c] ,A)

xind← Fp(KI , idσ[c]); z ← Fp(KZ , g
1/w
2 mod n||c)

y ← xind · z−1

EDB[l] = (e, y)
end for

end for
XSet← XsetSetup(p, q,KX , KI ,DB)
skw ← ClientKGen(p, q,w)
for t ∈ [T ] do

query stag← F (KS , (sk(1)w )
∏
w∈w\{st} w mod n)

query stag← stags[st]

t[t]← TransGen(EDB,XSet, skw, KX , KZ , s[t],x[t, ·], query stag)
end for
return (EDB,XSet, t)

end function

function XSetSetup(p, q,KX , KI ,DB)
(idi,Wi)← DB ; XSet← ∅
for w ∈ W and id ∈ DB[w] do

xind← Fp(KI , id)

xtag← gFp(KX, g
1/w
3 mod n)·xind

XSet← XSet ∪ {xtag}
end for
return XSet

end function

function ClientKGen(p, q,w)
skw ← ∅
for i ∈ [3] do

sk(i)w ← g
1/
∏n
j=1 wj

i mod n
end for
skw ← (sk(1)w , sk(2)w , sk(3)w )
return skw

end function

function TransGen(EDB,XSet, skw, KX , KZ , st,xt, query stag)
for α ∈ [|xt|] do

for c ∈ [Tc] do

xtoken[α, c] ← gFp
(
KZ, (sk

(2)
w )

∏
w∈w\{st} w mod n||c

)
·

Fp

(
KX, (sk

(3)
w )

∏
w∈w\{xt[α]} w mod n

)
end for

end for
Res← Search(EDB,XSet, (query stag, xtoken))
ResInds← DB[st,xt]
return ((query stag, xtoken),Res,ResInds)

end function

Algorithm 6 Game2 and Game3

function Initialize(DB,w, s,x)

p, q, n,msk,mpk, g1, g2, g3
$←− Z∗n, fX , fI ,

fZ
$←− Fun({0, 1}κ, Z∗p )

EDB← {}
XSet← ∅
(idi,Wi)← DB
for w ∈ W do

(id1, . . . , idTw )← DB[w]

σ
$←− Perm([Tw])

WPerms[w]← σ
stag← {0, 1}κ
stags[w]← stag
for c ∈ [Tw] do

l← F (stag, c)
e← ABE.Enc(mpk, idσ[c]||kidσ[c] ,A)

e← ABE.Enc(mpk, 0κ,A)

xind← fI(idσ[c]); z ← fZ(g
1/w
2 mod n||c)

y ← xind · z−1

EDB[l]← (e, y)
end for

end for
XSet← XSetSetup(p, q, fX , fI ,DB)
skw ← ClientKGen(p, q,w)
for t ∈ [T ] do

query stag← stags[st]
t[t]← TransGen(EDB,XSet, skw, fX , fZ , s[t],x[t, ·], query stag)

end for
return (EDB,XSet, t)

end function

function XSetSetup(p, q, fX , fI ,DB)
(idi,Wi)← DB ; XSet← ∅
for w ∈ W and id ∈ DB[w] do

xind← fI(id)

xtag← gfX (g
1/w
3 mod n)·xind

XSet← XSet ∪ {xtag}
end for
return XSet

end function

function ClientKGen(p, q,w)
skw ← ∅
for i ∈ [3] do

sk(i)w ← g
1/
∏n
j=1 wj

i mod n
end for
skw ← (sk(1)w , sk(2)w , sk(3)w )
return skw

end function

function TransGen(DB, EDB,XSet, skw, fX , fZ , st,xt, query stag)
for α ∈ [|xt|] do

for c ∈ [Tc] do

xtoken[α, c] ← gfZ
(
(sk

(2)
w )

∏
w∈w\{st} w mod n||c

)
·

fX

(
(sk

(3)
w )

∏
w∈w\xt[α]} w mod n

)
end for

end for
Res← Search(EDB,XSet, (query stag, xtoken))
ResInds← DB[st,xt]
return ((query stag, xtoken),Res,ResInds)

end function
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Algorithm 7 Game4, Game5 and Game6

function Initialize(DB,w, s,x)

p, q, n,msk,mpk, g1, g2, g3
$←− Z∗n, fX , fI , fZ

$←−
Fun({0, 1}κ,Z∗p)

EDB← {}
XSet← ∅
(idi,Wi)← DB
for w ∈ W and each idi do

X[w]← gfX (g
1/w
3 mod n) ; xind← fI(idi)

H[idi, w]← X[w]xind

H[idi, w]
$←− G

end for
for w ∈ W do

(id1, . . . , idTw )← DB[w]

σ
$←− Perm([Tw])

WPerms[w]← σ
stag← {0, 1}κ
stags[w]← stag
for c ∈ [Tw] do

l← F (stag, c)
e← ABE.Enc(mpk, 0κ,A)

xind← fI(idσ[c]); z ← fZ(g
1/w
2 mod n||c)

y ← xind · z−1

y
$←− Z∗p

EDB[l]← (e, y)
end for
for u ∈ W \ w do

for c = Tw + 1, . . . , Tc do

Y [w, u, c]← X[u]fZ (g
1/w
2 mod n||c)

Y [w, u, c]
$←− G

end for

end for
end for
XSet← XSetSetup(DB, H)
skw ← ClientKGen(p, q,w)
for t ∈ [T ] do

query stag← stags[st]
t[t]← TransGen(DB, EDB,XSet, H, Y, s[t],x[t, ·], query stag)

end for
return (EDB,XSet, t)

end function

function XSetSetup(DB, H)
(idi,Wi)← DB ; XSet← ∅
for w ∈ W and id ∈ DB[w] do

XSet← XSet ∪ {H[id, w]}
end for
return XSet

end function

function TransGen(DB, EDB,XSet, H, Y, st,xt, query stag) //
xt[α] = x[t, α] denotes the α-th sterm of the t-th query.

(id1, . . . , idTs )← DB[st];σ ←WPerms[st]
for α ∈ [|xt|] do

for c ∈ [Ts] do
l← F (query stag, c)
(e, y)← EDB[l]

xtoken[α, c] ← H[idσ[c],xt[α]]1/y // y = fI(idσ[c]) ·
(fZ(g

1/st
2 mod n||c))−1.
end for
for c = Ts + 1, . . . , Tc do

xtoken[α, c]← Y [st,xt[α], c]
end for

end for
Res← Search(EDB,XSet, (query stag, xtoken))
ResInds← DB[st,xt]
return ((query stag, xtoken),Res,ResInds)

end function

Algorithm 8 Game7 and Game8

function Initialize(DB,w, s,x) // Game7, Game8
msk,mpk
EDB← {}
XSet← ∅
(idi,Wi)← DB

for w ∈ W and each idi do H[idi, w]
$←− G end for

for w ∈ s do WPerms[w]
$←− Perm([Ts]) end for

for w ∈ W do
stag← {0, 1}κ
stags[w]← stag
for c ∈ [Tw] do

l← F (stag, c)
e← ABE.Enc(mpk, 0κ,A)

y
$←− Z∗p

EDB[l]← (e, y)
end for
for u ∈ W \ w do

for c = Tw + 1, . . . , Tc do

Y [w, u, c]
$←− G

end for
end for

end for
XSet← XSetSetup(DB, H)
for t ∈ [T ] do

query stag← stags[st]
t[t]← TransGen(DB, EDB,XSet, H, Y, s[t],x[t, ·], query stag, t)

end for
return (EDB,XSet, t)

end function

function XSetSetup(DB, H) // Game7, Game8
(idi,Wi)← DB ; XSet← ∅
for w ∈ W and id ∈ DB[w] do

if ∃t, α s.t. id ∈ DB[s[t]] ∧ x[t, α] = w then
XSet← XSet ∪ {H[id, w]}

else

h
$←− G ; XSet← XSet ∪ {h}

end if
end for
return XSet

end function

function TransGen(DB, EDB,XSet, H, Y, st,xt, query stag, t) //
Game8 only

(id1, . . . , idTs )← DB[st];σ ←WPerms[st]
for α ∈ [|xt|] do

for c = 1, . . . , Ts do
l← F (query stag, c)
(e, y)← EDB[l]
if idσ[c] ∈ DB[st] ∩ DB[xt[α]] then // the equivalent

condition used in XSetSetup.
xtoken[α, c]← H[idσ[c],xt[α]]1/y

else if ∃t′ 6= t s.t. idσ[c] ∈ DB[st′ ] ∧ xt[α] ∈ xt′ then

xtoken[α, c]← H[idσ[c],xt[α]]1/y

else

xtoken[α, c]
$←− G

end if
end for
for c = Ts + 1, . . . , Tc do

xtoken[α, c]
$←− G

end for
end for
Res← Search(EDB,XSet, (query stag, xtoken))
ResInds← DB[st,xt]
return ((query stag, xtoken),Res,ResInds)

end function
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Algorithm 9 Simulator code to calculate EDB
mpk,msk
for i ∈ s̄ do

stags[i]
$←− {0, 1}κ

j ← 0
for c ∈ [SP[i]] do

l← F (stags[i], c)
e← ABE.Enc(mpk, 0κ,A)

y
$←− Z∗p

EDB[l]← (e, y)
j ← j + 1

end for
end for
for i = j + 1, . . . , N do

l
$←− {0, 1}κ

e← ABE.Enc(mpk, 0κ,A)

y
$←− Z∗p

EDB[l] = (e, y)
end for

Algorithm 10 Simulator code to calculate XSet
for w ∈ x̂ and id ∈ ∪t∈[T ],α∈[A]RP[t, α] do

H[id, w]
$←− G

end for
XSet← ∅
j ← 0
for w ∈ x̂ and id ∈ ∪{(t,α): x̂[t,α]=w}RP[t, α] do

XSet← XSet ∪ {H[id, w]}
j ← j + 1

end for
for i = j + 1, . . . , N do

h
$←− G

XSet← XSet ∪ {h}
end for

Algorithm 11 Simulator code to calculate t
for w ∈ s̄ do

WPerms[w]
$←− Perm([SP[w]])

end for
for τ ∈ [T ] do

query stag = stags[̄s[τ ]]
for wx ∈ [XT[τ ]] do

R← RP[τ, wx] ∪
⋃
t′∈[T ],β∈[XT[τ]] IP[τ, t′, wx, β]

c← 1
for id ∈WPerms[s̄[τ ]] do

(id1, id2, · · · , idTs)← SRP[τ ];σ ←WPerms[s̄[τ ]]
for c ∈ [Ts] do

if idσ[c] ∈ R then
l← F (query stag, c)
(e, y)← EDB[l]

xtoken[τ, wx, c]← H[idσ[c], x̂[τ, wx]]1/y

else

xtoken[τ, wx, c]
$←− G

end if
c← c+ 1

end for
end for

for c = SP[̄s[τ ]] + 1, . . . , Tc do xtoken[τ, wx, c]
$←− G end for

end for
Res← Search(EDB,XSet, (query stag, xtoken))
ResInds← Real Results(τ,RP, SRP)
t[τ ] = ((query stag, xtoken),Res,ResInds)

end for
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